
Metrika (2008) 68:219–232
DOI 10.1007/s00184-007-0154-3

More on connections between Wishart and matrix GIG
distributions

V. Seshadri · J. Wesołowski

Received: 17 September 2006 / Published online: 17 October 2007
© Springer-Verlag 2007

Abstract The paper is devoted to relations between the matrix GIG and Wishart
distributions. Our basic tool in the first part is a version of the Matsumoto-Yor prop-
erty for matrix variables. This approach covers the following issues: the Herz identity
for the Bessel function of matrix variate argument, characterization of a class of Wis-
hart matrices and linear transformations of the matrix GIG distribution. The Bayesian
Wishart model, studied in the second part, gives an alternative definition of the matrix
GIG distribution. Such a model is characterized by linearity of conditional expectations
and matrix GIG conditional distribution. It is also extended to Bayesian matrix GIG
models, in the framework of which an interesting independence property is proved.

Keywords Wishart matrix · GIG distribution

1 Introduction

Let Vn be the Euclidean space of n×n real symmetric matrices equipped with the inner
product 〈a, b〉 = trace (ab). Let dx denote the Lebesgue measure on Vn assigning the
unit mass to the unit cube. Let V+

n denote the cone of positive definite matrices in Vn

and let V+
n denote its closure. For x ∈ Vn let |x | denote the determinant of x .

Let c ∈ V+
n and q ∈ �n = {0, 1

2 , 2
2 , . . . , n−1

2 } ∪ ( n−1
2 ,∞). Then the random

matrix Y taking its values in V+
n is said to follow the Wishart Wn(q, c) distribution if
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220 V. Seshadri, J. Wesołowski

its Laplace transform is

LY (θ) = |c|q
|c − θ |q , c − θ ∈ V+

n .

Note that here we parameterize the Wishart matrix Y by taking qc−1 = E(Y ). It is
well known that the above formula is the Laplace transform of a probability measure
if and only if c ∈ V+

n and q ∈ �n . The set �n is called a Gindikin set (see Gindikin
1975 or Casalis and Letac 1994). When q > n−1

2 , that is when Y takes its values in
V+

n , this distribution has density of the form

fY (y) = |c|q
�n(q)

|y|q− n+1
2 exp(−〈c, y〉)IV+

n
(y),

where �n is the multivariate Gamma function, see Muirhead (1982). When q ∈ �n

and q < n−1
2 the distribution is singular and is concentrated on the boundary of V+

n .
In the special case q = 0, it is the Dirac measure concentrated at the zero matrix.

A random matrix X , taking its values in V+
n , is said to follow the matrix generalized

inverse Gaussian distribution, MGIGn(−p, a, b), if it has density of the form

fX (x) = 1

K(n)
p (a, b)

|x |−p− n+1
2 exp

(
−〈a, x〉 − 〈b, x−1〉

)
IV+

n
(x), (1)

where K(n)
p is the matrix variate modified Bessel function of the third kind, see Herz

(1955). (The superscript (n) indicating the dimension of the matrix arguments will
be omitted at certain places in the sequel, when the dimension will be obvious from
the context.) Letac (2003) has observed that the MGIGn(−p, a, b) is well defined iff
p, a, b satisfy one of the following three conditions:

1. a, b ∈ V+
n and p ∈ R,

2. a ∈ V+
n with rank(a) = m ∈ {0, 1, . . . , n − 1}, b ∈ V+

n and p > n−m−1
2 ,

3. a ∈ V+
n , b ∈ V+

n with rank(b) = m ∈ {0, 1, . . . , n − 1} and p < − n−m−1
2 .

This extends the original definition of the matrix variate GIG as given in
Barndorff-Nielsen et al. (1982). This definition was given in the setting of exponential
transformation models, and derived MGIG as an extension of the Wishart exponential
model by a special affine transformation and a special statistics—see Example 4 of
that paper. In this sense the first connection between Wishart and MGIG is the moment
of the birth of the MGIG.

It is immediate to see that the MGIG distribution has the following property

if X ∼ MGIGn(−p, a, b) then X−1 ∼ MGIGn(p, b, a), (2)

which can be rephrased in terms of Bessel functions as

K−p(a, b) = Kp(b, a). (3)
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More on connections between Wishart and matrix GIG distributions 221

For X ∼ GIGn(p, a, b) and for a − θ and b − σ satisfying one of conditions 1–3
above, we have the following obvious identity

E(exp(〈θ, X〉 + 〈σ, X−1〉)) = Kp(a − θ, b − σ)

Kp(a, b)
. (4)

Note that for σ = 0 it is the Laplace transform of the MGIG distribution.
There are several connections between the Wishart and MGIG distributions known

in the literature. Some of them follow the pattern of relations between univariate
gamma and generalized inverse Gaussian distribution. But even then some care has to
be taken of the automatic analogy between the univariate and matrix-variate situations.
Some of them, due to their nature, do not possess univariate counterparts.

Wishart W (p, a) is a limiting case of MGIG(p, a, b) as b → 0, at least for p > n−1
2 .

It follows just by inspecting the density and the observation that, via the Lebesgue
dominated convergence theorem, for p > n−1

2 one has

lim
b→0

Kp(a, b) = �n(p)

|a|p
,

where the convergence of b ∈ V+
n to the zero matrix is taken, for instance, in the sense

of the Euclidean norm in the space V+.
However it is not clear what happens if p is in the discrete part of the Gindikin set

�n or outside of this set.
In Bernadac (1995) a matrix variate version of the representation of the GIG random

variable by a continued random fraction of independent gamma variables and related
characterizations obtained by Letac and Seshadri (1983) was given. Her main result
is the following

Theorem 1 Let X, Y1 and Y2 be independent random matrices valued in V+
n , such

that Y1 ∼ W (p, a), Y2 ∼ W (p, b) with p > n−1
2 and a, b ∈ V+

n . Then X ∼
MG I G(−p, a, b) iff

X
d= (Y1 + (Y2 + X)−1)−1.

It was Butler (1998) who first pointed out that MGIG is incorporated in the inner
structure of Wishart matrices and if the Wishart matrix is partitioned into blocks(

K1 K12

K21 K2

)
then the conditional distribution of K1 given K12 is MGIG. This relation

was elaborated on further in Massam and Wesołowski (2006), where the authors gave
a rigorous proof of the following result extending Butler’s observation. (The symbol
⊗ used in the formulation denotes the product of measures.)

Theorem 2 Let K be an (r + s)× (r + s) Wishart random matrix, s ≤ r , with param-
eters Q ∈ �r+s , Q > r−1

2 , and c ∈ V+
r+s . We partition K and c in blocks according
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222 V. Seshadri, J. Wesołowski

to the dimensions r and s as

K =
(

K1 K12
K21 K2

)
, c =

(
c1 c12
c21 c2

)
,

assuming that c1 ∈ V+
r and c2 ∈ V+

s .
Then K1 is of full rank and the conditional distribution of (K1, K2·1) given K12 is

a product of MGIG and Wishart

(K1, K2·1)|K12 ∼ MGIGr

(
Q − s

2
, c1, K12c2 K21

)
⊗ Ws

(
Q − r

2
, c2

)
. (5)

Dually, K2 is of full rank and the conditional distribution of (K2, K1·2) given K12(=
K T

21) is a product of MGIG and Wishart

(K2, K1·2)|K12 ∼ MGIGs

(
Q − r

2
, c2, K21c1 K12

)
⊗ Wr

(
Q − s

2
, c1

)
. (6)

It was done in the context of searching for the Matsumoto-Yor (MY) property, which
is another interesting connection between the MGIG and Wishart distributions. For the
first time this relation was proved in Letac and Wesołowski (2000) for matrices of the
same dimensions together with a related characterization (this part was then extended
in Wesołowski 2002). In full generality the MY property, and its counter-part being a
joint characterization of the MGIG and Wishart distributions were proved in Massam
and Wesołowski (2006). Here we will rephrase these results in a form adapted to the
needs of the present paper.

First, let us define a probability distribution Wr,s(q, c, a, b), by the density

f (x, y) ∝
∣∣∣∣

x c
cT y

∣∣∣∣
q− r+s+1

2

e−〈a,x〉−〈b,y〉 IM(x, y),

where q ∈ �r+s , q > r∧s−1
2 , a ∈ V+

r , b ∈ V+
s , c is an r × s matrix of a full rank and

M =
{
(x, y) :

(
x c
cT y

)
∈ V+

r+s

}
.

The direct MY property for matrices of different dimension may be phrased as

Theorem 3 If (X, Y ) ∼ Wr,s(q, c, a, b) then

(X, Y − cT X−1c) ∼ MGIGr

(
q − s

2
, a, cbcT

)
⊗ Ws

(
q − r

2
, b

)
(7)

and

(X − cY −1cT , Y ) ∼ Wr

(
q − s

2
, a

)
⊗ MGIGs

(
q − r

2
, b, cT ac

)
. (8)

The characterization has the form given in the following Theorem.
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More on connections between Wishart and matrix GIG distributions 223

Theorem 4 Let (X, Y ) be a random vector taking values in M defined above for a
given r × s matrix c of a full rank.

If X and Y − cT X−1c are independent and also Y and X − cY −1cT are indepen-
dent then there exist q ∈ �r+s , q > r∧s−1

2 , a ∈ V+
r , b ∈ V+

s such that (X, Y ) ∼
Wr,s(q, c, a, b)

In the sequel we will see how these result contribute towards further connections
between the MGIG and Wishart matrices. This connection will be explored in Sects. 2,
3, and 4. In Sect. 5 the connection through a Wishart Bayesian model will be studied.

2 GIG mixtures and the Herz formula

We start with a recent observation by (V. Seshadri 2005, unpublished) who considered
the distribution of a random vector (Y, T ) as a GIG mixture, i.e. the conditional dis-
tribution of Y given T is GIG(λ, (2α)−1, αT 2/2) with the mixing variable T having
a Bessel type density

fT (t) = tν−1Kλ(t)

2ν−2�
(

ν−λ
2

)
�

(
ν+λ

2

) I(0,∞)(t),

where ν > λ is a parameter (here Kλ denotes the univariate modified Bessel function
of the third kind). The joint density has the form

f(Y,T )(y, t) = α−λyλ−1tν−λ−1

2ν−1�
(

ν−λ
2

)
�

(
ν+λ

2

) exp

(
− y

2α
− αt2

2y

)
I(0,∞)2(y, t). (9)

It can be seen that Y and T 2/Y are independent gamma variables with parameters
((ν + λ)/2, α/2) and ((ν − λ)/2, 1/(2α)), respectively, where the first element of the
pair is the shape and the second is the scale parameter.

Note that in the case ν = λ + 1 the above observation can be interpreted and
much generalized while looking at properties of the Wishart distribution Wn(p, a),
p > (n − 1)/2, when the matrix a is block-wise diagonal. To be more precise let

K =
(

K1, K12
K21, K2

)
∼ Wn(p, a) with the block decomposition of a as a =

(
a1, 0
0, a2

)

(dimensions of the respective blocks of K and a are the same, say the diagonal blocks
are r ×r and s×s, r +s = n). Then, it is well-known (see for instance Example 3.14 in
Muirhead 1982) that K1 and K21 K −1

1 K12 are independent Wishart matrices (as a mat-
ter of fact jointly independent and Wishart are K1, K21 K −1

1 K12 and K2·1). Moreover
the density of (K1, K12) is

fK1,K12(k1, k12) = |a1|p|a2| r
2 �s

(
p − r

2

)

�n(p)
|k1|p− n+1

2 e−〈a1,k1〉−〈a2,kt
12k−1

1 k12〉

× IV+
r ×Mr,s

(k1, k12), (10)
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224 V. Seshadri, J. Wesołowski

where Mr,s is the space of r × s real matrices. Integrating out k1 we get the marginal
density of K12 as

fK12(k12) = |a1|p|a2| r
2 �s

(
p − r

2

)

�r+s(p)

∫

V+
r

|k1|p− s
2 − r+1

2 e−〈a1,k1〉−〈k12a2kT
12,k1−1〉 dk1

= |a1|p|a2| r
2

π
rs
2 �r (p)

K(r)

p− s
2
(a1, k12a2kT

12)

for all k12 ∈ Mr,s , where the upper index (r) of the Bessel function means that the
arguments are in V+

r .
Dually, we consider the joint distribution of (K2, K12), Similarly as above we obtain

another formula for the density of K12

fK12(k12) = |a1| s
2 |a2|p

π
rs
2 �s(p)

K(s)
p− r

2
(a2, kT

12a1k12) IMr,s (k12).

Comparing both expressions for the density of K12 we get the Herz identity for
Bessel functions of arguments of different dimension.

Theorem 5 Let a ∈ V+
r , b ∈ V+

s and let c ∈ Mr,s be of full rank. Let p > r−1
2 and

q = p − r−s
2 . Then

�s(q)|a|pK(r)
p (a, cbcT ) = �r (p)|b|qK(s)

q (b, cT ac). (11)

An extended version of (11), proved in Massam and Wesołowski (2006), was an
essential tool in proving Theorem 3.

3 A characterization of a class of 2 × 2 Wishart matrices

The characterization related to MY property in the univariate case (see Letac and
Wesołowski 2000) was used by Letac and Massam (2001) in their paper devoted
to generalization of the result by Geiger and Heckerman (1998), and concerned with
characterization of, so-called, quasi-Wishart distribution of a 2×2 symmetric positive

definite random matrix K =
(

K1, K12
K21, K2

)
. We say that K has quasi-Wishart distribu-

tion if the conditional density of (K1, K2) given K12 = k12 is

f(K1,K2)|K12=k12(k1, k2) ∝ (k1k2 − k2
12)

p−3/2e−a1k1−a2k2

for k1, k2 > 0, k1k2 > k2
12 and for any k12 ∈ R. This distribution was characterized

by the conditions of independences of (K1, K12) and K2 − K21 K −1
1 K12 = K2·1 and

of (K2, K21) and K1 − K12 K −1
2 K21 = K1·2 in the two papers mentioned above. Also

it was pointed out there that for 2 × 2 matrices the above independence conditions do
not characterize the Wishart distribution.
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More on connections between Wishart and matrix GIG distributions 225

In this section we are going to show that such a characterization is possible when
the independence conditions are somewhat strengthened. This will lead us to special
Wishart law with diagonal matrix variate parameter.

It is worth pointing out that higher-dimensional version of this result was proved in
Geiger and Heckerman (2002). For n ≥ 3 they proved that independences of (K1, K12)

and K2·1 and of (K2, K21) and K1·2 for all possible block partitions of the symmetric

positive definite random matrix K =
(

K1, K12
K21, K2

)
imply that K is Wishart. This result

has been improved recently in Massam and Wesołowski (2006), where only three pairs
of the independence conditions were assumed. The main tool was the characterization
related to MY property for matrices of different dimensions, see Theorem 4.

Recall, that for a 2 × 2 Wishart W2(p, c) matrix K =
(

K1 K12
K12 K2

)
with diagonal

c the variables

K1, K 2
12/K1, K2·1 are independent (12)

and

K2, K 2
12/K2, K1·2 are independent. (13)

We will show that the above two conditions characterize a family of distributions
on V+

2 including Wishart. To get a characterization of the Wishart family alone we
need to specify some additional properties besides (12) and (13).

Theorem 6 Let K be a random matrix valued in V+
2 . If the independence conditions

(12) and (13) hold then there exist positive numbers p, q, a, b such that the random
vector (K1, K2, K 2

12) has the density f of the form

f (k1, k2, k2
12) = (ab)p+q

�(p + q)�(p)�(q)
(k2

12)
q−1(k1k2 − k2

12)
p−1e−ak1−bk2

IC(k1, k2, k2
12), (14)

where C = {(k1, k2, k2
12) : k1k2 > k2

12, k1, k2 > 0}.

Proof Denote

X = K1, Y = K 2
12

K1
and Z = K2·1.

Then

K2 = Y + Z ,
K 2

12

K2
= XY

Y + Z
and K1·2 = Z X

Y + X
.
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226 V. Seshadri, J. Wesołowski

Consequently (13) implies that

Y + Z and
K 2

12

K2
/K1·2 = Y

Z

are independent. Note that this is the very moment the dimensionality 2 × 2 of the
problem is crucial. Then, the classical Lukacs characterization of the gamma law (see
Lukacs 1955) implies that Y and Z have gamma distributions with the same scale
parameter, say G(p, b) and G(q, b). Thus Y + Z = K2 is also gamma G(p + q, b).

By symmetry, it follows that
K 2

12
K2

and K1·2 have gamma distributions G( p̃, a) and
G(q̃, a) and similarly as for K2 we conclude that X = K1 is gamma G( p̃ + q̃, a).

Consequently, the joint density of (K1, K2, K 2
12) can be derived from the joint

density of (X, Y, Z) which is a random vector with independent gamma components.
Since the transformation (k1, k2, k2

12) → (k1, k2
12/k1, k2·1) is a bijection from C onto

(0,∞)3 with the jacobian of the inverse equal to 1/k1 we get on C

f (k1, k2, k2
12) = 1

k1

a p̃+q̃

�( p̃ + q̃)
k p̃+q̃−1

1 e−ak1
bp

�(p)

(
k2

12

k1

)p−1

× e
−b

k2
12
k1

bq

�(q)

(
k2 − k2

12

k1

)q−1

e
−b

(
k2− k2

12
k1

)

= a p̃+q̃ bp+q

�( p̃ + q̃)�(p)�(q)
k p̃+q̃−p−q

1

(
k2

12

)p−1

× (k1k2 − k2
12)

q−1e−ak1−bk2 . (15)

Dually, on C we have

f (k1, k2, k2
12)=

a p̃+q̃ bp+q

�(p + q)�( p̃)�(q̃)
k p+q− p̃−q̃

2

(
k2

12

) p̃−1
(k1k2 − k2

12)
q̃−1e−ak1−bk2 .

Thus p̃ = p and q̃ = q and finally we get (14). 
�
Remark 1 Note that the converse of Theorem 6 follows rather immediately by reverse
reading of (15) with p̃ = p and q̃ = q. That is: if a random vector (K1, K2, K 2

12) has
the density (14) then

(
K1,

K 2
12

K1
, K2·1

)
∼ G(p + q, a) ⊗ G(p, b) ⊗ G(q, b)

and

(
K2,

K 2
12

K2
, K1·2

)
∼ G(p + q, b) ⊗ G(p, a) ⊗ G(q, a)
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More on connections between Wishart and matrix GIG distributions 227

To identify the Wishart distribution we impose some moment and symmetry
conditions additionally.

Corollary 1 Let K be a random matrix in V+
2 such that (12) and (13) are satisfied.

Assume that

Var

(
K 2

12

Ki

)
= 2E

(
K 2

12

Ki

)
(16)

either for i = 1 or for i = 2 and that (K1, K2, K12)
d= (K1, K2,−K12). Then K is

Wishart W2(Q, c), where c is a diagonal matrix and Q > 1/2.

Proof Note that the symmetry condition implies that the density fK of the matrix K
can be written in terms of the density f of the random vector (K1, K2, K 2

12) as

fK (k1, k2, k12) = |k12| f (k1, k2, k2
12).

Moreover (16) implies that p = 1/2 in (14), which together with the above gives

fK (k1, k2, k12) = (ab)q+ 1
2

�(q + 1/2)�(q)
√

π
(k1k2 − k2

12)
q−1e−ak1−bk2

for k1k2 > k2
12, k1 > 0. Note that (Theorem 2.1.12 in Muirhead 1982) �2(Q) =

�(Q)�(Q − 1/2)
√

π . Consequently, K is Wishart W2(Q, c) with Q = q + 1/2 and
diagonal c, with c11 = a and c22 = b. 
�

4 Linear transformations of MGIGs

It is well known that if X is Wishart, Wn(p, a), and M is a k × n constant matrix of
rank k then

M X MT ∼ Wk

(
p, (Ma−1 MT )−1

)
(17)

(see Theorem 3.2.5 in Muirhead 1982) and for p > n−1
2

(M X−1 MT )−1 ∼ Wk

(
p − n − k

2
, MaMT

)
, (18)

see Theorem 3.2.11 in Muirhead (1982).
In this section we present analogues of these results for the MGIG distribution. In

this context the MY property of Theorem 3 will be very useful.
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Theorem 7 Let Y be a random matrix having the MGIGn
(

p, MT aM, b
)

distribution,
where M is a k × n matrix of rank k, a ∈ V+

k and b ∈ V+
n . Then

MY MT ∼ MGIGk

(
p + n − k

2
, a, MbMT

)
. (19)

Let Z be a random matrix having the MGIGn
(
q, b, MT aM,

)
distribution, where

M is a k × n matrix of rank k, a ∈ V+
k and b ∈ V+

n . Then

(M Z−1 MT )−1 ∼ MGIGk

(
q − n − k

2
, MbMT , a

)
.

Proof Note that the first part follows from the second by taking Y = Z−1 via (2). Con-
sider Z as a marginal of (Z , V ) ∼ Wn,k(Q, M, b, a) with Q = q + k

2 . By Theorem
3 it follows that

E
(

e〈θ,V 〉) = E
(

e〈θ,V −M Z−1 MT 〉) E
(

e〈θ,M Z−1 MT 〉) .

Moreover, since the distributions of V and V − M Z−1 MT are known from the above
equality, by (4), we get

E
(

e〈θ,M Z−1 MT 〉) =
K(k)

Q− n
2
(a − θ, MbMT )

K(k)

Q− n
2
(a, MbMT )

|a|Q− n
2

|a − θ |Q− n
2
.

Since Kp(α, β)|β|p = Kp(β, α)|α|p, which is a special version of (11), we get

E
(

e〈θ,M Z−1 MT 〉) =
K(k)

Q− n
2
(MbMT , a − θ)

K(k)

Q− n
2
(MbMT , a)

.

Again using (4) we get the conclusion. 
�
Note that the second result of Theorem 7 is a straightforward generalization of (18)

by taking a → 0 in the definition of the distribution of Z . On the other hand, though
the conclusion of the first part of Theorem 7 looks similar to (17), essentially these
two are different.

5 MGIG as a conjugate prior for Wishart family

The original definition of the MGIG distribution, due to Barndorff-Nielsen et al. (1982)
was in the context of exponential transformation models. Below we show that MGIG
can be defined also as the posterior distribution in a Wishart Bayesian model with a
Wishart prior.
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More on connections between Wishart and matrix GIG distributions 229

Proposition 1 Let (X, Y ) be a pair of random matrices valued in V+
n ×V+

n such that
the conditional distribution of Y given X is Wishart, i.e. Y |X ∼ Wn(p, X−1), p > n−1

2
and the marginal distribution of X is Wishart, Wn(p + r, a), where p + r > n−1

2 ,
a ∈ V+

n . Then the conditional distribution of X given Y is MGIG,

X |Y ∼ MGIGn(r, a, Y ).

We specified the above result only due to the fact that it gives a natural definition
of MGIG through Wishart, which is different than that which is hidden in Theorem 3.
Nevertheless a more general result can be proved.

Theorem 8 Let (X, Y ) be a pair of random matrices valued in V+
n ×V+

n such that the
conditional distribution of Y given X is Wishart, i.e. Y |X ∼ Wn(p, X−1), p > n−1

2
and the marginal distribution of X is MGIGn(p + r, a, b), where a, b,∈ V+

n . Then
the conditional distribution of X given Y is MGIG,

X |Y ∼ MGIGn(r, a, b + Y ).

Proof The computation is standard. First we find the marginal density of Y :

fY (y) =
∫

V+
n

|y|p− n+1
2

�n(p)|x |p
e−〈x−1,y〉 |x |p+r− n−1

2

Kp+r (a, b)
e−〈a,x〉−〈b,x−1〉 dx

= |y|p− n+1
2

�n(p)Kp+r (a, b)

∫

V+
n

|x |r− n−1
2 e−〈a,x〉−〈b+y,x−1〉 dx

= |y|p− n+1
2 Kr (a, b + y)

�n(p)Kp+r (a, b)
(20)

for y ∈ V+
n . Now, the conditional density for x, y ∈ V+

n is

fX |Y=y(x) = f (x, y)

fY (y)
=

|y|p− n+1
2

�n(p)Kp+r (a,b)
|x |r− n−1

2 e−〈a,x〉−〈b+y,x−1〉

|y|p− n+1
2 Kr (a,b+y)

�n(p)Kp+r (a,b)

= |x |r− n+1
2 e−〈a,x〉−〈b+y,x−1〉

Kr (a, b + y)
(21)


�
The above theorem says that MGIG is a conjugate prior for the Wishart family—see

Diaconis and Ylvisaker (1979).

Remark 2 The Bayesian Wishart–MGIG model defined above has an interesting inde-
pendence property which is inherited from a wider model. Namely if (X, Y ) are such
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230 V. Seshadri, J. Wesołowski

that Y given X is Wishart, i.e. Y |X ∼ Wn(p, X−1), p > n−1
2 , then U = X−1/2Y X−1/2

and X are independent and U is Wishart, Wn(p, e), where e ∈ V+
n is the identity matrix.

It follows immediately from (17) with M = X−1/2 and a = X−1.

Remark 3 Note that looking at the Bessel-like density of the random matrix Y in the
model we consider in this section—see the proof of Theorem 8—we get an identity
for integrals of the matrix variate Bessel function

∫

V+
n

|y|p− n+1
2 Kr (a, b + y) dy = �n(p)Kp+r (a, b) (22)

for any p > n−1
2 and a, b ∈ V+

n .
Maybe it is worth specifying to special cases: first we take b → 0 in (22) getting

∫

V+
n

|y|p− n+1
2 Kr (a, y) dy = �n(p)�n(p + r)

|a|p+r

and the simplest one with p = n+1
2 gives

∫

V+
n

Kr (a, y) dy = �n
( n+1

2

)
�n

( n+1
2 + r

)

|a| n+1
2 +r

.

Remark 4 Dually to Theorem 8 we have the following result: If Y |X ∼ Wn(p, X),
p > n−1

2 and X ∼ MGIGn(r − p, a, b), where a, b,∈ V+
n . Then

X |Y ∼ MGIGn(r, a + Y, b).

Next we will see that the Wishart–MGIG model can be uniquely specified by one
conditional distribution and one regression condition. Such conditional specifications
of statistical models were considered by many authors, for a comprehensive review of
results and references, see for instance Chap. 7 in Arnold et al. (1999).

Theorem 9 Assume that X |Y ∼ MGIGn(r, a, b + Y ) and E(Y |X) = pX, where
a, b ∈ V+

n , p, p + r > n−1
2 .

Then Y |X ∼ Wn(p, X−1) and X ∼ MGIGn(p + r, a, b).

Proof By the generalized Bayes rule we have

px
∫

V+
n

fX |Y=y(x) fY (y) dy =
∫

V+
n

y fX |Y=y(x) fY (y) dy, a.e. in V+
n .
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More on connections between Wishart and matrix GIG distributions 231

Since X |Y ∼ MGIGn(r, a, b + Y ), changing x to x−1, we get

px−1
∫

V+
n

eyx fY (y)

Kr (a, b + y)
dy =

∫

V+
n

yeyx fY (y)

Kr (a, b + y)
dy.

Denote by L the Laplace transform of fY (y)
Kr (a,b+y)

. Then the above equation reads

px−1L(x) = L ′(x).

Due to the fact that the derivative of log(|x |) with respect to x is x−1, from the above
eqnarray we get L(x) = N |x |p, where N is a constant. By the uniqueness of the
Laplace transform we get

fY (y)

Kr (a, b + y)
= C |y|p− n+1

2 ,

where C is a constant. Now, the form of the constant C follows from (22), and thus
fY is defined as in (20). Since the conditional distribution X |Y is given the model
described in Theorem 8 is uniquely identified. 
�

The Wishart–MGIG model considered in Theorem 8 can be further expanded into
MGIG–MGIG model as follows.

Remark 5 Let

Y |X ∼ MGIGn

(
p, λc1/2 Xc1/2, µ(c1/2 Xc1/2)−1

)
, (23)

where λ,µ are non-negative numbers and c ∈ V+
n and X ∼ MGIGn(q, a, b). Then

the density of Y is

fY (y) = |c|p|y|p− n+1
2

Kp(λe, µe)Kq(a, b)
Kp+q(a + λc1/2 yc1/2, b + µ(c1/2 yc1/2)−1) IV+

n
(y)

and

X |Y ∼ MGIGn(p + q, a + λc1/2 yc1/2, b + µ(c1/2 yc1/2)−1).

Similarly as in the Wishart–MGIG model, the condition (23) alone implies, through
(19), that X andU = X1/2c1/2Y c1/2 X1/2 are independent andU ∼ MGIGn(p, λe, µe).

Furthermore the integral identity takes the form: for p > n−1
2

∫

V+
n

|y|p− n+1
2 Kp+q

(
a + λc1/2 yc1/2, b + µ(c1/2 yc1/2)−1

)
dy

= Kp(λe, µe)Kq(a, b)

|c|p
.
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232 V. Seshadri, J. Wesołowski

Let us point out to the fact that Seshadri (2003), extending the univariate result of
Vallois (1989), obtained the following result: If X ∼ Wn(p, a) and Y ∼ Wn(q, e) are
independent, p, q > n−1

2 and U = X1/2Y X1/2 then X |U ∼ MGIGn
( p−q

2 , a, U
)
,

which can be regarded as another definition of the MGIG distribution.

Acknowledgments The authors are indebted to the referee for many helpful suggestions. They led to many
improvements, in particular, to improved versions of Remarks 2 and 5.
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