
This article was downloaded by: [Jacek Wesołowski]
On: 19 March 2012, At: 14:50
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered
office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Statistics: A Journal of Theoretical and
Applied Statistics
Publication details, including instructions for authors and
subscription information:
http://www.tandfonline.com/loi/gsta20

Linear estimation and prediction under
model-design approach with small area
effects
Wojciech Niemiro a b & Jacek Wesołowski b c

a Faculty of Mathematics and Computer Science, Nicolaus
Copernicus University, Toruń, Poland
b Faculty of Mathematics and Information Science, Warsaw
University of Technology, Warsaw, Poland
c Central Statistical Office, Warsaw, Poland

Available online: 23 Feb 2011

To cite this article: Wojciech Niemiro & Jacek Wesołowski (2011): Linear estimation and prediction
under model-design approach with small area effects, Statistics: A Journal of Theoretical and
Applied Statistics, DOI:10.1080/02331888.2010.542656

To link to this article:  http://dx.doi.org/10.1080/02331888.2010.542656

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-
conditions

This article may be used for research, teaching, and private study purposes. Any
substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing,
systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation
that the contents will be complete or accurate or up to date. The accuracy of any
instructions, formulae, and drug doses should be independently verified with primary
sources. The publisher shall not be liable for any loss, actions, claims, proceedings,

http://www.tandfonline.com/loi/gsta20
http://dx.doi.org/10.1080/02331888.2010.542656
http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions


demand, or costs or damages whatsoever or howsoever caused arising directly or
indirectly in connection with or arising out of the use of this material.

D
ow

nl
oa

de
d 

by
 [

Ja
ce

k 
W

es
oo

w
sk

i]
 a

t 1
4:

50
 1

9 
M

ar
ch

 2
01

2 



Statistics, iFirst, 2011, 1–25

Linear estimation and prediction under model-design approach
with small area effects

Wojciech Niemiroa,b and Jacek Wesołowskib,c*

aFaculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toruń, Poland;
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We consider a problem of small area estimation under a mixed linear model with area-specific auxiliary
variables and random area effects. The model design approach is consistently pursued. The mathematical
results of this paper support the view (not generally accepted in the literature) that while using a super-
population model, even under non-informative sampling, the sample selection process cannot be completely
ignored. Estimators and predictors under consideration are linear in observations, that is in variables Zi ’s,
where Zi is the value of the variable of interest if i is in the sample and zero otherwise. This notion of
linearity is different from that prevailing in the literature. Unbiasedness and optimality are understood
with respect to both the model and the sampling design. We consider general sampling designs, for which
sample sizes in small areas can be random. We show that the best linear unbiased estimators (BLUEs) and
best linear unbiased predictors (BLUPs) in general do not exist. However, they do exist if the sample sizes
in small areas are fixed. Moreover, we prove that such designs are optimal. Empirical versions (EBLUE
and EBLUPs) are also derived and numerically tested. In simulation experiments, we examine the mean
square error of estimates/predictors, the coverage rates of confidence intervals and the predictive power of
auxiliary variables. Rather unexpectedly, the proposed predictors turn out to be quite robust against model
misspecification. A special case of Bernoulli sampling is examined in detail as an illustrative example.

Keywords: super-population; BLUP; linear model; model design approach; small area estimation

MSC 2000: 62D05; 62J05

1. Introduction

Model assumptions appear more and more frequently in the theory of sample surveys. This is
especially visible in small area estimation, where basically it is the only way which may lead
to the valid inference for domains with very small sample sizes. Since the paper by Fay and
Herriot [1], several types of linear models have been considered in this area. The monograph by
Rao [2] gives a thorough review and is the basic reference for this theory. An earlier survey paper
by Marker [3] gives a unified view of small area estimation through a general linear regression
framework. An excellent description of estimation techniques in this field is given in an even
earlier paper by Ghosh and Rao [4]. Mostly, as soon as the model assumptions are imposed,
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2 W. Niemiro and J. Wesołowski

design considerations are left aside (see, for instance, [5] or [6]). That is, the conditional approach
is adopted where conditioning is with respect to the sample. Many authors considered such a
purely model-based approach. Standard references in this setting are several papers by Royall
and co-authors starting with Royall [7]. A review can be found in [8, Chapter 5]. For more recent
results, one can also consult Bellhouse [9] or Chandra and Chambers [10]. The rule which seems
to prevail in the literature is made explicit in an important review paper by Pfeffermann [11] who
writes ‘when the selection probabilities are not related to the values of the response variable, the
models holding for the population hold also for the sample data and the sample selection process
can be ignored’ (par. 6). While in many cases, this conclusion is justified, it may not be correct
in general, even under non-informative sampling. This phenomenon is related to random sample
sizes. Such a situation occurs when one is interested in optimality with respect to model and
design criteria jointly. This has already been observed in our earlier paper [12], where synthetic
and composite estimators under the model design approach were obtained in a very simple model
with no small area effect. In particular, in that paper, we gave an improvement of the estimator
obtained in [13]. Another direction of research in small area estimation is to minimize the role
of model assumptions. This can be achieved through a careful choice of the survey design and
through efficient direct domain estimators as developed, e.g. in [14,15] or [16].

The main novelty of our approach lies in examining rigorously and consistently the influence
of both the model and the design on the inference. In this sense, the present paper continues
the research of Niemiro and Wesołowski [12]. The focus is on theoretical aspects of the model
design approach to small area estimation. We consider a mixed linear model with fixed effects,
auxiliary variables (which are small-area-specific), random small area effects and random unit
effects (errors) – this is for the model part of our setup. The sample is chosen according to a
given design plan and only sampled units are observed – this is for the design part of our setup.
We consider non-informative but otherwise entirely arbitrary sampling plans. This approach is
described thoroughly in Section 2. In Section 3, properties of the covariance matrix of observations
are investigated. In Section 4, we study the existence of best linear unbiased estimator (BLUE)
and two best linear unbiased predictors (BLUPs) under such super-population assumptions. Mul-
tivariate auxiliary variables known at the level of small areas are considered. In particular, we
show through Theorem 1 (see Remark 2) that for a wide range of designs, BLUE and BLUP
do not exist. However, they do exist for designs with fixed sample sizes. In Section 5, we prove
that the optimal strategy for BLUE and BLUPs is to apply any design with fixed sample sizes.
Such a situation happens in the case of stratified sampling when small areas are unions of several
strata (for instance, in the survey of small enterprises conducted by the Central Statistical Office
in Poland – see Example 1 in Section 7). The case of univariate auxiliary variables, essentially
different from the case of multivariate auxiliary variable, is considered in Section 6. Empirical
versions of the BLUPs are derived in Section 7. Theoretical results are accompanied by three
numerical experiments. We examine the mean square error (MSE) of the estimates/predictors,
the coverage rates of confidence intervals and the predictive power of auxiliary variables. The
first experiment assumes a model without auxiliary variables; the second one with one auxiliary
variable; in the third, the inference is based on an incorrectly specified model. In Section 8, our
general results on BLUE and BLUPs, in the case of univariate auxiliary variable, are applied to
the simplest sampling plan with random sample sizes, the Bernoulli sampling. We also give an
account of a small-scale simulation study for this case.

2. Setup

By U = {1, . . . , N} we denote a population. The population is partitioned into M disjoint small
areas (Um)m=1,...,M , i.e. U = ⋃M

m=1 Um. Without any loss of generality, we will assume that the
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Statistics 3

ordering of the population is such that Um = {im, im + 1, . . . , im+1 − 1}, m = 1, . . . , M , with
1 = i1 < i2 < · · · < iM < iM+1 = N + 1. Then im+1 − im = Nm denotes the number of units in
Um, m = 1, . . . , M . For any small area Um, a non-random vector of auxiliary variables xm =
(xm,1, . . . , xm,q)

T is given, m = 1, . . . , M .
With each element i ∈ U , we associate a random variable Yi . We assume that the random vector

Y = (Y1, . . . , YN)T has the following structure:

Y = ce(Xβ + u) + ε, (1)

where ce is an N × M matrix whose mth column is em with the ith component equal to 1 if i ∈ Um

and otherwise equal to 0, m = 1, . . . , M , X is an M × q-dimensional matrix with xT
m being its

mth row, β = (β1, . . . , βq) is an unknown vector of parameters, u = (u1, . . . , uM)T is a random
vector such that E(u) = 0 and Cov(u) = v2

IM and ε = (ε1, . . . εN)T is a random vector such
that E(ε) = 0 and Cov(ε) = σ 2

IN with σ 2 > 0, where Ik stands for the k × k identity matrix,
k = M, N . Although the homoscedasticity assumption, which we adopted here, is not always
a realistic assumption, it eliminates serious difficulties related to the estimation of unit-specific
variances. Therefore, the homoscedastic approach is fairly standard in the literature (see, e.g. [17]).
Moreover, we assume that u and ε are independent.

Alternatively,

Yi = xT
mβ + um + εi

for any i ∈ Um, m = 1, . . . , M . Let us stress that auxiliary variables are assumed to be known
at the small area level (and not at the unit level). This assumption is essential for the theoretical
results to be presented. In practice, it may be justified in situations when the unit-specific auxiliary
information is unavailable.

The sampling design p is a distribution of indicators of elements being sampled, i.e. P(I =
δ) = p(δ), where I = (I1, . . . , In)

T, with Ii = 1 if the ith element is chosen to the sample,
otherwise it is 0, i ∈ U , and δ = (δ1, . . . , δN) ∈ {0, 1}N . With p we associate a vector π =
(π1, . . . , πN)T of inclusion probabilities of the first order, i.e. πi = P(Ii = 1), i ∈ U , a related
diagonal matrix I� = diag(π) and an N × N matrix P = [πij ] of inclusion probabilities of the
second order, i.e. πij = P(Ii = 1, Ij = 1), i, j ∈ U . Throughout this paper, we assume that I

and Y are independent, that is, the sampling plan p is non-informative.
Additionally, we introduce an N × M matrix π̃ whose mth column πm is a vector having the

ith component equal to πi if i ∈ Um and 0 if i �∈ Um, m = 1, . . . , M , and an N × N matrix P̃

which is a block-diagonal matrix, with the mth diagonal block P̃m associated with the mth small
area in the sense that P̃m = [πij ]i,j∈Um

, i.e. it is a matrix of second-order inclusion probabilities
for the restriction of p to the set Um, m = 1, . . . , M .

Let Z = (Z1, . . . , ZN) = diag(I )Y be the vector of observations, i.e. Zi = YiIi , i ∈ U .
Note that EY = ceXβ and

EZ = π̃Xβ =
M∑

m=1

xT
mβπm.

Let us stress that the symbol E in the above formula (and indeed in all the formulas in this paper)
denotes expectation with respect to both the sampling plan p and the super-population model Y .
Thus for a function f ,

Ef (Y , I ) =
∫

RN

∑
δ∈{0,1}N

f (y, δ)p(δ)PY (dy),

where PY denotes the probability distribution of the random vector Y . Note that in some papers,
frequently cited in the literature (e.g. [17, Chapter 12]), instead of E authors use a notation of the
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4 W. Niemiro and J. Wesołowski

type EξEp, where Eξ stands for the expectation with respect to the model, while Ep stands for
the expectation with respect to the design.

Moreover, on noting that diag(I )ceXβ = diag(ceXβ)I , we obtain the expression for the
covariance matrix of vector Z of observations, K = Cov (Z) as

K = σ 2I� + diag(ceXβ)(P − ππT)diag(ceXβ) + v2
P̃.

3. Properties of the covariance matrix K

Note that the covariance matrix K can be decomposed as

K = B + D (2)

with

B = diag(ceXβ)(P − ππT)diag(ceXβ) + v2(P̃ − π̃ π̃T)

and

D = σ 2I� + v2π̃ π̃T.

Matrix P̃ − π̃ π̃T is a non-negative definite since its mth diagonal block is a covariance matrix of a
subvector of indicators (Ii, i ∈ Um), m = 1, . . . , M , and thus B is a non-negative definite matrix,
while D is a positive definite matrix under the assumption that σ 2 > 0.

Alternatively, D can be represented in the block-diagonal form as

D = Diag(σ 2I�m + v2πmπT
m),

where I�m is the diagonal block of the diagonal matrix I� representing the small area Um, m =
1, . . . , M . This representation is convenient for obtaining the form of D

−1 by block-wise inversions

D
−1 = Diag[(σ 2I�m + v2πmπT

m)−1].
Thus, using the well-known formula for the inversion of A + bbT, where A is an invertible matrix
and b is a vector, we get

D
−1 = σ−2Diag

(
I�−1

m − v2emeT
m

σ 2 + v2E(nm)

)
,

where nm is the number of the elements of the sample belonging to Um and thus E(nm) = πT
m1 =∑

i∈Um
πi , m = 1, . . . , M . Note that

D
−1πm = em

σ 2 + v2E(nm)
, m = 1, . . . , M, (3)

and, consequently, since π = ∑M
m=1 πm, we get

D
−1π =

M∑
m=1

em

σ 2 + v2E(nm)
.

Moreover, since

π̃X =
M∑

m=1

πmxT
m (4)
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Statistics 5

by Equation (3)

D
−1π̃X =

M∑
m=1

D
−1πmxT

m =
M∑

m=1

emxT
m

σ 2 + v2Enm

(5)

and due to the relation πT
mem = Enm

X
Tπ̃T

D
−1π̃X = X

Tπ̃T
M∑

m=1

emxT
m

σ 2 + v2Enm

=
M∑

m=1

xmxT
mEnm

σ 2 + v2Enm

. (6)

Note that for sampling plans with fixed sample sizes (nm)m=1,...,M in small areas (Um)m=1,...,M ,
we have

(P − ππT)em = 0 and (P̃ − π̃ π̃
T
)em = 0 (7)

for any m = 1, . . . , M .
Consequently, for any m = 1, . . . , M ,

Kem = Dem = (σ 2 + v2nm)πm,

which yields

K
−1πm = em

σ 2 + v2nm

, m = 1, . . . , M. (8)

Consequently, in this case, the respective formulas are very similar to the ones for the matrix D:

K
−1π̃X =

M∑
m=1

emxT
m

σ 2 + v2nm

(9)

and

X
Tπ̃T

K
−1π̃X =

M∑
m=1

nmxmxT
m

σ 2 + v2nm

. (10)

4. Multivariate auxiliary variables

We start with an auxiliary minimization result which will be our main tool in this section.

Lemma 1 Let X be a random vector in Rq and W be a random vector in RN . Let γ be a
fixed vector in Rq and A be an N × q matrix satisfying EW = AEX. Denote 

 = Cov (W),

C = Cov (W, X) = E[(W − EW)(X − EX)T] which is an N × q matrix and S = Cov (X). Then

inf
w∈RN :ATw=γ

E(wTW − γ TX)2 = E(wT
optW − γ TX)2

= γ T(Iq − C
T

−1

A)(AT

−1
A)−1(Iq − A

T

−1
C)γ − γ T

C
T

−1

Cγ + γ T
Sγ (11)

and

wopt = 

−1
A(AT

−1

A)−1(Iq − A
T

−1

C)γ + 

−1
Cγ . (12)
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6 W. Niemiro and J. Wesołowski

Proof Using the Lagrange method, we will minimize the function

F(w) = E(wTW − γ TX)2 − 2λT
A

Tw.

Note that its derivative, DF is of the form

(DF)(w) = 2E[(wTW − γ TX)W ] − 2Aλ.

Thus, we arrive at the equation

[EWWT]w − [EWXT]γ = Aλ,

which is equivalent to



w + (EW)(EW)Tw − Cγ − (EW)(EX)Tγ = Aλ.

Now using the assumption EW = AEX and the constraint A
Tw = γ , we arrive at the equation



w − Cγ = Aλ

and thus

w = 

−1
Aλ + 

−1

Cγ .

Using again the constraint, we obtain

λ = (AT

−1
A)−1γ − (AT

−1

A)−1
A

T

−1
Cγ

which leads to Equation (12) and consequently to Equation (11). �

In the result below, we consider linear combinations of the observations (Zi)i∈U with coeffi-
cients which may depend on v2, σ 2 and β. Such a function can be regarded as a linear estimator
or predictor if its coefficients depend only on v2 and σ 2 (assumed to be known).

Theorem 1 Consider the model as described in Section 2. By D we denote a fixed small area,

i.e. D ∈ {Um, : m = 1, . . . , M}.
(1) Let

β̃ = (XTπ̃T
K

−1π̃X)−1
X

Tπ̃T
K

−1Z. (13)

Then, Eβ̃ = β and the covariance matrix of β̃ is given by

Cov β̃ = (XTπ̃T
K

−1π̃X)−1. (14)

Let β̂ be an arbitrary linear unbiased estimator of β. Then for any γ ∈ Rq,

Var γ Tβ̂ ≥ Var γ Tβ̃. (15)

(2) Let θD = xT
Dβ + uD and

θ̃D = (xD − v2πT
DK

−1π̃X)β̃ + v2πT
DK

−1Z. (16)

Then, Eθ̃D = θD and

E(θ̃D − θD)2 = v2 − v4πT
DK

−1πD + (xT
D − v2πT

DK
−1π̃X)(XTπ̃T

K
−1π̃X)−1

× (xD − v2
X

Tπ̃T
K

−1πD). (17)

For an arbitrary linear unbiased predictor θ̂D of θD, its MSE satisfies

E(θ̂D − θD)2 ≥ E(θ̃D − θD)2. (18)
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Statistics 7

(3) Let ȲD = xT
Dβ + uD + ε̄D, where ε̄D = (1/ND)

∑
i∈D εi . Let

ỸD =
(

xT
D −

(
v2 + σ 2

ND

)
πT

DK
−1π̃X

)
β̂ +

(
v2 + σ 2

ND

)
πT

DK
−1Z. (19)

Then, EỸD = ȲD and

E(ỸD − ȲD)2 = v2 + σ 2

ND

−
(

v2 + σ 2

ND

)2

πT
DK

−1πD +
(

xT
D −

(
v2 + σ 2

ND

)
πT

DK
−1π̃X

)

× (XTπ̃T
K

−1π̃X)−1

(
xD −

(
v2 + σ 2

ND

)
X

Tπ̃T
K

−1πD

)
. (20)

For an arbitrary linear unbiased predictor ŶD of ȲD, its MSE satisfies

E(ŶD − ȲD)2 ≥ E(ỸD − ȲD)2. (21)

Remark 1 Note that β̃ may be regarded as the best linear unbiased pseudo-estimator of β, θ̃D

as the best linear unbiased pseudo-predictor of θD and ỸD as the best linear unbiased pseudo-
predictor of ȲD . The prefix pseudo is necessary because all these random variables depend, in
general, on the unknown quantity β through K.

Proof of Theorem 1 In each of three parts, the proof is based on Lemma 1 with W = Z, 

 = K,
A = π̃X common for all these parts. Other quantities in each of these parts differ.

Part 1. We apply Lemma 1 additionally assuming X = β (thus X is here non-random and
consequently, S = 00, and C = 00). Now it follows from Equation (12) that for any γ ∈ Rq

wT
optW = wT

opt(β)W = γ Tβ̃,

where β̃ is defined by Equation (13). Moreover, since the second part of Equation (11) holds for

any γ ∈ Rq , the covariance of β̃ is given by Equation (14).

For any γ ∈ Rq consider a linear unbiased estimator γ Tβ̂ = wTZ of γ Tβ and note that the
unbiasedness condition is equivalent to X

Tπ̃Tw = γ . Therefore, Lemma 1 implies Inequality
(15), that is,

E(γ Tβ̂ − γ Tβ)2 ≥ E(γ Tβ̃ − γ Tβ)2 = γ T(XTπ̃T
K

−1π̃X)−1γ .

Part 2. The proof repeats the scheme of the previous one. The only difference is that in Lemma
1 we use

X = β + uD

xD

xT
DxD

, and thus S = v2

xT
DxD

xDxT
D,

C = v2 πDxT
D

xT
DxD

and γ = xD.

Upon inserting the above quantities into Equations (12) and (11), after a little of algebra, we arrive
at Equations (16) and (17). Again Inequality (18) follows from Lemma 1 just as in Part 1.
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8 W. Niemiro and J. Wesołowski

Part 3. Again we use the same scheme. Now in Lemma 1, we use additionally

X = β + (uD + ε̄D)
xD

xT
DxD

, and thus S =
(

v2 + σ 2

ND

)
xDxT

D

xT
DxD

,

C =
(

v2 + σ 2

ND

)
πDxT

D

xT
DxD

and γ = xD.

Similarly, as earlier Equations (12) and (11), after a little of algebra lead to Equations (19) and
(20). Again Inequality (21) is a direct consequence of Lemma 1. �

Remark 2 Expanding further Remark 1, we observe that, in general, the covariance of β̃ and the

MSEs of θ̃D and ỸD as given in Equations (14), (17) and (20) depend on unknown β. As long as
such dependence takes place, even if variances v2 and σ 2 are known: (i) the BLUE of β does not

exist; (ii) the BLUP of θD does not exist; (iii) the BLUP of ȲD does not exist. It follows from the
inequalities in Theorem 1 and the fact that wopt in Lemma 1 is unique.

Note that if

(P − ππT)ce = 00 (22)

then the dependence on β in the formulas of Theorem 1 vanishes. The most interesting case when
it occurs is when the sample sizes are fixed. This situation is considered in the next result.

Corollary 1 Let p be a sample plan with fixed sample sizes (nm)m=1,...,M in small areas
(Um)m=1,...,M . Then

(1) BLUE β̃ of β has the form

β̃ =
(

M∑
m=1

κmxmxT
m

)−1 M∑
m=1

κmxmZ̃m, (23)

where κm = v2nm/(σ 2 + v2nm), Z̃m = (1/nm)
∑

i∈Um
Zi, m = 1, . . . , M .

The covariance matrix of β̃ is

Cov β̃ = v2

(
M∑

m=1

κmxmxT
m

)−1

. (24)

(2) BLUP θ̃D of θD has the form

θ̃D = (1 − κD)xT
Dβ̃ + κDZ̃D (25)

with β̃ given by Equation (23), and its MSE is

E(θ̃D − θD)2 = v2(1 − κD)

⎡
⎣(1 − κD)xT

D

(
M∑

m=1

κmxmxT
m

)−1

xD + 1

⎤
⎦ . (26)
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Statistics 9

(3) BLUP ỸD of ȲD has the form

ỸD = (1 − κDτD)xT
Dβ̃ + κDτDZ̃D (27)

with τD = 1 + (σ 2/v2ND) and β̃ given by Equation (23). Its MSE is

E(ỸD − ȲD)2 = v2(1 − κDτD)

⎡
⎣(1 − κDτD)xT

D

(
M∑

m=1

κmxmxT
m

)−1

xD + τD

⎤
⎦ . (28)

Proof To begin with, note that for sample plans with fixed sample sizes (nm)m=1,...,M condition
(7) is satisfied and consequently K does not depend on β.

Part 1. The result given in Equation (23) follows directly from Equation (13) by referring to
Equations (9) and (10), while Equation (24) follows directly from Equation (14) by referring to
Equation (10) alone.

Part 2. The result given in Equation (25) follows from Equation (16) by referring to Equations
(8) and (4). Now Equation (26) follows from Equation (17) by referring to Equations (10) and
(8), and Equation (4) again.

Part 3. The result given in Equation (27) follows from Equation (19) through Equations (8)
and (4). Similarly, Equation (28) is a consequence of Equation (20) due to Equations (10) and (8)
combined with Equation (4). �

5. Optimal strategy

For the proof of the optimality theorem given later in this section, we first need the following
result on positive definiteness of some matrices.

Proposition 1 Let 

 = B + D, where B and D are symmetric N × N matrices, B is non-
negative definite and D is positive definite. Then for any N × q (q ≤ N ) matrices A and C, such
that A is of full rank, matrix

(Iq − C
T

−1

A)(AT

−1
A)−1(Iq − A

T

−1
C) − C

T

−1
C

− [(Iq − C
T
D

−1
A)(AT

D
−1

A)−1(Iq − A
T
D

−1
C) − C

T
D

−1
C]

is positive definite.

Proof Let V = 

−1 and V + H = D
−1. Note that H is positive definite. For t ∈ [0, 1], we define

Vt = V + tH. For an arbitrary fixed λ ∈ Rq , we consider function f : [0, 1] → R given by

f (t) = λT[(Iq − C
T
VtA)(AT

VtA)−1(Iq − A
T
VtC) − C

T
VtC]λ.

Since λ is arbitrary to finish the proof, it is sufficient to show that f (0) > f (1). To this end, we
compute the derivative f ′

f ′(t) = −λT
C

T
HA(AT

VtA)−1(Iq − A
T
VtC)λ

− λT(Iq − C
T
VtA)(AT

VtA)−1
A

T
HA(AT

VtA)−1(Iq − A
T
VtC)λ

− λT(Iq − C
T
VtA)(AT

VtA)−1
A

T
HCλ

− λT
C

T
HCλ

= −λT(CT + Z
T
t )H(C + Zt )λ,
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10 W. Niemiro and J. Wesołowski

where Zt = A(AT
VtA)−1(Iq − A

T
VtC). Thus, f ′ is negative and consequently f is decreasing.

�

Theorem 2 Let p be an arbitrary sampling design. For p we denote sample sizes in small
areas by nm = #(S ∩ Um), m = 1, . . . , M . Let p̄ be a sampling design with fixed sample sizes
#(S̄ ∩ Um) = n̄m, m = 1, . . . , M . Assume that n̄m = Enm, m = 1, . . . , M .

(1) For any γ ∈ Rq and any linear unbiased estimator β̂ of β

Var γ Tβ̂ ≥ Var γ Tβ̃ ≥ γ T

(
M∑

m=1

xmxT
mEnm

σ 2 + v2Enm

)−1

γ , (29)

where β̃ is given by Equation (13). The above inequality means that for any linear functional
γ Tβ of β, its BLUE under p̄ has a variance less than or equal to the variance of any linear

unbiased estimator γ Tβ̂ under p.

(2) The MSE of any linear unbiased predictor θ̂D of θD satisfies

E(θ̂D − θD)2 ≥ E(θ̃D − θD)2

≥ σ 2

σ 2 + v2EnD

⎛
⎝ σ 2

σ 2 + v2EnD

xT
D

(
M∑

m=1

xmxT
mEnm

σ 2 + v2Enm

)−1

xD + v2

⎞
⎠ , (30)

where θ̃D is given by Equation (16). The above inequality means that the BLUP of θD for
sampling design p̄ has the MSE less than or equal to the MSE of any linear unbiased predictor
θ̂D for p.

(3) The MSE of any linear unbiased predictor ŶD of ȲD satisfies

E(ŶD − ȲD)2 ≥ E(ỸD − ȲD)2 ≥ σ 2(ND − EnD)

ND(σ 2 + v2EnD)

·
⎛
⎝ σ 2(ND − EnD)

ND(σ 2 + v2EnD)
xT

D

(
M∑

m=1

xmxT
mEnm

σ 2 + v2Enm

)−1

xD + v2 + σ 2

ND

⎞
⎠ , (31)

where ỸD is given by Equation (19). The above inequality means that the BLUP of ȲD for
sampling design p̄ has the MSE less than or equal to the MSE of any linear unbiased predictor
ŶD for p.

Proof In all cases, we will use Proposition 1 with 

 = K, matrices B and D defined through
the decomposition of K given in Equation (2) and A = π̃X. Only matrix C of Proposition 1 will
be chosen in a different way in each case below.

To prove the first part, we take C = 00. Therefore,

Var γ Tβ̃ = γ T(XTπ̃T
K

−1π̃X)−1γ ≥ γ T(XTπ̃T
D

−1π̃X)−1γ

and thus the Formula (29) follows from Equation (6). The conclusion follows from the first part
of Corollary 1.
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Statistics 11

To prove the second part, we take C = (v2/xT
DxD)πDxT

D . Thus

E(θ̃D − θD)2 ≥ (xT
D − v2πT

DD
−1π̃X)(XTπ̃T

D
−1π̃X)−1(xD − v2

X
Tπ̃T

D
−1πD)

− v4πT
DD

−1πD + v2

and thus the Formula (30) follows from Equations (3), (4) and (6). The conclusion follows from
the second part of Corollary 1.

To prove the third part, we take C = (v2 + σ 2/ND)πDxT
D/xT

DxD . Thus

E(ỸD − ȲD)2 ≥ v2 + σ 2

ND

−
(

v2 + σ 2

ND

)2

πT
DD

−1πD +
(

xT
D −

(
v2 + σ 2

ND

)
πT

DD
−1π̃X

)

× (XTπ̃T
D

−1π̃X)−1

(
xD −

(
v2 + σ 2

ND

)
X

Tπ̃T
D

−1πD

)

and again the Formula (31) follows from Equations (3), (4) and (6). The conclusion follows from
the third part of Corollary 1. �

6. Univariate auxiliary variables

The situation which was considered in Section 4 becomes much simpler when variables xm are one
dimensional, i.e. q = 1. Let us begin with some new notation. Symbols xm and β (not underlined)
now denote scalars. Vector x = (x1, . . . , xM)T takes over the role of matrix X and the basic model
becomes

Y = ce(βx + u) + ε. (32)

Other notation remains the same. Just as in Section 4, we have E(u) = 0, Cov (u) = v2
IM , E(ε) =

0 and Cov (ε) = σ 2
IN with σ 2 > 0. In this section, we will assume that parameters γ 2 = (v2 +

σ 2)/β2 and τ 2 = σ 2/v2 are known. This might be the case for repeated surveys, when τ and
γ could be estimated with relatively small error from the past. Note that γ is the coefficient of
variation of Yi = xmβ + um + εi up to multiple xm and τ is the ratio of standard deviations of unit
error εi and small area effect um. We will show that in this case, the BLUE of β and the BLUPs
of θD and ȲD exist, in contrast with Corollary 2. The situation when γ and/or τ are not known
will be considered later, in Section 7. Let us now introduce a scaled version of K which is known
under our present assumptions:

K̄ = K

v2
= τ 2I� + 1 + τ 2

γ 2
diag(cex)(P − ππT)diag(cex) + P̃.

The following result is an immediate consequence of Theorem 1.

Proposition 2 Consider the model as described in Section 2 assuming that q = 1 and that
γ 2 = (v2 + σ 2)/β2 and τ 2 = σ 2/v2 are known.

(1) BLUE β̂ of β has the form

β̂ = xTπ̃T
K̄

−1Z

xTπ̃TK̄−1π̃x
(33)

and its variance is

Var β̂ = v2

xTπ̃TK̄−1π̃x
. (34)
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12 W. Niemiro and J. Wesołowski

(2) BLUP θ̂D of θD = xDβ + uD has the form

θ̂D = (xD − xTπ̃T
K̄

−1πD)β̂ + πT
DK̄

−1Z (35)

and its MSE is

E(θ̂D − θD)2 = v2

[(
xD − xTπ̃T

K̄
−1πD

)2

xTπ̃TK̄−1π̃x
+ 1 − πT

DK̄
−1πD

]
. (36)

(3) BLUP ŶD of ȲD = θD + ε̄D has the form

ŶD = [
xD − τDxTπ̃T

K̄
−1πD

]
β̂ + τDπT

DK̄
−1Z (37)

and its MSE is

E(ŶD − ȲD)2 = v2

[
τD − τ 2

DπT
DK̄

−1πD +
(
xD − τDxTπ̃T

K̄
−1πD

)2

xTπ̃TK̄−1π̃x

]
(38)

for τD = 1 + τ 2/ND .

Proof It is sufficient to note that pseudo-estimator β̃ and pseudo-predictors θ̃D and ỸD considered

in Theorem 1 now become a genuine estimator (denoted by β̂) and predictors (denoted by θ̂D and

ŶD), because they are free from unknown parameters. �

The formulas for the variance and MSEs derived above can be used to construct approximate
confidence intervals. Unknown parameters in these formulas should then be replaced by their
consistent estimators. A similar, rather standard, plug-in approach will be used in Section 7 to
derive empirical versions of BLUE and BLUPs.

Corollary 2 Let p be a sample plan with fixed sample sizes (nm)m=1,...,M in small areas
(Um)m=1,...,M . Then

(1) BLUE β̂ of β has the form

β̂ =
∑M

m=1 κmxmZ̃m∑M
m=1 κmx2

m

, (39)

where κm = nm/(τ 2 + nm), Z̃m = (1/nm)
∑

i∈Um
Zi .

The variance of β̂ is

Var β̂ = v2∑M
m=1 κmx2

m

. (40)

(2) BLUP θ̂D of θD has the form

θ̂D = (1 − κD)xDβ̂ + κDZ̃D (41)

with β̂ given by Equation (39), and its MSE is

E(θ̂D − θD)2 = v2(1 − κD)

[
(1 − κD)x2

D∑M
m=1 κmx2

m

+ 1

]
. (42)
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Statistics 13

(3) BLUP ŶD of ȲD has the form

ŶD = (1 − κDτD)xDβ̂ + κDτDZ̃D (43)

with β̂ given by Equation (39), and its MSE is

E(ŶD − ȲD)2 = v2(1 − κDτD)

[
(1 − κDτD)x2

D∑M
m=1 κmx2

m

+ τD

]
, (44)

where τD = 1 + τ 2/ND .

7. EBLUE and EBLUPs

Parameters v2 and σ 2 are usually unknown in practice. To use results of previous sections, one
has to replace these variance components by their estimates. We will also show that β can be

simultaneously estimated. This allows us to transform pseudo-estimator β̃ and pseudo-predictors

θ̃D and ỸD into computable estimator EBLUE and predictors EBLUPs.
Recall that

Zi = Ii(x
T
mβ + um + εi), i ∈ Um,

Var Zi = E(Zi − πix
T
mβ)2 = [σ 2 + v2 + (xT

mβ)2(1 − πi)]πi,

Cov (Zi, Zj ) =
{

v2πij + (xT
mβ)2[πij − πiπj ] for i, j ∈ Um;

(xT
m1

β)(xT
m2

β)[πij − πiπj ] for i ∈ Um1 , j ∈ Um2 .

Note that

M∑
m=1

E

⎛
⎝I (nm > 1)

nm − 1

∑
i∈S∩Um

(Zi − Z̃m)2

⎞
⎠ = σ 2

M∑
m=1

Pr(nm > 1),

where

Z̃m =
⎧⎨
⎩

1

nm

∑
j∈Um

Zj if nm �= 0;
0 if nm = 0.

Thus, the method of moments leads to the following estimator of σ 2:

σ̌ 2 = 1∑M
m=1 Pr(nm > 1)

M∑
m=1

I (nm > 1)

nm − 1

∑
i∈S∩Um

(Zi − Z̃m)2. (45)

Note also that
M∑

m=1

∑
j∈Um

1

πj

E(Zj − Ijx
T
mβ)2 = N(v2 + σ 2).

The above identity via the method of moments can be used to derive an estimating equation for
estimator v̌2 of v2

v̌2 = f (Z, I , β̌) − σ̌ 2, (46)
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14 W. Niemiro and J. Wesołowski

where β̌ is an estimator of β and

f (Z, I , β̌) = 1

N

M∑
m=1

∑
j∈Um

(Zj − Ijx
T
mβ̌)2

πj

.

Note that K, as defined in Equation (2) is a function of v2, σ 2 and β. Therefore, the above
equation can be combined with Equation (13) into an iterative procedure as follows. We fix some
starting values β

0
and v2

0 . For any r ≥ 0 knowing β
r

and v2
r , we calculate the value of β

r+1
as

β
r+1

= (XTπ̃T
K

−1(v2
r , σ̌

2, β
r
)π̃X)−1

X
Tπ̃T

K
−1(v2

r , σ̌
2, β

r
)Z. (47)

Consequently, we calculate v2
r+1 according to Equation (46) as follows:

v2
r+1 = f (Z, I , β

r+1
) − σ̌ 2. (48)

Though we started with a formula for an illegal pseudo-BLUE β̃, the iterative algorithm, provided

it converges, may be regarded as a valid estimation procedure. Estimators σ̌ 2 and β̌, v̌2 obtained

in such a way can be used in empirical versions of pseudo-BLUPs for θD and ȲD (see Equations
(16) and (19))

θ̌D = (xT
D − v̌2πT

DǨ
−1π̃X)β̌ + v̌2πT

DǨ
−1Z

and

Y̌D =
(

xT
D −

(
v̌2 + σ̌ 2

ND

)
πT

DǨ
−1π̃X

)
β̌ +

(
v̌2 + σ̌ 2

ND

)
πT

DǨ
−1Z,

where Ǩ = K(v̌2, σ̌ 2, β̌). In all simulation experiments we performed, the above numerical pro-
cedure seemed to converge fast. Unfortunately, as in many other EBLUE and EBLUPs procedures,
a rigorous proof of convergence can be very difficult.

For fixed sample size designs, the above procedure for EBLUE and EBLUPs can be applied.
The main difference is that we use simpler Formula (23) for β̃, instead of Equation (13), taking
into account the fact that κm’s depend on v2 and σ 2.

An alternative, more standard approach in this situation with nm > 1, m = 1, . . . , M , follows
from the fact that conditionally on I observations (Zi)i∈S are jointly independent and identically
distributed within small areas. Thus, we have the following well-known relations:

1

M

M∑
m=1

1

nm − 1

∑
i∈Sm

E(Zi − Z̃m)2 = σ 2

and

1

M − q

M∑
m=1

κmE(Z̃m − xTβ̃)2 = v2.

In the case of fixed sample sizes considered here, the above identities via the method of moments
lead to the following classical estimator of σ 2:

σ̌ 2 = 1

M

M∑
m=1

1

nm − 1

∑
i∈S∩Um

(Zi − Z̃m)2, (49)
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Statistics 15

which is a special case of Equation (45) and estimating equation for v2

v̌2 = 1

M − q

M∑
m=1

κm(Z̃m − xT
mβ̌)2, (50)

where β̌ is an estimator of β. The numerical iterative procedure is used to compute estimators
of β and v2. We fix some starting value v2

0 . For any r ≥ 0 knowing v2
r , we calculate the value

of β
r+1

as

β
r+1

=
(

M∑
m=1

κm(v2
r , σ̌

2)xmxT
m

)−1 M∑
m=1

κm(v2
r , σ̌

2)xmZ̃m, (51)

where κm(v2, σ 2) = (v2nm)/(σ 2 + v2nm), m = 1, . . . , M . Then v2
r+1 is computed as

v2
r+1 = 1

M − q

M∑
m=1

κm(v2
r , σ̌

2)(Z̃m − xT
mβ

r+1
)2, (52)

as in Equation (50).

Example 1 Assume that population U = {1, . . . , N} is partitioned into H strata (Vh)h=1,...,H and
each small area is a union of several strata. Without any loss of generality, we will assume that the
ordering of strata is such that we can write Um = ⋃hm+1−1

h=hm
Vh with h1 = 1 and hM+1 − 1 = H .

Let Nh = #Vh. We consider a stratified sampling scheme selecting in each stratum Vh a sample of
fixed size nh according to simple random sampling without replacement. Thus, the sample size in
each small area Um is fixed and equal to nm = ⋃hm+1−1

h=hm
nh. We use the formulas for BLUPs from

Corollary 1. EBLUPs are constructed from BLUPs exactly as described earlier in this section.
In the definition of small areas, we mimicked the situation encountered in a survey of small
enterprises conducted by the Central Statistical Office in Poland. In Table 1, it is visible that, in
spite of the fact that small areas are unions of strata, some of them are really very small. We expect
that in the case of small areas intersecting strata, results will be qualitatively similar.

Variance component σ 2 is estimated by Equation (45) (alternatively Equation (49)). To compute
the EBLUE and the estimators of variance component v2, we use Equation (48) with

f (Z, I , β) = 1

N

M∑
m=1

hm+1−1∑
h=hm

Nh

nh

∑
j∈Vh

(Zj − Ijx
T
mβ)2

and Equation (51). The estimators of v2 and β obtained in this way are denoted by v̌2
new and β̌

new
.

The resulting predictors of θm and Ȳm are denoted by θ̌new
m and Y̌ new

m .

Table 1. Sizes (Nm) and sample sizes (nm) in small areas (m).

m 1 2 3 4 5 6 7 8 9 10 11 12 13

Nm 6 5 22 51 82 186 311 458 661 844 1039 1208 1166
nm 3 2 4 4 4 4 4 8 12 14 19 23 20

m 14 15 16 17 18 19 20 21 22 23 24 25

Nm 1101 879 713 515 333 197 106 69 26 10 8 4
nm 20 16 13 8 5 4 4 4 4 4 3 2
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16 W. Niemiro and J. Wesołowski

A more classical approach to estimating β and v2, based on Equations (50) and (51), was also

considered. The respective estimators and predictors are denoted by v̌2
cl, β̌

cl
, θ̌ cl

m and Y̌ cl
m .

Our artificial population has N=10,000 units in H = 94 strata and M = 25 small areas. Denote
by Hm the number of strata within the mth small area. In our case, we have H1 = 3, H2 = 2,
H3 = · · · = H23 = 4, H24 = 3 and H25 = 2. Numbers of units in small areas and allocated sample
sizes (proportional allocation in strata) are given in Table 1.

The total sample size is n = 208.
Below we present results of three experiments, each using the structure of population described

above. Two of these experiments were performed under the correctly specified model, while in
the third experiment the model was deliberately misspecified.

In each of the experiments, we simulate 1000 sets of population values (Yi)i∈U . In each simula-
tion, we select a sample of 208 units and compute values of estimators σ̌ 2, v̌2 and β̌ and predictors

θ̌m and Y̌m for m = 1, . . . , M . In this way, we obtain the Monte Carlo approximations of expected
values Eσ̌ 2, Ev̌2 and Eβ̌ and of MSEs:

E(σ̌ 2 − σ 2)2, E(v̌2 − v2)2, E(β̌ − β)2.

Analogously, we approximate

e(θm) = E(θ̌m − θm)2, e(Ȳm) = E(Y̌m − Ȳm)2.

Moreover estimators, denoted, respectively, by ê(θm) and ê(Ȳm), of the above quantities are com-
puted via Formulas (26) and (28) with estimated values of v2 and σ 2. The results of our experiments
reported below contain Monte Carlo approximations of ¯̂e(θm) = Eê(θm) and ¯̂e(Ȳm) = Eê(Ȳm),
expectations of estimators of the MSE. For brevity, we restrict ourselves to these quantities and
omit the MSE of estimators of MSE of the BLUPs when summarizing the results. All the estima-
tors and predictors are computed in two versions: classical and new (let us note that estimators of
σ 2 are the same for the two approaches, σ̌ 2

cl = σ̌ 2
new).

Apart from the MSEs, we also consider the nominal 95% confidence intervals based on the
normal approximation

θ̌m ± 1.96
√

ê(θm), Y̌m ± 1.96
√

ê(Ȳm).

Expected half-widths of the intervals are denoted by

Cw(θm) = 1.96E

√
ê(θm), Cw(Ȳm) = 1.96E

√
ê(Ȳm).

We approximate the actual coverage probabilities

Cpr(θm) = Pr(θ̌m − 1.96
√

ê(θm) ≤ θm ≤ θ̌m + 1.96
√

ê(θm)),

Cpr(Ȳm) = Pr(Y̌m −
√

ê(Ȳm) ≤ Ȳm ≤ Y̌m +
√

ê(Ȳm))

by also using the Monte Carlo method.

7.1. Experiment 1

We generate populations according to the formula Yi = β + um + εi for any i ∈ Um with β = 50,
v = 2 and σ = 1. This is a special case of the general model defined in Section 3, with q = 1
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Statistics 17

Table 2. Comparison of simulated and estimated MSE of classical and new EBLUPs in small areas, Experiment 1.

m ecl(θm) ¯̂ecl(θm) enew(θm) ¯̂enew(θm) ecl(Ȳm) ¯̂ecl(Ȳm) enew(Ȳm) ¯̂enew(Ȳm)

1 0.317 0.304 0.324 0.300 0.166 0.159 0.169 0.158
2 0.427 0.438 0.441 0.431 0.279 0.277 0.284 0.274
3 0.225 0.233 0.228 0.230 0.189 0.193 0.191 0.191
4 0.252 0.233 0.254 0.230 0.235 0.216 0.237 0.214
5 0.237 0.233 0.241 0.230 0.226 0.222 0.230 0.220
6 0.245 0.233 0.250 0.230 0.238 0.228 0.242 0.226
7 0.253 0.233 0.256 0.230 0.253 0.230 0.256 0.228
8 0.120 0.120 0.121 0.119 0.119 0.118 0.120 0.117
9 0.080 0.081 0.080 0.081 0.079 0.080 0.079 0.079

10 0.075 0.070 0.075 0.069 0.074 0.068 0.074 0.068
11 0.052 0.052 0.052 0.051 0.051 0.051 0.051 0.050
12 0.045 0.043 0.045 0.043 0.044 0.042 0.044 0.042
13 0.050 0.049 0.05 0.049 0.049 0.048 0.049 0.048
14 0.054 0.049 0.054 0.049 0.053 0.048 0.053 0.048
15 0.063 0.061 0.063 0.061 0.061 0.06 0.061 0.060
16 0.070 0.075 0.071 0.075 0.070 0.074 0.071 0.073
17 0.114 0.120 0.115 0.119 0.113 0.118 0.113 0.118
18 0.200 0.188 0.203 0.187 0.194 0.186 0.197 0.184
19 0.229 0.233 0.231 0.230 0.223 0.228 0.225 0.226
20 0.255 0.233 0.258 0.230 0.246 0.224 0.248 0.222
21 0.239 0.233 0.240 0.230 0.226 0.220 0.226 0.218
22 0.235 0.233 0.237 0.230 0.199 0.199 0.201 0.197
23 0.251 0.233 0.255 0.230 0.151 0.143 0.153 0.142
24 0.307 0.304 0.312 0.300 0.210 0.196 0.213 0.195
25 0.465 0.438 0.472 0.431 0.245 0.234 0.248 0.232

and the auxiliary variable being constant, xm ≡ 1. Note that θm = β + um. Then, we use the same
model to compute estimators and predictors.

For σ̌ 2 both methods give the same result: E(σ̌ 2 − σ 2)2 ≈ 0.0228. For v̌2 the classical method
gives E(v̌2

cl − v2)2 = 1.506, while the new one is slightly worse E(v̌2
new − v2)2 = 2.499. The

results for the EBLUE of β are the following: E(β̌cl − β)2 = 0.164 and E(β̌new − β)2 = 0.164.
The results concerning MSEs and confidence intervals, which are specific for small areas,
are gathered in Tables 2 and 3. Table 2 reports the MSE of BLUPs and average values of
estimators of the MSE, while Table 3 gives the coverage rate and average half-widths of
confidence intervals.

7.2. Experiment 2

We generate populations according to the formulaYi = xT
mβ + um + εi for any i ∈ Um withq = 2,

β = (50, 5)T, v = 2 and σ = 1. Vectors of auxiliary variables are of the form xm = (1, xm)T, with
xm generated from the standard normal distribution. The collection of xm’s is created once and
kept fixed in all 1000 repeated simulations of Yi’s. Note that θm = 50 + 5xm + um. We use the
correctly specified model to compute estimators and predictors.

The average value of σ̌ 2 is 0.992, the same for both methods (the true value being σ 2 = 1).
For v̌2

cl the average value is 3.998, while the average value of v̌2
new equals 3.785 (the true value

being v2 = 4).
Results for the EBLUE of β, i.e. the Monte Carlo approximations of Eβ̌, are the following:

(49.993, 4.995)T for β̌
cl

and (49.993, 4.995)T for β̌
new

(the true value being β = (50, 5)T). Area-
specific results are given in Tables 4 and 5.
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18 W. Niemiro and J. Wesołowski

Table 3. Simulated coverage rates and average half-widths of confidence intervals, Experiment 1.

m C
pr
cl (θm) Cw

cl (θm) C
pr
new(θm) Cw

new(θm) C
pr
cl (Ȳm) Cw

cl (Ȳm) C
pr
new(Ȳm) Cw

new(Ȳm)

1 0.94 1.078 0.939 1.071 0.944 0.779 0.943 0.777
2 0.948 1.295 0.944 1.284 0.945 1.029 0.94 1.024
3 0.951 0.943 0.95 0.939 0.953 0.858 0.949 0.855
4 0.935 0.943 0.935 0.939 0.931 0.908 0.934 0.904
5 0.942 0.943 0.939 0.939 0.946 0.921 0.937 0.917
6 0.939 0.943 0.938 0.939 0.949 0.933 0.946 0.929
7 0.946 0.943 0.943 0.939 0.946 0.937 0.943 0.933
8 0.95 0.677 0.948 0.676 0.949 0.672 0.946 0.67
9 0.95 0.556 0.951 0.555 0.947 0.551 0.947 0.55

10 0.939 0.516 0.938 0.515 0.943 0.511 0.942 0.511
11 0.949 0.444 0.946 0.443 0.947 0.44 0.944 0.439
12 0.943 0.404 0.943 0.403 0.946 0.4 0.946 0.399
13 0.941 0.433 0.943 0.432 0.944 0.429 0.946 0.428
14 0.939 0.433 0.94 0.432 0.935 0.429 0.935 0.428
15 0.954 0.483 0.955 0.482 0.947 0.478 0.946 0.478
16 0.955 0.535 0.954 0.534 0.956 0.53 0.955 0.529
17 0.948 0.677 0.948 0.676 0.948 0.672 0.949 0.671
18 0.944 0.849 0.941 0.845 0.943 0.843 0.941 0.839
19 0.939 0.943 0.94 0.939 0.944 0.934 0.946 0.93
20 0.941 0.943 0.936 0.939 0.947 0.926 0.942 0.922
21 0.949 0.943 0.948 0.939 0.947 0.917 0.945 0.913
22 0.95 0.943 0.947 0.939 0.943 0.872 0.945 0.868
23 0.938 0.943 0.933 0.939 0.942 0.74 0.938 0.738
24 0.95 1.078 0.947 1.071 0.947 0.866 0.944 0.863
25 0.936 1.295 0.935 1.284 0.938 0.945 0.939 0.941

Table 4. Comparison of simulated and estimated MSE of classical and new EBLUPs in small areas, Experiment 2.

m ecl(θm) ¯̂ecl(θm) enew(θm) ¯̂enew(θm) ecl(Ȳm) ¯̂ecl(Ȳm) enew(Ȳm) ¯̂enew(Ȳm)

1 0.255 0.254 0.278 0.242 0.137 0.147 0.141 0.144
2 0.345 0.333 0.368 0.313 0.246 0.24 0.253 0.233
3 0.201 0.199 0.21 0.189 0.174 0.17 0.18 0.164
4 0.212 0.2 0.224 0.192 0.202 0.188 0.213 0.181
5 0.205 0.198 0.217 0.189 0.192 0.191 0.204 0.182
6 0.204 0.199 0.221 0.19 0.198 0.196 0.215 0.188
7 0.212 0.207 0.224 0.199 0.209 0.205 0.221 0.197
8 0.108 0.11 0.114 0.107 0.105 0.109 0.111 0.105
9 0.083 0.076 0.088 0.074 0.082 0.075 0.086 0.073

10 0.067 0.066 0.069 0.065 0.066 0.066 0.067 0.064
11 0.051 0.05 0.054 0.049 0.051 0.049 0.053 0.048
12 0.043 0.042 0.044 0.041 0.042 0.041 0.043 0.04
13 0.046 0.048 0.048 0.047 0.045 0.047 0.047 0.046
14 0.045 0.048 0.046 0.047 0.044 0.047 0.045 0.046
15 0.06 0.059 0.061 0.057 0.058 0.058 0.06 0.056
16 0.07 0.071 0.073 0.069 0.07 0.07 0.073 0.068
17 0.112 0.111 0.118 0.107 0.11 0.109 0.117 0.106
18 0.17 0.165 0.18 0.158 0.169 0.163 0.178 0.156
19 0.21 0.199 0.219 0.19 0.208 0.196 0.216 0.187
20 0.218 0.212 0.23 0.205 0.21 0.206 0.222 0.199
21 0.214 0.198 0.226 0.188 0.206 0.189 0.216 0.181
22 0.203 0.198 0.225 0.188 0.18 0.174 0.194 0.167
23 0.209 0.202 0.222 0.193 0.138 0.133 0.143 0.13
24 0.256 0.247 0.276 0.233 0.177 0.175 0.187 0.17
25 0.381 0.342 0.418 0.322 0.227 0.211 0.238 0.206
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Statistics 19

Table 5. Simulated coverage rates and average half-widths of confidence intervals, Experiment 2.

m C
pr
cl (θm) Cw

cl (θm) C
pr
new(θm) Cw

new(θm) C
pr
cl (Ȳm) Cw

cl (Ȳm) C
pr
new(Ȳm) Cw

new(Ȳm)

1 0.95 0.986 0.93 0.96 0.957 0.75 0.949 0.742
2 0.944 1.128 0.917 1.089 0.945 0.959 0.932 0.944
3 0.945 0.871 0.932 0.849 0.951 0.807 0.931 0.791
4 0.938 0.876 0.927 0.855 0.931 0.849 0.92 0.831
5 0.945 0.87 0.918 0.848 0.945 0.854 0.929 0.834
6 0.943 0.873 0.92 0.851 0.942 0.866 0.924 0.845
7 0.943 0.889 0.932 0.871 0.94 0.884 0.923 0.867
8 0.949 0.65 0.937 0.638 0.947 0.645 0.938 0.634
9 0.94 0.541 0.933 0.533 0.939 0.536 0.928 0.529

10 0.947 0.504 0.942 0.498 0.949 0.5 0.942 0.494
11 0.943 0.437 0.937 0.432 0.944 0.433 0.943 0.428
12 0.945 0.399 0.938 0.396 0.946 0.396 0.943 0.393
13 0.953 0.426 0.947 0.422 0.953 0.423 0.944 0.419
14 0.962 0.426 0.955 0.422 0.96 0.422 0.954 0.418
15 0.945 0.474 0.941 0.468 0.95 0.469 0.945 0.464
16 0.947 0.522 0.943 0.515 0.944 0.517 0.938 0.511
17 0.946 0.65 0.935 0.639 0.95 0.646 0.941 0.635
18 0.938 0.795 0.923 0.777 0.943 0.79 0.925 0.772
19 0.939 0.872 0.929 0.851 0.941 0.866 0.928 0.845
20 0.946 0.901 0.937 0.885 0.949 0.887 0.945 0.872
21 0.935 0.869 0.919 0.847 0.936 0.85 0.913 0.83
22 0.948 0.869 0.925 0.846 0.948 0.816 0.929 0.799
23 0.942 0.878 0.93 0.858 0.935 0.712 0.927 0.704
24 0.946 0.971 0.919 0.942 0.949 0.817 0.934 0.805
25 0.937 1.142 0.907 1.105 0.942 0.898 0.929 0.887

7.3. Experiment 3

This experiment is designed to investigate the behaviour of estimators and predictors under a
misspecified model and to assess the predictive power of auxiliary variables. The ‘true’ model
used to generate populations is exactly the same as in Experiment 2, that is, Yi = xT

mβ + um + εi

for any i ∈ Um with q = 2, β = (50, 5)T, v = 2 and σ = 1. Thus, θm = 50 + 5xm + um and
Yi = θm + εi for any i ∈ Um.

In contrast to Experiment 2, when computing estimators/predictors, we assume that a statistician
uses an incorrect model without auxiliary variables, that is, she works under a ‘wrong’assumption
that Yi = β + um + εi with scalar intercept β, as in Experiment 1. There are several reasons to
consider such a situation. First, in reality the ‘true’ model never exists and the statistician has
always to make inferences based on simplified assumptions. Second, auxiliary variables can be
either inaccessible or the cost of collecting them can be significant. Then a statistician may be
forced to use a model which does not require any knowledge of these variables. It is interesting
to examine how misspecification of the model or inaccessibility of xi’s affects the accuracy of the
predictors. Results reported below should be interpreted with some caution, because when a model
is misspecified then speaking of ‘true values’ of some estimated parameters may be misleading.

The average value of σ̌ 2 is 1, the same for both methods, and practically equal to the ‘true’
value σ 2 = 1 used to generate data. For v̌2

cl the average value is 30.251, the average value of v̌2
new

equals 16.587 (the ‘true’ value used to generate data being v2 = 4).
Results for the EBLUE of the intercept β, i.e. Monte Carlo approximations of Eβ̌ for both

methods are very close to each other: 49.979 for β̌cl and for β̌new (it does not make sense to speak
of the true value of β because to generate data we used the two-dimensional vector β = (50, 5)T

and xi’s; it is, however, true that simulated Yi’s satisfy the relation EYi = 50 + 5xi and the average
value of xi’s is close to 0). Area-specific results are given in Tables 6 and 7.
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20 W. Niemiro and J. Wesołowski

Table 6. Comparison of simulated and estimated MSE of classical and new EBLUPs in small areas, Experiment 3.

m ecl(θm) ¯̂ecl(θm) enew(θm) ¯̂enew(θm) ecl(Ȳm) ¯̂ecl(Ȳm) enew(Ȳm) ¯̂enew(Ȳm)

1 0.35 0.33 0.364 0.327 0.173 0.166 0.176 0.165
2 0.492 0.492 0.494 0.485 0.28 0.297 0.281 0.295
3 0.26 0.248 0.26 0.246 0.215 0.203 0.215 0.202
4 0.258 0.248 0.259 0.246 0.246 0.229 0.247 0.227
5 0.243 0.248 0.241 0.246 0.237 0.236 0.235 0.234
6 0.231 0.248 0.231 0.246 0.225 0.243 0.226 0.241
7 0.248 0.248 0.263 0.246 0.245 0.245 0.26 0.243
8 0.125 0.124 0.124 0.124 0.123 0.122 0.122 0.122
9 0.079 0.083 0.079 0.083 0.078 0.082 0.078 0.081

10 0.071 0.071 0.071 0.071 0.07 0.07 0.07 0.07
11 0.053 0.052 0.053 0.052 0.052 0.052 0.052 0.052
12 0.043 0.043 0.043 0.043 0.042 0.043 0.042 0.042
13 0.048 0.05 0.048 0.05 0.047 0.049 0.047 0.049
14 0.053 0.05 0.053 0.05 0.052 0.049 0.052 0.049
15 0.065 0.062 0.065 0.062 0.064 0.061 0.064 0.061
16 0.078 0.077 0.078 0.077 0.077 0.075 0.077 0.075
17 0.131 0.124 0.131 0.124 0.128 0.123 0.128 0.122
18 0.203 0.199 0.202 0.198 0.2 0.196 0.2 0.195
19 0.234 0.248 0.235 0.246 0.228 0.243 0.228 0.241
20 0.266 0.248 0.293 0.246 0.252 0.239 0.277 0.237
21 0.243 0.248 0.24 0.246 0.235 0.234 0.233 0.232
22 0.253 0.248 0.249 0.246 0.217 0.21 0.215 0.209
23 0.254 0.248 0.26 0.246 0.151 0.149 0.153 0.149
24 0.338 0.33 0.333 0.327 0.226 0.207 0.224 0.206
25 0.519 0.492 0.536 0.485 0.254 0.248 0.259 0.246

Table 7. Simulated coverage rates and average half-widths of confidence intervals, Experiment 3.

m C
pr
cl (θm) Cw

cl (θm) C
pr
new(θm) Cw

new(θm) C
pr
cl (Ȳm) Cw

cl (Ȳm) C
pr
new(Ȳm) Cw

new(Ȳm)

1 0.94 1.122 0.931 1.117 0.944 0.796 0.945 0.794
2 0.953 1.371 0.948 1.362 0.961 1.065 0.96 1.061
3 0.941 0.973 0.938 0.97 0.929 0.881 0.932 0.878
4 0.933 0.973 0.935 0.97 0.931 0.934 0.933 0.932
5 0.958 0.973 0.958 0.97 0.943 0.949 0.944 0.946
6 0.954 0.973 0.954 0.97 0.957 0.963 0.959 0.959
7 0.951 0.973 0.944 0.97 0.949 0.967 0.941 0.964
8 0.945 0.689 0.944 0.688 0.948 0.683 0.948 0.682
9 0.955 0.563 0.956 0.563 0.956 0.558 0.956 0.558

10 0.952 0.522 0.952 0.521 0.948 0.517 0.949 0.517
11 0.944 0.448 0.945 0.448 0.943 0.444 0.942 0.443
12 0.948 0.407 0.947 0.407 0.945 0.403 0.945 0.403
13 0.956 0.437 0.954 0.436 0.954 0.433 0.953 0.433
14 0.94 0.437 0.94 0.436 0.933 0.433 0.937 0.432
15 0.932 0.488 0.93 0.488 0.932 0.484 0.937 0.483
16 0.939 0.541 0.936 0.541 0.938 0.536 0.937 0.536
17 0.94 0.689 0.94 0.688 0.943 0.684 0.941 0.683
18 0.957 0.871 0.953 0.869 0.953 0.865 0.953 0.862
19 0.955 0.973 0.951 0.97 0.963 0.963 0.957 0.96
20 0.936 0.973 0.925 0.97 0.941 0.955 0.926 0.952
21 0.948 0.973 0.949 0.97 0.939 0.945 0.939 0.942
22 0.944 0.973 0.943 0.97 0.935 0.896 0.937 0.893
23 0.949 0.973 0.945 0.97 0.946 0.755 0.948 0.753
24 0.938 1.122 0.942 1.117 0.954 0.889 0.954 0.886
25 0.943 1.371 0.94 1.362 0.935 0.973 0.927 0.97

D
ow

nl
oa

de
d 

by
 [

Ja
ce

k 
W

es
oo

w
sk

i]
 a

t 1
4:

50
 1

9 
M

ar
ch

 2
01

2 



Statistics 21

7.4. Conclusions

The primary goal of our simulation study is to compare accuracy of new predictors proposed in
this paper, say θ̌new

m and Y̌ new
m , with the classical ones, θ̌ cl

m and Y̌ cl
m . Note that we restrict experiments

to the case when sample sizes in small areas are non-random and, consequently, BLUPs exist,
they are given by formulas in Corollary 1 and they coincide with classical ones. Therefore, the
only difference between θ̌new

m and θ̌ cl
m (respectively, Y̌ new

m and Y̌ cl
m ) is in that two different meth-

ods are used to estimate v2 and thus to construct EBLUPs. New estimator v̌2
new turns out to be

slightly worse than v̌2
cl in our experiments (compare the MSE of two estimators in Experiments

1 and 2). However, inspection of Tables 2, 4 and 6 reveals that the accuracy of new EBLUPs
is very similar to that of classical EBLUPs. It seems that a different method of estimating the
variance component has a negligible effect on the accuracy of final predictors. This is in full
agreement with the results of Kackar and Harville [18] (see also [2, Chapter 6]). Similar conclu-
sions concern confidence intervals. Two methods (one based on θ̌new

m or Y̌ new
m combined with v̌2

new,
the other on θ̌ cl

m or Y̌ cl
m combined with v̌2

cl, have comparable properties, that is, the similar actual
coverage rate and widths of intervals. This is visible in Tables 3, 5 and 7. The actual coverage
rate is slightly but systematically lower than the nominal rate 0.95 for both methods. The nor-
mal approximation, only heuristically justified in the model under consideration, seems to work
remarkably well.

Comparison of results of Experiment 2 with those of Experiment 3 allows us to draw some
conclusions which are interesting from the practical viewpoint, but not directly pertaining to
the approach proposed in our paper. In fact, in both experiments, the difference between new
and classical predictors is small, as we already mentioned. What is really striking, however,
is the relatively small difference between accuracy of predictors in Experiment 2 and those in
Experiment 3. Entries of Table 4 corresponding to middle rows (relatively big ‘small areas’) are
not significantly different from those of Table 6! It is true that the MSE of predictors in ‘really
small’areas, in top and bottom rows in Table 4, are smaller than those in Table 6, but the difference
is much less than we expected. Let us recall that in Experiment 2, we use the correctly specified
model and assume that values of auxiliary variables are known. In Experiment 3, the model is
misspecified and auxiliary variables ignored. Comparison of Table 5 with Table 7 leads to similar,
rather surprising conclusions. Confidence intervals in Experiment 2 are significantly narrower
than those in Experiment 3 only for very small areas, while quite similar for bigger ones. Similar
results (sometimes in an even more pronounced form) were observed also in other experiments,
which will not be reported because of space limitations.

The basic small area model considered here is very robust against misspecification of some of
its elements. We offer the following heuristic explanation of this phenomenon. If the data obey
the model Yi = β + β1xm + um + εi while the analysis is performed as if they were of the form
Yi = β + um + εi , then the extra variability due to the missing term β1xm is absorbed into the
estimator of v2, the variance of um. In Experiment 3, the average value of v̌2

cl is 30.251, very far from
v2 = 4 (the value used when generating um’s) but remarkably close to v2 + β2

1

∑
(xm − x̄)2/M

(recall that artificial xm’s are generated from the standard normal distribution and β2
1 = 25). As

a result, estimated/predicted small area effects um seem to ‘take over the role’ played by omitted
terms β1xm. Of course, predictors which make no use of xm’s should be worse than those which
take xm’s into account, and indeed in our experiment they are worse. What is not so obvious is that
they are not very much worse, with differences visible only for very small domains. Differences
between predictors Y̌m are even lesser than between θ̌m, due to the extra variability contributed
by unobserved units.

Summing up, EBLUPs in our experiments perform very well even if the model is misspecified.
The predictive power of auxiliary variables turns out to be not as decisive as we initially expected.
Of course, these conclusions should be applied in practice with caution, because our simple
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22 W. Niemiro and J. Wesołowski

experiments do not reflect all the complexity of a real application. However, we think that the
results reported above point out to a problem which deserves further investigation.

8. Bernoulli sampling

In this section, we discuss the most elementary example of a sampling plan with a random sample
size, which is the Bernoulli sampling. In this case, general formulas have to be applied for BLUE
and BLUPs. However, relatively simple analytical expressions for them can be obtained, at least
in the case of univariate auxiliary variables.

For the Bernoulli sampling b(π), each element is taken to the sample independently with
a fixed probability π ∈ (0, 1), i.e. π = π1, I� = πIN , πm = πem, m = 1, . . . , M , π̃ π̃

T =
π2Diag(emeT

m) and

P − ππT = P̃ − π̃ π̃
T = π(1 − π)IN.

Therefore, in the model with a univariate auxiliary variable, considered in Section 5, we get

K = πDiag{[σ 2 + (β2x2
m + v2)(1 − π)]INm

+ πv2emeT
m}.

Consequently, using the block inversion, we get

K
−1 = 1

π
Diag

[
1

σ 2 + (β2x2
m + v2)(1 − π)

(
INm

− πv2emeT
m

σ 2 + (β2x2
m + v2)(1 − π) + v2πNm

)]
.

Thus

K
−1π̃x = π

M∑
m=1

xmK
−1em =

M∑
m=1

xmem

σ 2 + (β2x2
m + v2)(1 − π) + v2πNm

.

Furthermore,

xTπ̃T
K

−1π̃x = π

M∑
m=1

x2
mNm

σ 2 + (β2x2
m + v2)(1 − π) + v2πNm

.

Moreover,

xTπ̃T
K

−1Z =
M∑

m=1

xmNmZ̃m

σ 2 + (β2x2
m + v2)(1 − π) + v2πNm

,

where Z̃m = ∑
i∈Um

Zi/(πNm), m = 1, . . . , M . Consequently, by Equation (33), the BLUE of β

has the form

β̂ =

∑M
m=1

xmNmZ̃m

τ 2+
(

1+τ 2

γ 2 x2
m+1

)
(1−π)+πNm∑M

m=1
x2

mNm

τ 2+
(

1+τ2

γ 2 x2
m+1

)
(1−π)+πNm

(53)

and its MSE is

E(β̂ − β)2 = 1

π
∑M

m=1(Nm/(σ 2 + (β2 + v2)(1 − π) + v2πNm))
.

To find BLUPs θ̂D and ŶD , we need also the formula

xTπ̃T
K̄

−1πD = πv2xDND

σ 2 + (β2x2
D + v2)(1 − π) + v2πND

.
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Therefore, in view of Equations (35) and (53), we obtain the BLUP of θD as follows

θ̂D =
xD

[
τ 2 +

(
1+τ 2

γ 2 x2
D + 1

)
(1 − π)

]
τ 2 +

(
1+τ 2

γ 2 x2
D + 1

)
(1 − π) + πND

×
∑M

m=1
xmNm

τ 2+
(

1+τ2

γ 2 x2
m+1

)
(1−π)+πNM

Z̃m

∑M
m=1

x2
mNm

τ 2+
(

1+τ2

γ 2 x2
m+1

)
(1−π)+πNm

+ πND

τ 2 +
(

1+τ 2

γ 2 x2
D + 1

)
(1 − π) + πND

Z̃D.

That is

θ̂D = δDxDβ̂ + (1 − δD)Z̃D

with

δD = τ 2 + (((1 + τ 2)/γ 2)x2
D + 1)(1 − π)

τ 2 + (((1 + τ 2)/γ 2)x2
D + 1)(1 − π) + πND

.

Its MSE, due to Equation (36), is

E(θ̂D − θD)2 = δDv2

∑M
m=1 x2

m − ∑M
m=1,m�=D x2

mδm∑M
m=1 x2

m(1 − δm)
.

Finally, the BLUP of ȲD has the form

ŶD = (τ 2 + 1+τ 2

γ 2 x2
D + 1)(1 − π)

τ 2 +
(

1+τ 2

γ 2 x2
D + 1

)
(1 − π) + v2πND

×

∑M
m=1

xmNm

τ 2+
(

1+τ 2

γ 2 x2
D+1

)
(1−π)+πNM

Z̃m

∑M
m=1

x2
mNm

τ 2+
(

1+τ 2

γ 2 x2
D+1

)
(1−π)+πNm

+ π(τ 2 + ND)

τ 2 +
(

1+τ 2

γ 2 x2
D + 1

)
(1 − π) + πND

Z̃D.

Thus

ŶD = αDxDβ̂ + (1 − αD)Z̃D,

with αD = 1 − τD(1 − δD). Its MSE is

E(ŶD − ȲD)2 = αD

x2
D + τD

∑
m�=D x2

m(1 − δm)∑M
m=1 x2

m(1 − δm)
.

To find EBLUE β̌ of β and estimators of variance components, we proceed as follows. For the
estimator of σ 2, we use Equation (45) with

M∑
m=1

Pr (nm > 1) = M −
M∑

m=1

(1 + πNm)(1 − π)Nm−1.

We find β̌ and v̌ simultaneously using analogues of Equations (46) and (47), that is, we start
with fixing some v2

0 and β0. Then knowing v2
r and βr , the new value βr+1 is calculated via

βr+1 =
∑M

m=1

xmNmZ̃m

σ̆ 2 + (β2
r x

2
m + v2

r )(1 − π) + v2
r πNm∑M

m=1

x2
mNm

σ̆ 2 + (β2
r x

2
m + v2

r )(1 − π) + v2
r πNm

.
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Consequently, v2
r+1 is calculated by

v2
r+1 = 1

πN

M∑
m=1

∑
j∈Um

(Zj − Ijxmβr+1)
2 − σ̌ 2.

The procedure converges rather fast to v̌2 and β̌.
Using β̌ and estimators of variance components σ̌ 2 and v̌2, we arrive at the form of the EBLUP

of θD as follows:

θ̌D = δ̌DxDβ̌ + (1 − δ̌D)Z̃D,

where

δ̌D = σ̌ 2 + (β̌2x2
D + v̌2)(1 − π)

σ̌ 2 + (β̌2x2
D + v̌2)(1 − π) + v̌2πND

.

Again using β̌ and estimators of variance components v̌2 and σ̌ 2, we get the EBLUP of ȲD as

Y̌D = α̌DxDβ̌ + (1 − α̌D)Z̃D,

where α̌D = 1 − τ̌D(1 − δ̌D) with τ̌D = 1 + σ̌ 2/v̌2ND .
Using these numerical formulas, one can derive values of predictors of θD and ȲD . Of course,

their quality depends strongly on the true value of β. In numerical experiments, we performed
for π = 0.05 in a population of the size N=10,000 reasonable values of predictors were obtained
for rather large β and small variances of um’s and εi’s. Moreover, results were in most cases
worse than those obtained via the method designed for the case of fixed sample sizes, described
in formulas (49)–(52). The results obtained by both methods were comparable in the case of large
coefficient of variation of Yi’s.

Though these numerical results are slightly disappointing, they do not contradict our theoretical
optimality results because classical predictors given by Equations (41) and (43) are not linear if
the design plan is not of fixed sample sizes (e.g. in the case of the Bernoulli sampling). They are
only conditionally linear, given nm’s.
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