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Three independent random variables are transformed into a bivariate vector by
choosing at random one of the variables from two pairs. It appears that such a
transformation preserves all information about the parent product measure and the
random choice mechanism. Moreover, the original distribution can be explicitly
identified. Also identifiability under combinations of random choice with convolution,
minimum, and maximum is considered.

Keywords Characterizations of probability distributions; Identifiability of
statistical models; Random choice.

Mathematics Subject Classification Primary 62E10; Secondary 60E05.

1. Introduction

Consider independent random variables (rv’s) X0� X1� X2 (input), which are
transformed into a bivariate vector by a mapping � � R3 → R2, defined by coding
functions �1 and �2 as ��x0� x1� x2� = ��1�x0� x1�� �2�x0� x2��. Thus, only the pair
�Y1� Y2� = ��X0� X1� X2� (output) is observed. The first element of the pair depends
only on X0 and X1, while the second depends only on X0 and X2. The problem, we
are interested in, is to identify the distributions of the rv’s X0� X1 and X2 knowing
that of �Y1� Y2�. Obviously, such identification is not always possible. Usually it
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1466 Konwerska et al.

needs particular coding functions and some additional properties of the output
distribution.

Note that the scheme described above fits also the bivariate latent variable model
since the rv’s Y1 and Y2 are conditionally independent given the “latent” variable X0.
Consequently, the question, we study here, can be viewed as an identifiability problem
for a class of latent variable models.

Problems of this nature were considered mostly within the framework of
characterization of probability distributions. Here the main contributor was
I. Kotlarski. Among other authors we recall here Yu. Prokhorov, C.R. Rao, B.L.S.
Prakasa Rao, and L. Klebanov. The results up to the early 1990s are thoroughly
reviewed in the monograph Prakasa Rao (1992), especially in Chs. 2 and 3, which
is also a source of valuable references. All these considerations were restricted to
the following types of coding functions �i�x� y�: x + y, x ∨ y = max�x� y�, x ∧ y =
min�x� y�, or xy, i = 1� 2, and their combinations. All of them fall into a semigroup
scheme described in Kotlarski and Sasvari (1992), where the authors developed a
general approach for the identifiability problem within these schemes. Since that
time there has been no progress in the area, which resulted in an impression that
identifiability for models with other coding functions could be impossible.

In the present article, we show that this is not the case. We consider a new
coding scheme based on a simple random choice mechanism, which is outside the
semigroup family considered in Kotlarski and Sasvari (1992): choose at random one
of the rv’s X0 and X1 for the first component of the output and, for the second
component of the output, choose at random one of X0 and X2. We will show how
to identify the original distribution of the input variables in this scheme in Sec. 2.
A random choice setup will be combined with the standard coding functions, given
above, in Sec. 3.

It is worth mentioning that a related problem of identifiability of random
vectors with independent components by a random choice of one of the vectors
has been studied recently in Hall and Zhou (2003) in the context of estimation
of components in multivariate finite mixtures. They showed that in the bivariate
case the model can be identified up to two-parameter family, while higher
dimensional models are completely identifiable (under mild assumptions). They
assumed additionally that the random choice mechanism is known, which is not the
case in our setting. A similar problem was treated earlier in the framework of a
latent variable model in Luboińska and Niemiro (1991).

2. Random Choice Coding for Both Components

This section is devoted to the situation in which the first coding function represents
a random choice between X0 and X1 and the second coding function represents
a random choice between X0 and X2. The random choice can be described in
terms of Z1 and Z2 which are independent Bernoulli rv’s, i.e., Zi ∼ b�1� p�, i = 1� 2,
with p ∈ �0� 1�. We assume also that �Z1� Z2� and the input vector �X0� X1� X2� are
independent. Formally, the output of the coding is

�Y1� Y2� = �Z1X0 + �1− Z1�X1� Z2X0 + �1− Z2�X2�	 (1)
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Identification of Product Measures 1467

Let H be the df of �Y1� Y2� and let Fi be the df of Xi, i = 0� 1� 2. Conditioning with
respect to �Z1� Z2� we can express H as

H�x� y� = p2F0�x ∧ y�+ p�1− p�F0�x�F2�y�+ p�1− p�F1�x�F0�y�

+ �1− p�2F1�x�F2�y� (2)

for any real x and y.
Thus the marginal df’s of Y1 and Y2 are, respectively,

H�x��� = pF0�x�+ �1− p�F1�x�� x ∈ R� (3)

and

H��� y� = pF0�y�+ �1− p�F2�y�� y ∈ R	 (4)

We assume that the df H of �Y1� Y2� is known. In the next theorem we discuss
the possibility of recovering from H the input df’s Fi, i = 0� 1� 2, and the random
choice probability p. A key role is played by the function G defined by

G�x� y� = H�x� y�−H�x���H��� y�� x� y ∈ R (5)

and the following quantitiesG�a� a� = limx→a+ G�x� x�,G�b−� b−� = limx→b− G�x� x�,
and G�a� b−� = lim�x�y�→�a+�b−� G�x� y�.

Theorem 2.1. Let X0� X1� X2, Z1 and Z2 be non degenerate independent rv’s and
Zi ∼ b�1� p�, i = 1� 2 with unknown p ∈ �0� 1� and let (1) hold. Let

a = inf�x �G�x� x� > 0� and b = sup�x �G�x� x� > 0�	

Then a < b are, respectively, the lower and upper end of the support of X0.
Moreover, the distributions of X0, X1, X2, Z1 and Z2 are uniquely determined by the
distribution of �Y1� Y2� in the following way:

(i) if G�a� a� = 0 then F0�a� = 0 and

F0�x� = 1− lim
y→a+

G�x� y�

G�y� y�
� x ∈ �a� b��

(ii) if G�b−� b−� = 0 then F0�b
−� = 1 and

F0�x� = lim
y→b−

G�x� y�

G�y� y�
� x ∈ �a� b��

(iii) if G�a� a�G�b−� b−� �= 0 and P�X0 ∈ �a� b�� �= 1 then F0�a� > 0, F0�b
−� < 1 and

F0�x� =
1− 
1
1− 
1
2

G�x� b−�
G�b−� b−�

= 1− 1− 
2
1− 
1
2

G�x� a�

G�a� a�
� x ∈ �a� b�

with


1 =
G�a� b−�
G�a� a�

and 
2 =
G�a� b−�
G�b−� b−�
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1468 Konwerska et al.

In any of the three previous cases,

p =
√

G�x� x�

F0�x��1− F0�x��
= const� ∀x ∈ �a� b��

F1�x� =
H�x���− pF0�x�

1− p
� F2�x� =

H��� x�− pF0�x�

1− p
� x ∈ R	

Proof. Solve (3) for F1�x� and (4) for F2�y� and substitute these quantities into (2).
After some easy algebra we have

p2 �F0�x ∧ y�− F0�x�F0�y�� = G�x� y�� x� y ∈ R	 (6)

Inserting y = x in (6) we get

p2F0�y��1− F0�y�� = G�y� y�� y ∈ R	 (7)

As X0 is non degenerate, it follows from (7) that a < b and also that G�y� y� > 0
for y ∈ �a� b�. Additionally, we conclude that a and b are lower and upper end of
the support of the distribution of X0, respectively.

For a < x < y < b we get from (6) that

p2F0�x� �1− F0�y�� = G�x� y�	 (8)

Combining (7) with (8) we get

F0�x� = F0�y�
G�x� y�

G�y� y�
for a < x < y < b	 (9)

Similarly, for a < y < x < b we obtain from (6)

p2F0�y� �1− F0�x�� = G�x� y�� (10)

and dividing (10) by (7), after easy algebra we get

F0�x� = 1− �1− F0�y��
G�x� y�

G�y� y�
for a < y < x < b	 (11)

We consider now three different cases:

(i) Suppose G�a� a� = 0. From (7) it follows that F0�a� = 0. Taking the limit as
y → a+ in (11) we get

F0�x� = 1− lim
y→a+

G�x� y�

G�y� y�
for x ∈ �a� b�	

(ii) Suppose G�b−� b−� = 0. From (7) it follows that F0�b
−� = 1 and taking the limit

as y → b− in (9) we obtain

F0�x� = lim
y→b−

G�x� y�

G�y� y�
for x ∈ �a� b�	
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Identification of Product Measures 1469

(iii) Suppose G�a� a�G�b−� b−� �= 0 and P�X0 ∈ �a� b�� < 1. Then from (7) we have

G�a� a� = lim
x→a+

G�x� x� = p2F0�a��1− F0�a�� �= 0 (12)

and

G�b−� b−� = lim
y→b−

G�y� y� = p2F0�b
−��1− F0�b

−�� �= 0 	 (13)

Expressions (12) and (13) imply that F0 has jumps at the upper and lower ends
of the support. From (6) we have

G�a� b−� = lim
�x�y�→�a+�b−�

G�x� y� = p2F0�a��1− F0�b
−�� �= 0 	 (14)

Dividing (14) by (12) and separately by (13) we, respectively, get


1 =
G�a� b−�
G�a� a�

= 1− F0�b
−�

1− F0�a�
and 
2 =

G�a� b−�
G�b−� b−�

= F0�a�

F0�b
−�

	 (15)

Since P�X0 ∈ �a� b�� < 1 then F�a� �= F�b−� and thus 
1� 
2 ∈ �0� 1�. From (15)
we obtain

F0�a� = 
2
1− 
1
1− 
1
2

and F�b−� = 1− 
1
1− 
1
2

	

Taking the limit as y → a+ in (11) we get

F0�x� = 1− 1− 
2
1− 
1
2

G�x� a�

G�a� a�
� x ∈ �a� b�	

Alternatively, taking the limit as y → b− in (9) we have

F0�x� =
1− 
1
1− 
1
2

G�x� b−�
G�b−� b−�

� x ∈ �a� b�	

Thus the form of F0 is as in the formulation of the result. The expression for
p follows now from (7). Finally, the df’s F1 and F2 are recovered from (3) and (4),
respectively. �

Let P�X0 ∈ �a� b�� = 1. Note that (12) implies G�a� a� ≤ p2/4. Moreover,
solving (12) for F0�a� we get

F0�a� =
1
2

(
1±

√
1− 4

p2
G�a� a�

)
= F0�x� = F0�b

−� < 1� x ∈ �a� b�	

However, the parameter p cannot be identify.
Below we provide an example to illustrate the fact that though the formulas in

Theorem 1 look somewhat complicated, in special cases they can work nicely.
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1470 Konwerska et al.

Example 2.1. Let

H�x� y� =




0� �x� y� �∈ �0���2�

�1− e−x�

(
1− 3

4
e−y

)
� 0 < x ≤ y�

�1− e−y�

(
1− 3

4
e−x

)
� 0 < y ≤ x	

Then H�x��� = H��� x� = �1− e−x�I�0����x� and

G�x� y� = 1
4

(
1− e−�x∧y�)e−�x∨y�I�0���2�x� y�	

Consequently,

G�x� x� = 1
4
e−x�1− e−x�I�0����x�	

Thus a = 0, b = � and both the assumptions (i) and (ii) are satisfied. For instance,
using (ii), we get

F0�x� = lim
y→�

G�x� y�

G�x� x�
= 1− e−x

for any x > 0. Hence, X0 is an exponential rv with the mean 1. Further,

p =
√

1
4e

−x�1− e−x�

�1− e−x�e−x
= 1

2

for any x > 0. Finally,

F1�x� = F2�x� = 2H��� x�− F0�x� = �1− e−x�I�0����x�	

Assume now that in the scheme considered in Theorem 2.1 the rv’s Z1 and Z2

are independent binomial, but with different success probabilities, i.e., Z1 ∼ b�1� p1�

and Z2 ∼ b�1� p2� with p1, p2 are unknown. Then (6) changes into

p1p2 �F0�x ∧ y�− F0�x�F0�y�� = G�x� y�� x� y ∈ R	

Hence, repeating the first part of the argument from the proof above we get the
same formula for F0 as in Theorem 2.1. However, now p1 and p2 cannot be
separated, i.e., we can identify only the product

p1p2 =
G�x� x�

F0�x��1− F0�x��
= const	

Consequently, also the df’s F1 and F2 are not identifiable.
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Identification of Product Measures 1471

3. Combining Random Choice with Standard Transformations

In this section we consider transformations of the following type: for the first
element of the output we take the random choice as defined in Sec. 2, while for
the second element of the output we take separately each of the three standard
semigroup transformations x + y, x ∨ y = max�x� y� and x ∧ y = min�x� y�.

We begin with the coding function x + y for the second component. Then
the distributions of X0, X1, and X2 will be identified through their characteristic
functions (chf’s).

Theorem 3.1. Assume that X0� X1� X2, and Z are independent non degenerate rv’s and
Z ∼ b�1� p�, where p ∈ �0� 1� is unknown. Denote by �i the chf of Xi, i = 1� 2. Let

�Y1� Y2� = �ZX0 + �1− Z�X1� X0 + X2�	 (16)

Denote by � the chf of the random vector �Y1� Y2� and assume that

��s� t�− ��s� 0���0� t� �= 0 (17)

for any s� t �= 0.
Then the distributions of X0� X1� X2, and Z are uniquely determined by the

distribution of �Y1� Y2�. More precisely:
The limit

g�t� = lim
s→0

��t� s�− ��t� 0���0� s�
��s� t�− ��s� 0���0� t�

exists for any t �= 0 and

�0�t� = ��0� t�g�t�� t ∈ R�

with g�0� = 1. Moreover,

p = g�t�
��s� t�− ��s� 0���0� t�
�0�s + t�− �0�s��0�t�

= const

for any s� t �= 0. Finally,

�1�t� =
��t� 0�− p�0�t�

1− p
� �2�t� =

1
g�t�

� t ∈ R	

Proof. Using conditioning with respect to Z and independence we can rewrite (16)
in terms of chf’s as

��s� t� = p�0�s + t��2�t�+ �1− p��0�t��1�s��2�t�� s� t ∈ R	 (18)

Plugging s = 0 and t = 0 in (18) we obtain, respectively,

�0�t��2�t� = ��0� t�� t ∈ R� (19)
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1472 Konwerska et al.

and

p�0�s�+ �1− p��1�s� = ��s� 0�� s ∈ R	 (20)

Substituting (19) and (20) into (18), after some elementary algebra, we get

�0�t� ���s� t�− ��s� 0���0� t�� = p ��0�s + t�− �0�s��0�t�� ��0� t� (21)

for any real s and t. Exchanging the role of s and t in (21) gives together with (21)
a system of equations which leads to

�0�t��0�0� s� = �0�s���0� t�
��t� s�− ��t� 0���0� s�
��s� t�− ��s� 0���0� t�

� s� t ∈ R	 (22)

Note that the limit of the left-hand side of (22) as s → 0 is �0�t�. Consequently the
limit of the right-hand side of (22) exists, which further means that g is correctly
defined in Theorem 3.1 and the suitable representation for �0 holds.

The formula for p follows now immediately from (21). The chf’s �1 and �2 are
recovered directly from (20) and (19), respectively. �

To illustrate, how one can actually use Theorem 3.1 to decipher the distribution
of the input variables, we provide the following example.

Example 3.1. Let the chf of �Y1� Y2� be of the form

��s� t� = 1
2
exp

(
− s2

2
− t2

)
�exp�−st�+ 1� � s� t ∈ R	

Then ��s� 0� = exp�−s2/2�, ��0� t� = exp�−t2� and

��s� t�− ��s� 0���0� t� = 1
2
exp

(
− s2

2
− t2

)
�exp�−st�− 1� �= 0� s� t ∈ R\�0�	

And so the assumptions of Theorem 3.1 are satisfied. Thus

g�t� = lim
s→0

exp�−s2 − t2/2�
exp�−t2 − s2/2�

= et
2/2	

Now,

�0�t� = e−t2g�t� = e−t2/2� t ∈ R�

i.e., X0 is a standard normal rv. Moreover,

p = et
2/2

1
2 exp

(− s2

2 − t2
)
�exp�−st�− 1�

exp�−�s + t�2/2�− exp�−s2/2� exp�−t2/2�
= 1

2
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Finally,

�1�t� =
exp�−t2/2�− 1

2 exp�−t2/2�

1/2
= e−t2/2 � �2�t� =

1
exp�t2/2�

= e−t2/2�

i.e., X1 and X2 are also standard normal.

In the next case we consider the maximum as the coding function for the second
component of the output. Let X0� X1� X2, and Z be non degenerate independent rv’s
and Z ∼ b�1� p� with unknown p ∈ �0� 1�. We will be able to identify the df’s of Xi’s,
however to identify X2 we need an additional assumption that the lower end points
of the supports of X0 and X2 coincide, otherwise the df of X2 can be reconstructed
only partially. Formally, as before, denote by Fi the df of Xi, i = 0� 1� 2. Let

�Y1� Y2� = �ZX0 + �1− Z�X1� X0 ∨ X2� (23)

with joint distribution function

H�x� y� = pF0�x ∧ y�F2�y�+ �1− p�F0�y�F1�x�F2�y�� x� y ∈ R	 (24)

Thus the marginal df’s of Y1 and Y2 are, respectively,

H�x��� = pF0�x�+ �1− p�F1�x�� x ∈ R (25)

and

H��� y� = F0�y�F2�y� y ∈ R	 (26)

Consider also

G�x� y� = H�x� y�−H�x���H��� y�	 (27)

Theorem 3.2. Let X0� X1� X2, and Z be non degenerate independent rv’s and
Z∼ b�1� p� with unknown p ∈ �0� 1� and let (23) hold. Assume that the distributions of
X0 and X2 have the same lower end points of their supports. Let

a = inf�x �H��� x� > 0� and b = sup�y �G�y� y� > 0�	

Then a < b are, respectively, the lower and the upper end points of the support
of X0. Moreover, the distributions of X0� X1� X2, and Z are uniquely determined by the
distribution of �Y1� Y2� in the following way:

(i) If G�a� a� = 0 then F0�a� = 0 and

F0�x� = 1− lim
y→a+

G�x� y�

G�y� y�
	

(ii) If G�b−� b−� = 0 then F0�b
−� = 1 and

F0�x� = lim
y→b−

G�x� y�

G�y� y�
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(iii) If G�a� a�G�b−� b−� �= 0 and P�X0 ∈ �a� b�� �= 1 then F0�a� > 0� F0�b
−� < 1 and

F0�x� =
1− 
1
1− 
1
2

G�x� b−�
G�b−� b−�

= 1− 1− 
2
1− 
1
2

G�x� a�

G�a� a�
� x ∈ �a� b��

where


1 =
G�b−� a�
G�a� a�

and 
2 =
G�a� b−�
G�b−� b−�

	

In any of the three previous cases,

p = G�x� x�

H��� x��1− F0�x��
= const� x ∈ �a� b�

F1�x� =
H�x���− pF0�x�

1− p
� x ∈ R and F2�x� =

H��� x�

F0�x�
� x > a	

Proof. From (26), it is clear that a = inf�x �H��� x� > 0� is the lower endpoint of
F0 (and of F2). Using expressions (24), (25), and (26), after some algebra, it can be
checked that:

G�x� y�F0�y� = pH��� y� �F0�x ∧ y�− F0�x�F0�y�� � x� y ∈ R	 (28)

Expression (28) for y = x is

G�y� y�F0�y� = pH��� y�F0�y� �1− F0�y�� � y ∈ R	 (29)

Note that F0�y� > 0, for y > a, then from (29)

G�y� y� = pH��� y� �1− F0�y�� � y > a	 (30)

Note also that H��� y� > 0 for y > a, then from (30) it follows that

b = sup�y > a �G�y� y� > 0� = sup�y > a � F0�y� < 1��

hence b is the upper end of the distribution of X0 and for all x ∈ �a� b�, F0�x� �= 0.
For a < y < x < b from the expression (28) we get

G�x� y� = pH��� y� �1− F0�x�� 	 (31)

Divide (31) by (30) and obtain after easy manipulations

F0�x� = 1− �1− F0�y��
G�x� y�

G�y� y�
for a < y < x < b

now, let y → a+ in the previous expression to get

F0�x� = 1− �1− F0�a�� lim
y→a+

G�x� y�

G�y� y�
for a < x < b	 (32)
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For a < x < y < b, expression (28) gives

G�x� y�F0�y� = pH��� y�F0�x� �1− F0�y�� 	 (33)

Divide (33) by (30) to obtain

F0�x� = F0�y�
G�x� y�

G�y� y�
for a < x < y < b

and taking limits as y → b− in the previous relation, we obtain

F0�x� = F0�b
−� lim

y→b−
G�x� y�

G�y� y�
for a < x < b	 (34)

Now we consider the different cases:
(i) Take limits x → a+ in (33) and obtain

G�a� y�F0�y� = pH��� y�F0�a��1− F0�y��� for all y ∈ �a� b�	 (35)

We claim here that G�a� a� = 0 iff there exists y ∈ �a� b� such that G�a� y� = 0 iff
for all y ∈ �a� b�, G�a� y� = 0.

To prove the if statements of this claim, assume that G�a� a� = 0. By (30)
it follows that H��� a� = 0, so by (26) we obtain F0�a� = 0, then from (35) we
conclude that G�a� y� = 0, for all y ∈ �a� b�. To prove the only if statements suppose
that there exists y ∈ �a� b� such that G�a� y� = 0. From (35) it follows that F0�a� = 0
and again from the same formula we conclude that G�a� y� = 0 for all y ∈ �a� b�,
and this implies that G�a� a� = 0 (just take the limit as y → a+).

It is now clear that G�a� a� = 0 is equivalent to F0�a� = 0 and in this case,
from (32)

F0�x� = 1− lim
y→a+

G�x� y�

G�y� y�
for x ∈ �a� b�	

(ii) From (30),

G�b−� b−� = pH��� b−� �1− F0�b
−��

and as H��� b−� > 0, we conclude that F0�b
−� = 1 if and only if G�b−� b−� = 0, and

from (34)

F0�x� = lim
y→b−

G�x� y�

G�y� y�
	

(iii) In this case, we have 0 < F0�a� < F0�b
−� < 1. Take limits x → a+ in (34)

to obtain

F0�a� = F0�b
−�
1 (36)

and also let x → b− in (32) to get

F0�b
−� = 1− �1− F0�a��
2 (37)
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now, from (36) and (37) we have

F0�a� = 
2
1− 
1
1− 
1
2

and F0�b
−� = 1− 
1

1− 
1
2

and using (32) and (34) we get

F0�x� =
1− 
1
1− 
1
2

G�x� b−�
G�b−� b−�

= 1− 1− 
2
1− 
1
2

G�x� a�

G�a� a�
� x ∈ �a� b�	

In any case, once F0 is recovered, the expressions for p, F1 and F2 follow easily
from (30), (25), and 26), respectively. �

Note that if it is not assumed that the distributions of X0 and X2 have the
same lower end points of the supports then the df F2 can be identified only for the
arguments in �a���. To see this observe that F2�y� appears in (24) multiplied by
F0�x ∧ y� and by F0�y� and for y ≤ a both these expressions are zero.

Again we provide an example of identification of particular distribution of the
output in the model we consider here.

Example 3.2. Let the df H of �Y1� Y2� be of the form

H�x� y� =




0� �x� y� �∈ �0���2�

1
2
�x ∧ y�y�1+ x ∨ y�� �x� y� ∈ �0� 1�2�

x� 0 ≤ x < 1 ≤ y�

y2� 0 ≤ y < 1 ≤ x�

1� �x� y� ∈ �1���2	

Then H�x��� = x if x ∈ �0� 1�, is 0 for negative x’s and is 1 if x > 1;
H��� y�= y2 if y ∈ �0� 1�, is 0 for negative y’s and is 1 if y > 1. So,

G�x� y� = 1
2
y �x ∧ y − xy� I�0�1�2�x� y�

and

G�y� y� = 1
2
y2�1− y�I�0�1��y�	

Hence, by the definition, a = 0 and b = 1. It holds that G�1−� 1−� = 0, then by
Theorem 3.2(ii), we conclude that

F0�x� = lim
y→1−

G�x� y�

G�y� y�
= x� x ∈ �0� 1�

p = 1
2
�
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and for x ∈ �0� 1�

F0�x� = 1− 2
1− x

2
= x� F1�x� =

x − x/2
1/2

= x� F2�x� =
x2

x
= x�

i.e., all the Xi’s have the uniform distribution on �0� 1�.

Finally, we will consider the minimum coding function for the second element of
the output in our scheme. Similarly as in the preceding case, we need an extra condition
on the support of X2 to be able to pin down the df of this rv. In this situation, it is
more convenient to work with the functions 
H�x� y� = P�Y1 >x� Y2 >y� and 
G�x� y� =

H�x� y�− 
H�x���
H��� y�, x� y ∈ R. Also we denote F̄i = 1− Fi, where Fi is the df of
Xi, i = 0� 1� 2. Since the proof follows the lines of the proof of Theorem 3.2 it will be
omitted. We state only the result and then give an example.

Theorem 3.3. Let X0� X1� X2, and Z be non degenerate independent rv’s and
Z∼ b�1� p� with unknown p ∈ �0� 1�. Assume that the upper ends of the supports of the
distributions of X0 and X2 coincide. Let

�Y1� Y2� = �ZX0 + �1− Z�X1� X1 ∧ X2�	 (38)

Let

a = inf�x � 
G�x� x� > 0� and b = sup�y � 
H�−�� y� > 0�	

Then a < b are, respectively, the lower and upper ends of the support of X0 and the
distributions of X0� X1� X2, and Z are uniquely determined by the distribution of �Y1� Y2�
in the following way:

(i) If 
G�a� a� = 0 then F0�a� = 0 and

F0�x� = lim
y→a+


G�x� y�


G�y� y�
� x ∈ �a� b��

(ii) If 
G�b−� b−� = 0 then F0�b
−� = 1 and

F0�x� = 1− lim
y→b−


G�x� y�


G�y� y�
� x ∈ �a� b��

(iii) If 
G�a� a�
G�b−� b−� �= 0 and P�X0 ∈ �a� b�� �= 1 then F0�a� > 0, F0�b
−� < 1 and

F0�x� =
1− 
1
1− 
1
2


G�x� b−�

G�b−� b−�

= 1− 
1
1− 
2
1− 
1
2


G�x� a�


G�a� a�
� x ∈ �a� b�	

In any case,

p = 
G�x� x�


H�−�� x�F0�x�
= const� x ∈ �a� b��


F1�x� =

H�x�−��− p
F0�x�

1− p
� x ∈ R and 
F2�x� =


H�−�� x�


F0�x�
� x > a	
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Example 3.3. Let �Y1� Y2� be a random vector such that


H�x� y� =




1+ �x ∧ y�−1

2y�x ∨ y�
� x� y ≥ 1�

y−2� x ≤ 1 ≤ y�

x−1� y ≤ 1 ≤ x�

1� �x� y� ∈ �−�� 1�2	

Then 
H�−�� y� = y−2 if y ≥ 1 and is 1 otherwise, 
H�x�−�� = x−1 if x ≥ 1 and is 1
otherwise. Then,


G�x� y� = x ∧ y − 1
2xy2

I�1���2�x� y�

and


G�y� y� = y − 1
2y3

I�1����y�	

So, a = 1 and b = �. Observe that 
G�1� 1� = 0, then according to Theorem 3.3(i)

F0�x� = 1− lim
y→1


G�x� y�


G�y� y�
= 1− 1/x� x ≥ 1�

p = 1
2
�

and for x ≥ 1

F1�x� = 1− 1/x − 1/�2x�
1/2

= 1− 1/x� F2�x� = 1− 1/x2

1/x
= 1− 1/x�

i.e., X0� X1, and X2 have the same Pareto distribution.
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