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RECURSIVE OPTIMAL ESTIMATION
IN SZARKOWSKI ROTATION SCHEME

Jacek Wesołowski1

ABSTRACT

In late 90ties Szarkowski observed that under the rotation pattern typical
for the Labour Force Survey the recursion for the optimal estimator of the
mean on a given occasion has to use estimators and observations only from
three last occasions. Since the fundamental work of Patterson (1950) it had
been known that for rotation patterns with "holes" it is a difficult problem
to determine the depth of such recursion formulas. Under special assump-
tions the problem has been settled only recently in Kowalski and Wesołowski
(2010). In the present paper it is shown that these assumptions are always
satisfied in the case of the Szarkowski rotation pattern 110011. Moreover,
explicit formulas for the coefficients of recursion are derived.

1. Introduction

Andrzej Szarkowski passed away in June 2003. He was a creative and
passionate statistician with considerable mathematical background. He de-
voted his talents to the Labour Force Survey (LFS) conducted by the Central
Statistical Office in Poland taking care about mathematical methodology of
this survey for more than 10 years, just from its beginning in 1992. For de-
tails on development of methodology of this survey in Poland, see Szarkowski
and Witkowski (1994) and Popiński (2006). In particular, in 1993 Szarkowski
introduced in the LFS a rotation pattern 110011. One of the issues related
to this approach he was very concerned about was the recurrence form of
optimal linear estimators of mean on every occasion under this pattern. In
late nineties he studied Patterson (1955) paper, where the rotation pattern
with no holes had been thoroughly treated. However, it appeared to be of
not much help since a real challenge is posed by the HOLES! On the basis
of intensive numerical experiments Szarkowski conjectured that the pattern
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110011 forces the recurrence to move THREE STEPS back when the corre-
lation is exponential in the occasions span and SEVEN STEPS back when
there are no restrictions on correlations. For a while we had sought together
a mathematical explanation of this phenomena with no luck.

It took more than ten years to answer in affirmative Szarkowski’s THREE
STEPS conjecture. The explanation is given in the present paper. It is based
on a general approach described in Kowalski and Wesołowski (2010) (KW in
the sequel). Earlier the problem for rotation schemes with singleton holes
was solved in Kowalski (2009) (particular cases of 1011 and 1101 rotation
patterns were covered even earlier, in Ciepiela (2004)). In Section 2 the
general approach from KW, which is based on TWO ASSUMPTIONS, is
adjusted to a setup with a single hole of any size ℎ, that is for the rotation
pattern 11...110...011...11. In Section 3 we prove that for the Szarkowski
scheme these TWO ASSUMPTIONS are necessarily satisfied and thus
the general procedure works. Moreover, explicit formulas for the coefficients
of the recursion are derived. In Section 4 we give proofs of lemmas which are
used in Section 3 to derive the main result.

Szarkowski’s SEVEN STEPS conjecture remains open. Even in the case of
one singleton hole it is not known how far back one has to go in the recursion
formula.

2. General method

Consider a doubly-infinite matrix of random variables (Xij), i, j ∈ ℤ.
Index i identifies a unit and index j is an occasion number (time). We assume
that for any j ∈ ℤ we have

EXi,j = �j , for all i ∈ ℤ,

and, without loss of generality we assume that Var(Xi,j) = 1 for all i, j ∈ ℤ.
The correlation structure is described as follows

ℂorr(Xi,j , Xk,l) = I(k = i)�∣j−l∣.

Fix natural numbers n and ℎ and consider a sequence of random vectors
Xj = (Xj,j , . . . , Xj,j+n+ℎ−1), j ∈ ℤ. Note that C = ℂovXj is an (n + ℎ) ×
(n + ℎ) matrix with all entries equal zero except the entries just above the
diagonal which are all equal �. Moreover

ℂov(Xj , Xk) = C ∣k−j∣

and Cj is a matrix with all entries equal zero except the jth over diagonal
with all entries equal �j when j ≤ n + ℎ − 1 and it is a zero matrix when
j > n+ ℎ− 1.
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A rotation pattern is any vector (�1, . . . , �n+ℎ) with 0-1 entries such that
�1 = �n+ℎ = 1 and there are exactly ℎ zeros among the entries. Let p − 1
denotes the dimension of the largest zero subvector of subsequent entries in
the rotation pattern.

We modify vectors Xj into

Y j = (Xj,k�k−j+1, k = j, . . . , j + n+ ℎ− 1), j ∈ ℤ.

For a given j ∈ ℤ let �̂j denote the BLUE of �j based on Y l, l ≤ j.
We study the recurrence formula for the BLUE estimators of the following

form

�̂t = a1 �̂t−1 + . . .+ ap �̂t−p + ⟨r0, Y t⟩+ ⟨r1, Y t−1⟩+ . . .+ ⟨rp, Y t−p⟩,

for any t ∈ ℤ, where the parameters a1, . . . , ap ∈ ℝ and r0, r1, . . . , rp ∈ ℝn+ℎ

are to be identified. Here we use the symbol ⟨a, b⟩ to denote the scalar product
of vectors a = (a1, . . . , ad) and b = (b1, . . . , bd), that is ⟨a, b⟩ =

∑d
i=1 aibi.

Note that the parameters are assumed to be constant, i.e. they do not depend
on t.

Note that, alternatively, �̂t can be defined as optimal unbiased linear es-
timator

∑
s≤t ⟨ws, Xs⟩, with additional constraints

ws,j(1− �j) = 0, j = 1, . . . , n+ ℎ, s ≤ t, (1)

imposed by the holes in the rotation pattern. Therefore the above recursion
can be written in the form

�̂t = a1 �̂t−1 + . . . ap �̂t−p + ⟨r0, Xt⟩+ ⟨r1, Xt−1⟩+ . . .+ ⟨rp, Xt−p⟩. (2)

Note that (1) forces respective entries of vectors rj , j = 0, . . . , ℎ + 1, to be
equal zero.

Under certain assumptions (see ASSUMPTION 1 and 2, below) there
exists a general algorithm, described in KW (see also Kowalski (2010)), which
completely solves the problem. It is rather complicated. Here we describe
it in the case of a single hole of any size ℎ in the rotation pattern (thus
p = ℎ+ 1). More precisely we assume that the rotation patterns have a form
[1, 1, . . . , 1, 0, 0, . . . , 0, 0, 1, 1, . . . , 1] where the zeros occur at places s+ 1, s+
2, . . . , s+ ℎ, for arbitrary s satisfying 1 ≤ s < n.

Recall that the Chebyshev polynomials of the first kind (Tn) are defined
through a three step recurrence

Tn+1(x) = 2xTn(x)− Tn−1(x), n = 1, 2, . . .

and T0 ≡ 1, T1(x) = x.
Consider a polynomial P of degree p defined by
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P (x) = 1− �2 + (n+ ℎ− 1)(1 + �2 − 2�x)+

−(1 + �2 − 2�x)2 tr
(
Tp(x)R−1p (�)

)
, (3)

where Tp(x) is a ℎ× ℎ symmetric matrix polynomial

Tp(x) =

⎡⎢⎢⎢⎢⎢⎣
T0(x) T1(x) T2(x) . . . Tp−3(x) Tp−2(x)
T1(x) T0(x) T1(x) . . . Tp−4(x) Tp−3(x)

...
...

... ⋅ ⋅ ⋅
...

Tp−3(x) Tp−4(x) Tp−5(x) . . . T0(x) T1(x)
Tp−2(x) Tp−3(x) Tp−4(x) . . . T1(x) T0(x)

⎤⎥⎥⎥⎥⎥⎦ (4)

and Rp is a ℎ× ℎ invertible constant tridiagonal matrix

Rp =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 + �2 � 0 . . . 0 0
� 1 + �2 � . . . 0 0
0 � 1 + �2 . . . 0 0
...

...
... ⋅ ⋅ ⋅

...
0 0 0 . . . 1 + �2 �
0 0 0 . . . � 1 + �2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(5)

ASSUMPTION 1: All the roots x1, . . . , xp (real or complex) of
the polynomial P defined through (3), (4), (5) are distinct and do
not belong to the interval [−1, 1].

Under ASSUMPTION 1 equation

d+
1

d
= 2xi,

has exactly one solution di such that ∣di∣ < 1, i = 1, . . . , p.
Let d = [d1, . . . , dp]

T . Consider linear system

S(d)c = (1− �2)e, (6)

where S(d) is a (p+ 1)p× p2 matrix of the form

S(d) =

⎡⎢⎢⎢⎢⎣
G(d1) G(d2) G(d3) . . . G(dp)
H(d1) 0 0 . . . 0

0 H(d2) 0 . . . 0
0 0 H(d3) . . . 0
0 0 0 . . . H(dp)

⎤⎥⎥⎥⎥⎦
with p× p blocks G(di), H(di), i = 1, . . . , p defined as
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G(v) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

g0(v) g1(v) g1(v) g1(v) . . . g1(v) g1(v)
g1(v) 1 −v� 0 . . . 0 0
g1(v) 0 1 −v� . . . 0 0

...
...

...
... ⋅ ⋅ ⋅

...
...

g1(v) 0 0 0 . . . 1 −v�
g1(v) 0 0 0 . . . 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

H(v) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ℎ0(v) ℎ1(v) ℎ1(v) . . . ℎ1(v) ℎ1(v) ℎ1(v)
ℎ1(v) v(1 + �2) −v2� . . . 0 0 0
ℎ1(v) −� v(1 + �2) . . . 0 0 0
ℎ1(v) 0 −� . . . 0 0 0

...
...

... ⋅ ⋅ ⋅
...

...
...

ℎ1(v) 0 0 . . . v(1 + �2) −v2� 0
ℎ1(v) 0 0 . . . −� v(1 + �2) −v2�
ℎ1(v) 0 0 . . . 0 −� v(1 + �2)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and

g1(v) = 1− v�, g0(v) = 1− �2 + (n+ ℎ− 1)g1(v),

ℎ1(v) = (1− v�)(v − �), ℎ0(v) = v(1− �2) + (n+ ℎ− 1)ℎ1(v).

The unknown vector c has the following structure

c =
[
c1, c2, . . . , cp

]T
,

where ci = [c0,i, c1,i, . . . , cℎ,i]
T , i = 0, 1, . . .. Finally, e is the (p + 1)p-

dimensional unit vector e = [1, 0, . . . , 0]T .

ASSUMPTION 2. Linear system (6) has a unique solution.

Under ASSUMPTIONs 1 and 2 the recurrence (2) holds with parameters
a1, . . . , ap and r0, . . . , rp defined as follows:

∙ The linear system

x1d
p−1
i + x2d

p−2
i + . . .+ xp−1di + xp = dpi , i = 1, . . . , p

has a unique solution, which equals a = [a1, . . . , ap]
T , that is

a =

⎡⎢⎢⎢⎣
dp−11 dp−21 . . . d1 1

dp−12 dp−22 . . . d2 1
...

... ⋅ ⋅ ⋅
...

...
dp−1p dp−2p . . . dp 1

⎤⎥⎥⎥⎦
−1 ⎡⎢⎢⎢⎣

dp1
dp2
...
dpp

⎤⎥⎥⎥⎦ .
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∙ For any i = 1, . . . , p let Di be an (n+ ℎ)× (p+ 1)p matrix defined as

Di =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

di1 0 0 . . . 0 di2 0 0 . . . 0 . . . dip 0 0 . . . 0
...

...
... ⋅ ⋅ ⋅

...
...

...
... ⋅ ⋅ ⋅

... ⋅ ⋅ ⋅
...

...
... ⋅ ⋅ ⋅

...
di1 0 0 . . . 0 di2 0 0 . . . 0 . . . dip 0 0 . . . 0
di1 di1 0 . . . 0 di2 di2 0 . . . 0 . . . dip dip 0 . . . 0
di1 0 di1 . . . 0 di2 0 di2 . . . 0 . . . dip 0 dip . . . 0
...

...
... ⋅ ⋅ ⋅

...
...

...
... ⋅ ⋅ ⋅

... ⋅ ⋅ ⋅
...

...
... ⋅ ⋅ ⋅

...
di1 0 0 . . . di1 di2 0 0 . . . di2 . . . dip 0 0 . . . dip
di1 0 0 . . . 0 di2 0 0 . . . 0 . . . dip 0 0 . . . 0
...

...
... ⋅ ⋅ ⋅

...
...

...
... ⋅ ⋅ ⋅

... ⋅ ⋅ ⋅
...

...
... ⋅ ⋅ ⋅

...
di1 0 0 . . . 0 di2 0 0 . . . 0 . . . dip 0 0 . . . 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where the first s rows are identical, then the rows with numbers s+ 1, s+ 2,
. . ., s + ℎ, associated to the hole in the rotation pattern, are perturbed in a
regular manner, and the last rows with numbers s+ℎ+1, s+ℎ+2, . . ., n+ℎ
are again identical and the same as the first s rows.

Let Δ be a (n+ ℎ)× (n+ ℎ) diagonal matrix defined as

Δ = (Id− CCT )−1.

All the elements of the diagonal of Δ are equal (1− �2)−1 except the last one
which equals 1.

Let

Vi = Δ(Di − CDi+1), i = 0, 1, . . .

Let c = c(d) be the unique solution of (6), which by ASSUMPTION 2 is
guaranteed to exist. Then, denoting additionally a0 = −1, we have

r0 = V0 c(d), rj =

(
Vj +

j−1∑
i=0

(aiC
T − ai+1Id)Vj−1−i

)
c(d) (7)

for j = 1, . . . , p.
Thus the problem has a solution provided the ASSUMPTIONs 1 and 2 are

satisfied. It was proved in KW that the ASSUMPTIONs are always satisfied
when p = 0 (no holes) or p = 1 (singleton hole; actually, any number of
singleton holes has been allowed). Intensive numerical experiments provided
strong motivation to conjecture that ASSUMPTIONs 1 and 2 are satisfied
for any p ≥ 0. However, proving this conjecture seems to be rather difficult
even in the case of a single hole of any size.
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3. Szarkowski scheme

Here we concentrate on a special rotation pattern 110011 with a single hole
of size 2, called the Szarkowski scheme. As already mentioned, this scheme
has been adopted for the Labuor Force Survey in the CSO in Poland. We will
prove that under this rotation pattern ASSUMPTIONS 1 and 2 are satisfied.
Moreover, we will derive explicit analytic formulas for the parameters of the
recurrence ai, i = 1, 2, 3, and rj , j = 0, 1, 2, 3.

Note that under this pattern n = 4, ℎ = 2, p = 3 and the missing elements
are at positions defined by the vectors e3 and e4 in six-dimensional space ℝ6.
We seek a representation

�̂t = a1 �̂t−1 + a2 �̂t−2 + a3 �̂t−3

+⟨r0, Xt⟩+ ⟨r1, Xt−1⟩+ ⟨r2, Xt−2⟩+ ⟨r3, Xt−3⟩ (8)

for the BLUE of the mean �t on the t-th occasion.
The main result will be preceded by three auxiliary lemmas, proofs of

which are postponed to Section 4.

Lemma 1. Let � ∈ (−1, 1) ∖ {0}. Then the polynomial

W3(x) = x3 + (2− �2 + 2�4)x+ 2(2 + 2�2 + 2�4 + �6)

has one real root x1 < −2∣�∣ and two conjugate complex roots x2 and x3.

Lemma 2. For any � ∈ (−1, 1) ∖ {0} let

Q(d) =

⎡⎣ 5(1− d�)(d− �) + d(1− �2) (1− d�)(d− �) (1− d�)(d− �)
(1− d�)(d− �) d(1 + �2) −d2�
(1− d�)(d− �) −� d(1 + �2)

⎤⎦ .
The equation

det Q(d) = 0 (9)

has exactly three distinct roots d1 = d1(�), d2 = d2(�) and d3 = d3(�) such
that ∣di∣ < 1, i = 1, 2, 3. The number di is the unique solution of equation

−�
(
d+

1

d

)
= xi(�),

where xi(�) is the root of the polynomial W3, satisfying ∣di∣ < 1, i = 1, 2, 3.
The root d1 is real and the roots d2, and d3 are conjugate complex. More-

over,

d1d2d3(d1 + d2 + d3) = −d1d2 − d2d3 − d3d1. (10)
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Lemma 3. Let � ∈ (−1, 1) ∖ {0}. Let � = d1, � = d2 and 
 = d3 be the
roots of (9) defined in Lemma 2. Let e1 = (1, 0, . . . , 0) ∈ ℝ12. Consider the
following 12×9 system of linear equations in cj = [c0,j , c1,j , c2,j ]

T , j = 1, 2, 3,

ℚ c =

⎡⎢⎢⎣
Q0(�) Q0(�) Q0(
)
Q(�) 0 0
0 Q(�) 0
0 0 Q(
)

⎤⎥⎥⎦
⎡⎣ c1
c2
c3

⎤⎦ = (1− �2)e1, (11)

where Q(d) is defined in Lemma 2 and

Q0(d) =

⎡⎣ 5(1− d�) + 1− �2 1− d� 1− d�
1− d� 1 −d�
1− d� 0 1

⎤⎦ .
The linear system (11) has the unique solution⎡⎣ c1

c2
c3

⎤⎦ = (1− �2)ℚ̃−1ẽ1,

where ẽ1 = (1, 0, . . . , 0) ∈ ℝ9 and ℚ̃ is 9× 9 invertible matrix defined as

ℚ̃ =

⎡⎢⎢⎣
Q0(�) Q0(�) Q0(
)

Q̃(�) 0 0

0 Q̃(�) 0

0 0 Q̃(
)

⎤⎥⎥⎦ (12)

with

Q̃ =

[
(1− d�)(d− �) d(1 + �2) −d2�
(1− d�)(d− �) −� d(1 + �2)

]
. (13)

Now we are ready to formulate and prove the main result of the paper,
which completely covers the problem of recursive optimal estimation under
the pattern 110011.

Theorem 1. Let � ∈ (−1, 1) ∖ {0}. Let � = d1, � = d2 and 
 = d3 be the
roots of (9) defined in Lemma 2. Let c = c(d) be defined as in Lemma 3.

Under the Szarkowski rotation pattern recurrence (8) always holds with

a1 = �+ � + 
, a2 = −(�� + �
 + 
�), a3 = ��
. (14)

Denote
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V =

⎡⎢⎢⎢⎢⎢⎢⎣
1− �� 0 0 1− �� 0 0 1− �
 0 0
1− �� 1 1 1− �� 1 1 1− �
 1 1

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

1− �� 0 0 1− �� 0 0 1− �
 0 0
1− �2 0 1 1− �2 0 1 1− �2 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
Then

ri =
1

1− �2
V Di c, i = 0, 1, 2, (15)

with

D0 = Diag[1,−��, 0, 1,−��, 0, 1,−
�, 0],

D1 = Diag[�+
,−�(�+
)�,−�, 
+�,−�(
+�)�,−�, �+�,−
(�+�)�,−�],

D2 = Diag[�
,−��
�,−(�+
)�, 
�,−��
�,−(
+�)�, ��,−��
�,−(�+�)�].

and

r3 =
1

1− �2
Ĩ V D3 c (16)

with

D3 = −�Diag[�
, 0, �
, 
�, 0, 
�, ��, 0, ��].

and

Ĩ =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
Proof of Theorem 1. First, note that p = 3 and the matrices T3(x) andR3(�)
have the forms

T3(x) =

[
1 x
x 1

]
and R3(�) =

[
1 + �2 −�
−� 1 + �2

]
.

Therefore det R3(�) = 1 + �2 + �4,

R−13 (�) =
1

1 + �2 + �4

[
1 + �2 �
� 1 + �2

]
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and

tr (T3(x)R3(�)) =
2(1 + �2 + x�)

1 + �2 + �4
.

Consequently the polynomial P has the form

P (x) =
−8x3�3 − 2x(2�+ �3 − 2�5) + 2(2 + 2�2 + 2�4 + �6)

1 + �2 + �4

Observe that

P

(
− x

2�

)
=

W3(x)

1 + �2 + �4
,

where polynomial W3 is defined in Lemma 1. By Lemma 1 polynomial W3

has one real root less than −2� and two complex roots. Therefore polynomial
P has one real root outside interval [−1, 1] and two complex roots. Hence
ASSUMPTION 1 is satisfied.

To show that ASSUMPTION 2 also holds we note that the matrix S =
S(d) in (6) has dimensions 12 × 9. Moreover, (6) is identical to (11). Now,
from Lemmas 2 and 3 it follows that ASSUMPTION 2 is also satisfied.

The coefficients a1, a2 and a3 solve the Vandermonde linear system

a1d
2
i + a2di + a3 = d3i , i = 1, 2, 3.

Therefore ⎡⎣ a1
a2
a3

⎤⎦ =

⎡⎣ d21 d1 1
d22 d2 1
d23 d3 1

⎤⎦−1 ⎡⎣ d31
d32
d33

⎤⎦

= −

⎡⎣ d2 − d3 d3 − d1 d1 − d2
d23 − d22 d21 − d23 d22 − d21

d2(d2 − d3)d3 d1(d3 − d1)d3 d1(d1 − d2)d2

⎤⎦ ⎡⎣ d31
d32
d33

⎤⎦
(d1 − d2)(d2 − d3)(d3 − d1)

.

Thus ⎡⎣ a1
a2
a3

⎤⎦ =

⎡⎣ d1 + d2 + d3
−d1d2 − d2d3 − d3d1

d1d2d3

⎤⎦ .
Denote

u1 = (1− d1�, 1, −d1�, 1− d2�, 1, −d2�, 1− d3�, 1, −d3�)T ,

u2 = (1− d1�, 0, 1, 1− d2�, 0, 1− d3�, 0, 1)T
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and

v = [vT1 , v
T
2 , v

T
3 ], w = [wT

1 , w
T
2 , w

T
3 ],

where for i = 1, 2, 3

vi = ((1− di�)(di − �), di(1 + �2), −d2i �)T ,

wi = ((1− di�)(di − �), −�, di(1 + �2))T .

Note that from (11) (its second and third row) it follows that

uTi c = 0, i = 1, 2. (17)

Similarly, the fourth, sixth and eighth row of (11) imply

vTi ci = 0, i = 1, 2, 3 (18)

and the fifth, seventh and ninth row of (11) imply

wT
i ci = 0, i = 1, 2, 3. (19)

Let � = d1, � = d2 and 
 = d3. Denote also �̃ = 1− ��, �̃ = 1− �� and

̃ = 1− 
�. From (7) we get

(1− �2)V0 = (1− �2)Δ(D0 − CD1)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

�̃ 0 0 �̃ 0 0 
̃ 0 0

�̃ −�� 0 �̃ −�� 0 
̃ −
� 0

�̃ 1 −�� �̃ 1 −�� 
̃ 1 −
�
�̃ 0 1 �̃ 0 1 
̃ 0 1

�̃ 0 0 �̃ 0 0 
̃ 0 0
1− �2 0 0 1− �2 0 0 1− �2 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Note that the second and third rows of the above matrix are equal uT1 and
uT2 , respectively. Thus (17) implies

r0 = V0 c =
1

1− �2

⎡⎢⎢⎢⎢⎢⎣
�̃ 0 0 �̃ 0 0 
̃ 0 0

�̃ −�� 0 �̃ −�� 0 
̃ −
� 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

�̃ 0 0 �̃ 0 0 
̃ 0 0
1− �2 0 0 1− �2 0 0 1− �2 0 0

⎤⎥⎥⎥⎥⎥⎦ c

and thus (15) for j = 0 holds.
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To simplify formulas, denote �̂ = � + 
, �̂ = �+ 
 and 
̂ = �+ �. From
(7) we obtain

(1− �2)[V1 − (CT + a1Id)V0]

= −

⎡⎢⎢⎢⎢⎢⎢⎢⎣

�̃ �̂ 0 0 �̃ �̂ 0 0 ∣
�̃(�̂+ �) −� �̂� 0 �̃(�̂ + �) −� �̂� 0 ∣
�̃(�̂+ �) �̂− ��2 −� �̂� �̃(�̂ + �) �̂ − ��2 −� �̂� ∣
�̃(�̂+ �) � �̂− ��2 �̃(�̂ + �) � �̂ − ��2 ∣
�̃(�̂+ �) 0 � �̃(�̂ + �) 0 � ∣

�̃�+ �̂(1− �2) 0 0 �̃�+ �̂(1− �2) 0 0 ∣

∣ 
̃ 
̂ 0 0
∣ 
̃(
̂ + �) −
 
̂� 0
∣ 
̃(
̂ + �) 
̂ − 
�2 −
 
̂�
∣ 
̃(
̂ + �) � 
̂ − 
�2
∣ 
̃(
̂ + �) 0 �
∣ 
̃�+ 
̂(1− �2) 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
Note that the second row of this matrix can be written in the form

(�̃ �̂, −�� �̂, −�, �̃ �̂, −�� �̂, −�, 
̃ 
̂, −
� 
̂, −�) + �u2.

The third and fourth rows, respectively, can be written as

a1u1 − v and a1u2 + w.

The fifth and sixth rows, respectively, can be written as

(�̃ �̂, 0, 0, �̃ �̂, 0, 0, 
̃ 
̂, 0, 0) + �u2

and

((1− �2)�̂, 0, −�, (1− �2)�̂, 0, −�, (1− �2)
̂, 0, −�) + �u2.

Therefore, from (17), (18) and (19) we get

−(1− �2)r1

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

�̃ �̂ 0 0 �̃ �̂ 0 0 
̃ 
̂ 0 0

�̃ �̂ −�� �̂ −� �̃ �̂ −�� �̂ −� 
̃ 
̂ −�
 
̂ −�
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

�̃ �̂ 0 0 �̃ �̂ 0 0 
̃ 
̂ 0 0

(1− �2)�̂ 0 −� (1− �2)�̂ 0 −� (1− �2)
̂ 0 −�

⎤⎥⎥⎥⎥⎥⎥⎥⎦
c.

Consequently, (15) holds for j = 1.



STATISTICS IN TRANSITION new series, October 2010 279

Now we consider the case j = 2. Denote additionally � = �
, � = 
�,

 = ��. From (7) we get

(1− �2)
[
V2 − (CT + a1Id)V1 + (a1C

T − a2Id)V0
]

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

�̃ � 0 0 �̃ � 0 0 ∣
�̃(�̂�+ �) −a3� 0 �̃(�̂�+ �) −a3� 0 ∣
�̃(�̂�+ �) �− �̂��2 −a3� �̃(�̂�+ �) � − �̂��2 −a3� ∣
�̃(�̂�+ �) �̂� �− �̂��2 �̃(�̂�+ �) �̂� � − �̂��2 ∣
�̃(�̂�+ �) 0 �̂� �̃(�̂�+ �) 0 �̂� ∣

�̃ �̂�+ �(1− �2) 0 0 �̃ �̂�+ �(1− �2) 0 0 ∣

∣ 
̃ 
 0 0
∣ 
̃(
̂�+ 
) −a3� 0
∣ 
̃(
̂�+ 
) 
 − 
̂
�2 −a3�
∣ 
̃(
̂�+ 
) 
̂� 
 − 
̂
�2
∣ 
̃(
̂�+ 
) 0 
̂�
∣ 
̃ 
̂�+ 
(1− �2) 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
Note that the second row of this matrix can be written as

[�̃ �, −�a3, −� �̂, �̃ �, −�a3, −� �̂, 
̃ 
,−�a3, −� 
̂] + �a1u2 − �w − �2u1

while the third and the fourth rows, respectively, are

−a2u1 − [�̂vT1 , �̂v
T
2 , 
̂v

T
3 ] and − a2u2 − [�̂wT

1 , , �̂w
T
2 , 
̂w

T
3 ]

and the fifth and sixth row, respectively, are

[�̃ �, 0, 0, �̃ �, 0, 0, 
̃ 
] + a1�u2 − �w − �2u1

and

[(1−�2)�, 0, −� �̂, (1−�2)�, 0, −� �̂, (1−�2)
, 0, −� 
̂]+a1�u2−�w−�2u1.

Therefore, from (17), (18) and (19) we get

−(1− �2)r2

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

�̃ � 0 0 �̃ � 0 0 
̃ 
 0 0

�̃ � −�a3 −� �̂ �̃ � −�a3 −� �̂ 
̃ 
 −�a3 −� 
̂
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

�̃ � 0 0 �̃ � 0 0 
̃ 
 0 0

(1− �2)� 0 −� �̂ (1− �2)� 0 −� �̂ (1− �2)
 0 −� 
̂

⎤⎥⎥⎥⎥⎥⎥⎥⎦
c.

Consequently, (15) holds for j = 2.
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Now we consider the case j = 3. From (7) we get

(1− �2)
[
V3 − (CT + a1Id)V2 + (a1C

T − a2Id)V1 + (a2C
T − a3Id)V0

]

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0

−�̃ �� 0 0 −�̃ �� 0 0 −
̃ 
� 0 0

−�̃ �� a3�
2 0 −�̃ �� a3�

2 0 −
̃ 
� a3�
2 0

−�̃ �� −�� a3�
2 −�̃ �� −�� a3�

2 −
̃ 
� −
� a3�
2

−�̃ �� 0 −�� −�̃ �� 0 −� � −
̃ 
� 0 −� 

−�̃ �� 0 0 −�̃ �� 0 0 −
̃ 
� 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Note that the third and fourth row of this matrix, respectively, are

a3u1 − [�vT1 , �v
T
2 , 
v

T
3 ] and − a3u2 + [�wT

1 , �w
T
2 , 
w

T
3 ]

Again, using (17), (18) and (19) we conclude that

r3 = − �

1− �2

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0

�̃ � 0 0 �̃ � 0 0 
̃ 
 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

�̃ � 0 � �̃ � 0 � 
̃ 
 0 


�̃ � 0 0 �̃ � 0 0 
̃ 
 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ c.

Consequently, (16) holds. □

4. Proofs of lemmas

Proof of Lemma 1. The coefficients of the polynomialW3 are positive. There-
fore it is strictly increasing. Thus there is exactly one real root x1 = x1(�) < 0
and two complex conjugate roots x2 = x2(�) and x3 = x3(�), x2 = x3. We
need to show that the real root x1 is outside of the interval [−2∣�∣, 2∣�∣].
Since W3 is strictly increasing to show that x1 < −2∣�∣ it suffices to prove
that W3(−2∣�∣) is positive. We note that

W3(−2∣�∣) = −8∣�∣3 − (2− �2 + 2�4)∣�∣+ 2(2 + 2�2 + 2�4 + �6)

= 4− 2∣�∣+ 4�2 − 7∣�∣3 + 4�4 − 2∣�∣5 + 2�6

= (1− ∣�∣)2 + 2(1− ∣�∣3)2 + (1− ∣�∣5)2 + 3�2(1− ∣�∣) + �4(1− �6) + 3�4 > 0

□
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Proof of Lemma 2. Expanding the determinant in the equation (9) and in-
troducing the variable

x = −�
(
d+

1

d

)
we arrive at the equivalent equation

W3(x) = 0.

By Lemma 1 we conclude that

− xi
2�

=
1

2

(
d+

1

d

)
∕∈ [−1, 1], i = 1, 2, 3. (20)

That is exactly one of the two solutions of the above equation (for the variable
d) is inside open unit disc and exactly one outside. In particular,

d1 =
−x1 −

√
x21 − 4�2

2�
∈ ℝ. (21)

Since x2 and x3 are complex conjugate, then d2 and d3 are also complex
conjugate, since they both are in open unit disc.

By the Viete formulas for W3 we have

x1 + x2 + x3 = 0. (22)

Note that if di is the solution we seek, then the remaining solution of (20) is
1/di. Therefore (22) is equivalent to

d1 +
1

d1
+ d2 +

1

d2
+ d3 +

1

d3
= 0.

Multiplying the above identity by d1d2d3 we arrive at (10). □

Proof of Lemma 3. Due to Lemma 2 the linear system

ℚ̃ c = (1− �2)ẽ1 (23)

is equivalent to (11).

We will prove that the matrix ℚ̃ is invertible by showing that its deter-
minant is non-zero. Equivalently we consider determinant of the matrix
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ℚ̃1 =⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

i� i� i
 j� j� j� j� j
 j

j� j� j
 1 −�� 1 −�� 1 −�

j� j� j
 0 1 0 1 0 1
k� 0 0 (1 + �2)� −��2 0 0 0 0
k� 0 0 −� (1 + �2)� 0 0 0 0
0 k� 0 0 0 (1 + �2)� −��2 0 0
0 k� 0 0 0 −� (1 + �2)� 0 0
0 0 k
 0 0 0 0 (1 + �2)
 −�
2

0 0 k
 0 0 0 0 −� (1 + �2)


⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where

ix = 5(1− �x) + 1− �2, jx = 1− �x and kx = jx(x− �),

for x = �, �, 
.

Let

A(d) =
(1 + �2 − �(d+ 1/d))(1 + �2 + �d)

1 + �2 + �4
and B(d) = �(1/d).

We add 4th column multiplied by A(�) and 5th column multiplied by
B(�) and subtract the result from the 1st column. Then we add 6th column
multiplied by A(�) and 7th column multiplied by B(�) and subtract the result
from the 2nd column. Finally, we add 8th column multiplied by A(
) and
9th column multiplied by B(
) and subtract the result from the 3rd column.
All these operations do not change the absolute value of the determinant of
ℚ̃ and the resulting matrix is block diagonal with the following blocks on the
diagonal

B0 =

⎡⎣ i� − j�(A(�) +B(�)) i� − j�(A(�) +B(�)) i
 − j
(A(
) +B(
))
j� −A(�) + ��B(�) j� −A(�) + ��B(�) j
 −A(
) + �
B(
)

j� −B(�) j� −B(�) j
 −B(
)

⎤⎦
and

Bi =

[
(1 + �2)d −�d2

−� (1 + �2)d

]
, i = 1, 2, 3.

It suffices to prove that det Bi ∕= 0, i = 0, 1, 2, 3.

Note that

det Bi = d2[(1 + �2)2 + �2] > 0 i = 1, 2, 3.

Now we consider G(�) := det B0. Expanding the determinant of B0 we
arrive at a "polynomial of twelfth degree" in �
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G(�) = −4 + 2s1�− 2�2 + (2s1 + s31 − 6s1s2 + 9s3)�
3 − 2(1− s22 + s1s3)�

4

+2(s1−s1s2+2s3)�
5+(1+2s22−2s1s3−6s23−s32+3s1s2s3)�

6−2(s1s2−2s3)�
7

+2(s22 − s1s3 − s23)�8 + (s1s2 − 2s3 + s33)�
9 − 2s23�

10 + s23�
12.

where

s1 = d1 + d2 + d3, s2 = d1d2 + d2d3 + d3d1, s3 = d1d2d3. (24)

By (10) we get

G(�) = −4 + 2s1�− 2�2 + (2s1 + s31 + 6s21s3 + 9s3)�
3 − 2(1− s21s23 + s1s3)�

4

+2(s1 + s21s3 + 2s3)�
5 + (1− s21s23 − 2s1s3 − 6s23 − s31s33)�6 + 2(s21s3 + 2s3)�

7

+2(s21s
2
3 − s1s3 − s23)�8 + (−s21s3 − 2s3 + s33)�

9 − 2s23�
10 + s23�

12;

Thet Viete formulas for W3 give

t2 = x1x2 + x2x3 + x3x1 = 2− �2 + 2�4 > 0.

On the other hand

t2 = �2
[(
d1 +

1

d1

)(
d2 +

1

d2

)
+

(
d2 +

1

d2

)(
d3 +

1

d3

)
+

(
d3 +

1

d3

)(
d1 +

1

d1

)]
.

By (24) and (10)

t2 = �2
(
s2s3 + s1 + s1s2

s3
− 3

)
= �2

(
s1 − s1s3(s1 + s3)

s3
− 3

)
.

Thus

s1 = s3
3 + s21 + t2/�

2

1− s23
(25)

and consequently

s1s3 = s23
3 + s21 + t2/�

2

1− s23
> 0

since t2 > 0 and ∣s3∣ = ∣d1d2d3∣ < 1.

Since the coefficients of the polynomial W3 depend only on �2 then x1 is
a function of ∣�∣. Since x1 < 0 (see Lemma 1) it follows from (21) that

�d1(�) < 0
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and thus

�s3 = �d1(�)d2(�)d3(�) = �d1(�)∣d2(�)∣2 < 0.

Moreover

�s1 =
�2s1s3
�s3

< 0.

Transform (25) into

s21s3 − (1− s23)s1 + s3(t2/�
2 + 3) = 0

leading to

s1s3(1− s1s3) = s1s
3
3 + s23(t2/�

2 + 3) > 0.

That is 0 < s1s3 < 1.

Now we will use the inequalities we have just derived

�s1 < 0, �s3 < 0, and 0 < s1s3 < 1.

to show that G(�) < 0 for any � ∈ (−1, 1). To this end we split G(�) into
several terms and show that each of these terms is negative:

s1� < 0,

(2s1 + s31 + 6s21s3 + 9s3)�
3 < 0,

−2(1− s21s23 + s1s3)�
4 + (1− s21s23 − 2s1s3 − 6s23 − s31s33)�6

= −�4(2− �2)− 2s1s3(1− s1s3)�4 − (s21s
2
3 + 2s1s3 + 6s23 + s31s

3
3)�

6 < 0,

2(s1 + s21s3 + 2s3)�
5 + (−s21s3 − 2s3 + s33)�

9

= 2s1�
5 + s21s3�

5(2− �4) + 2s3�
5(1− �4) + s33�

9 < 0,

2(s21s3 + 2s3)�
7 < 0,

2(s21s
2
3 − s1s3 − s23)�8 = −2[s1s3(1− s1s3) + s23]�

8 < 0,

−2s23�
10 + s23�

12 = −s23�10(2− �2) < 0.

□
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