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Abstract

Free quadratic harness is a Markov process from the class of quadratic harnesses, i.e. processes with
linear regressions and quadratic conditional variances. The process has recently been constructed for a
restricted range of parameters in Bryc et al. (2010) [7] using Askey–Wilson polynomials. Here we provide
a self-contained construction of the free quadratic harness for all values of the parameters.
c⃝ 2010 Elsevier B.V. All rights reserved.
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1. Introduction

Quadratic harnesses were introduced in [3] as square-integrable stochastic processes on
[0, ∞) such that for all t, s ≥ 0

E[X t ] = 0, E[X t Xs] = min(t, s), (1.1)

conditional expectations E[X t |Fs,u] are linear functions of Xs and Xu , and second conditional
moments E[X2

t |Fs,u] are quadratic functions of Xs and Xu

E[X2
t |Fs,u] = Qt,s,u (Xs, Xu) , (1.2)
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where

Qt,s,u(x, y) = At,s,u x2
+ Bt,s,u xy + Ct,s,u y2

+ Dt,s,u x + Et,s,u y + Ft,s,u, (1.3)

and At,s,u, . . . , Ft,s,u are some deterministic functions of 0 < s < t < u. Here, Fs,u is the
two-sided σ -algebra generated by {Xr : r ∈ (0, s] ∪ [u, ∞)}. We will also use the one-sided
σ -algebras Ft generated by {Xr : r ≤ t}.

It follows that for all s < t < u

E[X t |Fs,u] = at,s,u Xs + bt,s,u Xu, (1.4)

with at,s,u = (u−t)/(u−s) and bt,s,u = (t−s)/(u−s), and, under certain technical assumptions,
there exist five parameters η, θ ∈ R, σ, τ ≥ 0 and γ ∈ [−1, 1 + 2

√
στ ] such that

At,s.u =
(u − t) [u(1 + σ t) + τ − γ t]
(u − s) [u(1 + σ s) + τ − γ s]

,

Bt,s,u =
(u − t)(t − s)(1 + γ )

(u − s) [u(1 + σ s) + τ − γ s]
,

Ct,s,u =
(t − s) [t (1 + σ s) + τ − γ s]
(u − s) [u(1 + σ s) + τ − γ s]

,

Dt,s,u =
(u − t)(t − s)(uη − θ)

(u − s) [u(1 + σ s) + τ − γ s]
,

Et,s,u =
(u − t)(t − s)(θ − sη)

(u − s) [u(1 + σ s) + τ − γ s]
,

Ft,s,u =
(u − t)(t − s)

u(1 + σ s) + τ − γ s
,

(1.5)

and

Var[X t |Fs,u] =
(u − t)(t − s)

u(1 + σ s) + τ − γ s


1 + σ

(u Xs − s Xu)2

(u − s)2 + η
u Xs − s Xu

u − s

+ τ
(Xu − Xs)

2

(u − s)2 + θ
Xu − Xs

u − s
+ (1 − γ )

(Xu − Xs) (s Xu − u Xs)

(u − s)2


; (1.6)

see [3, Theorem 2.2].
Quadratic harnesses may have orthogonal martingale polynomials (see [3] for the assumptions

and [10] for some exceptions), some explicit examples of which have been worked out in
Section 4 of [3], for some of them the corresponding quadratic harnesses were constructed in
a series of papers [4–6]. A recent development in proving the existence of quadratic harnesses
is [7], where the machinery of Askey–Wilson polynomials have been used to construct the
processes for a wide range of parameters η, θ, σ, τ and γ .

However, in some cases, the theory developed in [7], brings some unnecessary limitations for
the values of parameters assuring the existence of the given quadratic harness. One of them is the
case of free quadratic harness defined in Section 4.1 of [3]. Free harnesses have parameter

γ = −στ ; (1.7)
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their orthogonal martingale polynomials were identified in [3, Proposition 4.3], for σ, τ ≥ 0,
στ < 1 and 1 + αβ > 0, where

α =
η + θσ

1 − στ
, β =

ητ + θ

1 − στ
. (1.8)

On the other hand, Corollary 5.3 in [7], which discusses the range of parameters that guarantee
the existence of the free harness, requires additional assumption

2 + ηθ + 2στ ≥ 0 (1.9)

to be compliant with the theory developed in [7]; nevertheless, the univariate Askey–Wilson
distributions are still well defined when 2 + ηθ + 2στ < 0.

The goal of this paper is to show that free quadratic harness exists without assumption (1.9)
(this is stated in the main result of this paper — Theorem 1.1). The technique we use is similar
to the one used in the previously mentioned work ([4–6]), although various details differ. We
rely on explicit three step recurrences for the orthogonal martingale polynomials and on explicit
connection coefficients between related families of orthogonal polynomials. We also use an
operator representation to prove the quadratic harness property of the constructed process. The
paper is self-contained and does not use any results from [7].

Our main result is

Theorem 1.1. For σ, τ ≥ 0, στ < 1, γ = −στ , and 1 + αβ > 0, there exists a Markov process
(X t )t∈[0,∞) such that (1.1), (1.4) and (1.6) hold. The process (X t )t∈[0,∞) is unique among the
processes with infinitely supported one-dimensional distributions that have moments of all orders
and satisfy (1.1), (1.4) and (1.6) with the same parameters η, θ , σ , τ and γ = −στ .

The proof of this theorem is given in Section 6 after all auxiliary technical results are
established.

It is worth mentioning that for some values of parameters, the univariate laws of free quadratic
harnesses are the first component of a two-state free convolution semigroup (for the free bi-
Poisson process case see [6]; for an extension to the case of σ = 0 see [1, Proposition 5]).

2. Orthogonal martingale polynomials and q-commutation equation

This section presents a heuristic principle that can be used to find the recurrence for
the polynomials orthogonal with respect to the conditional law L(X t |Xs). (For the proof of
Theorem 1.1 such a derivation is not needed, as the actual recurrence used in the proof can
be accepted as a guess.)

In [3] we defined the orthogonal martingale polynomials associated with the process (X t )t as
martingale polynomials (i.e. such that

E[pn(X t ; t)|Fs] = pn(Xs; s), (2.1)

holds, whenever 0 ≤ s ≤ t) that are orthogonal with respect to the one-dimensional distributions
of the process. Theorem 2.3 from [3] states that their Jacobi matrix is linear in t ,

Ct =


γ0t + δ0 ε1t + φ1 0 0 . . .

σα1t + β1 γ1t + δ1 ε2t + φ2 0 . . .

0 σα2t + β2 γ2t + δ2 ε3t + φ3 . . .

0 0 σα3t + β3 γ3t + δ3 . . .
...

...
...

...
. . .

 ,
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and for n ≥ 1 the coefficients αn , βn , γn , δn , φn , εn satisfy

σ 2ταnαn+1 + σαnβn+1γ + σβnβn+1 = σαn+1βn, (2.2)

βn+1γn+1 + σαn+1δn = σαn+1 (γn + γn+1) τ + (σαn+1δn+1 + βn+1γn) γ

+ βn+1 (δn + δn+1) σ + σαn+1θ + βn+1η, (2.3)

βn+1εn+1 + γnδn + σαnϕn = (σαn+1εn+1 + γ 2
n + σαnεn)τ

+ (σαn+1ϕn+1 + γnδn + βnεn) γ

+ (βn+1ϕn+1 + δ2
n + βnϕn)σ + γnθ + δnη + 1, (2.4)

γn−1ϕn + δnεn = (γn−1 + γn) εnτ + (γnϕn + δn−1εn) γ

+ (δn−1 + δn) ϕnσ + εnθ + ϕnη, (2.5)
εnϕn+1 = εnεn+1τ + εn+1ϕnγ + ϕnϕn+1σ, (2.6)

with the initial values given by

α1 = 0, β1 = 1, γ0 = δ0 = 0, ε1 = 1, φ1 = 0. (2.7)

Now, for a fixed r > 0, conditionally on Xr , the process (Y (r)
t )t>0

Y (r)
t =


1 + σr

1 + ηXr + σ X2
r

(Xr+t − Xr )

still is a quadratic harness. Therefore when one considers the conditional distribution L(X t |Xr )

and the corresponding orthogonal polynomials Qn(y; x, t, r), [3, Theorem 2.3] implies that their
Jacobi matrix is again linear in t and that its entries again satisfy relations (2.2)–(2.6). The only
difference is that the initial values for the sequences should be modified as follows:

α1 = 0, β1 = 1, γ0 = 0, δ0 = x, ε1 =
1 + ηx + σ x2

1 + σr
,

φ1 =
−r


1 + ηx + σ x2

1 + σr
, (2.8)

as we choose the first polynomials Qn as

Q−1(y; x, t, s) ≡ 0, Q0(y; x, t, s) ≡ 1, Q1(y; x, t, s) = y − x,

and

Q2(y; x, t, s) = y2 1 + σ s
1 + σ t

− y


x

(1 + σ s)(1 + γ )

1 + σ s + σ(γ s − τ)
+

(1 + σ s) [θ + ητ + t (η + σθ) − (1 + γ )sη]
(1 + σ t) [1 + σ s + σ(γ s − τ)]



+ x2 γ + στ

1 + σ s + σ(γ s − τ)
+ x

θ + ητ + s(η + σθ) − (1 + γ )sη
1 + σ s + σ(γ s − τ)

−
t − s

1 + σ t
.

One can use equations (2.2)–(2.6) with initial values (2.8) to derive the recurrences for the
polynomials Qn from several previously studied cases from [3,4,6].
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Here we are interested in the free harness case γ + στ = 0. After a calculation we get

Proposition 2.1. Suppose σ, τ ≥ 0, στ < 1, 1 + αβ > 0, (see (1.8)) and γ = −στ . Then
recurrences (2.2)–(2.6) with initial condition (2.8) have a solution which defines the following
three step recurrence for polynomials (Qn) in variable y; here s > 0 and x ∈ R are parameters.

yQ1(y; x, t, s) = (1 + σ t)Q2(y; x, t, s)

+


α + σ x
1 + σ s

t +
β − s(η + σ x)

1 + σ s


Q1(y; x, t, s)

+
(t − s)


1 + ηx + σ x2
1 + σ s

Q0(y; x, t, s) (2.9)

yQ2(y; x, t, s) = (1 + σ t)Q3(y; x, t, s) +
(α + σβ)t + β + ατ

1 − στ
Q2(y; x, t, s)

+
(t + τ)(1 + αβ)

(1 + σ s)(1 − στ)
Q1(y; x, t, s) (2.10)

yQn(y; x, t, s) = (1 + σ t)Qn+1(y; x, t, s) +
(α + σβ)t + β + ατ

1 − στ
Qn(y; x, t, s)

+
(t + τ)(1 + αβ)

(1 − στ)2 Qn−1(y; x, t, s), n ≥ 3, (2.11)

with Q0 ≡ 1 and Q1(y; x, t, s) = y − x.

Since pn(y; t) = Qn(y; 0, t, 0), it is not surprising that the above recurrence coincides
in this case with [3, Proposition 4.3] which we cite here for ease of reference in the proofs
below.

Proposition 2.2 ([3, Proposition 4.3]). Suppose (X t )t is a quadratic harness with parameters
such that σ, τ ≥ 0, στ < 1, 1 +αβ > 0, and γ = −στ . If for t > 0 the random variable X t has
all moments and infinite support, then it has orthogonal martingale polynomials (pn)n given by
the three step recurrences

yp1(y; t) = (1 + σ t)p2(y; t) + (αt + β)p1(y; t) + tp0(y; t),

yp2(y; t) = (1 + σ t)p3(y; t) +
(α + σβ)t + β + ατ

1 − στ
p2(y; t)

+
(t + τ)(1 + αβ)

1 − στ
p1(y; t),

ypn(y; t) = (1 + σ t)pn+1(y; t) +
(α + σβ)t + β + ατ

1 − στ
pn(y; t)

+
(t + τ)(1 + αβ)

(1 − στ)2 pn−1(y; t), n ≥ 3,

with p0 ≡ 1 and p1(y; t) = y.

Thus the recurrences for the polynomials (Qn)n and (pn)n turn out to be some finite
perturbations of the constant coefficient recurrence. Therefore (Qn)n and (pn)n turn out to be
Bernstein–Szëgo polynomials (see [12, section 2.6]), which are orthogonal with respect to the
probability measure with the absolutely continuous part of the form

√
ax2 + bx + c/ρ(x), where

ρ is a polynomial.
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3. One-dimensional distributions

Let πt denote the orthogonality measure of the polynomials (pn(y; t))n with t > 0, given
by the three step recurrences in Proposition 2.2. The existence of πt is assured by Favard’s
Theorem. In order to examine πt we will compute its Cauchy–Stieltjes transform G t . Recall that
the Cauchy–Stieltjes transform of a probability measure µ is an analytic mapping of the upper
complex half-plane C+ into the lower half-plane C− defined as

G(z) =

∫
R

1
z − x

µ(dx).

One of the properties of the Cauchy–Stieltjes transform that we shall use here is

lim
y→∞

iyG(iy) = 1 (3.1)

(see e.g. [9]).

Lemma 3.1. If η2 > 4σ > 0, θ2 > 4τ > 0 and α + σβ > 0 then

πt


−η −


η2 − 4σ

2σ
,
−η +


η2 − 4σ

2σ


= 0.

Proof. It is known (see [2], (2.10) and Theorem 2.4) that with orthogonal polynomials one can
associate a continued fraction (built from the coefficients of the three term recurrence), which,
if it converges, is equal to the Cauchy–Stieltjes transform of the orthogonality measure of the
polynomials. In the case of the recurrence from Proposition 2.2, one gets

G t (z) =
1

z −
t

z−(αt+β)−
(1+αβ)(t+τ)(1+σ t)

1−στ
gt (z)

, (3.2)

where gt has the continued fraction expansion

gt (z) =

1
1+σ t

1
1+σ t z −

(α+σβ)t+β+ατ
(1+σ t)(1−στ)

−

(1+αβ)(t+τ)

(1+σ t)(1−στ)2

1
1+σ t z− (α+σβ)t+β+ατ

(1+σ t)(1−στ)
−

(1+αβ)(t+τ)

(1+σ t)(1−στ)2
1

1+σ t z−···

,

so gt itself is the Cauchy–Stieltjes transform of a measure and it satisfies the quadratic equation

gt (z) =
1

z −
(α+σβ)t+β+ατ

1−στ
−

(1+αβ)(t+τ)(1+σ t)
(1−στ)2 · gt (z)

.

(To justify the convergence of the continued fraction expansion of gt , one can use e.g. Theorem
2.1 [2].) Hence

gt (z) =
1 − στ

2(1 + αβ)(t + τ)(1 + σ t)


(1 − στ)z − (α + σβ)t − β − ατ

±


(1 − στ)z − (α + σβ)t − β − ατ

2
− 4(1 + αβ)(t + τ)(1 + σ t)


. (3.3)
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By the square root in (3.3) we understand that
az − b − 2

√
c ·


az − b + 2

√
c = a


z −

b + 2
√

c
a

·


z −

b − 2
√

c
a

where a = 1 − στ > 0, b = (α + σβ)t + β + ατ ∈ R, c = (1 + αβ)(t + τ)(1 + σ t) > 0,
the mappings z →


z − (b ± 2

√
c)/a are analytic on C \


(b ± 2

√
c)/a − t : t > 0


, and take

positive values for R ∋ z > (b + 2
√

c)/a (so they are the principal branches of the square root,
composed with linear transformations z → z − (b±2

√
c)/a). Hence, by (3.1), one has to choose

the “−” sign in the “±” in (3.3).
Now, after inserting (3.3) into (3.2), a calculation that uses (1.8) gives

G t (z) =
τ z + θ t

τ z2 + θ t z + t2 +
t [(1 + στ + 2σ t)z + tη − θ ]

2

σ z2 + ηz + 1

 
τ z2 + θ t z + t2


−

t


[(1 − στ)z − (α + σβ)t − β − ατ ]2
− 4(1 + σ t)(t + τ)(1 + αβ)

2

σ z2 + ηz + 1

 
τ z2 + θ t z + t2

 . (3.4)

Stieltjes–Perron inversion formula (see e.g. [2, Theorem 2.5 and Section 2.3]) states that a
finite Borel measure ν with the Cauchy–Stieltjes transform G is absolutely continuous with
respect to Lebesgue measure on the set

A = {x : lim
ε↓0

G(x + iε) = 8(x), a finite number with Im 8(x) ≠ 0}.

The atoms can only be located at simple poles of G (see [2]). A very useful result (see [11],
Chapter XIII.6) states that if

B = {x : lim
ε↓0

G(x + iε) = ∞},

then ν(R \ (A ∪ B)) = 0 and ν restricted to B is singular relative to the Lebesgue measure.
Therefore we see that the absolutely continuous part of πt is concentrated on the interval
[a−(t), a+(t)] with

a±(t) =
(α + σβ)t + β + τα ± 2

√
(1 + σ t)(t + τ)(1 + αβ)

1 − στ
,

the atoms can be located at (at most) four points being zeros of the polynomial (σ z2
+ ηz +

1)(τ z2
+ θ t z + t2):

b± =
−η ±


η2 − 4σ

2σ
, c±(t) = −t

θ ±
√

θ2 − 4τ

2τ
,

and πt does not have a continuous singular part.
Hence we can establish the lemma if we prove the following claims.

Claim 3.2. The continuous part of πt does not assign any probability to the interval [b−, b+].

Proof. It suffices to check whether a−(t) ≥ b+ for t > 0. It is easy to see that

a′′
−(t) =

(1 − στ)
√

1 + αβ

2(1 + σ t)3/2(t + τ)3/2 > 0.
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Note that α − σβ = η so

t∗ =
(α + σβ)(1 − στ)

2σ


(α − σβ)2 − 4σ
−

1 + στ

2σ

is well defined. The following bound shows that t∗ is in the domain of a−(t):

(1 + σ t∗)(t∗ + τ) =
(1 − στ)2(1 + αβ)

η2 − 4σ
> 0.

Since a′
−(t∗) = 0, and a− is convex, this is a global minimum of a−. It follows that

a−(t) ≥ a−(t∗) for t > 0. Since a−(t∗) = b+, the proof is complete. �

Claim 3.3. The discrete part of πt does not assign any probability to the interval (b−, b+).

Proof. If ηθ < 0 then the points b± and c±(t) are separated by the interval (a−(t), a+(t)), so
c±(t) ∉ (b−, b+) for all t > 0.

Then suppose that η and θ are of the same sign. Since by (1.8)

0 < α + σβ =
η(1 + στ) + 2σθ

1 − στ
,

it follows that η > 0 and θ > 0. The weights p±(t) of the points c±(t) are given by the residues
of the Cauchy–Stieltjes transform G t at the points c±(t) (see [2]). A lengthy calculation reveals
that

p−(t) =
2τ(−t[2ητ + (1 + στ)(θ −

√
θ2 − 4τ)] + 2τ

√
θ2 − 4τ)+

σ
√

θ2 − 4τ(θ −
√

θ2 − 4τ)2


t −
θ+

√
θ2−4τ

η−

√
η2−4σ


t −

θ+

√
θ2−4τ

η+

√
η2−4σ

 ,

p+(t) =
−2τ(−t[2ητ + (1 + στ)(θ +

√
θ2 − 4τ)] − 2τ

√
θ2 − 4τ)+

σ
√

θ2 − 4τ(θ +
√

θ2 − 4τ)2


t −
θ−

√
θ2−4τ

η+

√
η2−4σ


t −

θ−

√
θ2−4τ

η−

√
η2−4σ

 ,

where (a)+ = (a + |a|)/2. Clearly p+(t) = 0, and p−(t) > 0 only on the finite interval

0 ≤ t <
2τ

√
θ2 − 4τ

(θ −
√

θ2 − 4τ) (1 + στ) + 2ητ
;

in particular,

2τ
√

θ2 − 4τ

(θ −
√

θ2 − 4τ)(1 + στ) + 2ητ
<

θ +
√

θ2 − 4τ

η +


η2 − 4σ

.

Since c− evaluated at the right hand side of the above inequality is equal to b+, we get that
the support of the discrete measure p−(t)δc−(t) stays above the level b+ for all t ≥ 0. �

The proof of Lemma 3.1 is complete. �

In the next lemma we briefly describe the extreme case of τ = 0.

Lemma 3.4. The assertion of Lemma 3.1 holds when η2 > 4σ > 0, τ = 0, θ2 > 0, and α +

σβ > 0.
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Proof. The proof of Claim 3.2 carries over to the case τ = 0 without any changes. Next we
consider the atomic part of the measure. Instead of two lines c±, we have one

c(t) = −
t
θ

to take care of when examining the discrete part of πt . Since η2 > 0 and θ2 > 0, as in the proof
of Claim 3.3 it suffices to consider the case of η > 0 and θ > 0. The residue of G t at c(t) is

p(t) =


−t

t (1 + ηθ) − θ2

+

2σθ2t (t/θ + b−) (t/θ + b+)
.

It follows that p(t) > 0 for

0 ≤ t <
θ2

1 + ηθ
;

in particular

θ2

1 + ηθ
< −θb+,

so the support of the discrete measure p(t)δc(t) stays above the level b+ for all t ≥ 0. �

4. Generating functions and connection coefficients

Our next task is to establish an algebraic relation between the polynomials (pn)n and (Qn)n .
In our setting, the relation takes the same form as in [6, Proposition 2.2]; a more complicated
example occurs in [4, Theorem 2.1].

Proposition 4.1. There exist polynomials (bk(x, s))k and (ck(x, s))k in variable x such that
b0(x, s) = 1 and

Qn(y; x, t, s) = cn(x, s) +

n−
k=1

bn−k(x, s)pk(y; t) (4.1)

and (bk)k and (ck)k do not depend on t and y.

Proof. Let Q denote the generating function of the polynomials (Qn)n , that is, let

Q(z, y, x, t, s) =

∞−
n=0

zn Qn(y; x, t, s).

From (4.1) with y = 0 and t = 0 we see that we must have cn(x, s) = Qn(0; x, 0, s).
Therefore, to prove the proposition, we need only verify that the right hand side of

b(z, x, s) =

Q(z, y, x, t, s) − Q(z, 0, x, 0, s)Q(z, y, 0, t, 0) − 1
(4.2)

does not depend on variables y and t . Then the series expansion

b(z, x, s) =

∞−
n=0

znbn(x, s)

defines the appropriate sequence (bn(x, s))n≥0.
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To prove (4.2) we need an explicit formula for Q. Using the three step recurrence for (Qn)n ,
after a routine calculation one can verify that

yQ = yQ0 + yzQ1 + z2 (t + τ)(1 + αβ)

(1 + σ s)(1 − στ)
Q1 +

1 + σ t
z

(Q − Q0 − zQ1 − z2 Q2)

+
(α + σβ)t + β + ατ

1 − στ

Q − Q0 − zQ1


+ z
(t + τ)(1 + αβ)

(1 − στ)2

Q − Q0 − zQ1


(4.3)

(to save space, we dropped the arguments (z, y, x, t, s) in Q and (y; x, t, s) in Qn). From this
equation, after an elementary, but lengthy algebra, we first obtain a formula for Q as a rational
function of z, and then verify that (4.2) holds true with

b(z, x, s) =
1

1 + σ s

×


z2(1 + αβ)s + z(1 − στ) [s(α + σβ) − x(1 − στ)] + σ s(1 − στ)2

z2τ(1 + αβ) + z(β + ατ)(1 − στ) + (1 − στ)2 + 1


.

Sinceb(0, x, s) = 1, we get b0(x, s) = 1, as claimed. �

5. Quadratic harness property

In [3] we developed an operator approach, related to Lie algebra techniques, to the verification
of the quadratic harness property. It uses a representation of the process under investigation
through an operator Xt = x + ty, where x and y are some operators built from compositions of
the q-differentiation operator Dq and the multiplication operator Z.

Here we show how to exploit this technique to prove the quadratic harness property of the
Markov process with martingale polynomials given in Proposition 2.2. Let

Q∗
t,s,u(x, y) = At,s,ux2

+ Bt,s,uyx + Ct,s,uy2
+ Dt,s,ux + Et,s,uy + Ft,s,u (5.1)

be the quadratic form in the non-commuting variables x, y (a dual of (1.3)). Define the generating
function of the polynomials (pn)n as

pt (z, y) =

∞−
n=0

zn pn(y; t).

In the free harness case, we are going to use the 0-differentiation operator D, skipping the
subscript, so

D(g)(z) =
g(z) − g(0)

z
and Z(g)(z) = zg(z)

(we treat them as the linear operators on formal series g(z) in the variable z).

Proposition 5.1. Let γ = −στ and

x = D + βZD +
τ(1 + αβ)

1 − στ
Z2D +

τ(α + σβ)

1 − στ
Z2D2

+
στ 2(1 + αβ)

(1 − στ)2 Z3D2,

y = Z + αZD + σZD2
+

σ(β + ατ)

1 − στ
Z2D2

+
αβ + στ

1 − στ
Z2D +

στ(1 + αβ)

(1 − στ)2 Z3D2.
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The operator Xt = x + ty satisfies

X2
t = Q∗

t,s,u(Xs, Xu) ∀s < t < u, (5.2)

with the quadratic form given by (5.1) and (1.5) . Moreover,

ypt (z, y) = (Xtpt ) (z, y). (5.3)

Proof. A long but straightforward calculation shows that x and y satisfy the dual version of the
q-commutation equation

[x, y]γ = σx2
+ τy2

+ ηx + θy + I. (5.4)

By [3, Proposition 4.9], (5.2) holds. The algebraic identity (5.3) follows from the three
step recurrences for the polynomials (pn)n given in Proposition 2.2, by another routine
calculation. �

Proposition 5.2. If (X t )t is a Markov process such that the random variables X t have moments
of all orders and (pn)n are orthogonal martingale polynomials of the process (X t )t , then (X t )t
is a quadratic harness with γ = −στ .

Proof. Condition (1.1) holds true. Indeed,

EX t = E [p1(X t ; t)p0(X t ; t)] = 0.

For s < t , by the martingale property (2.1) and the first recurrence in Proposition 2.2 we get

E[Xs X t ] = E [XsE[p1(X t ; t)|Fs]] = E [Xs p1(Xs; s)]
= E [(1 + σ s)p2(Xs; s) + (αs + β)p1(Xs; s) + sp0(Xs; s)] = s.

An efficient way to verify (1.4) and (1.2) is to use (5.3) to represent the process through the
operator Xt from Proposition 5.1 as

X tpt (ξ, X t ) = Xt (pt (ξ, X t )) .

This, together with the martingale polynomial property, which for the generating function pt
implies

E[pt (ξ, X t )|Xs] = ps(ξ, Xs),

gives for s ≤ t ≤ u

E (ps(ζ, Xs)X tpu(ξ, Xu)) = E (ps(ζ, Xs)X tpt (ξ, X t ))

= XtE (ps(ζ, Xs)ps(ξ, Xs)) = Xt Gs(ζ, ξ),

where

Gs(ζ, ξ) = E (ps(ζ, Xs)ps(ξ, Xs)) =

∞−
n=0

(ζ ξ)nE (pn(Xs; s))2 ,

and Xt acts on Gs(ζ, ξ) as on a series in variable ξ . Thus we arrive at the equivalence of

E (ps(ζ, Xs)X tpu(ξ, Xu)) = at,s,uE (ps(ζ, Xs)Xspu(ξ, Xu))

+ bt,s,uE (ps(ζ, Xs)Xupu(ξ, Xu)) (5.5)
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and

Xt Gs(ζ, ξ) = at,s,uXs Gs(ζ, ξ) + bt,s,uXuGs(ζ, ξ).

The latter (and so (5.5)) follows from the operator identity Xt = at,s,uXs + bt,s,uXu , which is
a trivial consequence of the representation Xt = x + ty, t > 0.

Now (5.5) means that

E (pn(Xs; s)X t pm(Xu; u)) = at,s,uE (pn(Xs; s)Xs pm(Xu; u))

+ bt,s,uE (pn(Xs; s)Xu pm(Xu; u))

for all m, n ≥ 0. Since the random variables X t are bounded, polynomials are dense in
L2(Xs, Xu) (see [8, Theorem 3.1.18]). Thus by the fact that (X t )t is Markov, (1.4) follows from
(5.5).

The proof of (1.2) is similar, since (1.2) is equivalent to

E(ps(ζ, Xs)X2
t pu(ξ, Xu)) = At,s,uE(ps(ζ, Xs)X2

spu(ξ, Xu))

+ Bt,s,uE (ps(ζ, Xs)Xs Xupu(ξ, Xu)) + Ct,s,uE(ps(ζ, Xs)X2
upu(ξ, Xu))

+ Dt,s,uE (ps(ζ, Xs)Xspu(ξ, Xu)) + Et,s,uE (ps(ζ, Xs)Xupu(ξ, Xu))

+ Ft,s,uE (ps(ζ, Xs)pu(ξ, Xu)) . (5.6)

Observe that if s ≤ u then

E (ps(ζ, Xs)Xs Xupu(ξ, Xu)) = E (ps(ζ, Xs)XsXupu(ξ, Xu))

= XuE (ps(ζ, Xs)Xsps(ξ, Xs))

= XuXsE (ps(ζ, Xs)ps(ξ, Xs)) = XuXs Gs(ζ, ξ). (5.7)

Similarly, X2
vGs(ζ, ξ) = E

ps(ζ, Xs)X2
vpu(ξ, Xu)


for v ∈ [s, u]. This, (5.7) and

martingality show that (5.6) follows from the operator identity (5.2) applied to Gs(ζ, ξ) treated
as a formal power series in variable ξ , proving (1.2). �

6. Construction and uniqueness

Now we are in a position to prove the main result of this paper.

Proof of Theorem 1.1. We first note that since the time inversion (t X1/t )t of the quadratic
harness (X t )t is still a quadratic harness with parameters η, σ replaced by θ , τ (see Remark
2.1 in [3]), it does not matter whether we construct (X t )t>0, or its time inversion (t X1/t )t>0.
Secondly, we note that if η2 > 4σ > 0 and θ2 > 4τ > 0 then it is impossible to have
simultaneously α + σβ = 0 and β + ατ = 0 (recall (1.8)). So passing to time inversion if
necessary, we may assume that α + σβ ≠ 0, and passing to (−X t ) if necessary, we may assume
that α + σβ > 0. Similarly, observe that if σ > 0, τ = 0 and η2 > 4σ then α + σβ ≠ 0. Indeed,
if τ = 0 and α + σβ = 0 then η = −2σθ ; η2 > 4σ implies σθ2 > 1 while 1 + αβ > 0 implies
σθ2 < 1, a contradiction. Hence we may assume that α + σβ > 0 as before. Therefore, without
loss of generality, we will consider the following list of constraints for the parameters for which
we wish to construct the quadratic harness:

• Case 1: σ, τ > 0 and η2
≤ 4σ ,

• Case 2: σ, τ > 0 and η2 > 4σ , θ2 > 4τ , and α + σβ > 0,
• Case 3: σ > 0, τ = 0, η2

≤ 4σ ,
• Case 4: σ > 0, τ = 0, η2 > 4σ , and α + σβ > 0,
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• Case 5: σ > 0, τ = θ = 0,
• Case 6: σ = τ = 0.

We omit Cases 5 and 6, as the full construction of the quadratic harness with σ = τ = 0
appeared in [6] and the case τ = θ = 0 is the time inversion of [5, Theorem 4.3]. In the remaining
cases, we will use polynomials (pn)n = (pn(y; t))n from Proposition 2.2 to determine measures
πt which will be the univariate laws of (X t ). The orthogonality measures Ps,t (x, dy) of the
polynomials (Qn)n = (Qn(y; x, t, s))n from Proposition 2.1 will be the transition probabilities
of (X t ), i.e. the conditional laws L(X t |Xs = x). We will verify that these probabilities satisfy
the Chapman–Kolmogorov equation, so that (X t )t is indeed a well defined Markov process.

It is clear that the coefficients at Q1 in (2.10) and Qn−1 at (2.11) are nonnegative. So by
Favard’s theorem, in order to define probability measure Ps,t (x, dy), we only need to check that
the coefficient at Q0 in (2.9) is nonnegative for x from the support of the measure πs .

The coefficient at Q0 is obviously nonnegative in Cases 1 and 3, as η2
≤ 4σ . By Lemma 3.1,

the coefficient at Q0 in (2.9) is nonnegative in Case 2. By Lemma 3.4 the coefficient at Q0 in
(2.9) is nonnegative in Case 4.

Thus, in each case, the polynomials (Qn(y; x, t, s))n determine the probability measures
Ps,t (x, dy) for all x ∈ supp πs . Observe that both families of measures (πt )t and (Ps,t (x, dy))s,t,x
are compactly supported and uniquely determined, as the coefficients of the three step
recurrences (2.9)–(2.11) are bounded in n.

We now verify that the probability measures (Ps,t (x, dy)) are the transition probabilities of a
Markov process. To do so, notice that (4.1) for n ≥ 1 implies

Qn(y; x, t, s) =

n−
k=1

bn−k(x, s) [pk(y; t) − pk(x; s)] ∀x, y ∈ R. (6.1)

(Observe that Qn(x; x, s, s) = 0 as a consequence of (2.9)–(2.11).) Since b0 ≡ 1 and p0 ≡ 1, a
recursive use of (6.1) yields∫

R
pn(y; t)Ps,t (x, dy) = pn(x; s) ∀x ∈ supp πs . (6.2)

Let

U =


R \


−η −


η2 − 4σ

2σ
,
−η +


η2 − 4σ

2σ


, when σ > 0,

R \ (−η−1, ∞), when σ = 0 and η < 0,

R \ (−∞, η−1), when σ = 0 and η > 0,

R, when σ = 0 = η.

We proceed to show that for 0 ≤ s < t < u and for a set of x of πs-measure one

Ps,u(x, ·) =

∫
U

Pt,u(y, ·)Ps,t (x, dy). (6.3)

First, consider the special case s = x = 0 of (6.3), which we state equivalently as

πu(·) =

∫
U

Pt,u(y, ·)πt (dy). (6.4)

Define ν(A) =


U Pt,u(y, A)πt (dy). To prove that ν(dz) = πu(dz), we only need to show
that the polynomials Qn(z; 0, u, 0) = pn(z; u) are orthogonal with respect to ν(dz). Since the
argument is analogous to the one developed in the general case below, we omit it.
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From the fact that (6.3) holds for s = x = 0, we deduce that

Ps,t (x, U ) = 1 ∀x ∈ supp πs . (6.5)

Indeed, observe first that since the coefficients in the three step recurrences (2.9)–(2.11)
depend continuously on x , the same is true for the Cauchy–Stieltjes transforms of measures
Ps,t (x, dy), which take the form (3.4) with parameters that depend on s, x ; see (2.8). So
U ∋ x → Ps,t (x, U ) is a continuous function. Then, Lemma 3.1 and (6.4) imply that

1 = πt (U ) =

∫
R

Ps,t (x, U )πs(dx).

Therefore Ps,t (x, U ) = 1 on a set of x of πs-probability one. By the continuity of Ps,t (x, U )

in x , the conclusion follows for all x ∈ supp πs .
We now prove that (6.3) holds in general. Fix s > 0 and x ∈ supp πs , and let ν(·) =


U

Pt,u(y, ·)Ps,t (x, dy). We will show that ν(dz) = Ps,u(x, dz) by checking that the polynomials
(Qn(z; x, u, s))n are orthogonal with respect to ν(dz). Since ν is a probability measure
and (Qn)n satisfy a three step recurrence with bounded coefficients, to verify that ν(dz)
coincides with Ps,t (x, dz), it suffices to prove that ν(dz) integrates Qn(z; x, u, s) to zero
when n ≥ 1. Using consecutively (6.1), (6.2) and (6.5), again (6.1), and the fact that
R Qn(y; x, t, s)Ps,t (x, dy) = 0 for n ≥ 1, we get∫

R
Qn(z; x, u, s)ν(dz) =

∫
U

n−
k=1

bn−k(x, s)

×

∫
R

[pk(z; u) − pk(x; s)] Pt,u(y, dz)Ps,t (x, dy)

=

n−
k=1

bn−k(x, s)
∫

U
[pk(y; t) − pk(x; s)] Ps,t (x, dy)

=

n−
k=1

bn−k(x, s)
∫
R

[pk(y; t) − pk(x; s)] Ps,t (x, dy)

=

∫
R

Qn(y; x, t, s)Ps,t (x, dy) = 0.

Thus (6.3) holds and Ps,t (x, dy) are transition probabilities of a Markov process (X t )t with
state space U . Since pn(y; t) = Qn(y; 0, t, 0) it follows from the construction that for fixed
t > 0 polynomials (pn(y; t))n are orthogonal with respect to πt (dy) = P0,t (0, dy); their
martingale polynomial property follows from (6.2). Proposition 5.2 implies that (X t )t is a
quadratic harness with parameters η, θ , σ , τ and γ , with γ = −στ .

The uniqueness of the process (X t )t follows from the fact that orthogonal martingale
polynomials (pn)n determine uniquely the joint moments of the process. Recall that the measures
πt are compactly supported, so the joint moments determine the finite-dimensional distributions
of the process uniquely. �
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