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PERPETUITIES WITH THIN TAILS REVISITED

BY PAWEŁ HITCZENKO1 AND JACEK WESOŁOWSKI

Drexel University and Politechnika Warszawska

We consider the tail behavior of random variables R which are solutions
of the distributional equation R

d= Q+MR, where (Q,M) is independent of
R and |M| ≤ 1. Goldie and Grübel showed that the tails of R are no heavier
than exponential and that if Q is bounded and M resembles near 1 the uniform
distribution, then the tails of R are Poissonian. In this paper, we further in-
vestigate the connection between the tails of R and the behavior of M near 1.
We focus on the special case when Q is constant and M is nonnegative.

1. Introduction. In this note, we consider a random variable R given by the
solution of the stochastic equation

R
d= Q + MR,(1.1)

where (Q,M) are independent of R on the right-hand side. Under suitable as-
sumptions on (Q,M), one can think of R as a limit in distribution of the following
iterative scheme

Rn = Qn + MnRn−1, n ≥ 1,(1.2)

where R0 is arbitrary and (Qn,Mn), n ≥ 1, are i.i.d. copies of (Q,M), and
(Qn,Mn) is independent of Rn−1. Writing out the above recurrence and renum-
bering the random variables (Qn,Mn), we see that R may also be defined by

R
d=

∞∑
j=1

Qj

j−1∏
k=1

Mk,(1.3)

provided that the series above converges in distribution. Sufficient conditions for
the almost sure convergence are known and have been given by Kesten [13] who
also considered a multidimensional case when M is a matrix and Q a vector. For a
nice detailed discussion of a one dimensional case, we refer to the paper by Vervaat
[19]; we only mention briefly here that E log+ |Q| < ∞ and E log |M| < 0 suffice
for the almost sure convergence of the series in (1.3).

In the form (1.3), R has been studied in insurance mathematics under the name
perpetuity. Since schemes like (1.2) are ubiquitous in many areas of applied mathe-
matics, the properties of R have attracted a considerable interest. We refer to [5–8,
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13, 16, 19] and references therein for more information and sample of applications.
For examples of more recent work on perpetuities and their applications, see [1, 2,
11, 14]. A few additional situations in which perpetuities arise will be mentioned
below.

The main focus of research is the tail behavior of R. Kesten [13] showed that if
P(|M| > 1) > 0, then R is always heavy-tailed. More precisely, he showed that if
there exists a κ such that E|M|κ log+ |M| < ∞, E|Q|κ < ∞, and E|M|κ = 1 then
for some constant C

P(|R| ≥ x) ∼ Cx−κ , as x → ∞.

Here, and throughout the paper, the symbol f (x) ∼ g(x) means that the ratio goes
to 1 as x → ∞. His result was rediscovered, reproved, and extended by several
authors (see [7, 9, 10]). In the complementary case, P(|M| ≤ 1) ≤ 1, the picture is
much less clear. The main work we are aware of is that of Goldie and Grübel [8]
who showed that in that case, the tails are never heavier than exponential and that
if M behaves near 1 as a uniform random variable then the tails have Poissonian
decay. In their arguments, Goldie and Grübel relied on inductive arguments applied
to (1.2).

The main purpose of this note is to use systematically their approach to obtain
additional information on the links between the behavior of M near 1 and the tail
behavior of R. Following Goldie and Grübel (and also customs in large devia-
tion theory), we will be interested in the asymptotics of the logarithm of the tail
probability, i.e., lnP(|R| ≥ x) as x → ∞. Since we are mainly interested in estab-
lishing the links between M and R, we will often make additional, but common,
assumptions when necessary. For example, we generally assume that Q and M are
independent or even that Q ≡ q is nonrandom. The independence assumption is
typically needed only for the lower bounds on the log of the tail probability, the up-
per bounds are usually obtainable without it. Once the independence of Q and M

is assumed the restriction that Q is degenerate does not seem to be a major restric-
tion, but makes some of the arguments more transparent. It is rather the assumption
that Q is bounded, which seems to play the more important role. Similarly, we will
assume that M and q are nonnegative. How the nonnegative case differs from the
general is relatively well understood—to see how arguments for nonnegative case
can be extended to more general situations, consult e.g. [8], Theorems 2.1 and 3.1,
Lemma 5.3.

We would like to mention an interesting connection of perpetuities with a sub-
class of infinitely divisible laws, namely, as was shown by Jurek [12] all self-
decomposable random variables (we refer to [12] for the definition) can be repre-
sented as perpetuities R given by (1.1) with 0 ≤ M ≤ 1. As a matter of fact, much
more is shown in [12], namely, if R is self-decomposable then for every random
variable 0 ≤ M ≤ 1 there exists a random variable Q (typically not bounded) such
that (1.1) holds with (Q,M) independent of R on the right-hand side. This curi-
ous result seems to be of little help as far as general theory of perpetuities goes.
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In fact, one can take M to be any constant M = m ∈ (0,1) and equally well rep-
resent a self-decomposable random variable as a series of weighted i.i.d. random
variables, with weights forming a geometric progression. Nonetheless, we mention
that building on an earlier work of Thorin [17, 18], Bondesson [3] proved a general
result which implies, in particular, that all gamma, inverse gamma, Pareto, log-
normal, and Weilbull distributions are self-decomposable. Some of these results
were obtained earlier by other authors and we refer to Bondesson [3], Section 5,
for credits and more examples.

2. General outline. To begin the discussion, assume that |M| ≤ 1. Trivially,
if |Q| ≤ q and |M| is concentrated on a proper subinterval (0,1 − δ), δ > 0 of
(0,1) then the perpetuity R is a random variable whose absolute value is bounded
by q/δ and thus has a trivial tail in the sense that P(|R| ≥ x) = 0 for x > q/δ.
On the other hand, if M is not bounded away from 1, then we have the following
observation due to Goldie and Grübel.

PROPOSITION 1. For δ ∈ (0,1), let pδ := P(1 − δ ≤ M ≤ 1). Then for every
such δ and for all y > 0, we have

P

(
R ≥ q

δ

(
1 − (1 − δ)y

)) ≥ p
y
δ .(2.1)

In particular, if for c ∈ (0,1) and x > q , we set

δ = cq

x
and y = ln(1 − c)

ln(1 − cq/x)
,

then we get that

P(R ≥ x) ≥ (pcq/x)
ln(1−c)/ ln(1−cq/x) = exp

(
ln(1 − c)

ln(1 − cq/x)
ln(pcq/x)

)
.(2.2)

PROOF. This was observed by Goldie–Grübel: For a given δ > 0, we let

τ = τδ = inf{n ≥ 1 :Mn < 1 − δ}.
Then by nonnegativity and (1.3), on {τ ≥ n} we have

R ≥
n∑

k=1

q(1 − δ)k−1 = q

δ

(
1 − (1 − δ)n

)
.

Therefore, for all n ≥ 1,

P

(
R ≥ q

δ

(
1 − (1 − δ)n

)) ≥ P(Mk ≥ 1 − δ,1 ≤ k < n) = pn−1
δ .

Hence,

P

(
R ≥ q

δ

(
1 − (1 − δ)y

)) ≥ p
y
δ for all y > 0
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which proves (2.1); (2.2) follows by a simple calculation. �

It is clear from the above proposition that if pδ is strictly positive for every δ > 0
then the perpetuity R has nontrivial tails. It is then the behavior of M near 1 that
determines the nature of the tails of R. It appears that essentials of such a behavior
are shared by a class of equivalent distributions in the following sense.

Let μ and ν be probability distributions on [0,1]. For any δ ∈ (0,1), we denote
μδ = μ((1 − δ,1]) and νδ = ν((1 − δ,1]). We say that the distributions μ and ν

are equivalent at 1 if

∃ε > 0 and 0 < d < D < ∞ such that

∀δ ∈ (0, ε] d ≤ μδ

νδ

≤ D.(2.3)

As we mentioned earlier, our goal here is to shed some additional light on the
relationship between the behavior of the distribution of M in the left neighborhood
of 1 and the tails of R. To accomplish that, we will develop in a systematic way
the approach of Goldie and Grübel. For the upper bound, this approach relies on
iteration of (1.2) to get a uniform upper bound on the moment generating function
of Rn for all n ≥ 1 and then use exponentiation and Markov inequality to translate
this bound into bounds on the tails. We will develop this in the next section, but to
give a flavor of this argument we provide the following illustration: Consider (1.1)
and assume that Q, M , and R on the right-hand side of (1.1) are independent (that
is of course stronger than the usual assumption that (Q,M) are independent of R).
Also, assume that 0 ≤ M ≤ 1 and that m := EM < 1. To get an upper bound on
the moment generating function EezR of R, the principle of what Goldie–Grübel
did is the following: for n ≥ 1 we have

EezRn = Eez(Qn+MnRn−1) = EezQ
EezMRn−1 ≤ EezQ{1 + mE(ezRn−1 − 1)},

where in the last step we use the fact that for s > 0

EesM ≤ Ees Bin(1,m) = 1 + m(es − 1).(2.4)

To set up an induction, we seek a function A(z) such that

(i) EezRn−1 ≤ A(z), and
(ii) EezQ{1 + m(A(z) − 1)} ≤ A(z).

Solving (ii) gives

B(z) := (1 − m)EezQ

1 − mEezQ
≤ A(z)

for z such that mEezQ < 1. Now, B(z) is recognized as the moment generating

function of
∑N

k=1 Qk where N
d= Geom(1−m) and is independent of the sequence

Qk , k ≥ 1. So if we start with any R0 for which (i) holds with B(z) in place of A(z),
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then the induction goes through and, under a reasonably weak assumptions on Q,
we get an exponential upper bound on the tail of R. In particular, if we take Q ≡ 1

and M
d= Bin(1,m) then R has moment generating function bounded by that of a

geometric random variable and hence sub-exponential tails as was already shown
by Goldie and Grübel.

We mention briefly that the sums described by B(z) are yet another example of
perpetuities. Sums like these are of interest in renewal theory and risk assessment,
for example. They have been studied before, for instance in [4, 20], under the
name geometric convolutions and geometric random sums, respectively. We refer
the interested reader there for more information and further references.

As for the lower bound, the best that is available at this point is argument based
on Proposition 1. Interestingly, this proposition provides a surprisingly good lower
bound. By this, we mean the fact that if the upper bound obtained by the above
method is constructed carefully so as to be relatively tight, then one can usually
obtain a lower bound of a similar strength from Proposition 1. This will be seen
in several situations below. It is thus important to understand how to construct a
tight upper bound. Although, we do not have a general result to that effect, in the
last section we will provide an argument in a particular example that provides a
heuristic which should work well in other cases.

The rest of the paper is organized as follows. In the next section, we will discuss
an upper bound and in particular, we will state an inequality (see (3.6) below) that
is crucial for the inductive argument. In subsequent sections, we will illustrate
this with several examples. Those include beta(α,β) densities, and what (for the
lack of a better name) we call the generalized beta(1, β) densities. The reason for
considering beta distributions is that one might reasonably hope that they provide
a natural parametrization of a behavior of M near 1, which could be translated to
the tail behavior of R. This, however, is not the case, since as we will show all beta
distributions lead to the same, namely Poissonian, behavior. It turns out that a much
more rapid than power-type variability of M at 1 is needed to observe a different
tail behavior of R. We will then construct densities for which the logarithm of the
tail probability will have power behavior −xr , for 1 < r < ∞. In the last section,
we will discuss one more example mainly to illustrate a technique of constructing
M that would give a particular tail behavior of R in other situations.

3. Upper bounds. We begin with the following well-known fact.

PROPOSITION 2. Suppose that

EezX ≤ exp(B	(z))(3.1)

for some function 	 : [0,∞) → [0,∞), B > 0 and all z > 0. Then

P(X ≥ x) ≤ e−	∗(x),(3.2)
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where 	∗ = 	∗
B is defined by

	∗(x) = sup{zx − B	(z) : z > 0}.(3.3)

Note that if 	 is an Orlicz function (a convex, continuous, nondecreasing func-
tion, such that 	(0) = 0 and 	(t) → ∞ as t → ∞) then 	∗ is just a complemen-
tary function to 	.

PROOF OF PROPOSITION 2. This is well known; by the usual exponentiation
and Markov’s inequality we have

P(X ≥ x) = P(ezX ≥ ezx) ≤ e−zx
EezX ≤ e−zxeB	(z) = e−(zx−B	(z)).

Since the right-hand side may be minimized over z, we obtain (3.2) as
required. �

One can obtain a bound on the moment generating function of R using the fact
that it is a limit in distribution of the iterative procedure (1.2) and verifying (3.1)
for every Rn. In the case Qn ≡ q , (1.2) takes the form

Rn
d= q + MnRn−1,(3.4)

where Mn is a copy of M independent of Rn−1. To argue inductively, suppose that
for some B > 0

EezRn−1 ≤ exp(B	(z)), z > 0.(3.5)

Then by (3.4) and (3.5) applied conditionally on Mn, we have

EezRn = eqz
EezMnRn−1 ≤ eqz

EeB	(zMn).

The inductive step will be complete once we show that

eqz
EeB	(zM) ≤ eB	(z).

In terms of the distribution μ of M , the above inequality reads

eqz
∫ 1

0
eB	(zt)μ(dt) ≤ eB	(z).(3.6)

Once this inequality is established, the induction is complete as one can start with
arbitrary random variable R0, so in particular we can ensure that (3.5) holds for
R0. The above inequality is crucial for establishing the upper bound.

We will be interested in the tail bounds for large values of x. We assume that 	

is nondegenerate (	(t) �= 0 for t �= 0) and satisfies 	(t)/t → ∞ as t → ∞ (i.e.,
	 is an N -function in the language of [15]). Then 	∗ has the same properties and
it follows directly from the definition (3.3) that as x → ∞ the supremum in (3.3)
is attained at z → ∞. This means that it suffices that (3.1) and thus (3.6) hold
only for large values of z. Thus, we have the following consequence of the above
discussion.
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PROPOSITION 3. Let R be given by (1.1) with Q ≡ q . Suppose that there exist
B > 0 and z0 such that (3.6) is satisfied for the distribution of M for all z ≥ z0.
Then

lim sup
x→∞

ln P(R ≥ x)

	∗
B(x)

≤ −1.(3.7)

4. Beta distributions. As earlier we will denote by μ the distribution of M .
Goldie–Grübel [8], Theorem 3.1, showed that if Q is bounded and μ and the uni-
form distribution on [0,1] are equivalent at 1, in the sense of (2.3), then the result-
ing perpetuity has Poissonian tails, that is

lim
x→∞

ln P(R ≥ x)

x lnx
= −1

q
.

Note that uniform and beta β(α,1) distributions are equivalent at 1. One might
reasonably hope that considering other values of the second parameter of the beta
distribution might lead to a different tail behavior of R but this is not the case. As
we show below, any M whose distribution is equivalent at 1 to a measure with
polynomial density at 1 leads to the Poissonian tails of R.

THEOREM 4. Let the distribution of M and the beta(α,β) distribution be
equivalent at 1. Assume that Q ≡ q > 0. Then

lim
x→∞

ln P(R ≥ x)

x lnx
= −β

q
.

PROOF. Note that all beta distributions with the same β parameter and differ-
ent α parameters are equivalent in the sense of (2.3). Consequently, we assume for
convenience that α = 1 so that we consider the beta distribution with the density

f (t) = β(1 − t)β−1, 0 < t < 1,

which is equivalent to the distribution of M at 1.
We show that regardless of the value of β > 0 the tails of the resulting per-

petuities are Poissonian. To get an upper bound, we verify that (3.6) holds with
	(z) = ebz for a suitable constant b and some B > 0. Once this is done, it follows
from the discussion in the previous section that

ln P(R ≥ x) ≤ −x

b
ln

(
x

Bbe

)
= −1

b
x
(
lnx − ln(Bbe)

)
,

which implies that

lim sup
x→∞

ln P(R ≥ x)

x lnx
≤ −1

b
.(4.1)
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Thus, we are to show that for sufficiently large z > 0,

eqz
∫ 1

0
exp(Bebzt )μ(dt) ≤ exp(Bebz)(4.2)

for some positive constant B and b = q/β . To that end, take an ε for which (2.3)
holds with ν being a beta(1, β) distribution. Assume a t0 is chosen so that t0 >

1 − ε. We split the integral on the left-hand side as

eqz
∫ t0

0
exp(Bebzt )μ(dt) + eqz

∫ 1

t0

exp(Bebzt )μ(dt).

The second term, through (2.3), is bounded by

Deqz exp(Bebz)β

∫ 1

t0

(1 − t)β−1 dt = Deqz exp(Bebz)(1 − t0)
β.

Pick t0 = t0(z) > 1 − ε so that

ρ := Deqz(1 − t0)
β < 1.(4.3)

In order to establish (4.2), we are to show that

eqz
∫ t0

0
exp(Bebzt )μ(dt) ≤ (1 − ρ) exp(Bebz).

It follows from (4.3) that

t0 = 1 − e−qz/β(ρ/D)1/β,

and thus for sufficiently large z we have that t0 > 1 − ε. Hence, the left-hand side
above, by (2.3) again, is bounded by

eqz exp(Bebzt0)μ(0, t0) ≤ eqz exp(Bebzt0)

(
1 − d

D
ρe−qz

)
,

and we want this to be less or equal than (1 − ρ) exp(Bebz). Divide both sides by
exp(Beqz) so that the inequality to be proved reads

eqz exp(Bebzt0 − Bebz)

(
1 − d

D
ρe−qz

)
≤ 1 − ρ.

We drop the factor 1 − d
D

ρe−qz on the left and look at the exponent. It is

qz + Bebz(1−e−qz/β(ρ/D)1/β) − Bebz = qz + Bebz(e−bze−qz/β(ρ/D)1/β − 1
)
.

Set b := q/β . Since ρ/D < 1, we have bze−qz/β(ρ/D)1/β = bze−bz(ρ/D)1/β <

bze−bz ≤ e−1 < ln 2. Since e−u − 1 ≤ −u/2 for 0 < u < ln 2, we see that the
expression above is bounded by

qz − Bbzρ1/βebze−bz/2 = qz

(
1 − Bρ1/β

2β

)
,
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and it is clear that

eqz exp(Bebzt0 − Bebz) ≤ exp
(
qz

(
1 − Bρ1/β

2β

))
,

can be made arbitrarily small by increasing B if necessary. In particular, we can
ensure that it is less than 1 − ρ for all z not too close to 0. Thus, (4.1) is proved
with b = q/β .

To get the matching lower bound note that using again instead of M the equiv-
alent law beta(1, β) with the c.d.f. F(t) = 1 − (1 − t)β , we have

νδ = 1 − F(1 − δ) = δβ.

Thus, by (2.3),

P(R ≥ x) ≥
(
d

cq

x

)βln(1−c)/ ln(1−cq/x)

= exp
(
−β

ln(1 − c)

ln(1 − cq/x)

(
lnx − ln(dcq)

))

= exp
(
β

ln(1 − c)

cq
(x lnx)

(
1 + o(1)

))
.

Hence, by letting c → 0+, we get that

lim inf
x→∞

ln P(R ≥ x)

x lnx
≥ −β

q
. �

5. Generalized beta(1,β) distributions. In this section, we consider M’s
whose distributions are equivalent in the sense (2.3) to distribution function given
by

F(s) = Fβ,η(s) = 1 − e−β(− ln(1−s))η , 0 < s < 1, β, η > 0.(5.1)

It is elementary to verify that Fβ,η is indeed a distribution function which is strictly
increasing on (0,1). Furthermore, Fβ,1 is the distribution of a beta(1, β) random
variable discussed in the previous section. The family Fβ,η has the following prop-
erty

F−1
β,η = Fβ−1/η,η−1,

as can be easily verified by a direct calculation. Pictures of a few such distributions
with various parameters are given in Figures 1 and 2.

For R generated with M’s, with distributions equivalent to the above distribution
function, the following extension of Theorem 4 holds.
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(a) (b)

(c) (d)

FIG. 1. (a) The distribution F4,2, (b) its density, (c) its inverse F0.5,0.5, and (d) its density.

THEOREM 5. Let (Rn) be given by (3.4) where q > 0 and M has the distri-
bution equivalent to the distribution function (5.1) for some β,η > 0. Let R be a
limit in distribution of (Rn). Then

lim
x→∞

ln P(R ≥ x)

x(lnx)η
= −β

q
.

PROOF. For the upper bound, we will show that R satisfies Proposition 3 with
	(z) = exp(bz1/η) for b’s in a certain range. For this 	, we have

	∗(x) ≥ x

((
lnx

b

)η

− B

)
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(a) (b)

(c) (d)

FIG. 2. (a) The distribution F0.2,0.1, (b) its density, (c) its inverse F510,10, and (d) its density.

which can be seen by using 	∗
B(x) ≥ xz0 − Bebz

1/η
0 with z0 = b−η(lnx)η. It fol-

lows that

lim sup
x→∞

ln P(R ≥ x)

x(lnx)η
≤ − 1

bη
.(5.2)

To verify (3.6), we will use the same argument as before; with 	(z) = exp(bz1/η)

it becomes

eqz
∫ 1

0
exp

(
Beb(zt)1/η)

μ(dt) ≤ exp(Bebz1/η

),
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where μ is the distribution of the r.v. M and b and B are positive constants. Split-
ting the left-hand side, with t0 > 1 − ε as before, we have

βeqz
∫ t0

0
exp

(
Beb(zt)1/η)

μ(dt) + eqz
∫ 1

t0

exp
(
Beb(zt)1/η)

μ(dt).

By (2.3), the second term is bounded by

Deqz exp
(
Bebz1/η)(

1 − Fβ,η(t0)
)
.

Choose t0 so that ρ := Deqz(1 − F(t0)) < 1. Then

t0 = F−1
β,η(1 − ρe−qz/D)

= Fβ−1/η,η−1(1 − ρe−qz/D) = 1 − exp
(−β−1/η(− ln(ρe−qz/D)

)1/η)

= 1 − exp
(
−

(
qz

β

)1/η(
1 − ln(ρ/D)

qz

)1/η)
,

and for z sufficiently large it follows that t0 > 1 − ε. Now, we are to prove that

eqz exp(Bebz1/ηt
1/η
0 )μ(0, t0) ≤ (1 − ρ) exp(Bebz1/η

).

By the first part of (2.3), it is enough to show that

eqz exp
(
Bebz1/η(

e−bz1/η(1−t
1/η
0 ) − 1

))(
1 − dρ

D
e−qz−Bebz1/η

)
≤ 1 − ρ.(5.3)

We drop the last factor on the left-hand side as it is less that 1. For t0 as above
z1/η(1 − t

1/η
0 ) is close to 0 for z sufficiently large, so that using approximations

e−x − 1 ∼ −x and then 1 − (1 − x)1/η ∼ x/η, both valid for x close to 0 we see
that the exponent on the left-hand side for z sufficiently large, is

qz + Bebz1/η(
e−bz1/η(1−t

1/η
0 ) − 1

)

∼ qz − Bbz1/ηebz1/η

(1 − t
1/η
0 )

∼ qz − Bb

η
z1/η exp

(
z1/η

{
b −

(
q

β

)1/η(
1 − lnρ/D

qz

)1/η})

∼ qz − Bb

η
z1/η exp

(
z1/η{b − (q/β)1/η}).

For b > (q/β)1/η, the second term grows faster than linearly in z, so that as long as
z is not too close to 0 it can be made arbitrarily larger than qz. Thus, (5.3) follows.
Furthermore, letting b → (q/β)

1/η
+ in (5.2) we obtain that

lim sup
x→∞

ln P(R ≥ x)

x(lnx)η
≤ −β

q
.(5.4)



2092 P. HITCZENKO AND J. WESOŁOWSKI

To get a lower bound note that, using instead of the distribution of M the equivalent
c.d.f. Fβ,η, on noting that

1 − Fβ,η(1 − cq/x) = exp
(−β

(− ln(cq/x)
)η) = exp

(−β
(
lnx − ln(cq)

)η)
we get for large x

P(R ≥ x) ≥ (
d
(
1 − Fβ,η(1 − cq/x)

))ln(1−c)/ ln(1−cq/x)

= exp
(
− ln(1 − c)

ln(1 − cq/x)
β

[(
lnx − ln(cq)

)η + ln(d)
])

= exp
(

β ln(1 − c)

cq
x(lnx)η

(
1 − o(1)

))
.

Upon letting c → 0+, it implies that

lim inf
x→∞

ln P(R ≥ x)

x(lnx)η
≥ −β

q
.

Combining this with (5.4) completes the proof. �

6. Weilbull-like tails. In this section, we explicitly construct M’s that will
lead to a rather different tail behavior of R than discussed in the previous sections.
As we will see a much more rapid variability of M near 1 is needed to obtain a
lighter tail behavior of R. More specifically, we prove the following theorem.

THEOREM 6. Let 1 < r < ∞. Let the distribution of M be equivalent, in the
sense of (2.3), to the distribution ν with the density

fν(t) ∝ t r−1e−1/(1−t r )1/(r−1)

I(0,1)(t).(6.1)

Then, for the perpetuity R given by (1.3) with Q ≡ q , there are constants c1, c2
such that

−∞ < c1 ≤ lim inf
x→∞

ln P(R ≥ x)

(x/q)r
≤ lim sup

x→∞
ln P(R ≥ x)

(x/q)r
≤ c2 < 0.

PROOF. For 1 < r < ∞, let r∗ be given by

1

r
+ 1

r∗ = 1.

The role of r and r∗ are symmetric and for notational convenience we will prove
the above inequalities for r∗ rather than r . Suppose we prove that for M the condi-
tion (3.5) holds for all n ≥ 1 with 	(z) = zr and some B > 0. Then by elementary

calculation 	∗(x) = xr∗
r∗(Br)1/(r−1) , so that,

P(R ≥ x) ≤ exp
(
− xr∗

r∗(Br)1/(r−1)

)
,(6.2)
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and this would give the claimed behavior of the logarithm of the tail probability
of R.

To establish (3.5) via inductive argument, we need to verify that (3.6) holds in
the present situation, that is, we want to show that for z sufficiently large

eqz
∫ 1

0
eB(zt)r μ(dt) ≤ eBzr

.

Take ε > 0 given by (2.3) where ν has density given by (6.1) and consider δ ∈
(0, ε). Then the left-hand side of the above inequality is less than

eqzeBzr (1−δ)r + eqz
∫ 1

1−δ
eB(zt)r μ(dt) ≤ eqzeBzr (1−δ)r + Deqz

∫ 1

1−δ
eB(zt)r ν(dt).

Consequently, we have to show that

eqz−Bzr (1−(1−δ)r ) + Deqz−Bzr
∫ 1

1−δ
eB(zt)r fν(t) dt ≤ 1.(6.3)

Note that because r > 1 and 0 < δ < 1, the first term can be made arbitrarily small
for z ≥ z0 sufficiently large. We thus concentrate on the second term. The follow-
ing argument will not only complete justification of (6.3), but will also indicate
how one would be led to a reasonable choice of fν if it were unknown. We would
want to construct a density fν on (0,1) for which (6.3) holds. To this end, suppose
for now that the density fν were of the form

fν(t) = rtr−1g(tr ).

Upon changing variables to s = t r , the second term in (6.3) becomes

Deqz−Bzr
∫ 1

(1−δ)r
eBzr sg(s) ds = Deqz

∫ 1

(1−δ)r
e−Bzr (1−s)g(s) ds.

Setting w = 1 − s gives

Deqz
∫ 1−(1−δ)r

0
e−Bzrwg(1 − w)dw.(6.4)

We now let

g(1 − w) := Ke−1/wγ

,

where γ is to be chosen momentarily and K = K(γ ) is set so that

K−1 =
∫ 1

0
e−1/wγ

dw.

Then (6.4) becomes

KDeqz
∫ 1−(1−δ)r

0
e−Bzrwe−1/wγ

dw.(6.5)
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The integrand is

exp
(
−

(
Bzrw + 1

wγ

))
.

Since the function

w → Bzrw + 1

wγ
,

has a minimum at (γ /(Bzr))1/(γ+1) whose value is

(Bzr)γ /(γ+1)(γ 1/(γ+1) + γ −γ /(γ+1)) = Bγ/(γ+1)zrγ /(γ+1) γ + 1

γ γ/(γ+1)
,

the quantity (6.5) is no more than

KD exp
(
zq − zrγ /(γ+1)Bγ/(γ+1) γ + 1

γ γ/(γ+1)

)
,

which upon setting

r
γ

γ + 1
= 1 i.e. γ = 1

r − 1
,

becomes

KD exp
{
z

(
q − B1/r r

(r − 1)(r−1)/r

)}
.

It is now clear that if

B = Ar

(
q

r

)r

(r − 1)r−1,(6.6)

where A > 1 might depend on r , then q − B1/rr/(r − 1)(r−1)/r = q(1 − A) < 0.
Therefore, for z ≥ z0, we obtain further

KD exp
{
z

(
q − B1/r r

(r − 1)(r−1)/r

)}
≤ KDe−z0q(A−1).

Thus, we conclude that for z ≥ z0 the left-hand side of (6.3) is bounded by

e−z0(B(1−(1−δ)r )zr−1
0 −q) + KDe−z0q(A−1).

Since the value of this expression can be made smaller than 1 by choosing z0
sufficiently large, (6.3) follows.

Reversing the steps, we obtain the expression for the density fν given in (6.1)
with the normalizing constant Kr given by

K−1
r = 1

r

∫ 1

0
exp

(
− 1

v1/(r−1)

)
dv.
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(a) (b)

FIG. 3. The density (6.1) for (a) r = 2 and (b) r = 3.

Graphs of the density (6.1) for several values of the parameter r are given in Fig-
ures 3 and 4.

Finally, putting the value of B given in (6.6) into (6.2) we obtain

P(R ≥ x) ≤ exp
(
−

(
x

q

)r∗
1

Ar/(r−1)

)
,

(a) (b)

FIG. 4. The density (6.1) for (a) r = 1.1 and (b) r = 8.
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which implies that

lim sup
x→∞

ln P(R ≥ x)

(x/q)r
∗ ≤ −A−r/(r−1).

To get a lower bound for P(R ≥ x), we choose δ ∈ (0, ε) as in (2.3). Then upon
passing to the equivalent measure with density (6.1), we have

pδ ≥ dKr

∫ 1

1−δ
t r−1 exp

(
− 1

(1 − t r )1/(r−1)

)
dt.

Changing variables to v = (1 − t r )−1/(r−1) yields

pδ ≥ K

∫ ∞
(1−(1−δ)r )−1/(r−1)

e−v

vr
dv

for some constant K whose value is irrelevant. Since for large v0,
∫ ∞
v0

e−v

vr dv is
comparable to e−v0/vr

0 we get, up to an unimportant constant

(
1 − (1 − δ)r

)r/(r−1) exp
(
− 1

(1 − (1 − δ)r)1/(r−1)

)
,

as the lower bound for pδ . Hence, up to unimportant additive terms

lnpδ ≥ r

r − 1
ln

(
1 − (1 − δ)r

) − 1

(1 − (1 − δ)r)1/(r−1)

∼ − 1

(1 − (1 − δ)r)1/(r−1)
,

as the second term above is of dominant order for δ → 0. For small δ, we have

1 − (1 − δ)r = 1 − exp
(
r ln(1 − δ)

) ∼ −r ln(1 − δ),

so that upon replacing δ by cq/x we get that, asymptotically,

lnpcq/x ≥ − 1

(−r ln(1 − cq/x))1/(r−1)
∼ −

(
x

cqr

)1/(r−1)

.

Combining this with (2.2), we get that, asymptotically,

ln P(R ≥ x) ≥ ln(1 − c)

ln(1 − cq/x)

(
−

(
x

cqr

)1/(r−1))
∼ x ln(1 − c)

cq

(
x

cqr

)1/(r−1)

=
(

x

q

)r∗
· ln(1 − c)

(cr1/r )r
∗ .

It follows that

lim inf
x→∞

ln P(R ≥ x)

(x/q)r
∗ ≥ C

r1/(r−1)
, where C = ln(1 − c)

cr∗ < 0. �
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REMARKS. (i) The maximal value of C/r1/(r−1) is obtained by setting c = c0
where c0 is the unique solution of the equation

1

1 − c
+ r∗ · ln(1 − c)

c
= 0.

The uniqueness of the solution is elementary as the function

h(c) := ln(1 − c)

cr∗

approaches −∞ as c → 0+ or c → 1− and

h′(c) = −c−r∗
(

1

1 − c
+ r∗ · ln(1 − c)

c

)
.

The expression in the parentheses, upon letting y = 1/(1 − c), y > 1, becomes

y − r∗ · lny

(y − 1)/y
= y

(
1 − r∗ · lny

y − 1

)
.

Since lny
y−1 is decreasing for y > 1, approaches 1 as y → 1+ and 0 as y → ∞ we

see that h′(c) has exactly one sign change (from positive to negative) on (0,1) and
that this change occurs at c0 such that

1

1 − c0
+ r∗ · ln(1 − c0)

c0
= 0.

While the above equation does not have in general the closed form solution for c0
as a function of r (or r∗), the asymptotic behavior of the constant C/r1/(r−1) as r

goes to 0 or ∞ can be traced down. Since

r∗ = − c0

(1 − c0) ln(1 − c0)
,

as r → ∞ (and thus, r∗ → 1+) we must have c0 → 0+ at the rate 1 − c0 ∼ 1/r∗.
But then c0 ∼ 1 − 1/r∗ = 1/r and thus

ln(1 − c0)

r1/(r−1)cr∗
0

∼ ln(1 − 1/r)

r1/(r−1)(1/r)r/(r−1)
= r ln(1 − 1/r) → −1, as r → ∞.

Similarly, if r → 1+ then c0 → 1− in such a way that 1 − c0 ∼ 1/(r∗ ln r∗). Then
ln(1 − c0)

r1/(r−1)cr∗
0

∼ − ln(r∗ ln r∗)
r1/(r−1)(1 − 1/(r∗ ln r∗))r∗ ∼ − ln(r∗ ln r∗)

e

since, as r → 1+

r1/(r−1) =
(

1 + 1

1/(r − 1)

)1/(r−1)

→ e and
(

1 − 1

r∗ ln r∗
)r∗

→ 1.

(ii) It might appear from the argument that the form of density (6.1) was just
guessed. While it is true that originally this was the case, there is a heuristic argu-
ment which would suggest the same choice. We will explain this heuristics in the
next section on a different example, but we would like to mention that following it
in the present situation would essentially lead to density given by (6.1).
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7. Further example. In this section, we present one more example of perpe-
tuity that will have extremely thin tails. Specifically, we will show

PROPOSITION 7. There exist densities fM for which the perpetuity defined by
(3.4) satisfies:

∀B > q lim sup
x→∞

ln P(R ≥ x)

B exp(x/B)
≤ −1

e
(7.1)

and

∀B < q lim inf
x→∞

ln P(R ≥ x)

B exp(x/B)
≥ ln(1 − B/q)

B
.(7.2)

PROOF. We consider the case 	(z) = z ln z and we will show that Proposi-
tion 3 holds for all B > q . It will then follow that for all such B

P(R ≥ x) ≤ exp
(
−B exp

(
x

B
− 1

))
,(7.3)

which will imply (7.1). We will then construct a density of M which, on one hand
will guarantee (7.3) and, on the other hand, ensure that pδ is sufficiently large so
that the argument based on Proposition 1 will give (7.2).

To carry out the details of that plan, we are to construct a density fM for which

eqz
∫ 1

0
eBzt ln(zt)fM(t) dt ≤ eBz ln z.

This is equivalent to

eqz
∫ 1

0
e−B(1−t)z ln ztBtzfM(t) dt ≤ 1,

and it is enough to construct an fM for which

eqz
∫ 1

0
e−B(1−t)z ln zfM(t) dt = eqz

∫ 1

0
e−Btz ln zfM(1 − t) dt ≤ 1.

We now set fM(1 − t) = K exp(−h(t)), where h is a nonnegative function and
K−1 = ∫ 1

0 exp(−h(t)) dt . The inequality to be established becomes

eqz
∫ 1

0
e−Btz ln z−h(t) dt ≤

∫ 1

0
e−h(t) dt.(7.4)

One is guided to a reasonable choice of h by the following heuristics. Suppose h

is differentiable and chosen so that

Btz ln z + h(t)(7.5)

is minimized at its critical point t = tz ∈ (0,1) which thus satisfies

Bz ln z + h′(tz) = 0.(7.6)
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Then the left-hand side of (7.4) is no more than

exp
(
qz − Btzz ln z − h(tz)

) ≤ exp
(
z(q − Btz ln z)

)
.

Since we must be able to make it arbitrarily negative (by increasing B if neces-
sary), we should require that tz ln z is about a constant, say tz = 1/ ln z for z > e.
Substituting this into (7.6) yields

h′(1/ ln z) = −z ln z or with s = 1/ ln z, h′(s) = −e1/s

s
.

Thus, we may take

h(t) =
∫ 1

t

e1/s

s
ds,

and we obtain

fM(t) = K exp
(
−

∫ 1

1−t

e1/s

s
ds

)
, 0 < t < 1, where K−1 =

∫ 1

0
e−h(u) du.

[Note that tz is indeed the local minimum of (7.5).] A graph of the density fM is
given in Figure 5.

For the lower bound, as

pδ = K

∫ 1

1−δ
e−h(1−t) dt = K

∫ δ

0
e−h(t) dt,

(a) (b)

FIG. 5. (a) The density fM and (b) its detail closer to 1.
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we obtain

ln P(R ≥ x) = ln(1 − c)

ln(1 − cq/x)
ln

(
K

∫ cq/x

0
e−h(t) dt

)

∼ − ln(1 − c)

cq
x ln

(∫ cq/x

0
e−h(t) dt

)
.

We need the following lemma which we justify below.

LEMMA 8.

y ln(
∫ 1/y

0 e−h(t) dt)

ey
→ −1, as y → ∞.(7.7)

Using this lemma with y = x/(cq) and c = B/q , we get, asymptotically,

ln P(R ≥ x)

ex/B
≥ − ln(1 − B/q)

Bex/B
x ln

(∫ B/x

0
e−h(t) dt

)
∼ ln(1 − B/q),

which implies (7.2). �

PROOF OF LEMMA 8. We rewrite the left-hand side of (7.7) as

ln(
∫ 1/y

0 e−h(t) dt)

ey/y
,

and apply l’Hospital rule. The first differentiation gives

(−1/y2)e−h(1/y)

(
∫ 1/y

0 e−h(t) dt)(−ey/y2 + ey/y)
= e−h(1/y)e−y/(1 − y)∫ 1/y

0 e−h(t) dt
.

Differentiating again, we get

(1/y2)h′(1/y)e−h(1/y)e−y/(1 − y) + e−h(1/y)(d/dy)(e−y/(1 − y))

(−1/y2)e−h(1/y)

= −h′(1

y
)

e−y

1 − y
− y2 d

dy

(
e−y

1 − y

)
.

Since h′(s) = −e1/s/s, the first term goes to −1 as y → ∞, while the second is
o(1). �
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