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HowMany Observations Fall in a
Neighborhood of an Order Statistic?

A. DEMBIŃSKA1, A. STEPANOV2, AND
J. WESOŁOWSKI1

1Wydział Matematyki i Nauk Informacyjnych, Politechnika Warszawska,
Warszawa, Poland
2Department of Mathematics, Kaliningrad State Technical University,
Kaliningrad, Russia

Asymptotic behavior of the number of independent identically distributed observations
in a left or right neighborhood of knth order statistic from the sample of size n, for
kn/n → � ∈ �0� 1�, is studied. It appears that the limiting laws are of the Poisson type.

Keywords Limit theorems; Near order statistic observations; Order statistics;
Poisson distribution; Swept discrete distributions.

Mathematics Subject Classification Primary 60G70; Secondary 62G30.

1. Introduction

Let �Xn� be a sequence of independent identically distributed (iid) random variables
(rv’s) of the continuous type. For any n ≥ 1 by X1�n ≤ · · · ≤ Xn�n, we denote the
order statistics based on the sample �X1� � � � � Xn�. The two basic objects which are
studied in this article are

K−�n� k� a� = #	j ∈ 	1� � � � � n
 � Xj ∈ �Xk�n − a�Xk�n�
 (1)

and

K+�n� k� a� = #	j ∈ 	1� � � � � n
 � Xj ∈ �Xk�n� Xk�n + a�
� (2)

where a > 0 and k ∈ 	1� � � � � n
. They are, respectively, numbers of observations
falling in the open left or right a-vicinity of the kth order statistic.
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852 Dembińska et al.

Different rv’s closely related to particular forms of the two rv’s defined above
have been objects of quite intensive studies in the past ten years. The works of
Eisenberg et al. (1993), Brands et al. (1994), Baryshnikov et al. (1994), Qi (1997), and
Qi and Wilms (1997) have all focused on the problem of “a tie for the first place” for
integer valued rv’s. They were interested in asymptotics of K�n� =∑n

i=1 I	Xi = Xn�n
,
which might be considered as a discrete analog of K− + 1 or K+ + 1 for k = n.

Pakes and Steutel (1997) were the first who considered the case of continuous
rv’s. They described the limit behavior of K−�n� n� a�+ 1 based on the assumptions
regarding the asymptotics of tails of the parent distribution function (df) F of
the sequence �Xn�. They also studied the situation when a = an depends on n for
special choices of the sequence an in different domains of attraction of extreme
distributions. The limit distributions they obtained included geometric and mixed
Poisson laws. The analogs of those results for K−�n� n− k+ 1� an� were given in
Pakes and Li (1998), where again as limit distributions mixed Poisson laws showed
up. Pakes (2000) studied the asymptotics K−�n� n− k+ 1� a�+ 1 (a being fixed)
for, so-called, thin-tailed distributions. He showed, for instance, that under suitable
conditions, K−�n� n− k+ 1� a� converges in distribution to a negative binomial law.
Binomial limits for K+�n� n− k+ 1� a� have been obtained recently in Balakrishnan
and Stepanov (2005). Other results, related to those, quickly described above, can
be also found in Khmaladze et al. (1997), Li and Pakes (1998), Li (1999), Hu and
Su (2003), and Balakrishnan and Stepanov (2004).

The main novelty of this article is that while studying the limiting distributions
of K− and K+, we allow not only a = an, but also k = kn to vary in such a way
that kn/n → � ∈ �0� 1�. Sections 4, 5, and 6 are, respectively, devoted to studying
the three cases � = 0, � ∈ �0� 1� and � = 1, while basic distribution properties are
considered in Sec. 2 and a warming-up exponential example is worked out in Sec. 3.

2. Basic Distributional Properties

Directly from the definition (1) it follows that for any j = 0� 1� � � � � k− 1,

P�K−�n� k� a� = j�

= n!
�k− j − 1�!j!�n− k�!

∫
R
Fk−j−1�x − a��F�x�− F�x − a��jF

n−k
�x�dF�x� (3)

=
(
k− 1

j

)∫
R

[
F�x − a�

F�x�

]k−j−1[
1− F�x − a�

F�x�

]j
dFk�n�x�� (4)

where F = 1− F and Fk�n is a df of Xk�n; see for instance Arnold et al. (1992) or
David and Nagaraja (2003).

Similarly, the definition (2) results in

P�K+�n� k� a� = j�

= n!
�k− 1�!j!�n− k− j�!

∫
R
Fk−1�x��F�x + a�− F�x��jF

n−k−j
�x + a�dF�x� (5)

=
(
n− k

j

)∫
R

[
1− F�x + a�

F�x�

]j[
F�x + a�

F�x�

]n−k−j

dFk�n�x�� (6)

which is valid for any j = 0� 1� � � � � n− k.
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Observations in a Neighborhood of an Order Statistics 853

Also for j = 2� � � � � k− 1

P�K−�n� k� a� ≤ j − 1� = P�Xk�n − Xk−j�n ≥ a� (7)

and for j = 2� � � � � n− k

P�K+�n� k� a� ≤ j − 1� = P�Xk+j�n − Xk�n ≥ a�� (8)

Observe that (7) and (8) relate distributions of K− and K+ to distributions of
spacings based on order statistics, and at least potentially may be used to deduce
asymptotic properties of spacings from limiting distributions of K− and K+. Also,
they can be used to obtain distributional relations between K+ and K−, as briefly
indicated in Pakes and Steutel (1997). Let �Yn� be an iid sequence of rv’s such
that Y1

d= −X1. Then �Yk�n� k = 1� � � � � n�
d= �−Xn−k+1�n� k = 1� � � � � n�. Consequently,

using first (7) and then (8), we get

K�X�
− �n� k� a�

d= K
�Y�
+ �n� n− k+ 1� a� (9)

or, equivalently,

K
�X�
+ �n� k� a�

d= K�Y�
− �n� n− k+ 1� a�� (10)

where the superscript �X� or �Y� refers to the sequence of rv’s for which K− or K+
is defined.

Thus, studying the asymptotics of K+�n� kn� an� for kn/n → � is parallel to
considering K−�n� kn� an� with kn/n → 1− � at least for � ∈ �0� 1�. If � ∈ 	0� 1
 then
one has to take into account if lF = inf	x ∈ R � F�x� > 0
 and rF = sup	x ∈ R �
F�x� < 1
 are finite or not.

3. Exponential Observations

Our guiding example will be the case of standard (mean equal one) exponential iid
rv’s �Xn�. Apparently, this is the situation in which all the computations are rather
straightforward and explicit. Therefore it gives a reasonable insight at what might
be expected in more general cases.

For instance, using (3), one directly gets

P�K−�n� k� a� = j� =
(
n− k+ j

j

)
�1− e−a�je−�n−k+1�a� j = 0� 1� � � � � k− 2�

and

P�K−�n� k� a� = k− 1� = 1−
k−2∑
j=0

P�K−�n� k� a� = j��

Observe that the probability mass function (pmf) at j = 0� 1� � � � � k− 2, is
negative binomial nb�n− k+ 1� e−a� and the rest of the mass of the nb�n− k+
1� e−a� distribution is assigned to a single value k− 1. Such a distribution will
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854 Dembińska et al.

be called negative binomial swept at k− 1 and denoted by nbk−1�n− k+ 1� e−a�.
The term “swept” follows Kingamn (1966), where it was used in the context of
the Poisson distribution. Note that if � is the distribution of a rv X then the rv
min	X� k
 has the distribution � swept at k.

Note that as n → �,

K−�n� k� a�
P→ k− 1

and

P�K−�n� kn� a� = j� → 0

for any j where n− kn → �, kn → �. Also, we have

nbn−k−1�k+ 1� e−a� ∼ K−�n� n− k� a�
d→ N ∼ nb�k+ 1� e−a��

Observe that though K−�n� kn� a� is not a negative binomial rv it can be
represented as Kn�n� kn� a� = TnI�Tn < kn − 1�+ �kn − 1�I�Tn ≥ kn − 1�, where Tn ∼
nb�n− kn + 1� e−a�. For kn/n → g ∈ �1− e−a� 1� via the normal approximation, it

can be seen that I�Tn < kn − 1�
P→ 1 and �kn − 1�I�Tn ≥ kn − 1�

P→ 0. Further, by the
clt for the negative binomial distribution, which is the law of a sum of iid geometric
rv’s, in this case one gets

K−�n� kn� a�− �n− kn��e
a − 1�√

�n− kn�e
a�ea − 1�

d→ Z ∼ � �0� 1��

where � �0� 1� denotes the standard normal distribution.
Now, for a given � > 0, let us define a = an = − log�1− �

n
� > 0 for sufficiently

large n. Then the formula for the pmf, via the Stirling approximation: n! ≈
� n
e
�n
√
2�n (where for two sequences �bn� and �dn� of real numbers dn ≈ bn means

dn
bn

→ 1 ), yields

P�K−�n� k� an�= j�≈ �n− k+ j�j

j!
(
�

n

)j(
1− �

n

)n−k+1

→ e−� �
j

j! � j= 0� 1� � � � � k− 2�

and consequently,

K−�n� k� an�
d→ k−1 ∼ �k−1���� �

where �k−1��� denotes the Poisson distribution with the mean � swept at k− 1, i.e.,

P�k−1 = j� = e−� �
j

j! � j = 0� 1� � � � � k− 2�

and

P�k−1 = k− 1� = 1−
k−2∑
j=0

P�k−1 = j��
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Observations in a Neighborhood of an Order Statistics 855

Also, with the same sequence �an� as defined above and kn → �, kn/n → 0, we get
for any j = 0� 1� � � � , and sufficiently large n that

P�K−�n� kn� an� = j� ≈ �n− kn + j�j

j!
(
�

n

)j(
1− �

n

)n−kn+1

→ e−� �
j

j! �

and thus K−�n� kn� an�
d→  ∼ ����.

Let kn/n → � ∈ �0� 1�. For a given � > 0 define an = log�1+ �
�1−��n

� > 0. Then,
similarly as earlier for any j = 0� 1� � � � , we get

P�K−�n� kn� an� = j� ≈ �n− kn + j�j

j!
� �
�1−��n

�j

�1+ �
�1−��n

�n−kn+j+1
→ e−� �

j

j! �

which means that also in this case the limiting distribution for K−�n� kn� an� is
Poisson ����.

Similarly as for K−, but using (5), we derive the exact distribution of K+�n� k� a�
as

P�K+�n� k� a� = j� =
(
n− k

j

)
�1− e−a�je−�n−k−j�a� j = 0� 1� � � � � n− k�

i.e., K+�n� k� a� is a binomial, b�n− k� 1− e−a�, rv.
So as n− kn → � it follows that

�K+�n� kn� a� = j� → 0

for any fixed j, which means that K+�n� kn� a�
P→ � (compare Proposition 4.1 and

5.1 below). On the other hand,

K+�n� n− k� a� ∼ b�k� 1− e−a�

does not depend on n. By the normal approximation of the binomial distribution
we get immediately that

eaK+�n� k� a�− n�ea − 1�√
n�ea − 1�

d→ Z ∼ � �0� 1��

Now we take � > 0 and define a = an = − log�1− �
�1−��n

� > 0 for n sufficiently
large. Then using the pmf one obtains the convergence in law to the Poisson
distribution:

K+�n� kn� an�
d→  ∼ �����

for any sequence �kn� such that kn/n → � ∈ �0� 1� (for instance, kn = k, n = 1� 2� � � � ,
is admissible). The same limit is obtained for kn/n → � ∈ �0� 1�, n− kn → �, and
an = − log

(
1− �

n−kn

)
for large n.

So in both cases of K− and K+, in order to obtain Poissonian limits, a sequence
�an� was defined by relating it to the local behavior in the neighborhood of �th
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856 Dembińska et al.

quantile of the df F of the exponential distribution, where � = limn→� kn/n. This
observation will guide us in more general situations studied in Secs. 4, 5, and 6.

4. Approximations for K− and K+ when � = 0

We first introduce the following quantities:

cn�k�j =
n!

�n− k�!�k− j − 1�!j! � n ≥ 1� k ∈ 	1� � � � � n
� j ∈ 	0� � � � � k− 1
�

��x� a� = 1− F�x�

1− F�x − a�
� 0 < a ≤ x�

which will be useful further. By F←�x�, we denote the generalized inverse function,
i.e., F←�x� = inf	s � F�s� ≥ x
. Moreover, in this section we assume lF = 0. Note
that then ��a� a� = 1− F�a� = F�a�.

Before studying the asymptotic behavior of K−� K+, we state a technical result
which will be later of much use.

Lemma 4.1. Let k be fixed, kn → �, � = 0 and 0 < d < 1. Then

a) cn�k�j · dn−k
n→�−→ 0 for any j ≤ k,

b) cn�kn�j · dn−kn
n→�−→ 0 for any j.

Proof. a) Observe that

0 ≤ n!
�n− k�!�k− j − 1�!d

n−k <
1

�k− j − 1�!dk
· nkdn

and the right-hand side tends to 0 as n → �. Thus a) follows.

b) Exploiting Stirling’s approximation, we get for � > 0

n!
�n− kn�!�kn − j − 1�!j! · d

n−kn

≈ 1√
2�j!

(
n

n− kn

)n(
n− kn
kn

)kn

kj+1/2
n dn−kn

≤ 1√
2�j! · exp

{
kn log�e+ ��+ kn log

(
n− kn
kn

)

+
(
j + 1

2

)
log kn − �n− kn��− log d�

}

where the inequality holds for n large enough. Now, the expression in the exponent
can be written as

�n− kn�

[
kn

n− kn
log�e+ ��− kn

n− kn
log

(
kn

n− kn

)
+
(
j + 1

2

)
log kn
n− kn

− �− log d�
]

which apparently diverges to −� as n → � since all elements of the sum inside the
square brackets converge to zero except the last one which is negative. �
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Observations in a Neighborhood of an Order Statistics 857

The next result shows that for a fixed a > 0 the rv’s K− and K+ diverge in
probability to � as n → � and kn → � (� = 0).

Proposition 4.1. Let X1� X2� � � � be iid rv’s with a continuous df F such that lF = 0.
Let kn → � as n → � and � = 0. Then for any fixed a > 0

K−�n� kn� a�
P→ �� K+�n� kn� a�

P→ ��

Proof. Observe that if kn → � and � = 0, then P�Xkn�n
< a� → 1 for any fixed

a > 0. This implies P�K−�n� kn� a� = kn − 1� → 1. Thus for any fixed j ≥ 0 it follows
that P�K−�n� kn� a� = j� → 0.

We prove the second statement of this Proposition directly. Equality (5) can be
written as

P�K+�n� k� a� = j� = cn�k+j�j

∫ �

0
�F�x + a�− F�x��j�1− F�x + a��n−k−j�F�x��k−1dF�x��

Then, for any fixed a > 0, 0 ≤ j ≤ n− k, 1 ≤ k ≤ n

P�K+�n� k� a� = j� ≤ cn�k+j�j�1− F�a��n−k−j
∫ �

0
�1− F�x��j�F�x��k−1dF�x�

≤ cn�k+j�j�1− F�a��n−�k+j��

Applying now Lemma 4.1, we get P	K+�n� kn� a� = j
 → 0 for kn → �, � = 0, and

any fixed a > 0 and j ≥ 0. This, in fact, means K+�n� kn� a�
P→ �. �

The second result of Proposition 4.1 can be commented in the following
manner. The r.v. Xkn�n

tends in probability to 0 as n� kn → �, and � = 0.
Consequently, for large enough n the behavior of K+�n� kn� a� can be compared to
a binomial rv Yn ∼ b�n� p� with p = F�a�− F���. And the sequence �Yn� tends in
probability to infinity. So, this may be an intuitive explanation why the random
interval �Xkn�n

� Xkn�n
+ a� gets infinitively many observations as n → �.

Now we have come to main results of Sec. 2. First a constant k is considered,
while a = an depends on n.

Theorem 4.1. Let k ≥ 2 be fixed, n → � and F be a continuous df which is
invertible in a right neighborhood of 0. The sequence an → 0+ (n → �) is defined by
an = F←��/n� for some � > 0. If

lim
�x�y�→�0+�0+�

F�x + y�− F�x�

F�y�
= 1� (11)

then

K−�n� k� an�
d→ k−1 ∼ �k−1����

where the Poisson distribution swept at k− 1, �k−1���, was defined in Sec. 3.
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858 Dembińska et al.

Proof. Since lF = 0

P�K−�n� k� a� = j� = cn�k�j

∫ �

a
�F�x − a��k−j−1�F�x�− F�x − a��j�F�x��n−kdF�x�

= cn�k�j

∫ �

a

[
1− F�x�

��x� a�

]k−j−1[ 1
��x� a�

− 1
]j
�F�x��n−k+jdF�x�

for j = 0� 1� � � � � k− 2 and

P�K−�n� k� a� = k− 1� = 1−
k−2∑
j=0

P�K−�n� k� a� = j��

Since

P�n� k� an� j� �= cn�k�j

∫ �

an

[
1− F�x�

F�an�

]k−j−1[ 1

F�an�
− 1

]j
�F�x��n−k+jdF�x�

=
(
n− k+ j

j

)
�F�an��

n−k+1�1− F�an��
j

= �n− k+ 1��n− k+ 2� � � � �n− k+ j�

nj

1
j!
[(

1− �

n

)n] n−k+1
n

�j

n→�−→ �j

j! e
−�

for j = 0� 1� � � � � k− 2, it suffices to show that


P�K−�n� k� an� = j�− P�n� k� an� j�
 n→�−→ 0 for j = 0� 1� � � � � k− 2�

For a fixed x0 > 0 (to be chosen later on), an < x0 for n large enough. Then we will
show


P�K−�n� k� an� = j�− P�n� k� an� j�
 ≤ I1 + I2 + I3
n→�−→ 0�

where

I1 = I1�n� k� j� an� x0�

= cn�k�j

∫ �

x0

�F�x − an��
k−j−1�F�x�− F�x − an��

j�F�x��n−kdF�x��

I2 = I2�n� k� j� an� x0�

= cn�k�j

∫ �

x0

[
1− F�x�

F�an�

]k−j−1[ 1

F�an�
− 1

]j
�F�x��n−k+jdF�x�

and

I3 = I3�n� k� j� an� x0�

= cn�k�j

∫ x0

an


G1�n� k� j� an� x�−G2�n� k� j� an� x�
�F�x��n−k+jdF�x��
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Observations in a Neighborhood of an Order Statistics 859

where

G1�n� k� j� an� x� =
[
1− F�x�

��x� an�

]k−j−1[ 1
��x� an�

− 1
]j
�

G2�n� k� j� an� x� =
[
1− F�x�

F�an�

]k−j−1[ 1

F�an�
− 1

]j
�

For estimating I1 we use the inequality

I1�n� k� j� an� x0� ≤ cn�k�j�F�x0��
n−k

∫ �

x0

�F�x − an��
k−j−1dF�x� < cn�k�j�F�x0��

n−k�

Applying Lemma 4.1 for the last expression when n → � we get I1�n� k� j�

an� x0� → 0.
Now we turn to I2. For 0 ≤ j ≤ k− 2 we can write

I2�n� k� j� an� x0� = cn�k�j�F�an��
j�F�an��

n−k+1
∫ F�x0�

F�an�

0
�1− y�k−j−1yn−k+jdy

≤ cn�k�j�F�an��
j�F�an��

n−k+1
∫ F�x0�

F�an�

0
yn−k+jdy

= cn�k�j�F�x0��
n−k+j+1 1

n− k+ j + 1

(
�

n

)j(
1− �

n

)−j

→ 0

by virtue of Lemma 4.1.
Let us now study I3. For 0 ≤ j ≤ k− 2 the following inequality holds

I3�n� k� j� an� x0� ≤ I31�n� k� j� an� x0�+ I32�n� k� j� an� x0�+ I33�n� k� j� an� x0��

where

I31�n� k� j� an� x0� = cn�k�j

∫ x0

an

∣∣∣∣
(
1− F�x�

��x� an�

)k−j−1

−
(
1− F�x�

F�an�

)k−j−1∣∣∣∣
×
∣∣∣∣
(

1
��x� an�

− 1
)j

−
(

1

F�an�
− 1

)j∣∣∣∣�F�x��n−k+jdF�x��

I32�n� k� j� an� x0� = cn�k�j

∫ x0

an

∣∣∣∣
(
1− F�x�

��x� an�

)k−j−1

−
(
1− F�x�

F�an�

)k−j−1∣∣∣∣
×
(

1

F�an�
− 1

)j

�F�x��n−k+jdF�x�

and

I33�n� k� j� an� x0� = cn�k�j

∫ x0

an

(
1− F�x�

F�an�

)k−j−1

·
∣∣∣∣
(

1
��x� an�

− 1
)j

−
(

1

F�an�
− 1

)j∣∣∣∣
×�F�x��n−k+jdF�x��
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860 Dembińska et al.

Let us first estimate I33. Assumption (11) implies that

lim( �x�an�→�0�0�

x>an>0

)
(

1
��x� an�

− 1
)(

1

F�an�
− 1

)−1

= 1�

Thus

∀�>0∃N1
∃x̂0∀n≥N1

∀x∈�an�x̂0�

∣∣∣∣
[(

1
��x� an�

− 1
)(

1

F�an�
− 1

)−1]j
− 1

∣∣∣∣ < � (12)

for j = 0� 1� � � � � k− 2. By (12) we can write for any n ≥ N1, 0 ≤ j ≤ k− 2, and
0 < x0 ≤ x̂0

I33�n� k� j� an� x0� < cn�k�j · � ·
(

1

F�an�
− 1

)j ∫ x0

an

(
1− F�x�

F�an�

)k−j−1

�F�x��n−k+jdF�x�

= cn�k�j · � · �F�an��
j · �F�an��

n−k+1
∫ 1

F�x0�
F�an�

�1− y�k−j−1yn−k+jdy

≤ cn�k�j · � · �F�an��
j · �F�an��

n−k+1
∫ 1

0
�1− y�k−j−1yn−k+jdy

= � ·
(
n− k+ j

j

)
�F�an��

j · �F�an��
n−k+1 = P�Zn = j� · � ≤ ��

where Zn is a random variable with the negative binomial distribution nb�n− k+ 1�
F�an��.

Let us show now that I32 ≤ �. First, we observe that(
1− F�x�

��x� an�

)(
1− F�x�

F�an�

)−1

= F�an� ·
[
F�an + x − an�− F�an�

F�x − an�

]−1

�

Since F�an� = 1− �
n

n→�−→ 1, by assumption (11) applied to the expression in square
brackets we can write

∀�>0∃N2
∃x̃0>0∀n≥N2

∀x∈�an�x̃0�

∣∣∣∣
[(

1− F�x�

��x� an�

)(
1− F�x�

F�an�

)−1]k−j−1

− 1

∣∣∣∣ < � (13)

for j = 0� 1� � � � � k− 2. Thus for any n ≥ N2, 0 ≤ j ≤ k− 2, and 0 < x0 ≤ x̃0,

I32�n� k� j� an� x0�

< cn�k�j · � ·
(

1

F�an�
− 1

)j ∫ x0

an

(
1− F�x�

F�an�

)k−j−1

�F�x��n−k+jdF�x� ≤ ��

The last inequality is identical to the one already used when dealing with I33.
To show that I31 < � we use (12) and (13). Then for any n ≥ N = max	N1� N2
,

0 ≤ j ≤ k− 2 and x0 = min	x̂0� x̃0


I31 < cn�k�j · �2 ·
(

1

F�an�
− 1

)j ∫ x0

an

(
1− F�x�

F�an�

)k−j−1

�F�x��n−k+jdF�x� ≤ �2 < ��
�
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Observations in a Neighborhood of an Order Statistics 861

Remark 4.1. Let F have non zero continuous right-hand side derivative at 0. Then
the assumption (11) of Theorem 4.1 is satisfied.

Now we study the case of k = kn → �.

Theorem 4.2. Let n� kn → �, � = 0, and F be a continuous df which is invertible in
a right neighborhood of 0. Assume that the sequence an → 0+ (n → �� is such that
an = F←��/n� for some � > 0. If

lim
�x�an�→�0+�0+�

[
F�x + an�− F�an�

F�x�

]kn
= 1� (14)

then

K−�n� kn� an�
d→  ∼ �����

Proof. We skip it since it follows on the same lines as the proof of Theorem 4.1.
�

This section is concluded with the result on the Poisson limit law for the number
of observations in the right vicinity of a low-order statistic.

Theorem 4.3. Let kn be any sequence of integers satisfying the condition � = 0 and let
F be a continuous df which is invertible in a right neighborhood of 0. The sequence �an�,
an → 0+, is defined by an = F←��/n� for some � > 0. If condition (11) from Theorem
4.1 holds, then

K+�n� kn� an�
d→ �����

Proof. It follows from (5) and (6) that for j = 0� 1� � � � � n− kn

P�K+�n� kn� an� = j�

= cn�kn+j�j

∫ �

0
�F�x��kn−1�F�x��n−kn �1− ��x + an� an��

j���x + an� an��
n−kn−jdF�x�

=
∫ x0

0
G�n− kn� j� an� x�dFkn�n

�x�+
∫ �

x0

G�n− kn� j� an� x�dFkn�n
�x� = J1 + J2�

where x0 > 0 and

G�n− kn� j� an� x� =
(
n− kn

j

)
�1− ��x + an� an��

j���x + an� an��
n−kn−j �

Since ��x + an� an� ∈ �0� 1�, we have G�n− kn� j� an� x� = P�Yn = j� < 1, where Yn
is a random variable with the binomial distribution b�n− kn� 1− ��x + an� an�.

As Xkn�n

P→ 0 we get

0 ≤ J2 ≤
∫ �

x0

dFkn�n
�x� ≤ P�Xkn�n

≥ x0�
n→�−→ 0�
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862 Dembińska et al.

Now notice that since F�an�
n→�−→ 1, condition (11) implies

lim
�x�an�→�0+�0+�

F�x + an�− F�x�

F�an�F�an�
= 1�

which means that

∀�>0∃x0>0∃N∀n≥N∀x∈�0�x0�

∣∣∣∣F�x + an�− F�x�

F�an�
· 1
F�an�

− 1

∣∣∣∣ < ��

Hence for x ∈ �0� x0� and n ≥ N we have

��1− ��

n
< 1− ��x + an� an� <

��1+ ��

n
�

It follows that

J1 ≤
(
n− kn

j

)[
��1+ ��

n

]j[
1− ��1− ��

n

]n−kn−j ∫ x0

0
dFkn�n

�x�
n→�−→ ���1+ ���j

j! e−��1−��

and

J1 ≥
(
n− kn

j

)[
��1− ��

n

]j[
1− ��1+ ��

n

]n−kn−j ∫ x0

0
dFkn�n

�x�
n→�−→ ���1− ���j

j! e−��1+��

for j = 0� 1� � � � . Letting � → 0 we get J1
n→�−→ �j

j! e
−� for j = 0� 1� � � � , which

completes the proof. �

5. Approximations for K−� K+ when � ∈ �0� 1�

Similarly as in the case � = 0, we first observe that for a constant a > 0 both K− and
K+ diverge in probability to �, which intuitively is clear if only the df F is strictly
increasing in a neighborhood of the �th quantile.

Proposition 5.1. Let � ∈ �0� 1� (which implies kn → �) and there exists � which
satisfies F��� = � and F be a df continuous and strictly increasing in a neighborhood
of �. Then, for any fixed a > 0

K−�n� kn� a�
P→ �� K+�n� kn� a�

P→ ��

Proof. Without loss of generality we can assume that a is sufficiently small, i.e.,
a+ lF < �. We rewrite (3) for j = 0� 1� � � � � kn − 1 as

P�K−�n� kn� a� = j� =
∫ �

lF+a

(
kn − 1

j

)[
F�x − a�

F�x�

]kn−j−1[
1− F�x − a�

F�x�

]j
dFkn�n

�x��

(15)

Let us denote

H�kn� j� a� x� =
(
kn − 1

j

)[
F�x − a�

F�x�

]kn−j−1[
1− F�x − a�

F�x�

]j
�
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Observations in a Neighborhood of an Order Statistics 863

Then we split (15) into three integrals:

P�K−�n� kn� a� = j� =
∫ x1

lF+a
H�kn� j� a� x�dFkn�n

�x�+
∫ x2

x1

H�kn� j� a� x�dFkn�n
�x�

+
∫ �

x2

H�kn� j� a� x�dFkn�n
�x� = L1�j� n�+ L2�j� n�+ L3�j� n��

where lF + a < x1 < � < x2 and j = 0� 1� � � � � kn − 1.
Note that for any x > lF + a, F�x−a�

F�x�
∈ �0� 1�. Thus H�kn� j� a� x� = P�Yn = j�≤ 1,

where Yn is a rv with binomial distribution b
(
kn − 1� 1− F�x−a�

F�x�

)
.

Since Xkn�n

P→ �, for any fixed x1 ∈ �lF + a� �� and x2 ∈ ����� we have

0 ≤ L1�j� n� ≤
∫ x1

lF+a
dFkn�n

�x� ≤ P�Xkn�n
≤ x1�

n→�−→ 0

and

0 ≤ L3�j� n� ≤
∫ �

x2

dFkn�n
�x� ≤ P�Xkn�n

≥ x2�
n→�−→ 0�

Now observe that x1 ≤ x ≤ x2 implies

F�x1 − a�

F�x2�
≤ F�x − a�

F�x�
≤ F�x2 − a�

F�x1�
�

Consequently, for j = 0� 1� � � �

0 ≤ L2�j� n� ≤
(
kn − 1

j

)[
F�x2 − a�

F�x1�

]kn−j−1[
1− F�x1 − a�

F�x2�

]j ∫ x2

x1

dFkn�n
�x�

≤ kjn · dkn
n→�−→ 0�

where d = F�x2−a�

F�x1�
. In order to have d < 1 we choose x1 < � < x2 in such a way that

x2 − a < x1 and x2 − a is in the neighborhood of � in which F is strictly increasing.
The result for K+�n� kn� a� follows by the duality between K− and K+ indicated

in Sec. 2. �

Theorem 5.1. Let � ∈ �0� 1�, there exists � which satisfies F��� = � and F be continuous
df, strictly increasing in a neighborhood of �. The sequence an → 0+�n → �� is defined by
an = �− F←��− �/n� for some � > 0. Assume that

lim
�x�y�→���0+�

F�x�− F�x − y�

F���− F��− y�
= 1� (16)

Then,

K−�n� kn� an�
d→ �����

Proof. Let us denote by V� a vicinity of � in which F is strictly increasing.
From the proof of Proposition 5.1, we know that for j = 0� 1� � � � � kn − 1, and n
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864 Dembińska et al.

sufficiently large

P�K−�n� kn� an� = j� =
∫ x1

lF+an

H�kn� j� an� x�dFkn�n
�x�+

∫ x2

x1

H�kn� j� an� x�dFkn�n
�x�

+
∫ �

x2

H�kn� j� an� x�dFkn�n
�x� = L1�j� n�+ L2�j� n�+ L3�j� n��

where H�kn� j� an� x� is defined in that proof, and x1� x2 ∈ V�� lF + an < x1 < � < x2,
to be chosen later. As in the proof of Proposition 5.1 we get

L1�j� n�
n→�−→ 0 and L3�j� n�

n→�−→ 0�

Now we will show that

L2�j� n�
n→�−→ �j

j! e
−� for j = 0� 1� � � � �

First observe that by assumption (16)

∀�>0∃�x1�x2�⊂V��x1<�<x2
∃N∀n≥N∀x∈�x1�x2�

∣∣∣∣F�x�− F�x − an�

F���− F��− an�
· F���
F�x�

− 1

∣∣∣∣ < ��

which implies ∣∣∣∣F�x − an�

F�x�
− F��− an�

F���

∣∣∣∣ < � · �

�n
�

Thus, for x ∈ �x1� x2� and n ≥ N , we have

1− ��1+ ��

�n
≤ F�x − an�

F�x�
≤ 1− ��1− ��

�n
�

Consequently for j = 0� 1� � � � ,

L2�j� n� ≤
(
kn − 1

j

)[
1− ��1− ��

�n

]kn−j−1[
��1+ ��

�n

]j ∫ x2

x1

dFkn�n
�x�

n→�−→ ���1+ ���j

j! e−��1−��

and

L2�j� n� ≥
(
kn − 1

j

)[
1− ��1+ ��

�n

]kn−j−1[
��1− ��

�n

]j ∫ x2

x1

dFkn�n
�x�

n→�−→ ���1− ���j

j! e−��1+���

By letting � → 0 we obtain L2�j� n�
n→�−→ �j

j! e
−� for j = 0� 1� � � � , and the proof is

complete. �
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Observations in a Neighborhood of an Order Statistics 865

Again by duality between K− and K+, the respective result concerning the limit
behavior of K+�n� kn� an� follows directly from the preceding theorem.

Theorem 5.2. Let � ∈ �0� 1�, there exists � such that F��� = � and F be a df continuous
and strictly increasing in a neighborhood of �. The sequence an → 0+ �n → �� is
defined by an = F←��+ �/n�− � for some � > 0. Assume that

lim
�x�y�→���0+�

F�x + y�− F�x�

F��+ y�− F���
= 1� (17)

Then,

K+�n� kn� an�
d→ �����

Remark 5.1. If we assume that F ′�x� = p�x� exists in a vicinity of �, p��� �= 0 and
p�x� is continuous at �, then conditions (16) and (17) are satisfied.

6. Approximations for K+ when � = 1

As it was mentioned in the introduction, the limiting behavior of K−�n� n− k+ 1�
an� has been intensively studied in the literature. We failed to obtain analogs of our
earlier results for K− in the case � = 1, sequences �kn� different from �n− k+ 1�
and rF = �. Note that for rF < � the respective results for both K− and K+ can be
obtained by duality from theorems we proved in Sec. 3. The only result for � = 1
and rF = � needs a somewhat different definition (as it was also in the exponential
example, Sec. 3) of the sequence �an� than the one we exploited up to now.

Theorem 6.1. Let the df F be continuous, rF = �� � = 1 and mn �= n− kn → �.
Let �an� be a sequence of positive numbers satisfying the condition

lim
x→�mn

(
1− 1− F�x + an�

1− F�x�

)
= �

uniformly in n. Assume that

lim
�x�y�→���0+�

1− F�x + y�

1− F�x�
= 1�

Then,

K+�n� kn� an�
d→ �����

Proof. By (6) we have

P�K+�n� kn� an� = j�

=
∫ x0

lF

(
n− kn

j

)[
1− 1− F�x + an�

1− F�x�

]j[1− F�x + an�

1− F�x�

]n−kn−j

dFkn�n
�x�

+
∫ �

x0

(
n− kn

j

)[
1− 1− F�x + an�

1− F�x�

]j[1− F�x + an�

1− F�x�

]n−kn−j

dFkn�n
�x�

= M1 +M2
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866 Dembińska et al.

for j = 0� 1� � � � � n− kn and for any x0 > lF . We can now proceed analogously to
the proof of Theorem 4.3 or 5.1 showing that ∀�>0 ∃x0 large enough and such that

0 ≤ M1 ≤
∫ x0

lF

dFkn�n
�x� ≤ P�Xkn�n

≤ x0�
n→�−→ 0�

M2 ≤
(
mn

j

)[
��1+ ��

mn

]j[
1− ��1− ��

mn

]mn−j ∫ �

x0

dFkn�n
�x�

n→�−→ ���1+ ���j

j! e−��1−��

and

M2 ≥
(
mn

j

)[
��1− ��

mn

]j[
1− ��1+ ��

mn

]mn−j ∫ �

x0

dFkn�n
�x�

n→�−→ ���1− ���j

j! e−��1+��

for j = 0� 1� � � � . Letting � → 0 ends the proof. �

Remark 6.1. Note that if kn/n → � ∈ �0� 1� then mn → �. For � such that F��� = �
(assuming F invertible in a neighborhood of �) define �an� by

lim
x→�

1− F�x + an�

1− F�x�
= 1− �

mn

�

Then the condition

lim
�x�y�→���0+�

1− F�x + y�

1− F�x�
= 1

implies that K+�n� kn� an� converges to the Poisson distribution ����. The argument
is analogous to the one given above or in Sec. 5.
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