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OBSERVED DATA BASED ESTIMATOR AND BOTH OBSERVED 
DATA AND PRIOR INFORMATION BASED ESTIMATOR UNDER 

ASYMMETRIC LOSSES 

Zahirul Hoque, Department of Statistics, College of Business and Economics, 
United Arab Emirates University, AI Ain, UAE 

Jacek Wesolowski, Warsaw University of Technology, Poland 

Shahjahan Khan, University of Southern Queensland, Australia 

SYNOPTIC ABSTRACT 

In the Bayesian approach to statistical analyses we incorporate prior 
information about the parameter of the model with observed data. This prior 
information is in the form of a prior distribution of the parameter. If the prior 
information is available as a constant value of the parameter rather than its prior 
distribution, the Bayesian approach cannot be pursued. However, there are 
estimation methods that incorporate such prior information with the observed 
data. The expectation is that the incorporation of such additional information in 
the estimation process would result in a better estimator than that based on the 
observed data alone. In some cases this may be true, but in many other cases the 
risk of worse consequences cannot be ruled out. This paper studies the 
performance of the observed data based unrestricted estimator (UE), and both 
observed data and prior information based preliminary test estimator (PTE) of 
the univariate normal mean under the Iinex loss function. The risk functions of 
both UE and PTE are derived. The moment generating function (MGF) of PTE 
is derived which turns out to be a component of the risk function. From the 
MGF the first two moments of PTE are obtained and found to be identical to 
those obtained using different approaches in Khan and Saleh (2001) and Zellner 
(1986). Under the linex loss criterion the performance of the PTE is compared 
with that of UE. It is revealed that if the uncertain non-sample prior information 
about the value of the mean is not too far from its true value, PTE outperforms 
UE. 

Key Words and Phrases: asymmetric loss; non-sample prior information; 
maximum likelihood and preliminary test estimators; risk function. 
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94 HOQUE, WESOLOWSKI & KHAN 

1. INTRODUCTION 

The popularity of the squared error loss function is due to its mathematical 

and interpretational convenience. To compare the performance of different 

estimators of unknown parameters this loss function is used in many studies. For 

a recent account of the topic readers may see Khan and Saleh (2001) and the 

references therein. In spite of the wide popularity of this symmetric loss, many 

authors have recognized its inappropriateness in various problems (cf Varian, 

1975). As pointed out by Zellner (1986), the admissibility of an estimator may 

depend quite sensitively on features of the loss function such as symmetry; this 

is not generally appreciated. Due to the symmetric nature of the squared error 

loss it cannot differentiate overestimation from underestimation, and hence 

attaches equal weights to both. 

In real life situations there are numerous cases where underestimation of a 

parameter leads to more (or less) severe consequences than overestimation. In 

dam construction, for example, underestimation of the peak water level is more 

serious than overestimation. On the other hand, for a manufacturing company, 

overestimation of the mean life of the product for the purposes of customers 

warranty is more serious than underestimation. As the squared error loss 

function is unable to assign appropriate unequal weights for underestimation and 

overestimation of any parameter, the use of this loss function is inappropriate in 

such cases and hence not usefuL 

In an applied study of real estate assessment, Varian (1975) introduced a 

very useful non-symmetric loss function called the linex loss function that has 

both linear and exponential components. The linex loss function assigns unequal 

weights to the underestimation and overestimation by introducing a shape 

parameter. For small values of the shape parameter the linex loss function is 

approximately symmetric and not much different from the squared error loss 

function. The linex loss function is more general than the squared error loss 

function as the latter is a special case of the former. 
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ESTIMATORS UNDER ASYMMETRIC LOSSES 95 

Zellner (1986) studied the properties of estimation and prediction 

procedures under the linex loss function. He showed that some usual estimators 

that are admissible under the squared error loss function are inadmissible under 

the linex loss function. For example, he proved that the UE, X, of the univariate 

normal mean is inadmissible under the linex loss function, as the risk of the 

estimator X- aa 2 I 2n is less than that of the UE, where a is the shape 

parameter of the linex loss function, a 2 is the population variance and n is the 

size of the sample. In the case of unknown a 2
, he suggested using it's UE. 

Later, Rojo ( 1987) generalized Zellner's result and showed that under the linex 

loss function any estimator ofB, of the form ci + d, is admissible if 

eitherO :s; c :s; 1, or c = 1 andd = aa 2 12n. Otherwise, ci +dis inadmissible. 

Further contributions to this area include Parsian, Farispour, and Nematullahi 

(I 993), Pandey and Rai (1992) and Bhattacharaya, Samaniego, and Vestrup 

(2002), to mention a few. 

The exclusive sample information based MLE, popularly known as UE, of 

the population mean is uniformly minimum variance unbiased and minimax 

(with respect to the squared error loss criterion) estimator. The natural 

expectation is that the use of additional information such as non-sample prior 

information along with the sample information would result in a better estimator 

than the exclusive sample information based estimator. Based on both sample 

and non-sample prior information, Bancroft (1944) defined the PTE and showed 

that with respect to the squared error loss function it outperforms the UE under 

certain conditions. Khan and Saleh (2001) introduced a coefficient of distrust d 

(0 :s; d :s; 1), a measure of degree of lack of trust on the non-sample prior 

information, to the definition of the PTE. They called their new estimator the 

shrinkage PTE (SPTE) and showed that with respect to squared error loss 

function the SPTE outperforms the UE in certain subspace of the parameter 

space. For d=O the SPTE becomes the PTE. 
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96 HOQUE, WESOLOWSKI & KHAN 

In this paper the MGF of the PTE is obtained. This MGF is instrumental 

to the derivation of the sampling distribution of the PTE. From the MGF the first 

moment of the PTE is obtained. This moment is used to derive the risk function 

of the PTE under the linex loss. The performance of the PTE relative to the UE 

is investigated. A table of maximum and minimum guaranteed efficiencies of 

the PTE relative to the UE is provided for selected sample sizes and size of the 

preliminary test. It is observed that if the non-sample prior information about the 

value of the population mean is not too far from its true value the PTE 

outperforms the UE. Similar to the form of the linex loss function, the form of 

the risk function of the PTE is also asymmetric. However, for very small value 

of the shape parameter of the linex loss function the form of the risk function of 

the PTE is almost symmetric. 

The layout of this paper is as follows. The linex loss function is briefly 

described in Section 2. Some useful lemmas are proved in Section 3. The 

estimators of the univariate normal mean and their risk functions under the linex 

loss function are derived in Section 4. The analysis of the risk functions and a 

table of maximum and minimum guaranteed efficiencies of the PTE relative to 

the UE are presented in Section 5. Some concluding remarks are presented in 

Section 6. 

2. LINEX LOSS FUNCTION 

The linex loss function, proposed by Varian (1975), of a· for estimating 

any parameter B is given by 

L(o) = b[exp(ao)-ao -1] (I) 

whereo=(B• -B) is the estimation error. The two parameters aand b inL(o) 

serve to determine the shape and scale, respectively, of L(o). A positive value 

of a implies that overestimation is more serious than underestimation and a 

negative value of a represents the reverse situation. The magnitude of a 

D
ow

nl
oa

de
d 

by
 [

Y
or

k 
U

ni
ve

rs
ity

 L
ib

ra
ri

es
] 

at
 1

3:
11

 0
3 

A
pr

il 
20

14
 



ESTIMATORS UNDER ASYMMETRIC LOSSES 97 

reflects the degree of asymmetry about o = 0 . This asymmetric loss function 

grows approximately linearly on one side of o = 0 and grows approximately on 

0.: ·-------; --l-~:-= ::11 
-<---- a= .().8 

0.8 · - •• 0.8 
- a= .().2 

0.7 \ ____ a= 0.2 

~ 0.6 

• ' 0.5 ;c . ' 
jf0.4.\ .. ,., 

0.3 , , 
'< 

0.2 .. '· ·~ ' 
' ' '\,.. ' 

0.1 · --~~ 
0 - -·---·- -- ... - - " 
-1 .().5 

FIGURE I. Plot of the linex loss functions for selected values of a . 

exponentially on the other side. If a ~ 0 , then the linex loss function reduces to 

the squared error loss function. 

Figure I displays the form of linex loss function for selected values of a 

against a range of values of o. It is clear that if a = 1 the growth of the loss is 

approximately linear for negative values of o, while for positive values of o it 
is approximately exponential. For a = -I, the situation is reversed. As 

a approaches 0, the growth pattern of linex loss becomes similar for both 

positive and negative errors of estimation and approaches the quadratic loss. 

Hence, the linex loss function is more general than the quadratic loss function. 

Further details about this loss function can be found in Zellner ( 1986). 

3. SOME PRELIMINARIES 

Let X p X 2 , X 3 , •• . ,X, be a random sample of size n from a univariate 

normal distribution with unknown mean JL and variancea 2
• In this section we 

derive three important results that are essential to derive the risk functions of the 
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98 HOQUE, WESOLOWSKI & KHAN 

UE and PTE of 1'- under the linex loss function. The usual UE of 1J is X and 

an unbiased estimator of a-2 isS 2 = """ (X,. - X)2 l(n -1) . L.,, ... ) 

Lemma 2: If Z- N(0,1), and Z and S are independent then for any Borel 

measurable jUnction rft : 9l x (0, oo) ~ 9l and for any c E 9l , 

E[exp(cZ)rft(Z,S) = exp(c2 I 2) E[rft(Z + c,S)] 

provided exp(cZ)rft(Z,S) is integrable. 

Proof: By definition 

E[exp(cZ)rft(Z, S)]= E[E(exp(cZ)¢(Z, S) IS)] 

E[exp(cZ)rft(Z,S)]= E( .}z; Jift(z,S) exp(cz-z
2 

/2)dz J 

= exp(c
2 

/2)E( .}z; jrft(z,S) ex~ -~(z-c) 2 )dz J (3) 

Consider U = Z -c. The Jacobian of the transformation is 1.11=1. Therefore, 

E[exp(cZ)ift(Z,S)]=exp(c2 /2)E( .}z; Jrft(u+c,S) exp(-u
2 

12)du J 
=exp(c2 /2)E[rft(Z+c,S)J (4) 

This completes the proof of Lemma 5. 

Lemma 5: If f..u(·)is the density jUnction of non-central Student's t 

distribution with k d.f and non-centrality parameter 6, and fFo.k.o'> 0 is the 

density JUnction of non-central F distribution with (1, k) d.f and non-centrality 

parameter o 2 then for any x > 0 

f.ct.o) (x) + f.cu> (-x) = 2x fF(I.k.o'> (x
2 

). 

Proof: The density function of the non-central Student's t variable with k d. f. 

and non-centrality parameter o is given by ( cf. Evans, Hasting, and Peacock 

2000,p. 184) 
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ESTIMATORS UNDER ASYMMETRIC LOSSES 

( - kk
12

exp(-8
2

/2) "'r(k+l+i)(xb')'( 2 )' '
2 

j,(k.o) x)- r(k I 2).[; (k + x2 )(k+l) / 2 ~ --2- ----n- k + x2 

Here(2i -1)!!= (2i -1) x (2i- 3) x .. · X 5 x 3 xI. Using the expression of non

central F density from EHP(2000, p. 95) we can write 

/,.u(x) + /,(k,o)(-x) = 2x fFo.U' >(x
2
}. 

This completes the proof of Lemma 5. 

Lemma 9: For any positive integers m and n 

99 

(6) 

(8) 

0 fF(m ,n.D) (X) } m ( mx ) 
oD = -2 JF(m,n,D) (x) + 2(m + 2) JF(m+2 ,n,D) m + 2 ' x, DE~ 

where JF(k .I, D> denotes the density fUnction of the non-central F with (/c./) d.f 

and non-centrality parameter D. 
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100 HOQUE, WESOLOWSKI & KHAN 

Proof: The density function of the non-central F variable with (m,n) d. f. and 

non-centrality parameter Dis given by ( cf. EHP 2000, p.95) 

Differentiating both sides of (1 0) with respect to D, we get 

ajF(m .n.D) (X) 

an 

( J
1., . r(-m+n +i) 

"' mx D' 2 XL --7-----+ 
i•O 2(n+mx) i! r( m;2 +i) 
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ESTIMATORS UNDER ASYMMETRIC LOSSES IOI 

m+l m+l -I m l 2 

exp(-DI2)m 2n" ' 2(~) 2 
(m+

2
) 

I m+2 m 
= -2 fF(m.n .D)(x)+ ( mx )(m+2+n) 12 

2 f(n12) n+(m+2)--
m+2 

[ 

mxD ]' (m+2+n ·) "' (m+2)-- r +z XL m+2 2 

i·O 2{n+(m+2)m':
2

} i! r(m;
2

+i) 

m+2 ( mx ) m;2 -I 

mexp(-DI2)(m+2) 2 n"12 
--

1 m+2 
= -2 fF(m,n,D)(X) + ( mx )(m+2+n) l 2 

2(m+2)f(nl2) n+(m+2)--
m+2 

[ 

mx ]' (m+2+n ·) ., (m+2)--D r +z 
x:L m+2 2 . 

i•O 2{n+(m+2) m':
2

} i! r(m;
2 +i) 

(II) 

Therefore, 

8 fF(m,n.D) (x) I m ( mx ) 
8D = -2 fF(m,n,D) (x) + 2(m + 2) fF(m+2.n,D) (m + 2) . (12) 

This completes the proof of Lemma 9. 

4. THE ESTIMATORS AND RISKS 

The exclusive sample information based UE of J.i is ji =X. The risk 

function of the exclusive sample information based UE ji of f..l under the linex 

loss function is stated in the following theorem. 

Theorem 13: The risk function of the UE of f..l under the linex loss function is 

given by 

R[ji;f.J] = exp(a1
2 I 2) -1 

where a1 =au I.,{;;. 
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102 HOQUE, WESOLOWSKI & KHAN 

For proof of the theorem readers may see Zellner (1986). 

Suppose that the non-sample prior information about the value of f-l is 

available from experts knowledge or previous experience of the researchers. 

According to Fisher this non-sample prior information can be expressed in the 

form of the null hypothesis H 0 : p =flo (cf. Khan and Saleh, 2001). This 

hypothesized value of J-l is known as the restricted estimator (RE). Under the 

null hypothesis, the RE outperforms the UE. Otherwise, the UE outperforms the 

RE. Therefore, it is a natural expectation that an estimator that uses both sample 

and non-sample prior information about the value of J-l , will outperform both the 

UE and RE. As we are not sure that the non-sample prior information is quite 

true, Fisher suggested to remove the uncertainty by performing an appropriate 

statistical test on the null hypothesis. To test the null hypothesis against the 

alternative hypothesis H 1 : f-l*" f-lo an appropriate test is the likelihood ratio test, 

and the test statistic is given by t = ../n(ji- J-l0 ) / S. Under the null hypotheses 

the distribution of t is central Student's t distribution with v = n - I degrees of 

freedom (d.f.), and under H 1 it follows a non-central Student's t distribution 

with the same d. f. and non-centrality parameter~= ../n(J-l- J-l0 ) / u . Following 

Bancroft (1944), the PTE of J-l is defined as 

(14) 

where ta,2 is the a -level critical value oft-statistic and J(A) is the indicator 

function of the set A which takes the value I when the argument holds and 0, 

otherwise. The risk function of the PTE of J-l is stated in the following theorem. 

Theorem 15: The riskfonction of the PTE of J-l under the linex loss jUnction is 

given by 

R(,UPTE ;J-l] = exp(-a1 ~) G1. v (c 2 ; ~2 ) + exp(a1
2 / 2)[1- G1.v (c 2 ; (~ + a1 )

2 )j 
+a,~G3 ,v (c l / 3;~2 )-1 
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ESTIMATORS UNDER ASYMMETRIC LOSSES 103 

where c2 is the a -level critical value of the F distribution with (I, v) df and 

G •. b(c2 ;8) is the cumulative distribution function ofthe non-central F variable 

with (a, b) df and non-centrality parameter 8, evaluated at c. 

Proof: The risk function of the PTE, jJfTTE, of p under the linex loss function is 

R[jJfTTE ;p] = E[exp(a~)]- a E[~] -1 (16) 

where~= jJfTTE - f.J. 

The first term of the right hand side (R.H.S.) of (16) can be expressed as 

E[exp(a~)] = exp(a(p0-p)P(I t I< c)+ E[exp(a(,U- p) P((i t I~ c)] (17) 

where c = ta 12 is the a -level critical value of the Student's t statistic for two

sided test. 

The first term of the R.H.S. of (17) is 

exp(a(p0-p)P(I t I< c)= exp(a{p0 - p)) P(t 2 < c 2
) 

= exp{-a16)G1.v{c2 ;62
) (18) 

where G1,v {c2 ;62
) is the cumulative distribution function of a non-central F 

distribution with (1, v) d.f. and non-centrality parameter 6 2
• The second term of 

the R.H.S. of(I7) can be written as 

E[exp(a(,U- JL) I(ltl ~c)]= Elexp(a,Z) l(ln(Z + 6)S-'I ~ c)j (19) 

Applying Lemma I with¢{X,Y) =1(1 u(X +6)r'l ~c), in (19) we get 

E[ exp(a(,U -p) I(ltl ~c)]= exp(a1

212)E(/(In(Z +a,+ LI)S-'1 ~c)] 

= exp(a,
2 
/ 2)[1- F,(v,A+al)(c)- F,(v.A+al)(-c)] 

= exp{a1
2/2) (1- G1,v{c2 ;(6 + a1)

2
)} (20) 

where F,cv.tJ.+a, l is the cumulative distribution function of non-central t variable 

with v d. f. and non-centrality parameter l:l + a1 evaluated at c. Combining (18) 

and (20) the first term of the right hand side (16) is obtained as 

E[exp(atl>)] = exp(-a16)G1,v (c2 ;62
) + exp(a1

2 I 2)(1- G1,v (c' ;(6 + a1 )
2
)]. (21) 

D
ow

nl
oa

de
d 

by
 [

Y
or

k 
U

ni
ve

rs
ity

 L
ib

ra
ri

es
] 

at
 1

3:
11

 0
3 

A
pr

il 
20

14
 



104 HOQUE, WESOLOWSKI & KHAN 

Now we compute the second term of the right hand side of (16). From (21) 

the MGF of the PTE of J.1. is 

E[ exp(a{(,U'- f.J.)- (,U- J.1.0 )/(l t I< c)})] 

= exp(-a 1 ~{!/,(v .6J(x)dH J/,cv.M(x)dx] 

+exp(a1
2 

12>[1- _t/,(v.6-.,J(x)-1/,(v.6-a,J(x)dx] 

= m(a), (say) 

Writing g,<v.6 J (x) = /,(v.6 J (x) + /,<v.6> ( -x) for any x>O in (22) we get 

c ~ 

(22) 

m(a) = exp(-a,~) Jg,<v.6> (x)dx + exp(a1
2 

I 2) Jg,<v.6-a, )(x)dx. (23) 
0 

Applying Lemma 2 in (23) we get 

m(a) = exp(-a 1 ~) J2x JF(l .v.6' > (x
2
)dx + exp(a1

2 
I 2)J2x fF(l .v,(-6-•,>' )(x

2 
)dx 

0 c 

c' ~ 

=exp(-a,~) fJFCI .v.6'>(y)dy+exp(a,2 12) J!F(l .v.<-6-a,dy)dy. (24) 
0 ~ 

Differentiating both sides of (24) with respect to a, then using Lemma 3 and 

finally changing the variable y I 3 = t in the left integral we get 

~[- ~exp(-a,~)cf/F(l.v.6'J (y)dy +a, exp(a, 2 I 2) }!F(l.v.(-6-a,J')(y)dy 
vn 0 c2 

+ 2(~ +a, )ex{- a~2) ]-( ~ /F(l.v.(Ma,J'J (y) +i /F(3.v.(Ma,J'J( f) )dy] 

= ~ [- ~exp(-a,~)cJJF(l .v.6'J (y)dy +a, exp(a, l 12) J!F(l ,v,(Mad'j{Y)dy 
vn 0 c 2 

~ 

-(~+a,)exp(-a,l 12) J!F(l.v.CMa,>'}(y)dy+(~+a,) 
c' 

x exp(-a1
2 

I 2) J!F(J.v.CMa,>' )(y)dy] 
c2 13 

= m'(a) (25) 
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ESTIMATORS UNDER ASYMMETRIC LOSSES 105 

Putting a = 0 in (25), 

(26) 

which is the bias function of the PTE of Jl. 

Collecting (21) and (26), and substituting in (16) the risk function of the 

PTE of p under the linex loss function is obtained as 

R[,UPTE ;p] = exp( -a1 ~)G1 .v (c 2 ;~2 ) + exp(a1
2 I 2)[1- G,,v (c 2 ;(~ + a1 )

2
] 

+a1~G3.v(c 2 13;~2 )-l. (27) 

This completes the proof of the theorem. 

5. ANALYSIS OF THE RISK FUNCTIONS 

In this section, we discuss some salient features of the risk functions of the UE 

and PTE of the mean Jl relative to the change of~ and a. 

The Risk of the UE 

Clearly, the risk function of the UE of p is independent of J , and hence 

of~ . However, it depends on the magnitude of/ a /, but not on its sign. From the 

functional fonn of the risk of the UE it is evident that as ~ grows larger, the risk 

of the UE also grows larger. 

The Risk of the PTE 

For any non-zero value of~, the risk function of the PTE of Jl can be 

written as 

(28) 

where 

_ 2 • 2 ( c
2 

• 2 ) ( a1 
2 

) 2 • 
2 

g(~)-exp(-a1 ~)G~,v(c .~ )+a,~GJ.v 3'~ -exp 2 G~,v(c ,(~+a,)). 

Under the null hypothesis, ~ = 0 and hence the risk of the PTE of Jl is 

R[,UPTE ;p] = R[,U] + G1.v (c2 ;0)- exp(a1
2 I 2)G1,v (c 2 ;a1

2 
). (29) 
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106 HOQUE, WESOLOWSKI & KHAN 

For any a* 0, G1.v(c2 
: 0)- exp(a/)G1.v(c 2 ;a1

2
) < 0. Therefore, at ~ = 0, the 

risk of the PTE is less than that of the UE. This result is known for the PTE of 

J.J under the squared error loss (cf. Khan and Saleh 2001). 

For any positive value of a, if the value of ~ is positive the value of 

a1 ~G3.v(c 2 /3,~2 ) is also positive. Therefore, for positive values of a, as ~ 

grows larger from zero, the risk of the PTE grows larger and crosses the risk of 

the UE at 

~ = exp(a1
2 /2)G1 .v (c 2 ;(~+a1 ) 2 )-exp(-a1 ~)G1 ,v(c 2 ; ~2 ) 

atG3,v (c2 /3;~2) 

regardless of the value of a. 

~ 1 / 
/ 

0.5 

/ 
\ 

\ .-- ........ -. . . . . . ~ ... . . ... . . ·.~ . 
/ 

o~------~----~------~------~ 

-4 -2 0 
4 

2 4 

(30) 

FIGURE 2: The risk curves of the UE and PTE fora= 0, n=25, cr = l and 

selected values of a . 

For any negative value of a , if the value of ~ is positive, the value of 

a1AG3.v(c2 /3; ~2 ) is negative. Therefore, for negative values of a, as A grows 

larger from zero, the risk of the PTE grows smaller, reaching its minimum at 

some A depending on the magnitude of a, and then starts growing larger and 

crosses the risk of the UE at the value of~ in (30) regardless of the value of a. 
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ESTIMATORS UNDER ASYMMETRIC LOSSES 107 

As~ ~ oo, g(~) ~ 0, and hence, R(,UPTE ;p] ~ (exp(a1
2 I 2) -1 ), the risk 

of the UE of .u . Therefore, starting from a certain large value of ~ (both 

positive and negative) the risk of the PTE is no different from that of the UE. 

However, large values of ~ puts serious questions on the reliability of the prior 

information. 

For very small values of a, the growth pattern of the risk for both positive 

and negative values of ~ are similar, because for such values of a, the linex 

Joss function reduces to the squared error Joss function. 

From the foregoing analyses and Figure 2 it is clear that the risk function 

of the PTE, and hence the efficiency of the PTE relative to the UE, depend on 

the three factors, namely, the level of significance a, non-centrality parameter 

~, and shape parameter a of the linex . loss function. The value of a is 

determined by the experimenter according to the potential impact of the positive 

and negative errors of estimation, and the value of ~ is usually unknown to the 

experimenter. Regardless of the values of a and~, the risk of the PTE is a 

function of a . The question is which value of a should be used for the 

preliminary test? To answer this question, the efficiency of the PTE relative to 

the UE is used in the following subsection. 

Determination of an Optimum Value of a 

As a function of ~ and a , the efficiency function of the PTE of .u 
relative to the UE is given by 

Eff(,UPTE ;a,~)= (exp(a1
2 I 2) -1 )(exp(a/ I 2) -1 + g(~) t. (31) 

From the analyses of the risk functions of the UE and PTE as well as 

Figure 2 it is evident that the PTE does not have uniform domination over the 

UE for all values of~. Also, the value of ~ is usually unknown to the 

experimenter. Thus, we pre-assign a value of the relative efficiency, say Effo , 

that we are willing to accept. Consider the set 

(32) 
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108 HOQUE, WESOLOWSKI & KHAN 

for all ~. An estimator jLI'fE is chosen which maximizes Eff(jLI'fE ; a , ~) over all 

a E A a and for all values of ~ . Thus we solve 

maxa min6 Eff[jLPT£ ;a,~]= Eff. (33) 

for a . The solution of this equation provides the maximum and minimum 

guaranteed efficiencies of the PTE of J-L relative to the UE, for any selected 

values of n and~ . Table 1 presents the maximum guaranteed efficiency (Eff) 

and minimum guaranteed efficiency (Effo) of the PTE of J-L relative to the UE, 

and the value of ~ ( ~. ) at which the minimum guaranteed efficiency attains, 

TABLE 1. Maximum and minimum efficiencies of the PTE of f-L relative to the 
UE for a= 3 . 

Sample size, n 
a 10 15 20 25 30 35 40 
0.05 Ef'( 4.2674 3.9892 3.8713 3.8064 3.7653 3.7369 3.7162 

Eff0 0.2661 0.3076 0.3279 0.3279 0.3401 0.3401 0.3545 

~ . -2.6300 -2.4700 -2.3850 -2.3950 -2.3550 -2.3250 -2.3004 

0.10 Eff 2.5613 2.4468 2.3978 2.3706 2.3534 2.3415 2.3328 
Effo 0.3807 0.4202 0.4393 0.4507 0.4585 0.4641 0.4684 

~0 -2.3550 -2.2255 -2 .1515 -2.1448 -2.1050 -2.1105 -2.0850 

0.15 Eff 1.9556 1.8907 1.8629 1.8474 1.8376 1.8308 1.8258 
Effo 0.4748 0.5112 0.5285 0.5390 0.5462 0.5511 0.5550 

~. -2.1750 -2.0850 -2.0390 -2.0100 -2.0055 -2.0025 -1.9750 

0.20 E_f[ 1.6429 1.6014 1.5835 1.5736 1.5673 1.5629 1.5597 
Eff0 0.5573 0.5900 0.6055 0.6148 0.6211 0.6256 0.6291 

~. -2.0610 -1.9800 -1.9500 -1.9302 -1.9100 -1.9000 -1.8950 

0.25 Eff 1.4530 1.4247 1.4125 1.4057 1.4014 1.3984 1.3962 
Eff0 0.6310 0.6597 0.6733 0.6814 0.6868 0.6908 0.6938 

~. -1.9850 -1.9250 -1.8950 -1.8755 -1 .8609 -1.8550 -1.8500 

0.30 Eff 1.3268 1.3068 1.2982 1.2934 1.2904 1.2883 1.2867 
Effo 0.6969 0.7215 0.7331 0.7400 0.7446 0.7480 0.7506 

~0 -1.9250 -1.8650 -1.8459 -1.8255 -1.8100 -1.8080 -1.7968 

0.35 Eff 1.2382 1.2239 1.2177 1.2143 1.2121 1.2105 1.2094 
Eff0 0.7553 0.7759 0.7856 0.7913 0.7952 0.7980 0.8001 

~. -1.8759 -1.8260 -1.7992 -1.7900 -1.7890 -1.7645 -1.7700 

0.40 Eff 1.1739 1.1635 1.1590 1.1565 1.1549 1.1538 1.1530 
Eff0 0.8064 0.8232 0.8311 0.8357 0.8389 0.8412 0.8429 

~. -1 .8352 -1.7989 -1.7777 -1.7657 -1.7559 -1.7325 -1.7300 

0.45 Eff 1.1261 1.1186 1.1154 1.1136 1.1124 1.1116 1.1111 
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ESTIMATORS UNDER ASYMMETRIC LOSSES 109 

Eff0 0.8429 0.8637 0.8629 0.8716 0.8700 0.8619 0.8600 

~0 -1.8020 -1.7659 -1.7592 -1.7434 -1.7413 -1.7400 -1.7375 

0.50 Eft' 1.0902 1.0849 1.0826 1.0813 1.0805 1.0799 1.0795 
Effo 0.8876 0.8978 0.9025 0.9053 0.9072 0.9086 0.9096 
~0 -1.7750 -1.7450 -1.7236 -1.7100 -1.7000 -1.6959 -1.7100 

for selected values of a, nand a . For example, if a == 1 and n == 20, and the 
experimenter wishes to achieve the minimum guaranteed efficiency 0.6055 of 
the PTE of f.J , the recommended value of a is 0.20. 

6. CONCLUDING REMARKS 

In this paper the MGF of the PTE is obtained which is instrumental to the 

derivation of the sampling distribution and risk function of the PTE. Moreover, 

the moments of any order can be obtained from this MGF. The analyses reveal 

that if the non-sample prior information about the value of the parameter is not 

too far from its true value, the PTE outperforms the UE. As the sources of non

sample prior information is usually previous studies and experts knowledge it is 

a natural expectation that such information about the value of the parameter will 

normally be very close to the true value. In such cases, the PTE is locally 

admissible over the UE. Similar to the shape of the linex loss function the shape 

of the risk function of the PTE is also asymmetric. As the shape parameter of the 

loss function approaches a very small value the shape of the risk function of the 

PTE approaches symmetry. Therefore, the results in this paper extend the 

existing known results for the risks under squared error loss function to a wider 

class of risks under the linex loss function which includes the squared error loss 

function as a special case. Thus the local admissibility of the PTE of the normal 

mean is established for a class of asymmetric losses. 
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