This article was downloaded by: [Universidad de Sevilla]

On: 19 March 2009

Access details: Access Details: [subscription number 908134069]

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House,
37-41 Mortimer Street, London W1T 3JH, UK

Communications in Statistics - Theory and Methods
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713597238

Performance of Preliminary Test Estimator Under Linex Loss Function

Zahirul Hoque #; Shahjahan Khan *; Jacek Wesolowski ¢

2 Department of Statistics, UAE University, Al Ain, United Arab Emirates ® Department of Maths and
Computing, University of Southern Queensland, Toowoomba, Queensland, Australia ¢ Faculty of Maths and
Information Science, Politechnika Warszawska, Warsaw, Poland

Online Publication Date: 01 January 2009

communications in statistics

To cite this Article Hoque, Zahirul, Khan, Shahjahan and Wesolowski, Jacek(2009)'Performance of Preliminary Test Estimator Under
Linex Loss Function',Communications in Statistics - Theory and Methods,38:2,252 — 261

To link to this Article: DOI: 10.1080/03610920802192471
URL: http://dx.doi.org/10.1080/03610920802192471

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://ww informaworld.conlterms-and-conditions-of-access. pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, |loan or sub-licensing, systematic supply or
distribution in any formto anyone is expressly forbidden.

The publisher does not give any warranty express or inplied or make any representation that the contents
will be conplete or accurate or up to date. The accuracy of any instructions, formul ae and drug doses
shoul d be independently verified with primary sources. The publisher shall not be liable for any |oss,
actions, clainms, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.



http://www.informaworld.com/smpp/title~content=t713597238
http://dx.doi.org/10.1080/03610920802192471
http://www.informaworld.com/terms-and-conditions-of-access.pdf

18:55 19 March 2009

[ Universidad de Sevilla] At:

Downl oaded By:

Taylor & Francis

Taylor & Francis Group

Copyright © Taylor & Francis Group, LLC
ISSN: 0361-0926 print/1532-415X online
DOI: 10.1080/03610920802192471

Communications in Statistics—Theory and Methods, 38: 252-261, 2009 e

Performance of Preliminary Test Estimator
Under Linex Loss Function
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United Arab Emirates

?Department of Maths and Computing, University of

Southern Queensland, Toowoomba, Queensland, Australia

3Faculty of Maths and Information Science, Politechnika Warszawska,
Warsaw, Poland

This article studies the performance of the unrestricted estimator (UE) and
preliminary test estimator (PTE) of the slope parameter of simple linear regression
model under linex loss function. The risk functions of both the UE and PTE are
derived. The moment generating function (MGF) of the PTE is derived which turns
out to be a component of the risk function. From the MGF the first two moments of
the PTE are obtained and found to be identical to that obtained by using a different
approach in Khan et al. (2002). The performance of the PTE is compared with that
of the UE by using the analytical and graphical as well as the numerical methods.
It is revealed that if the uncertain non sample prior information about the value of
the slope is not too far from its true value then the PTE outperforms the UE.

Keywords Linex loss; Non sample prior information; Preliminary test estimator;
Risk function; Unrestricted estimator.

Mathematics Subject Classification Primary 62GO05, 62J05; Secondary 62F10,
62Cl15.

1. Introduction

The squared error loss (SEL) function is one of the most widely used loss functions
in decision theory. The popularity of this symmetric loss function is due to its
mathematical and interpretational convenience. Due to the symmetric nature, it
fails to differentiate between overestimation and underestimation of any parameter.
The criticism against the appropriateness of the SEL is ever growing since the
introduction of the asymmetric linex loss (LL) by Varian (1975).
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The LL function for estimating any parameter 6 by 6*, is given by L(0) =
blexp(ad) —ad — 1] VYa#0, b>0 where ¢ is the estimation error. The two
parameters, a and b, in L(0) serve to determine the shape and scale, respectively,
of L(d). A positive a indicates that overestimation is more serious than
underestimation and a negative a represents the reverse situation. The magnitude of
a reflects the degree of asymmetry about 6 = 0. If @ — 0, then the LL reduces to the
SEL. Without any loss of generality, it can be assumed that » = 1. Further details
about the properties of this loss function are available in Varian (1975), Zellner
(1986), Parsian and Kirmani (2002), and Parsian and Farispour (1993).

The exclusive sample information based UE of slope parameter is uniformly
minimum variance unbiased estimator. The natural expectation is that the use
of additional information such as non sample prior information with the sample
information would result in a better estimator than UE. Based on both sample
and non sample prior information, Bancroft (1944) pioneered the idea of PTE
and showed that with respect to SEL function it outperforms UE under certain
conditions.

The main purpose of this article is to investigate the performance of the PTE
of the slope parameter of simple linear regression model under the LL function.
The risk of both the UE and PTE have been derived. The MGF of the PTE is also
derived in this article. The performance of the PTE relative to that of the UE is
compared. It is revealed that if the non sample prior information about the value of
the slope is not too far from its true value the PTE outperforms the UE. Otherwise,
none of the estimators outperforms the other.

The layout of the article is as follows. The model and preliminaries are
presented in Sec. 2. The risk functions of the estimators and the first two moments
of the PTE are derived in Sec. 3. The performances of the estimators are investigated
in Sec. 4. Finally, some concluding remarks are presented in Sec. 5.

2. The Model and Preliminaries

Consider a set of n random sample observations y;, for i =1,2,...,n from the
simple linear regression model

y=PB+Bix+e, 1)

where y is the response variable, 5, is the intercept parameter, 5, is the slope
parameter, x is the predictor, and ¢ is the error component distributed as iid
N, a?).

Combining sample and non sample prior information Bancroft (1944), and
later Han and Bancroft (1968), developed the preliminary test estimator (PTE)
for any unknown parameter. The risk properties of this estimator, under SEL, is
investigated by many authors; see, for instance, Khan and Saleh (2001) and Khan
et al. (2002). Giles and Giles (1993) studied the performance of the PTE of the error
variance after a pre-test of exact linear restrictions on the regression coefficients in
multiple regression set-up. They compared the risk of this estimator under linex loss
(LL) with that under SEL. Later, Giles and Giles (1996) studied the risk of the error
variance under LL after a pre-test for homoscedasticity of the variances in the two-
sample heteroscedastic linear regression model.

For the linear regression model in Eq. (1), the exclusively sample information
based unrestricted estimator (UE) of B, is B, = S_!S,, where S, =" (x; — X)?

xx Mxy
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and S,, = > (x; — X)(y; — y). Assume that uncertain non sample prior information
about the value of the slope is available either from previous study or from practical
experience of researchers or experts. Such non sample prior information can be
expressed in the form of the null hypothesis H, : f; = f;, which may be true, but
there is doubt. The estimator of ﬁl, under the above H,, is known as the restricted
estimator (RE), and is given by RE = B,,. A simple form of PTE of B, is

B =By = (B = B I, < F (@), @

where I(A) is an indicator function of the set A and F, (x) is the upper a-level
critical value of the F statistic with 1 and v = n — 2 degrees of freedom (df) to test
the null hypothesis presented earlier. Under H, : f§; # f,, the distribution of F is
non central F with (1, v) df and non centrality parameter A?> where A = \/S—“(ﬁl —
Bro)a".

Under the SEL, the PTE outperforms both the UE and RE in the neighborhood
of A? = 0; see, for instance, Khan and Saleh (2001). As A? deviates further from 0,
the performance of the PTE becomes worse than those of the UE and RE. However,
as A% approaches a very large value the performance of the PTE becomes the same
as that of the UE. On the other hand, as A? increases from zero, the performance of
the RE worsen. Therefore, with respect to SEL, the PTE is regarded as an improved
estimator if the value of A? is not too far from zero. However, due to the growing
criticism against SEL, it is of interest to investigate the performance of the PTE
under the asymmetric losses such as LL.

3. The Risk of UE and PTE of the Slope

The following lemma is useful for the derivation of the risk functions of the UE
and PTE.

Lemma 3.1. If Z ~ N(0,1), and Z and S ~ y} are independent, then for any Borel
measurable function ¢ : R x (0, 0) — R and for any c € R,

E[exp(cZ)$(Z, S)] = exp(c*/2)E[¢(Z + ¢, )] 3)
provided (exp(cZ)p(Z, S)) is integrable.
Proof. By definition,

E[exp(c2)d(Z, §)] = E[E[exp(cZ)¢p(Z, 5) | S]]

= E[J% /h ¢ (z, S) exp(cz — z2/2)dz:|

= exp(cz/Z)E[\/% A o(z,9) exp(—%(z — c)z)dz].

Consider U = Z — c. The Jacobian of the transformation is |J| = 1. Therefore,
E[exp(cZ)$(Z. 5)] = exp(c*/2)E[$(Z + ¢, S)].

This completes the proof of the lemma. O
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Theorem 3.1. The risk of the UE of 3, under the LL function is given by
R[B,; B] = exp(aj/2) — 1
where a; = aa/\/S_XX.
Proof. By definition, the risk function of the UE of f; under the LL is
R[B): 1] = E[exp(a(B, — p)] — aE[B, — f] - 1. “)

The first component of the right-hand side of (4) is

Elexp(a(B — )] = Elexp(a,2)] (5)

where a, = as/\/S,, and Z = /S (B, — Bio)o ! ~ N(0, 1).
Applying Lemma 3.1 to (5) with ¢ as identity, we get

E[exp(a(B; — £1))] = exp(ai/2). (6)

As p, is unbiased, the second component of the right-hand side of (4) is 0.
Collecting the results from (6) and substituting in (4), the expression of the risk
function of the UE of f§, is obtained. O

The following two lemmas are essential to derive the risk function of the PTE.

Lemma 3.2. If X follows a non central Student’s t distribution with k df and non
centrality parameter 0 then

Sit,5)(X) + frgs)(=x) = 2fo(l,k,52)(x2) Vx>0 (N

where fy 5 () is the density function of a non central Student’s t distribution with k
df and, non centrality parameter 6, and fr ; s (-) is the density function of a non central
F distribution with (1, k) df and non centrality parameter &°.

Proof. The density function of the non central Student’s ¢ distribution with & df
and non centrality parameter 0 is given by

oy KPexp(=0%/2) & (k+1+i>(x5)f( 2 )"/2
f’(’“’)(x)_r(k/z)ﬁ(kﬂz)% gr 2 n\ire) o ®

Consider now f, 5 (x) + fi4.5(—x) for any arbitrary x > 0. Then (8) implies
that the terms of the series with odd powers of x cancel and the terms with even
powers of x are duplicated. Thus,

S5 ) + fr ) (—%)

2k exp(—82/2) & <k +1 ) x2f52i< 2 >"
= r
RN SR R SR Ner T Yanye
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_ k2 eXp(—éz/z) ir<k +1 n l) (x2)i(52)i 2i
CTk/2)Ak+ ) S\ 2 201(2i — DI (k + x2)!
_ K exp(=0/0)@) ' ST +1)

X252 i 3 ,
=7 T(k/2)(k + x2)'7 ;0 i (s +i) {2(k + x?) } = 2xf 1 5,0 (X0)-

This completes the proof of the lemma. |
Lemma 3.3. For any two positive integers m and n,

afF(m,n,D) ('x) 1 m mx
— D = _EfF(m,n,D)('x) + mfF(m+2,n,D)<m—_|_2>’ x, D € [0, 00)

where fr , p)(-) denotes the density function of a non central F distribution with (I, n)
df and non centrality parameter D.

Proof. The density function of the non central F with (m, n) df and non centrality
parameter D is given by

f g o SREDQMEE R & [ mxD ]-fr(’"T” +))

m,n, X) = T — =
F(m,n,D) [(n/2) (n+mx)"3* 5 L2(n+mx)] T(%+)))!
Derivative of this density function leads to the above-mentioned result. O

Theorem 3.2. The risk function of the preliminary test estimator of the slope parameter
B under the LL function is given by

R[BI;TE§ Bi] = exp(—a,;A)G, (c; A*) +exp(a;/2)[1 — G, ,(c; (A + a,)*)]
+a,AG; (c/3; A% —1, 9)

where ¢ = F| (o) and G, ,(q; 0) is the cdf of non central F distribution with (a, v) df,
non centrality parameter 0 and evaluated at q.

Proof. By definition, the risk function of the PTE of 8, under the LL function is
RB™: B1] = E[exp(a®)] — aE[®] — 1 (10)

where ® = PTE — g
The first component of the right-hand side of (10) is

E[exp(a®)] = E[exp(a{(B, — B,) — (B, — Bio)I(F\, < Fy ,(2))})]
X [I(Fl,v < Fl,v((x)) + I(Fl,v = Fl,v(a))]
= exp(a(Byo — B1))P(Fy,, < ) + E[exp(a(B, — B)I(F, = )]  (11)

where ¢ = F| (o).
The first component of the right-hand side of (11) is

exp(a(Biy — B1))P(Fy, < ¢) =exp(—a,4)G ,(c; Az)- (12)
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The second component of the right-hand side of (11) can be written as

Elexp(a(f, ~ IR, = 0] = B exp(a, 21 (£ A7 g a

vS2/o?

where a; = %, Z ~ N(0,1) and (vS?/a?) ~ x?. Z and S, are independent.
Applying Lemma 3.1 to (13) with ¢(X,Y) = I(@ > ¢), we get

Elexp(a(By — BI(F,, = o)] = exp(ai/2)[1 = G ,(c; (A +a))]. (14)
Combining (12) and (14), the first component of the right-hand side of (10) yields
E[exp(a®)] = exp(—a, )G, ,(¢; A%) +exp(ai/2)[1 = Gy (c; (A+ap)P)]. (15)
From (15) the moment generating function of the PTE of f3, is
0 c
m(a) = eXP(_alA)[/'f;(v,A)(x)dx +f0 fz(\-,A)(x)dx:|
) 0 c
rep@/2)| 1= [ s o @ar= [ fsw@ar] a6

Writing g,, a)(X) = fi.4)(X) + fi.a)(=x) for any x > 0 in (16) we get

m(@) = exp(-a,8) [ g (0 +exp(@/2) [ gaap(dr. (D)

Applying Lemma 3.2 in (17) we get

m(@) = exp(=ad) [ o5 ()dy +exp(@}/2) [ Fris-ap ().

Differentiating both sides of the above equation with respect to a, then using
Lemma 3.3 and finally changing the variable y/3 to ¢ in the left integral we get

@) = = ~Aexp(-ad) [ Fran 0y + arexp(at/2)

X /COO fF(l,v,(A+a1)2)()’)dy - (A+a) exp(a%/2) /p“’ fF(l,v,(A+ul)2)(y)dy
F Q@)@ [ frssisran 0 ] (19)
Putting a =0 in (18) we get E(®) = —(B, — B,9)Gs,(c/3; A?) which is the bias

function or equivalently the first moments of the PTE of f3,. Therefore, the second
component of the right-hand side of (10) is

aE[®] = —a,A Gy ,(c/3; A?). (19)
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Collecting the expressions from (15) and (19) and plugging into (10), the risk
function of the PTE of f, under the LL function is obtained. This completes the
proof of the theorem. O

Differentiating both sides of (18) with respect to a, then using Lemma 3.3 and
finally putting ¢ = 0, the mse function of the PTE of f3, is obtained as

M[BITE; 8] = S:10%[1 — Gy, (¢/3; A%) + A*{2G5 (¢/3; A%) — Gs,,(c/5; AD))].

For an equivalent expression of the mse function of the shrinkage preliminary test
estimator of f§; readers may see Khan et al. (2002). Similarly, putting ¢ = 0 in the
mth order derivative of (16) the mth moment of the PTE can be obtained.

4. Performance Analysis

For any non zero value of A, the risk function of the PTE of f; can be written as

R[BY™: B,] = R[Bi: Bi] + 8(8), 20)

where g(A) = exp(—a,;A)G ,(c; A?) + a;AG; (/35 A%) — exp(ai/2)G,(c; (A + ay)?).
Therefore, the efficiency of the PTE relative to the UE can be written as

EFF[BYT; B1] = [exp(al/2) — 1][exp(a}/2) — 1+ g(a)] . 21)
Under the null hypothesis, A = 0 and hence
g(A) = G, ,(c; 0) — exp(a;/2)G, ,(c; a}) <0 Va #0. (22)

Therefore, at A = 0 the PTE is more efficient than the UE.

For any positive a, if A is positive a,AG; ,(c/3; A?) is also positive. Therefore,
for positive a as A grows larger from 0 efficiency of PTE decreases and crosses the 1-
line at A = (exp(ai/2)Gy,(c; (A + a))’) — exp(=a,A)Gy ,(¢c; A%))/(a, G5, (c/3; A%))
regardless of the value of a.

For any negative a, if A is positive a;A G, ,(c/3; A?) is negative. Therefore, for
negative a, as A grows larger from 0, the efficiency of PTE grows larger, reaching its
maximum at some A depending on the magnitude of a, and then starts decreasing
and crosses the 1-line for the value of A given above regardless of the value of a.
As A — oo, g(A) tends to 0, and hence, Eff[?TE; B,] — 1. Therefore, starting from
a certain large A, the efficiency of PTE is no different from that of UE.

For very small values of a, the growth pattern of the efficiency of the PTE for
both positive and negative values of A are very similar. Because for very small values
of a, the LL function reduces to the SEL function. From the foregoing analyses and
Fig. 1 it is clear that the efficiency of the PTE relative to the UE depend on the three
factors, the values of o, A, and a. The value of a is determined by the experimenter
according to the potential impact of the positive and negative errors of estimation,
and the value of A is usually unknown to the experimenter. Regardless of the values
of a and A, the efficiency of the PTE is a function of «. The question is which value
of o should be used for the preliminary test?
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Figure 1. Efficiency of PTE relative to UE for « = 0.2, n = 25, and selected a.

Let us consider the efficiency function of the PTE of f§, relative to the UE as a
function of « and A. Therefore,

Eff[ﬁfTE; o, A] = [exp(af/Z) — 1][exp(a%/2) -1+ g(A)]fl. (23)

From the analyses of the relative efficiency function of the PTE it is evident that the
PTE does not have uniform domination over the UE for all values of A.

Also, the value of A is usually unknown to the experimenter. Thus, we pre-
assign a value of the relative efficiency, say Eff,, that we are willing to accept.
Consider the set A, = (o | Eff{BPTE; o, A} > Eff,) for all A. An estimator BTTE is
chosen which maximizes Eff [[ﬂ’TE; o, A]V o € A, and A. Thus, we solve

max min Eff[ ™ o, A] = Eff, (24)

for o. The solution provides the maximum and minimum guaranteed efficiencies of
the PTE of f, relative to the UE, for any selected values of n and A. Table 1 presents
the maximum guaranteed efficiency (Eff*) and minimum guaranteed efficiency (Eff,)
of the PTE of f3, relative to the UE, and the value of A (A)) at which Eff, occurs,
for selected values of a, n, and «. For example, if « =3 and n =20, and the
experimenter wishes to achieve the minimum guaranteed efficiency 0.6055 of the
PTE of f5,, the recommended value of « is 0.20. This minimum guaranteed efficiency
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Table 1
Maximum and minimum efficiencies of PTE relative to UE for a = 3

Sample size, n

o 10 15 20 25 30 35 40

0.05  Eff* 4.2674 3.9892 3.8713 3.80640  3.7653 3.7369 3.7162
Eff, 0.2661 0.3076 0.3279 0.3279 0.3401 0.3401 0.3545
A, —2.6300 -2.4700 -—2.3850 —2.3950 —2.3550 —0.3250 —2.3004
0.10  Eff* 2.5615 2.4468 2.3978 2.3706 2.3534 2.3415 2.3328
Eff, 0.3807 0.4202 0.4393 0.4507 0.4585 0.4641 0.4684
A, —23550 —2.2255 -—2.1515 —2.1448 -2.1050 —2.1105 —2.0850
0.15  Eff* 1.9556 1.8907 1.8629 1.8474 1.8376 1.8308 1.8258
Eff, 0.4748 0.5112 0.5285 0.5390 0.5462 0.5511 0.5550
A, —2.1750 -2.0850 —2.0390 —2.0100 —2.0055 —2.0025 —1.9750
0.20  Eff* 1.6429 1.6014 1.5835 1.5736 1.5673 1.5629 1.5597
Eff, 0.5573 0.5900 0.6055 0.6148 0.6211 0.6256 0.6291
A, —2.0610 —-19800 —1.9500 —1.9302 —-1.9100 —1.9000 —1.8950
0.25 Eff* 1.4530 1.4247 1.4125 1.4057 1.4014 1.3984 1.3962
Eff, 0.6310 0.6597 0.6733 0.6814 0.6868 0.6908 0.6938
A, —19850 —-19250 —1.8950 —1.8755 —1.8609 —1.8550 —1.8500
0.30  Eff* 1.3268 1.3068 1.2982 1.2934 1.2904 1.2883 1.2867
Eff, 0.6969 0.7215 0.7331 0.7400 0.7446 0.7480 0.7506
A —-1.925 —1.8650 —1.8459 —1.8255 —1.8100 —1.8080 —1.7968

o

attains at A, = —1.95. For a = —3, the same minimum guaranteed efficiency occurs
at A, = 1.95. In general, if a is negative the value of A, is positive and vice versa.

5. Concluding Remarks

This article has introduced the computation of any order derivative of the non
central F distribution with respect to the non centrality parameter and the
derivation of the MGF of the PTE. Moment of the PTE of any order can be
obtained from this MGF. For illustration, the bias and mse functions are derived.
It is revealed that if the non sample prior information regarding the value of the
parameter is not too far from its true value the PTE outperforms the UE. This result
reaffirms the superiority of the PTE under the SEL function. Similar to the shape
of the LL function the shape of the risk function of the PTE is also asymmetric.
As the value of the shape parameter of the loss function grows smaller, the shape
of the risk function of the PTE approaches symmetry.
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