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New integral formulas for the Humbert �2 function and for the Lauricella FA and FD functions are derived.
The basic tools are neutrality properties of the probability Dirichlet distribution, the Laplace transform of
which is the Humbert �2 function.
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1. Introduction

Since 1941, with papers by Feldheim [4] to 2004, and with a paper by Lijoi and Regazzini [13],
more than 60 years have been spent during which the corpus of results on multidimensional
hypergeometric functions have been widely used as a tool in the field of probability theory, giving
rise to ad hoc developments of new specific results on special functions to be applied in the
probability domain, for instance, see [10]. However, much more rarely the intrinsic results of the
probability theory have been used to give alternative proofs to known results [15] or to provide
new extensions to results in the field of multidimensional hypergeometric functions. The aim
of this paper is to try to reach that last goal in a restricted area: the closed form calculation of
Dirichlet integrals of Humbert and Lauricella hypergeometric functions.

2. Dirichlet distribution and neutrality

We say that a random vector (X1, . . . , Xn) has the Dirichlet distribution, Dir(a; b), where a =
(a1, . . . , an) is a vector of positive numbers and b > 0, if its distribution is absolutely continuous
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530 J.-F. Chamayou and J. Wesołowski

with respect to the Lebesgue measure on Rn and the density has the form

Dn(a; b; x) = C

(
1 −

n∑
i=1

xi

)b−1 n∏
i=1

x
ai−1
i ITn

(x), ∀ x = (x1, . . . , xn) ∈ Rn, (1)

where the constant C has the form

C = �(b + ∑n
i=1 ai)

�(b)
∏n

i=1 �(ai)

and Tn is an open unit simplex in Rn, i.e.

Tn =
{

(x1, . . . , xn) : xi > 0, i = 1, . . . , n,

n∑
i=1

xi < 1

}
.

If (X1, . . . , Xn) is a Dirichlet random vector then, with Xn+1 = 1 − ∑n
i=1 X1 we define a

random vector of Dirichlet probabilities as (X1, . . . , Xn, Xn+1). If (X1, . . . , Xn) ∼ Dirn(a; an+1),

then we write (X1, . . . , Xn+1) ∼ D̃irn+1(ã), where ã = (a1, . . . , an+1).
It is well known that if (X1, . . . , Xn+1) ∼ D̃irn+1(ã), then any sub-vector (Xi1 , . . . , Xik ),

{i1, . . . , ik} ⊂ {1, . . . , n + 1} is Dirichlet

(Xi1 , . . . , Xik ) ∼ Dirk

⎛⎝(ai1 , . . . , aik );
∑

i∈{1,...,n+1}\{i1,...,ik}
ai

⎞⎠ . (2)

Let T = ∑k
l=1 Xil . Then (

Xi1

T
, . . . ,

Xik

T

)
∼ D̃irk(ai1 , . . . , aik ). (3)

Let (B1, . . . , BK) be an arbitrary partition of the set {1, . . . , n + 1}, and let Sj = ∑
i∈Bj

Xi ,
j = 1, . . . , K . Then

(S1, . . . , SK) ∼ D̃irK

(∑
i∈B1

ai, . . . ,
∑
i∈BK

ai

)
. (4)

Additionally, the random vectors

(S1, . . . , SK),

(
Xi

S1
; i ∈ B1

)
, . . . ,

(
Xi

SK

; i ∈ BK

)
(5)

are independent. This property is referred to as neutrality of (X1, . . . , Xn+1) with respect to the par-
tition (B1, . . . , BK) of the set of indices {1, . . . , n + 1}. It is a well known (see, for instance [6] or
[3]) consequence of the representation of the vector of Dirichlet probabilities through independent
gamma variables:

(X1, . . . , Xn, Xn+1) = (U1, . . . , Un, Un+1)∑n+1
i=1 Ui

,

where U1, . . . , Un, Un+1 are independent gamma G(σ, ai) random variables, that is Ui have the
density

fi(x) = σai

�(ai)
xai−1e−σxI(0,∞)(x)

with positive σ and ai , i = 1, . . . , n + 1. Note that for gamma variables, the vector
(U1, . . . , Un, Un+1)/

∑n+1
i=1 Ui and the random variable

∑n+1
i=1 Ui are independent.
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Integral Transforms and Special Functions 531

The neutrality property plays an important role in the Bayesian approach to nonparametric
statistics (see, for instance, the monograph [8]) as well as it is exploited in characterizations of
the Dirichlet distribution (and process), see, e.g. [1,7,11]. In this paper, it will be used to derive
new identities for Humbert and Lauricella functions.

3. Humbert and Lauricella functions

The �
(n)
2 function was introduced by Humbert [9] and Exton [4, 2.1.1.2. page 42]. It appears that it

is the Laplace transform of the Dirichlet distribution. That is if X = (X1, . . . , Xn) ∼ Dirn(a; b),

then

�
(n)
2 (a; b; t) = E(exp(< t, X >)), ∀ t = (t1, . . . , tn) ∈ Rn. (6)

Thus, it has the integral representation as follows:

�
(n)
2 (a; b; t) = �(b + ∑n

i=1 ai)

�(b)
∏n

i=1 �(ai)

∫
Tn

e<x,t>

(
1 −

n∑
i=1

xi

)b−1 n∏
i=1

x
ai−1
i dx1, . . . , dxn. (7)

Note that �
(n)
2 can be viewed as a multivariate version of the hypergeometric function 1F1.

It is known that 1F1(a; a + b, ·) is the Laplace transform of the beta BI (a, b) distribution. But
BI (a, b) = Dir1(a, b). Thus Equation (7) implies

�
(1)
2 (a; b; t) = 1F1(a; a + b; t). (8)

Let Z be a random variable with the gamma distribution G(1, c). If X ∼ Dirn(a; b) and X and
Z are independent, then define the random vector Y = ZX. It appears that its Laplace transform
is the Lauricella F

(n)
D function, i.e.

F
(n)
D (c, a; b; t) = E (exp(〈t, Y〉)) , t ∈ Rn.

Thus, conditioning with respect to Z, we get the following integral representation of F
(n)
D :

F
(n)
D (c, a; b; t) = 1

�(c)

∫ ∞

0
zc−1e−z�

(n)
2 (a; b; tz) dz. (9)

On the other hand, conditioning with respect to X we get another integral representation with
the Dirichlet density Dn defined in Equation (1):

F
(n)
D (c, a; b; t) =

∫
Tn

(1 − 〈t, x〉)−cDn(a; b; x) dx. (10)

Since the hypergeometric function 2F1 = F
(1)
D , it appears that 2F1(c, a; b; ·) is a Laplace

transform of the product of independent beta BI (a, b) and gamma G(c) random variables.
For any set B ⊂ {1, . . . , n}, n > #(B) = k > 0, define operators:

(1) �
(a)
B , such that for any x ∈ Rn the vector �

(a)
B (x) changes xi into a for i 	∈ B, while other

components of x remain the same.
(2) �B , such that for any x ∈ Rn the k-dimensional vector �B(x) is created from x by deleting

xi for i 	∈ B, and shifting the remaining components to the left.
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532 J.-F. Chamayou and J. Wesołowski

Note that by Equation (2) we immediately get

�
(n)
2

(
a; b; �

(0)
B (t)

)
= �

(k)
2

(
�B(a); b +

∑
i∈Bc

ai; �B(t)

)
. (11)

Similarly, Equation (4) implies

�
(n)
2

(
a; b; �

(t)
B (t)

)
= �

(k+1)
2

((
�B(a),

∑
i∈Bc

ai

)
; b; (�B(t), t)

)
, (12)

where Bc = {1, . . . , n} \ B.
Due to the representation (9), the analogous principles hold for the Lauricella function F

(n)
D , i.e.

F
(n)
D

(
c, a; b; �

(0)
B (t)

)
= F

(k)
D

(
c, �B(a); b +

∑
i∈Bc

ai; �B(t)

)
, (13)

F
(n)
D

(
c, a; b; �

(t)
B (t)

)
= F

(k+1)
D

(
c,

(
�B(a),

∑
i∈Bc

ai

)
; b; (�B(t), t)

)
. (14)

Our main result is a rather general integral identity involving the Humbert �2 functions. It is a
consequence of the neutrality property of the Dirichlet distribution. Together with the reduction
and transformation principles formulated above, it will be a source of many other integral relations,
some of them being new and some of them being already known.Anyway they will all follow from
one basic identity. This identity will be conveniently written in terms of somewhat transformed
�

(n)
2 functions. Namely, for any positive integer m, any j ∈ {1, . . . , m}, any a ∈ (0, ∞)m+1 and

any t ∈ Rm+1, we define

ϒ(j ; m + 1; a; t) = etj �
(m)
2

(
�̃j (a); aj ; (�̃j (t) − tj1m)

)
, (15)

where 1m denotes the m-dimensional vector of 1’s, and �̃j (x) suppresses the (m + 1) dimensional
vector x into the m-dimensional vector by deleting its j th component. Integrating both sides of
Equation (15) with respect to the gamma density, we introduce

H(j ; m + 1; c, a; t) = 1

�(c)

∫ ∞

0
zc−1e−zϒ(j ; m + 1; a; zt) dz. (16)

Thus we have

H(j ; m + 1; c, a; t) = 1

�(c)

∫ ∞

0
zc−1e−z(1−tj )�

(m)
2

(
�̃j (a); aj ; z(�̃j (t) − tj1m)

)
dz, (17)

and then

H(j ; m + 1; c, a; t) = 1

(1 − tj )c
F

(m)
D

(
c, �̃j (a); aj ; �̃j (t) − tj1m

1 − tj

)
. (18)

The above formula can be simplified further.

Lemma 1 Let a∗
j = aj − ∑m+1

i=1,i 	=j ai > 0. Then,

H(j ; m + 1; c, a; t) = F
(m+1)
D

(
c, a(∗)

(j); aj ; t
)

, (19)

where the modified sequence of parameters is the following: a(∗)

(j) = a1, . . . , a
∗
j , . . . , am+1.
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Proof From the integral representation of FD , see [4, 2.3.6, page 49], one can write

F
(m)
D

(
c, �̃j (a); aj ; �̃j (t) − tj1m

1 − tj

)

= F
(m+1)
D

(
c, �̃j (a), a∗

j ; aj ; �̃j (t) − tj1m

1 − tj
,

−tj

1 − tj

)
(20)

and from Exton [4, A 2.2, page 286] we get the transformation

F
(m+1)
D

(
c, a(∗)

(j); aj ; t
)

= 1

(1 − tj )c
F

(m+1)
D

(
c, �̃j (a), a∗

j ; aj ; �̃j (t) − tj1m

1 − tj
,

−tj

1 − tj

)
. (21)

�

Corollary 1 Let a∗
j = aj − ∑m+1

i=1,i 	=j ai > 0. Then,

ϒ(j ; m + 1; a; t) = �
(m+1)
2

(
a(∗)

(j); aj ; t
)

, (22)

where the modified sequence of parameters is the following: a(∗)

(j) = (a1, . . . , a
∗
j , . . . , am+1).

The proof, analogous to the previous one, uses the Erdelyi transform, see [4, 5.10.15, page
177]. The case m = 1 gives rise to the Burchnall and Chaundy relation, see [4, 4.12.2, page 117],

�
(2)
2 (a1, a2 − a1; a2; t1, t2) = et2

1F1(a1; a2; t1 − t2). (23)

4. Main identity and its consequences

Our main result is formulated as an integral identity involving the Dirichlet integral of the
function ϒ :

Theorem 1 Let (Bj )j=1,...,K be a partition of the set {1, . . . , n + 1}.
Let Bj = {i(j)

1 , . . . , i
(j)
mj

}, j = 1, . . . , K. Let a ∈ (0, ∞)n+1 and J ∈ {1, . . . , n + 1}.
Then for any t ∈ Rn+1 and for any rj ∈ Bj , j = 1, . . . , K,

ϒ(J ; n + 1; a; t) =
∫

TK−1

⎡⎣ K∏
j=1

ϒ
(
rj ; mj ; �Bj

(a); yj�Bj
(t)

)⎤⎦DK−1 (A1, . . . , AK−1; AK; y) dy,

(24)
where yK = 1 − ∑K−1

i=1 yi and Aj = ∑
i∈Bj

ai, j = 1, . . . , K.

Proof Consider a random vector of Dirichlet probabilities X = (X1, . . . , Xn+1) ∼ D̃irn+1(a).
Then Equation (2) implies that its sub-vector �̃J (X) is Dirichlet Dirn(�̃J (a); aJ ). Since
〈X, 1n+1〉 = 1, then the Laplace transform of X has the form

LX(t) = E
(
e〈t,X〉) = etJ E

(
e〈�̃J (t)−tJ 1n,�̃J (X)〉

)
= etJ �

(n)
2

(
�̃J (a); aJ ; �̃J (t) − tj1n

)
,

and thus

LX(t) = ϒ(J ; n + 1; a; t), (25)

which is the left-hand side of Equation (24). On the other hand, Equation (25) implies that
ϒ(J ; n + 1; a; ·) is a Laplace transform of the Dirichlet probabilities vector for any J ∈
{1, . . . , n + 1}.
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534 J.-F. Chamayou and J. Wesołowski

Note that the neutrality of the Dirichlet distribution, see Equation (5), implies that(
Xi

S1
; i ∈ B1

)
, . . . ,

(
Xi

SK

; i ∈ BK

)
are conditionally independent given (S1, . . . , SK), and thus

LX(t) = E

⎡⎣exp

⎛⎝ K∑
j=1

Sj

∑
i∈Bj

ti
Xi

Sj

⎞⎠⎤⎦ = E

⎡⎣ K∏
j=1

E

⎛⎝exp

⎛⎝Sj

∑
i∈Bj

ti
Xi

Sj

⎞⎠∣∣∣∣∣∣ Sj

⎞⎠⎤⎦ .

Moreover Equation (3) together with Equation (25) imply

E

⎛⎝exp

⎛⎝Sj

∑
i∈Bj

ti
Xi

Sj

⎞⎠∣∣∣∣∣∣ Sj

⎞⎠ = ϒ
(
rj ; mj ; �Bj

(a); Sj�Bj
(t)

)
j = 1, . . . , K.

Now by Equation (4) we obtain that LX(t) is equal to the right-hand side of Equation (24), which
in view of Equation (25) proves the result. �

Corollary 2 Let A = (aij )j=1,...,mi ,i=1,...,K be a triangular array of positive numbers and
(bl)l=1,...,K be a vector with positive components. Let N = ∑K

i=1 mi. Then for any T =
(tij )j=1,...,mi ,i=1,...,K,

�
(N)
2 (A; b; T ) =

∫
TK−1

(
K∏

i=1

�
(mi)
2 (ai; bi; yiti )

)
× DK−1

(
(a1· + b1, . . . , a(K−1)· + bK−1); aK· + bK; y

)
dy, (26)

where yK = 1 − ∑K−1
i=1 yi, ai = (ai1, . . . , aimi

), ti = (ti1, . . . , timi
), and ai· = ∑mi

j=1 aij , i =
1, . . . , K, and b = ∑K

i=1 bi.

Proof The result follows from Theorem 1 by specifying the set of indices {1, . . . , n +
1} = {(i, j) : j = 1, . . . , mi + 1, i = 1, . . . , K} with the partition defined by blocks Bi =
{(i, 1), . . . , (i, mi + 1)}, i = 1, . . . , K , and taking a = {αi,j : αi,j = aij , j = 1, . . . , mi, αi,mi+1 =
bi, : i = 1, . . . , K}. With these parameters (24) for ti,mi+1 = 0 and J = (1, m1 + 1) gives
Equation (26). �

The case K = 2, by integrating both sides of Equation (26) in the Laplace fashion, is related
to the function (k)

(1)E
(N)
D introduced by Exton [4, 3.4.4.1, page 95] with the integral representation

given in [4, 3.4.2.4, page 93]. Its multivariate extension has the form

(m1,...,mK)

(K) E
(N)
D (c, ai; b; ti ) = 1

�(c)

∫ ∞

0
zc−1e−z

(
K∏

i=1

�
(mi)
2 (ai; bi; zti )

)
dz, (27)

where b = (b1, . . . , bK).

Corollary 3 Let A = (aij )j=1,...,mi ,i=1,...,K be a triangular array of positive numbers
and (bl)l=1,...,K be a vector with positive components. Let N = ∑K

i=1 mi. Then for any
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T = (tij )j=1,...,mi ,i=1,...,K,

F
(N)
D (c, A; b; T ) =

∫
TK−1

(
(m1,...,mK)

(K) E
(N)
D (c, ai; b; yiti )

)
× DK−1 ((a1· + b1, . . . , aK· + bK); b; y) dy, (28)

where yK = 1 − ∑K−1
i=1 yi, ai = (ai1, . . . , aimi

), ti = (ti1, . . . , timi
), and ai· = ∑mi

j=1 aij , i =
1, . . . , K , and b = ∑K

i=1 bi.

Proof The right-hand side of Equation (28), due to the definition (27) is just the integral of the
right-hand side of Equation (26) with respect to the gamma density. Now the result follows by
Equation (9). �

Corollary 4 Let a = (a1, . . . , aK) and b = (b1, . . . , bK) be constant vectors with positive
components, and let b = ∑K

k=1 bk. Then

�
(K)
2 (a; b; t) =

∫
TK−1

(
K∏

i=1

1F1(ai; ai + bi; yiti)

)
DK−1(a + b; y) dy, (29)

where yK = 1 − ∑K−1
i=1 yi and a + b as a parameter in DK−1 should be read as (a1 +

b1, . . . , aK−1 + bK−1); aK + bK.

Proof It follows from Equation (26) by taking mi = 1 for i = 1, . . . , K . �

This gives the fourth way to solve the problem 11000 of American Mathematical Monthly [12]:∫ π/2

0
erf(

√
t cos θ) erf(

√
t sin θ) sin(2θ) dθ = 1 − 1 − e−t

t
(30)

by choosing the parameters L = 2, a1 = a2 = 1, b1 = b2 = 1/2, t1 = t2 = t in Equation (29). It
appears, see [2], that Equation (30) is equivalent to

8

π

∫ 1

0

√
y(1 − y)1F1

(
1; 3

2
; ty

)
1F1

(
1; 3

2
; t (1 − y)

)
dy = 1F1(2; 3; t). (31)

To see this, one can use the representation of the error function in terms of function 1F1

erf(ξ) =
(

2ξ√
π

e−ξ 2

)
1F1

(
1; 3

2
; ξ 2

)
. (32)

Formula (29) can be found in [4, 2.7.11, page 61]. Note that the product of Kummer confluent
hypergeometric functions 1F1 is known to be represented by a Kampé de Fériet function (see [14,
1.5, formula 31]) and from formula (29) we get the identity:

�
(K)
2 (a; b; t) =

∫
TK−1

F
0:1;.;1
0:1;.;1

⎡⎣− : a1; .; aK;
y1t1, ., yKtK

− : a1 + b1; .; aK + bK;

⎤⎦ DK−1(a + b; y) dy

(33)
such that the Laplace integral gives a Lauricella function FD on the left-hand side and a FA in
the integrand of the right-hand side. In this way, from the above result, we get the identity given
in [4, 2.7.9, page 60].
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The Lauricella FA function is a Laplace transform of the product of a gamma random variable
by an independent random vector having as its components independent beta random variables.
More precisely, let Y be a gamma G(a0) random variable and let X = (X1, . . . , Xn) be a random
vector with independent components such that Xi is beta BI (ai, bi), i.e. its density has the form

Bai,bi
(x) = �(ai + bi)

�(ai)�(bi)
xai−1(1 − x)bi−1I(0,1)(x),

and let Y and X be independent. Then the Lauricella F
(n)
A function is defined as

F
(n)
A (c; a; b; t) = E(exp〈t, YX〉).

Consequently, its integral representations are as follows:

F
(n)
A (c; a; b; t) = 1

�(c)

∫ ∞

0
yc−1e−y

K∏
i=1

1F1(aj , aj + bj , tj y) dy (34)

or

F
(n)
A (c; a; b; t) =

∫
[0,1]K

(1 − 〈t, x〉)−c

K∏
i=1

Bai,bi
(dxi). (35)

Corollary 5 Let a = (a1, . . . , aK) and b = (b1, . . . , bK) be constant vectors with positive
components, and let b = ∑K

i=1 bi. Then

F
(K)
D (c, a; b; t) =

∫
TK−1

F
(K)
A (c, a; b; yt)DK−1(a + b; y) dy, (36)

where yt = (y1t1, . . . , yKtK), yK = 1 − ∑K−1
i=1 yi and a + b as a parameter in DK−1 should be

read as (a1 + b1, . . . , aK−1 + bK−1); aK + bK.

Proof Integrate �
(K)
2 (a; b; zt) as a function of z with respect to the gamma density. Then one

gets by Equation (9) the right-hand side of Equation (36). The left-hand side follows then by
Equations (29) and (34). �

Corollary 6 Let a = (a1, . . . , ar) be a constant vector with positive components and b, c are
positive constants. Then

�
(r)
2 (a; b + c; t) =

∫ 1

0
�

(r)
2 (a; b; yt)BI (a + b; c; y) dy, (37)

where a = ∑r
i=1 ai.

Proof This identity follows by taking tij = 0 for j = 1, . . . , mi , i = 2, . . . , K , and r = m1 in
Equation (26) and denoting a = ∑m1

j=1 a1j , b = b1 and c = ∑K
i=2(bi + ∑mi

j=1 aij ). Of course, in
the above formula, we used the fact that univariate marginal distributions of Dirichlet are beta
according to the general rule (2). �

Note that as a particular case of Equation (37) (for r = 1) by Equation (8), we have

1F1(a; a + b + c; t) =
∫ 1

0
1F1(a; a + b; yt)BI (a + b; c; y) dy, (38)

which is responsible for the well-known fact that the product of independent beta BI (a, b) and
B1(a + b, c) random variables is again beta BI (a, b + c).
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Corollary 7 Let a, b and c be K-dimensional vectors with positive components and let a0 be
a positive number. Then for any t,

F
(K)
A (a0; a; b + c; t) =

∫
(0,1)K

F
(K)
A (a0; a; b; yt)

K∏
i=1

BI (ai + bi; ci; yi) dy1, . . . , dyK. (39)

Proof First we take a product of each side of Equation (38) written for a = ai, b = bi, c =
ci, t = zti , for i = 1, . . . , K . Then we integrate both sides with respect to the variable z using the
gamma density. Then the result follows by the representation (34) of FA. �

Corollary 8 Let a = (a1, . . . , ar) be a constant vector with positive components and a0, b, c

are positive constants. Then

F
(r)
D (a0; a; b + c; t) =

∫ 1

0
F

(r)
D (a0; a; b; yt)BI (a + b; c; y) dy, (40)

where a = ∑r
i=1 ai.

Proof This follows by integrating with respect to the variable z the function �
(r)
2 (a; b + c; zt)

using the gamma density with the parameter a0. Then we get Equation (40) by Equation (9) and
the identity (37). �

Note that since the sum of components of the Dirichlet distribution Dirn(a; b) is beta BI (a, b)

with a = ∑
i ai , we have

�
(n)
2 (a; b; (t, . . . , t)) = 1F1(a; a + b; t).

Consequently, by Equation (29), we have

1F1(a; a + b; t) =
∫

TK−1

(
K∏

i=1

1F1(ai; ai + bi; yit)

)
DK−1(a + b; y) dy. (41)

We add a superscript (j), in the above formula taken for t changed into tj z, j = 1, . . . , M . Then
we take product of both sides with respect to j . Finally, we integrate with respect to z and the
gamma density. These leads to a new identity involving Lauricella FA functions of different
dimensions.

Corollary 9 Let a = [aij ] and b = [bij ] be two K × M matrices with positive entries and let
a0 > 0. Then

F
(M)
A (a0; a·; b·, ; (t1, . . . , tM)) =

∫
T M

K

F
(KM)
A (a0; a; b; (t1y1, . . . , tMyM))

×
M∏

j=1

DK−1((aij + bij , i = 1, . . . , K); yj ) dy1 . . . dyM, (42)

where a· = (a·,j , j = 1, . . . , M) with a·,j = ∑K
i=1 aij and b· = (b·,j , j = 1, . . . , M) with b·,j =∑K

i=1 bij .

Note that in the above formulation yj = (y1,j , . . . , yK,j ) and yK,j = 1 − ∑K−1
i=1 yi,j ; moreover

dyj denotes dy1,j . . . dy(K−1),j , j = 1, . . . , M , and the integral is over the cartesian product of M

K-dimensional unit simplexes.
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