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Abstract The transformation of the plane which winds it up around the origin k
times is called k-winding. We study invariance properties of probability measures
under k-windings, in particular, relations with rotation invariance in the first part of
the paper. Then winding versions of the Bernstein theorem on characterization of
the product of normal distributions are obtained. Finally, it is shown that the sec-
ond component of a 2-winding of iid variables does not identify distributions even of
squares of the original variables. This fact is in a sharp contrast to the property of the
first component, distribution of which does determine uniquely the distribution of iid
variables.

Keywords Winding · Rotation invariance · Normal distribution · Generalized
inverse Gaussian distribution · Identification of probability distribution

1 Introduction

Rotation and winding are transformations of the plane R
2. Rotation relies on shifting

the polar angle while winding on taking multiple of the polar angle. Therefore, it will
be convenient to introduce polar coordinates (ρ, θ) ∈ (0,∞)× [0, 1) by

(x, y) = (ρ cos(2πθ), ρ sin(2πθ)), (x, y) ∈ R
2 \ {(0, 0)}.
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508 J. Misiewicz, J. Wesołowski

More precisely, α-rotation Rα (i.e. rotation by the angle α ∈ [0, 2π)) is defined by

Rα(x, y) = (ρ cos(2πθ + α), ρ sin(2πθ + α)) , (x, y) ∈ R
2\{(0, 0)} .

Analogously, for k being a positive integer, k-winding Wk (i.e. winding the plane
k-times around the origin) is defined by

Wk(x, y) = (ρ cos(2πkθ), ρ sin(2πkθ)) (x, y) ∈ R
2\{(0, 0)} .

Additionally, we define Rα(0, 0) = Wk(0, 0) = (0, 0).
Consequently, in polar coordinates Rα is defined through

(ρ, θ) �→
(
ρ, fr

(
θ + α

2π

))
,

where fr(x) = x − �x� is the fractional part of x ∈ R.
Similarly, k-winding Wk is defined in polar coordinates by

(ρ, θ) �→ (ρ, fr(kθ)).

Let (X,Y ) be a random vector assuming values in R
2 and having the distribution

without atom at zero (it will be our standing assumption throughout the paper). We
define its polar representation (R,�) through

(X,Y ) = (R cos(2π�), R sin(2π�)).

The distribution of (X,Y ) is invariant under α-rotation, that is (X,Y )
d= Rα(X,Y ),

iff

(R,�)
d=

(
R, fr

(
�+ α

2π

))
.

Denote by N (0, 1) the standard normal distribution in R. It is well known that the
product measure N (0, 1) ⊗ N (0, 1) is invariant under any rotation. The same holds
true for the uniform measure on the unit circle in R

2.
Similarly, the distribution of (X,Y ) is invariant under k-winding Wk , that is

(X,Y )
d= Wk(X,Y ) iff

(R,�)
d= (R, fr(k�)).

Note that if (X,Y ) is Wk invariant then: (1) its projection on the unit circle
(cos 2π�, sin 2π�) is also Wk invariant, (2) (T X, T Y ) is Wk invariant for any
T ≥ 0 such that T and (X,Y ) are independent.

Relations between invariance under windings and under rotations are discussed in
Sect. 2. In particular, it is immediate that invariance under rotations implies invariance
under windings. Results in the converse direction are somewhat more subtle.
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The celebrated Bernstein characterization of the normal law was concerned with
the rotation Rπ/4. Namely, Bernstein (1941) proved, under some technical assump-
tions, that: if X and Y are independent, and also X + Y and X − Y are independent,
then X and Y are iid (independent identically distributed) normal. This classical result
has been a source of numerous investigations of related issues. In Sect. 3 we derive
analogues of this characterization result under 2-winding, i.e. instead of shifting the
polar angle by π/4, we double it.

Note that 2-winding in terms of variables (x, y) is defined by

W2(x, y) =
(

x2 − y2
√

x2 + y2
,

2xy√
x2 + y2

)
, (x, y) ∈ R

2,

with W2(0, 0) = (0, 0) by continuity.
This transformation was considered by Shepp (1964), who observed that the prod-

uct measure N (0, 1)
⊗ N (0, 1) is invariant under W2. In terms of random variables

(rv’s) it says that if X and Y are independent standard normal random variables then
also

W = X2 − Y 2

√
X2 + Y 2

and Z = 2XY√
X2 + Y 2

are independent and both have the standard normal distribution.
It has to be mentioned that Z alone was considered in the context of characterization

or identifiability questions. In particular Bansal et al. (1999) (for related multivariate
considerations see Arellano-Valle 2001) obtained the following result: if X and Y are
iid rv’s and Z is standard normal, then X and Y are also standard normal. This result
has been recently extended to identifiability of the distribution of X by the distribution
of Z in Hamedani et al. (2007). Apparently, a similar result cannot hold for W since
it is defined in terms of squares of X and Y (thus Cor. 2.4 of Bansal et al. 1999 is not
correct). Nevertheless, one may expect that the assumption of normality of W may
lead to Chi-square distribution with one degree of freedom for X2 and Y 2. However,
as it will be shown in Sect. 4, there exist other distributions for X2 and Y 2 for which
W is normal. Related problems were studied for instance in Beer and Lukacs (1973)
and Hamedani and Volkmer (2001).

2 Invariance under windings and invariance under rotations

In this section we investigate relations between rotationally invariant and winding
invariant probability measures. It will be convenient to use the Fourier–Laplace trans-
form of the form

φ(k, s) = E ei2πk�−s R, (k, s) ∈ Z × (0,∞),

which uniquely determines the joint law of (R,�) and thus of (X,Y ).
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Recall that rotational invariance of the distribution of (X,Y ), i.e. the fact that

(X,Y )
d= Rα(X,Y ) for any α ∈ R is equivalent to

(eikα − 1)φ(k, s) = 0, ∀ (k, s) ∈ Z × (0,∞), (1)

holding ∀ α ∈ R, which is equivalent to

φ(k, s) = 0 ∀ (k, s) ∈ Z × (0,∞), k �= 0. (2)

Furthermore, it is equivalent to ck = E ei2πk� = 0,∀ k ∈ Z\{0} (meaning that � is
uniform on (0, 1)) together with independence of � and R.

Note that if α0 is a fixed real number such that α0
2π is irrational then kα0 is never a

multiple of 2π . Consequently, it follows by (1) that invariance by Rα0 is equivalent
to rotational invariance.

Invariance by k-winding of the distribution of (X,Y ) in terms of φ can be equiva-
lently stated as

φ(kl, s) = φ(l, s) ∀ (l, s) ∈ N × (0,∞), l �= 0 . (3)

First, we observe that rotation invariance implies winding invariance.

Proposition 2.1 Assume that the distribution of (X,Y ) is rotationally invariant. Then
it is invariant under k-winding Wk for any integer k ≥ 1.

Proof By (2) it follows that (3) holds with both sides of the equation equal to zero.
�

Note that there exists (W, Z) = W2(X,Y )which is rotationally invariant while (X,Y )
is not. To see this consider

(X,Y ) = (R cos 2π�, R sin 2π�)

for � with uniform distribution on [θ0,
1
2 + θ0) independent of the nonnegative ran-

dom variable R. The distribution of (X,Y ) is then concentrated on a half-plane, but
(cos 4π�, sin 4π�) has uniform distribution on the unit circle S1 ⊂ R

2 thus (W, Z)
has a rotationally invariant distribution.

The rest of this section is devoted to study the converse relations, i.e. to what extent
invariance with respect to windings implies invariance with respect to rotations.

Theorem 2.2 Let k > 1 be a fixed integer. If distribution of the random vector (X,Y )
is invariant under both the rotation R 2π

k
and the winding Wk , then it is rotationally

invariant.

Proof By (1) with α = 2π
k we have

(
ei2π l

k − 1
)
φ(l, s) = 0 ∀ (l, s) ∈ Z × (0,∞).

123



Winding planar probabilities 511

Consequently, φ(l, s) = 0 for any s ∈ (0,∞) and any l ∈ Z which is not a multiple
of k. If l �= 0 is a multiple of k then it can be decomposed as l = kr m where r is a
positive integer and m is an integer which is not a multiple of k. Then by (3) we get

φ(l, s) = φ(m, s),

and thus, by what we have already established, φ(m, s) = 0. Finally, we conclude that
(2) holds and thus (X,Y ) is rotationally invariant. �
It appears that if a distribution is invariant under all possible windings then it is almost
rotationally invariant.

Theorem 2.3 Let (X,Y )
d= Wk(X,Y ) for any k = 1, 2, . . .. Then

(X,Y )
d= Z(X1, 0)+ (1 − Z)(X2,Y2) ,

where Z , X1 and (X2,Y2) are independent, Z is Bernoulli, X1 is positive and (X2,Y2)

is rotationally invariant.

Proof Note that the distribution of (X1, 0) is invariant under any winding. Therefore,
without any loss of generality it suffices to show that if in the polar representation
(�, R) of (X,Y ) the polar angle does not have an atom at zero, then (X,Y ) is rota-
tionally invariant.

Returning to the Fourier–Laplace transform, we note that to prove the result it
suffices to show that φ(k, s) = 0 if only k �= 0 (see 2).

By the invariance assumption through (3) and taking conjugates we get

φ(k, s) = φ(1, s) = φ(−1, s) = φ(−k, s), ∀ k = 1, 2, . . . , ∀ s > 0.

Now, for an arbitrary and fixed s > 0 consider a new random variable �̃s on [0, 1)
whose Fourier transform is φ(k, s)/φ(0, s). To finish the proof it suffices to show that
�̃s is uniform on (0, 1). In this way we reduced the proof to the problem which is
solved below in Lemma 2.4. �
Lemma 2.4 Assume that the random variable � in [0, 2π) has no atom at zero and

E eik� = E ei� = c1, ∀ k = 1, 2, . . . (4)

Then c1 = 0 and � is uniform.

Proof Note that

ηn = 1

n

n∑
k=1

eik� = ei(n+1)� − 1

n(ei� − 1)
→ 0, a.s.

On the other hand, by (4) we have

E ηn = E ei� = c1.
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Since |ηn| < 1 then by the Lebesgue dominated convergence we get that c1 = 0.
Consequently ck = 0 for any k = ±1,±2, . . . Hence, � is uniform on [0, 2π ]. �
Note, that alternatively, the result of Theorem 2.3, can be formulated as: if μ is a
probability measure on R

2 which is invariant under k-winding for any k = 1, 2, . . .,
then it is a convex combination of some distribution concentrated on (0,∞)×{0} and
some rotationally invariant probability measure on R

2.
One could expect that if a probability measure is invariant under Wk and Wl for

k and l with the only common divisor equal one, then the measure is rotationally
invariant or discrete uniform, when restricted to the unit circle. However this is not
the case, as it is explained in the following example.

Example 1 Consider � with the following distribution

P(� = i/5) = 1/8, i = 1, . . . , 4, and P(� = i/7) = 1/(12), i = 1, . . . , 6.

Then it can be easily checked that (X,Y ) = (R cos 2π�, R sin 2π�), with R and�
independent, is invariant under W2 and W3.

The proof of the following lemma is based on standard calculations and will be omitted.

Lemma 2.5 Let (X,Y ) = (R cos 2π�, R sin 2π�) be a random vector which is
invariant under the winding Wk for a fixed integer k > 1. Then for every Borel set
A ⊂ [0,∞) and every 0 < a < b < 1

P{R ∈ A, a < � < b} =
k−1∑
m=0

P

{
R ∈ A,

a

k
< �− m

k
<

b

k

}
(5)

�
Note that if the measure μ on R

2 is invariant under k-winding then its “discrete”
part (concentrated on rays) is also invariant under k-winding. The following result
shows that if there is an open angular region (with vertex in the origin) outside of the
support of μ then this measure is concentrated in

{(ρ cos 2πθ, ρ sin 2πθ) : ρ ≥ 0, θ ∈ Q},

where Q denotes the set of rational numbers in [0, 1].
Proposition 2.6 Let (X,Y ) = (R cos 2π�, R sin 2π�) be a random vector which
is invariant under the winding Wk for a fixed integer k > 1. Assume that there exist
a, b ∈ (0, 1), a < b such that P(a < � < b) = 0. Then P(� ∈ Q) = 1.

Proof Since (X,Y ) is invariant under Wk then it is invariant also under Wkn . Thus
applying Lemma 2.5 with A = [0,∞) we obtain

0 = P{a < � < b} =
kn−1∑
m=0

P

(
a + m

kn
< � <

b + m

kn

)
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and consequently for any n ∈ N and any m ≤ kn − 1

P

(
a + m

kn
< � <

b + m

kn

)
= 0.

The proof will be completed if we show that for every irrational number x ∈ (0, 1)
there exists n0 ∈ N and m0 ≤ kn0 − 1 such that

x ∈
(

a + m0

kn0
,

b + m0

kn0

)
.

To see this note first that the set {fr(kn x) : n ∈ N} is dense in [0, 1], so there exists
n0 ∈ N such that fr(kn0 x) ∈ (a, b). Now, it is enough to define m0 = �kn0 x� and use
the relation kn0 x = �kn0 x� + fr (kn0 x). �

The reverse implication in Proposition 2 does not hold, as we show in the example
below.

Example 2 Denote by
 the set of prime numbers which are greater than 2. For every
k ∈ 
 let


k =
{

i

k
, i = 1, . . . , k − 1

}
.

Let

P (� = x) = pk

k − 1
, x ∈ 
k, k ∈ 
,

with pk > 0, k ∈ 
,such that
∑

k∈
 pk = 1. Then � is concentrated on the set⋃
k∈
 
k , a subset of Q which is dense in (0, 1). Since fr(2
k) = 
k for any

k ∈ 
, it is immediate to see that (X,Y ) = (R cos 2π�, R sin 2π�), with R and�
independent, is W2 invariant.

On the other hand, smoothness assumption can be helpful.

Proposition 2.7 Let (X,Y ) = (R cos 2π�, R sin 2π�) be Wk-invariant for an
arbitrary fixed k ≥ 2. If the distribution of (X,Y ) is absolutely continuous then it
is rotationally invariant.

Proof Since (X,Y ) is absolutely continuous then also (R,�) is absolutely continuous.
Therefore for any s ≥ 0

lim
n→∞ φ(n, s) = 0. (6)

Iterating (3) we get

φ(l, s) = φ(knl, s)

for any l �= 0 and any n ∈ N. Now, (6) implies φ(l, s) = 0 for any l �= 0 and any
s ≥ 0. That is, we obtained (2). Consequently, (X,Y ) is rotationally invariant. �

123



514 J. Misiewicz, J. Wesołowski

3 Bernstein-like characterizations under winding

The Shepp property implies that for standard normal variables winding preserves inde-
pendence. The main objective of this section is to study converses of this observation.
First we obtain the Bernstein-like characterization with rotation by π

4 changed into
2-winding under additional smoothness assumptions.

Theorem 3.1 Assume that X,Y are symmetric, independent random variables hav-
ing strictly positive continuous densities on R. Let (W, Z) = W2(X,Y ). Assume that
W is symmetric. If W and Z are independent then X and Y are iid zero mean normal
variables.

Proof Define random variables R and � by X = R cos 2π� and Y = R sin 2π�.
Then W = R cos 4π� and Z = R sin 4π�. Denote by fi , i = 1, 2, 3, 4, respectively,
the densities of X,Y,W and Z . Note that

fR,�(r, θ) = 2πr f1(r cos 2πθ) f2(r sin 2πθ)

and for � = fr(2�) we have

fR,�(r, ξ) = 2πr f3(r cos 2πξ) f4(sin 2πξ).

Since

fR,�(r, ξ) = 1

2

(
fR,�

(
r,
ξ

2

)
+ fR,�

(
r,
ξ + 1

2

))

for almost all r > 0 and ξ ∈ (0, 1) we arrive at

2 f3(r cos 2πξ) f4(sin 2πξ) = f1(r cos πξ) f2(r sin πξ)+ f1(−r cos πξ) f2(−r sin πξ).

Since X and Y are symmetric the densities f1 and f2 are even functions and thus

f1(r cos πξ) f2(r sin πξ) = f3(r cos 2πξ) f4(r sin 2πξ)

holds for almost all r > 0 and ξ ∈ (0, 2). Due to continuity of f1 and f2 the above
equation holds for any (r, ξ) ∈ (0,∞)× [0, 2]. Substituting πξ =: θ we arrive at

f1(r cos θ) f2(r sin θ) = f3(r cos 2θ) f4(r sin 2θ) (7)

holding for any θ ∈ [0, 2π ].
Plugging θ = 0 into (7) we get f1(r) f2(0) = f3(r) f4(0) for any r ≥ 0. By

symmetry assumption f3 is also an even function and thus

f1(r) f2(0) = f3(r) f4(0)
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holds for any r ∈ R. Integrating both sides of the above equation over R we get f2(0) =
f4(0) and thus f1 = f3. Plugging θ = π/2 into (7) we obtain that f1(0) f2(r) =
f3(−r) f4(0), for any r ≥ 0. Similarly as above we obtain f2 = f3. Now, θ = π/3 in
(7) leads to f2(r) = f4(r) for any r ≥ 0 and θ = 2π/3 gives f2(r) = f4(−r), r ≥ 0.
Therefore f4 is an even function and thus f2 = f4. Summing up, fi = f, i = 1, 2, 3, 4,
where f is an even function.

By assumption f is strictly positive, thus G = log f is well defined. Rewriting (7)
in terms of G gives

G(r cos θ)+ G(r sin θ) = G(r cos 2θ)+ G(r sin 2θ), (8)

for any r ≥ 0 and θ ∈ [0, 2π ]. Substituting θ = α/2 for α ∈ (0, π/2) in the Eq. (8)
we obtain after n iterations

G(r cos α)+ G(r sin α) = G
(

r cos
α

2n

)
+ G

(
r sin

α

2n

)
.

Since G is a continuous function then letting n → ∞ we obtain that for every a, b ≥ 0

G(a)+ G(b) = G
(√

a2 + b2
)

+ G(0).

Define H(a) := G(
√

a)− G(0), a ≥ 0. Then we have

∀ a, b > 0 H(a)+ H(b) = H(a + b).

This is a classical Cauchy functional equation with the solution H(t) = Ct , thus con-
sequently G(t) = Ct2 + D for any t ∈ R since G is even. Thus f (t) = exp(Ct2 + D).
It means that all the variables X and Y have zero mean normal distributions. �
Corollary 3.2 Letμ be a symmetric probability measure on R

2 having strictly positive
continuous density. If the rotation Rπ/4 and the winding W2 both transform μ into
product measures, then μ is a product of identical normal, zero mean measures.

Proof Let (X,Y ) be a random vector with the distribution μ. Then it follows that

U = X + Y√
2

and V = X − Y√
2

are independent, and also

W = X2 − Y 2

√
X2 + Y 2

and Z = 2XY√
X2 + Y 2

are independent. Note that

W = 2U V√
U 2 + V 2

and Z = U 2 − V 2

√
U 2 + V 2

.
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Since U, V are symmetric random variables with strictly positive continuous densities
it follows from Theorem 3.1 that they have normal N (0, σ 2) distributions, thus also
X and Y are independent normal N (0, σ 2). �

If the original random variables X and Y in Theorem 3.1 are assumed to be not only
independent, but also iid then the other assumptions may be considerably relaxed.

Proposition 3.3 Assume that X and Y are symmetric iid rv’s and (W, Z) =
W2(X,Y ). If W and Z are independent, then X and Y have identical zero mean
normal distribution.

Proof Denote U = X−2 and V = Y −2. Then U and V are positive non-degenerate
iid rv’s. Also

W 2 = 1

U
+ 1

V
− 4

U + V
and Z−2 = U + V

are independent. This condition is known to characterize the inverse Gaussian distribu-
tion (see Letac and Seshadri 1985), i.e. U and V are inverse Gaussian. Consequently,
X and Y have continuous densities. Now the result follows from Theorem 3.1. �

Note that the assumption of independence of W 2 and Z2 (instead of independence
of W and Z ) by the argument given in the proof above leads to characterization of
X to have the unique symmetric distribution such that X−2 has an inverse Gaussian
distribution.

The independence condition in this case can be even weakened to the constant
regression assumption, i.e.

E(W 2|Z2) = const.

This is due to the fact that the above condition in terms of U and V introduced in the
proof above resolves to

E

(
1

U
+ 1

V
− 4

U + V

∣∣∣∣ U + V

)
= const.

It is known, see for instance Seshadri (1983), where additional moments assumptions
are needed (but the r.v’s are not necessarily positive), that the above condition implies
that U and V are inverse Gaussian. For positive variables, the proof of this fact follows
along the line of the argument given in the case of the independence assumption in
Letac and Seshadri (1985).

4 Does the distribution of W determines X and Y?

Recall that W was defined as the first component of W2(X,Y ), i.e.

W = X2 − Y 2

√
X2 + Y 2

. (9)
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Moreover, its square can be represented as

W 2 = 1

U
+ 1

V
− 4

U + V
, (10)

where U = X−2 and V = Y −2.
Shepp (1964) observed that if X and Y are independent normal N (0, 1) then W is

also normal N (0, 1). Obviously, the distribution of squares X2 and Y 2 matters only.
In this section we study the question if the chi-square distribution with one degree of
freedom,χ2(1), is the only common distribution of X2 and Y 2 for which W is standard
normal. As it has already been mentioned in the Introduction, similar questions for
the second element of the Shepp W2 transformation led to characterizations of the
standard normal distribution (see Bansal et al. 1999) and even to more general identi-
fiablity results (see Hamedani et al. 2007). In the case of W the situation is drastically
different.

Recall that the generalized inverse Gaussian distribution G I G(p, a, b) is defined
by the density

f (x) ∝ x p−1 exp

(
−ax − b

x

)
, x ∈ R,

where p ∈ R and a, b ≥ 0 (a > 0 if p ≥ 0 and b > 0 if p ≤ 0) are the parameters (see
for instance Jorgensen 1982). The normalizing constant is expressed in terms of the
modified Bessel function of the third type and we skip it since its form is not important
for our considerations. The GIG distribution has the following inversion property, i.e.
A ∼ G I G(p, a, b) if and only if A−1 ∼ G I G(−p, b, a). An important particular
case of GIG distributions is the inverse Gaussian distribution, IG, which occurs if
the parameter p = − 1

2 , i.e. I G(a, b) = G I G
(− 1

2 , a, b
)
, a ≥ 0, b > 0. For more

information on IG distributions we recommend the monograph by Seshadri (1993).
Note that if a random variable A has the χ2(1) distribution then its inverse A−1 has
the inverse Gaussian distribution I G

(
0, 1

2

)
the only positive stable distribution with

a closed analytical form of the density.

Proposition 4.1 Let X,Y be independent random variables such that X2 and Y 2 have
the same distribution G I G

( 1
2 ,

1
2 , a

)
for an arbitrary a ≥ 0. Then W (defined in (9))

is standard normal.

Proof Note that (9) implies that the distribution of W is symmetric if only X2 and Y 2

are iid. Therefore its suffices to show that W 2 has the χ2(1) distribution.
Now we refer to the representation (10), that is we define U = X−2 and V =

Y −2 and S = W 2. By the property of the GIG distribution it follows that U, V ∼
G I G(− 1

2 , a, 1
2 ), that is they have a common density f of the form

f (x) ∝ x− 3
2 e−ax− 1

2x I(0,∞)(x).
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Additionally, we define T = U + V . Note that the transformation

ψ(u, v) =
(

1

u
+ 1

v
− 4

u + v
, u + v

)

is a bijection between {(u, v) : 0 < u < v} onto (0,∞)2 with the inverse

ψ−1(s, t) =
(

t (1 − r(st))

2
,

t (1 + r(st))

2

)
,

where r(x) =
√

x
4+x . The map ψ is also a bijection between {(u, v) : 0 < v < u}

onto (0,∞) with the inverse

ψ−1(s, t) =
(

t (1 + r(st))

2
,

t (1 − r(st))

2

)
.

Therefore, after a lengthy but standard process of computing Jacobians in both cases
(they differ only by sign), we arrive at

f(S,T )(s, t) = u2v2

|v2 − u2| f

(
t (1 − r(st))

2

)
f

(
t (1 + r(st))

2

)
,

where f is the common density of U and V .
Consequently, we get

f(S,T )(s, t) ∝
t4

16 (1 + r(st))2 (1 − r(st))2

t2

4 r(st)

(
t2

4

(
1 − r2(st)

))− 3
2

e−at− 1
t(1−r(st))− 1

t(1+r(st)) I(0,∞)2(s, t).

This expression simplifies to

f(S,T )(s, t) ∝ s− 1
2 e− s

2 I(0,∞)(s) t−
3
2 e−at− 2

t I(0,∞)(t),

meaning that S and T are independent and S has the chi-square χ(1) distribution
(T is an inverse Gaussian variable). �
Note that the family of G I G

( 1
2 ,

1
2 , a

)
, a ≥ 0, contains the χ2(1) distribution which

occurs for a = 0. Note also that it is the family of conditional distributions of Y given
ZY = a, a ≥ 0, where Z and Y are independent, Z is exponential with the mean 1, and
Y is gamma with the shape 3/2 and the scale 1/2. Related questions have been recently
studied in Arnold and Seshadri (2009) and in matrix-variate setting in Seshadri and
Wesołowski (2008). Moreover, if X2 ∼ G I G

( 1
2 ,

1
2 , a

)
and X is symmetric then the
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density of X is

f (x) ∝ exp

(
− x2

2
− a

x2

)
,

which can be considered as generalized normal density parameterized by a ≥ 0.
It would be interesting to know if the family of probability laws

{
G I G

( 1
2 ,

1
2 , a

)
, a ≥ 0

}
covers all possible distributions for X2 and Y 2 which imply that W has

the standard normal distribution. This question remains open.
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