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This article studies the relationship between the distribution of Z = 2XY√
X2+Y 2

and the

common distribution of X� Y when X� Y are i.i.d. random variables. Results concern
the identifiability of the distribution of Z by that of X, and the possibility that Z and
X have the same distribution.
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1. Introduction

Let � be the transformation of the plane into itself that doubles the polar angle �,
and keeps the radius r unchanged, i.e., � is defined by �r� �� → �r� 2��. In terms of
the variables �x = r cos���� y = r sin���� we have

��x� y� =
(

x2 − y2√
x2 + y2

�
2xy√
x2 + y2

)
�

with ��0� 0� = �0� 0� defined by continuity. Let �X� Y � be a random vector. We use
� to define a new random vector �W�Z� by �W�Z� = ��X� Y �, that is

W �= X2 − Y 2

√
X2 + Y 2

� Z �= 2XY√
X2 + Y 2

� (1)
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1050 Hamedani et al.

Shepp (1964) observed that if X� Y are independent identically distributed (i.i.d.)
standard normal (� �0� 1�) random variables (r.v’s) then W�Z are also independent
standard normal. For future reference we name this fact the Shepp property.

Note that the Shepp property follows easily from the fact that if X and Y are
i.i.d. standard normal, then the random polar angle � has a uniform distribution
on �0� 2	� and then 2��mod �2	�� is also uniform in �0� 2	�.

For related converse results see, for instance, Beer and Lukacs (1973),
Bansal et al. (1999), and Hamedani and Volkmer (2001). In particular, Bansal et al.
(1999) used the fact Z alone is standard normal to characterize the normal
distribution. The proof of their result is based on the observation that

4
Z2

= 1
X2

+ 1
Y 2

which relates the distribution of Z to a sum of i.i.d r.v’s. An investigation of the
distribution of W seems to be more difficult since apparently there is no such a
connection. Moreover, W is defined in terms of squares of X and Y only, so there
is no way to extract the distribution of X or Y from that of W without additional
knowledge.

In Bansal et al. (1999), Corollary 2.4, it is claimed that X� Y i.i.d. r.v’s and

W + �Z ∼ N�0� 1� for arbitrary and fixed 
 ≥ 0, � ≥ 0, 
2 + �2 = 1 imply that
X∼N�0� 1�. In view of the above observation, this statement is false when 
 = 1.
We conjecture that it is false always except for the case � = 1.

On the other hand, Misiewicz and Wesołowski (2005) have proved recently
that, essentially, for any random vector �X� Y � (the components are not necessarily
independent or identically distributed) the distribution of �X� Y � is invariant
under � iff it is rotationally invariant. Note that under additional assumption of
independence of X and Y it implies that X and Y are standard normal. Also, it is
shown in that article that independence of X and Y and independence of W and Z,
under some technical smoothness assumptions, imply that X and Y are standard
normal.

In this article we study properties of Z alone. In Sec. 2 we present an
identifiability result being a straightforward generalization of the main result of
Bansal et al. (1999). In Sec. 3, analytical approach is developed which is helpful
in studying the structure of the distribution of X and Y in more depth. The tools
developed in Section 3 are exploited intensively in Sec. 4 where the property of
identical distribution of X and Z is investigated.

2. Identifiability

In this section we prove that any symmetric distribution of Z, not just the standard
normal one, uniquely determines the distribution of the parent variables X and Y .
Moreover, if the symmetry assumption of the distribution of Z is dropped, then the
distribution of X is determined by that of Z up to reflection about zero.

Theorem 2.1. Let X and Y be i.i.d. r.v’s. Then the distribution of Z determines the
distribution of X up to reflection about 0.
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Characterizations Related to Shepp Property 1051

Proof. Let U = X−2 + Y−2 if XY �= 0 and U = 0 if XY = 0. For any t > 0,

P�sgn�XY � = 1� 0 < U < t2� = P�2/t < Z < �� = 1− F�2/t� (2)

and

P�sgn�XY � = −1� 0 < U < t2� = P�Z < −2/t� = F�−2/t−�� (3)

where F is the distribution function of Z. Thus the distribution of
�sgn�XY �� U �IR\�0�XY � is defined in terms of F (IA denotes the indicator function
of the set A). Consequently, the function

h�k� x� = E
(
�sgn�XY ��kexU IR\�0�XY �

)
� k = 0� 1� � � � � x ≤ 0�

is uniquely determined by F . But the independence assumption implies

h�k� x� = H�k� x�2� (4)

where

H�k� x� �= E
(
�sgn�X��kex/X

2
IR\�0�X�

)
�

Thus, for any k = 0� 1� � � � , x ≤ 0, the value of the function H�k� x� is defined
up to a sign. Note that we need to consider only k = 0� 1, since H�0� x� is
positive, then unique. Since H�1� ·� as a function of x is analytic for x≤ 0,
it follows that there are only two versions of H�1� ·�, one for X and the
other one for −X. Moreover, H determines uniquely the joint distribution of
�sgn�X�, exp�−X−2��IR\�0�X� by identification of joint moments. Thus, H uniquely
determines the joint distribution of �sgn�X�� �X��IR\�0�X�. Finally, we conclude that
�sgn�X�� �X��IR\�0�X� or �sgn�−X�� � − X��IR\�0�−X� is identified by F .

Note that

P�sgn�XY � = 0� = P�Z = 0� = F�0�− F�0−��

On the other hand,

P�sgn�XY � = 0� = 2P�X = 0�− �P�X = 0��2�

Consequently,

P�X = 0� = 1−√
1− F�0�+ F�0−�� (5)

Finally, we conclude that the distribution of �sgn�X�� �X�� or �sgn�−X�� � − X��
is determined by F , implying that the distribution of X or −X is unique. �

The characterization of the normal law from Bansal et al. (1999), we referred to
in Sec. 1, follows now directly from Theorem 2.1.

Theorem 2.2 (NC1, Bansal et al., 1999). The random variable Z has the standard
normal distribution iff X has the standard normal distribution.
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1052 Hamedani et al.

Proof. We need to prove sufficiency only. This follows immediately from
Theorem 2.1 using the necessity part and the fact that the standard normal
distribution is symmetric. �

It is also an immediate consequence of the following identifiability result which
exploits symmetry of Z additionally.

Theorem 2.3. Let X and Y be i.i.d. r.v’s. If the distribution of Z is symmetric and has
no atom at 0, then it uniquely determines the distribution of X.

Proof. We assume that Z is symmetric and use (2) and (3) of the proof of
Theorem 2.1. By symmetry it follows that

P�sgn�XY � = 1� U < t2� = 1− F�2/t� = P�sgn�XY � = −1� U < t2�� t > 0� (6)

Taking t → � in (6), we have P�sgn�XY � = ±1� = 1− F�0� = 1/2. Moreover, from
(6) it follows that for any t > 0

P�U < t2� = P�sgn�XY � = 1� U < t2�+ P�sgn�XY � = −1� U < t2� = 2�1− F�2/t���

Thus sgn�XY � and U are independent.
For the function h, introduced in the proof of Theorem 2.1, this independence

property implies h�k� x� = h�k� 0�h�0� x� for any k = 0� 1� � � � , x ≤ 0. Note that by
(5) the distribution of X also has no atom at 0. Then (4) yields independence of
sgn�X� and �X�. Consequently, X is symmetric. Together with the conclusion of
Theorem 2.1 it proves the result. �

3. Analytical Approach

The distribution of X determines the distribution of Z. This defines a mapping
T �� → �, where � is the set of all probability measures � on the �-algebra � of
Borel subsets of R with ��0 = 0. (We may also consider measures with ��0 > 0
but then the following becomes a little more technical.) It means that for any B ∈ �

T��B� = � × �

({
�x� y� ∈ R2 �

2xy√
x2 + y2

∈ B

})
�

We want to study properties of this mapping T .
If X is a random variable with symmetric distribution � ∈ � then we let �† be

the distribution of X−2, that is,

�†�B� = 2��x > 0 � x−2 ∈ B� B ∈ ��

Note that �†�−�� 0� = 0. We extend this definition to all finite signed measures �
on � with ��0 = 0. If � has a density f � R → R, then �† has density

f†�u� �=
{
2u−3/2f�u−1/2� if u > 0�

0 if u ≤ 0�
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Characterizations Related to Shepp Property 1053

For � ∈ �, we introduce their symmetric and anti-symmetric parts

�1�B� =
1
2
���B�+ ��−B��� �2�B� =

1
2
���B�− ��−B���

It is clear that �1 is also a probability measure but, in general, �2 will be a
signed measure.

Theorem 3.1. Let � = T� with � ∈ �. Let �j be the Fourier transform of �†
j and �j

the Fourier transform of �†j , j = 1� 2. Then

�j�4s� =
(
�j�s�

)2
for Im s ≥ 0� j = 1� 2�

where Im s denotes the imaginary part of s.
In particular, T� = � if and only if

�j�4s� = �2
j �s� for Im s ≥ 0� j = 1� 2� (7)

Proof. For u > 0, let

Du =
{
�x� y� � x > 0� y > 0� 2xy > u

√
x2 + y2

}
�

Eu =
{
�x� y� � x < 0� y > 0� 2xy < −u

√
x2 + y2

}
�

Then

��u��� = � × ��Du ∪ �−Du���

��−��−u� = � × ��Eu ∪ �−Eu���

Note that the symmetric and anti-symmetric parts of � × � are �1 × �1 + �2 × �2

and �1 × �2 + �2 × �1, respectively. Therefore, we have

��u��� = 2��1 × �1 + �2 × �2��Du��

��−��−u� = 2��1 × �1 + �2 × �2��Eu�

= 2��1 × �1 − �2 × �2��Du��

Adding and subtracting, we obtain

�1�u��� = 2��1 × �1��Du��

�2�u��� = 2��2 × �2��Du��

Using

Du =
{
�x� y� � x� y > 0� x−2 + y−2 < 4u−2

}
�

we obtain

2�j�u��� = ��†
j ∗ �†

j ��−�� 4u−2�� j = 1� 2�
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1054 Hamedani et al.

where the asterisk denotes convolution of measures. This implies

�†j �−�� 1
4v� = ��†

j ∗ �†
j ��−�� v�� v > 0� j = 1� 2�

Applying the Fourier transform gives the desired formulas. �

For example, consider the normal distribution � with probability density
function (pdf)

f�x� = 1

�
√
2	

exp
(
− x2

2�2

)
� � > 0� (8)

Then �1 = �, �2 = 0 and

�1�s� = exp
(
− 1
�

√−2is
)

which satisfies (7). Therefore, T� = � by Theorem 3.1.

Remark 3.1. Using the analytical tools developed above we can reprove
Theorem 2.1 (under the assumption that Z has no atom at 0.) Let �� � ∈ � be
such that T� = T�. Let �j be the Fourier transform of �†

j , and let �j be the Fourier
transform of �†

j , j = 1� 2. By Theorem 3.1, we have �2
j �s� = �2j �s� for Im s ≥ 0 and

j = 1� 2. Since �j� �j are analytic in the half-plane Im s > 0, we obtain that �j = �j
or �j = −�j . If j = 1, then �1�0� = �1�0� = 1 so �1 = �1. If �2 = �2, then � = �,
and if �2 = −�2, then ��B� = �1�B�+ �2�B� = �1�B�− �2�B� = ��−B�.

Remark 3.2. If T� is symmetric, then Theorem 3.1 shows that � is symmetric, so
� = � by Remark 3.1. This gives an alternative proof of Theorem 2.3.

Similarly, using Theorem 3.1 one can prove the following results revealing more
about the relations between the distributions of Z and X.

Theorem 3.2. Let X� Y be i.i.d. random variables.

(a) The symmetric part of the distribution of X determines the symmetric part of the
distribution of Z and conversely.

(b) The anti-symmetric part of the distribution of X determines the anti-symmetric part
of the distribution of Z. Conversely, the anti-symmetric part of the distribution of Z
determines the anti-symmetric part of the distribution of X up to reflection about 0.

4. Additional Results on the Invariance Property

It is interesting to note that there are i.i.d. rv’s X� Y which share their distribution
with Z but which are not normally distributed. For example, let � ∈ � be defined
by the density

g�x� =
{
2f�x� if x ≥ 0

0 if x < 0�
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where f is the density (8) of the standard normal measure �. Then �1 = � and
�2�B� = ��B� if B ⊂ �0���. Therefore, �†

j = �† for j = 1� 2 and so T� = � by the
second part of Theorem 3.1. In other words, if X� Y are i.i.d. rv’s with distribution
� then Z also has distribution �.

In the following theorem we describe all i.i.d. rv’s X� Y which share their
distribution with Z.

Theorem 4.1. Let X� Y be i.i.d. symmetric rv’s. Then X and 2XY√
X2+Y 2

have the same

distribution iff the characteristic function � of X−2 has the form

ln��s� =
∫ �

0
�eisx − 1�dM�x� for all s ∈ R�

where � � R → R is left-continuous with period � = ln 4 and

M�x� = −��− ln x�x−1/2

is non decreasing for x > 0.

Proof. Applying Theorem 3.1, our task consists in finding all complex-valued
functions � � R → C with the following properties:

(A) � is a characteristic function;
(B) ��4s� = �2�s� for all s ∈ R;
(C) the distribution belonging to � is supported on �0���.

We will use results due to Lukacs (1970) and Shimizu (1968) to show that
� satisfies (A), (B), (C) iff it is of the form given in the theorem. Characteristic
functions satisfying (B) are infinitely divisible and thus have a canonical Levy
representation. Using this representation, Shimizu (1968) found all characteristic
functions � that solve the functional equation ��4s� = �2�s�. Actually, Shimizu
(1968) considered a more general functional equation

��s� = ��a1s� � � � ��aps���−ap+1s� � � � ��−ans��

where a1� � � � � an lie in �0� 1�. We set p = n = 2, a1 = a2 = 1
4 to specialize to our

equation. Shimizu defines 
 as the solution of

a

1 + · · · + a


n = 1�

In our case, we have 
 = 1
2 . Shimizu showed that � satisfies (A), (B) if and only if

ln��s� =
∫ �

0
�eisx − 1�dM�x�+

∫ 0

−�
�eisx − 1�dN�x��

where

M�x� = −��− ln x�x−1/2� x > 0�

N�x� = ��− ln �x���x�−1/2� x < 0�
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1056 Hamedani et al.

M and N are non decreasing and �� � � R → R are left-continuous functions with
period �. So far we have used only (A) and (B). It follows from Theorem 11.2.2
in Lukacs (1970) that the distribution corresponding to � is supported in �0���
(condition (C)) if and only if N is constant. This gives us the statement of the
theorem. �

Below we present some discussion of the above result.

1. We see that M�x� → 0 as x → �. Thus, M�x� ≤ 0 for all x > 0. If M�x0� = 0
for some x0 > 0 then M�x� = 0 for x ≥ x0 which implies that ��u� = 0 for all u ∈
R and M�x� = 0 for all x > 0. But then ��s� = 1 for all s and the corresponding
distribution is concentrated at 0. All other distributions are supported on �0���. If
we exclude M = 0 then there is � > 0 such that ��u� ≥ � for all u ∈ R and ��u� is of
bounded variation over each period. The latter follows from

ln ��u� = −1
2
u+ ln�−M�e−u��� u ∈ R

which represents ln � as a difference of non decreasing functions.

2. If we choose ��u� = c > 0 constant we obtain

ln��s� = c
∫ �

0
�eisx − 1� d�−x−1/2�

= c
1
2

∫ �

0
�eixs − 1�x−3/2dx

= −√
�
√
	c

where s = i�. We obtain the familiar characteristic function

��s� = e−d
√
�� d = c

√
	

which leads to the case of normal X and Y (see the paragraph preceding
Remark 3.1.)

3. A possible nontrivial choice for � is

��u� = 10+ sin
2	u
�

�

One can easily check that the corresponding function M is non decreasing. However,
we do not get an explicit formula for �.
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