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In the paper we develop an approach to asymptotic normality through factorial cumulants.

Factorial cumulants arise in the same manner from factorial moments as do (ordinary)

cumulants from (ordinary) moments. Another tool we exploit is a new identity for ‘moments’

of partitions of numbers. The general limiting result is then used to (re-)derive asymptotic

normality for several models including classical discrete distributions, occupancy problems

in some generalized allocation schemes and two models related to negative multinomial

distribution.

AMS 2010 Mathematics subject classification: Primary 60F05

Secondary 60E10

1. Introduction

Convergence to the normal law is one of the most important phenomena of probability.

As a consequence, a number of general methods, often based on transforms of the

underlying sequence, have been developed as techniques for establishing such convergence.
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One of these methods, called the method of moments, rests on the fact that the standard

normal random variable is uniquely determined by its moments, and that for such a

random variable X, if (Xn) is a sequence of random variables having all moments and

EXk
n → EXk for all k = 1, 2, . . . , then Xn

d→ X: see, e.g., [22, Theorem 2.22] or [2,

Theorem 30.2]. Here and throughout the paper we use ‘
d→’ to denote the convergence in

distribution.

Since moments are not always convenient to work with, one can often use some other

characteristics of random variables to establish the convergence to the normal law. For

example, in one classical situation we consider a sequence of cumulants (we recall the

definition in the next section) rather than moments. On the one hand, since the kth

cumulant is a continuous function of the first k moments, to prove that Xn
d→ X instead

of convergence of moments one can use convergence of cumulants. On the other hand,

all cumulants of the standard normal distribution are zero except for the cumulant of

order 2, which equals 1. This often makes it much easier to establish the convergence of

cumulants of (Xn) to the cumulants of the standard normal random variable. We refer

the reader to [8, Section 6.1], for example, for a more detailed discussion.

In this paper we develop an approach to asymptotic normality that is based on factorial

cumulants. They will be discussed in the next section. Here we just indicate that factorial

cumulants arise in the same manner from factorial moments as do (ordinary) cumulants

from (ordinary) moments. The motivation for our work is the fact that quite often one

encounters situations in which properties of random variables are naturally expressed

through factorial (rather than ordinary) moments. As we will see below, this is the case,

for instance, when random variables under consideration are sums of indicator variables.

In developing our approach we first provide a simple and yet quite general sufficient

condition for the Central Limit Theorem (CLT) in terms of factorial cumulants (see

Proposition 2.1 below). Further, as we will see in Theorem 4.1, we show that the validity

of this condition can be verified by controlling the asymptotic behaviour of factorial

moments. This limiting result will be then used in Section 5 to (re-)derive asymptotic

normality for several models including classical discrete distributions, occupancy problems

in some generalized allocation schemes (GAS), and two models related to a negative

multinomial distribution; they are examples of what may be called generalized inverse

allocation schemes (GIAS). Generalized allocation schemes were introduced in [13], and

we refer the reader to chapters in books [14, 15] by the same author for more details,

properties, and further references. The term ‘generalized inverse allocation schemes’ does

not seem to be commonly used in the literature; in our terminology the word ‘inverse’

refers to inverse sampling, a sampling method proposed in [6]. A number of distributions

with ‘inverse’ in their names reflecting the inverse sampling are discussed in the first ([10])

and the fourth ([9]) volumes of the Wiley Series in Probability and Statistics.

We believe that our approach may turn out to be useful in other situations when

the factorial moments are natural and convenient quantities to work with. We wish to

mention, however, that although several of our summation schemes are, in fact, a GAS or

a GIAS, we do not have a general statement that would give reasonably general sufficient

conditions under which a GAS or a GIAS exhibits asymptotic normality. It may be an

interesting question, worth further investigation.
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Aside from utilizing factorial cumulants, another technical tool we exploit is an identity

for ‘moments’ of partitions of natural numbers (see Proposition 3.1). As far as we know

this identity is new, and may be of independent interest to the combinatorics community.

As of now, however, we do not have any combinatorial interpretation, either for its

validity or for its proof.

2. Factorial cumulants

Let X be a random variable with the Laplace transform

φX(t) = E etX =

∞∑
k=0

μk
tk

k!

and the cumulant transform

ψX(t) = log(φX(t)) =

∞∑
k=0

κk
tk

k!
.

Then μk = EXk and κk are, respectively, the kth moment and the kth cumulant of X,

k = 0, 1, . . . .

One can view the sequence κ = (κk) as obtained by a transformation f = (fk) of the

sequence μ = (μk), that is, κ = f(μ), where the fk are defined recursively by f1(x) = x1

and

fk(x) = xk −
k−1∑
j=1

(
k − 1

j − 1

)
fj(x)xk−j , k > 1. (2.1)

The Laplace transform can also be expanded in the form

φX(t) =

∞∑
k=0

νk
(et − 1)k

k!
, (2.2)

where νk is the kth factorial moment of X, that is,

ν0 = 1 and νk = E (X)k = EX(X − 1) · · · (X − k + 1), k = 1, . . . .

Here and below we use the Pochhammer symbol (x)k for the falling factorial x(x−
1) · · · (x− (k − 1)).

In analogy to (2.1), one can view the sequence μ as obtained by a transformation

g = (gk) of the sequence ν = (νk), that is, μ = g(ν), where the gk are defined by

gk(x) =

k∑
j=1

S2(k, j)xj, k � 1, (2.3)

where S2(k, j) are the Stirling numbers of the second kind defined by the identity

yk =

k∑
j=1

S2(k, j)(y)j ,

holding for any y ∈ R (see, e.g., [5, (6.10)]).
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Following this probabilistic terminology for any sequence of real numbers a = (ak),

one can define its cumulant and factorial sequences, b = (bk) and c = (ck), respectively,

by

∞∑
k=0

ak
tk

k!
= exp

{ ∞∑
k=0

bk
tk

k!

}
=

∞∑
k=0

ck
(et − 1)k

k!
. (2.4)

The first relation is known in combinatorics by the name ‘exponential formula’, and its

combinatorial interpretation when both (an) and (bn) are non-negative integers may be

found, for example, in [20, Section 5.1].

Note that if a, b and c are related by (2.4), then b = f(a) and a = g(c), where f and g

are given by (2.1) and (2.3), respectively.

Let the sequence d = (dk) be defined by

exp

{ ∞∑
k=0

dk
(et − 1)k

k!

}
=

∞∑
k=0

ck
(et − 1)k

k!
.

Then, regarding et − 1 as a new variable, we see that d = f(c). Since c is a factorial

sequence for a and d is a cumulant sequence for c, we call d = f(c) the factorial cumulant

sequence for a.

Observe that, by (2.4),

∞∑
k=0

dk
(et − 1)k

k!
=

∞∑
k=0

bk
tk

k!
,

and thus b = g(d) = g(f(c)). That is,

bk =

k∑
j=1

S2(k, j)fj(c), k = 1, 2, . . . . (2.5)

This observation is useful for proving convergence in law to the standard normal variable.

Proposition 2.1. Let (Sn) be a sequence of random variables having all moments. Assume

that

Var Sn
n→∞−→ ∞ (2.6)

and

E Sn

Var
3
2 Sn

n→∞−→ 0. (2.7)

For any n = 1, 2, . . . , let cn = (ck,n)k=1,... be the sequence of factorial moments of Sn, that is,

ck,n = E (Sn)k , k = 1, 2, . . . , and let fJ,n = fJ(cn) (where fJ is defined by (2.1)) be the Jth

factorial cumulant of Sn, J = 1, 2, . . . . Assume that

fJ,n

Var
J
2 Sn

n→∞−→ 0, for J � 3. (2.8)
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Then

Un =
Sn − E Sn√

Var Sn

d→ N (0, 1). (2.9)

Proof. We will use the cumulant convergence theorem (see, e.g., [8, Theorem 6.14]). Let

κJ,n denote the Jth cumulant of Un and recall that all cumulants of the standard normal

distribution are zero except for the cumulant of order 2, which is 1. It is obvious that

κ1,n = 0 and κ2,n = 1. Therefore, to prove (2.9) it suffices to show that κJ,n → 0 for J � 3.

By (2.5),

κJ,n =

∑J
j=1 S2(J, j)fj,n

Var
J
2 Sn

.

Fix arbitrary J � 3. To prove that κJ,n → 0, it suffices to show that

fj,n

Var
J
2 Sn

→ 0, for all j = 1, 2, . . . , J. (2.10)

Note first that by (2.1)

f1,n = E Sn and f2,n = Var(Sn) − E Sn.

Therefore the assumptions (2.6) and (2.7) imply (2.10) for j = 1, 2.

If j ∈ {3, . . . , J − 1}, we write

fj,n

Var
J
2 Sn

=
fj,n

Var
j
2 Sn

1

Var
J−j

2 Sn
.

By (2.8) the first factor tends to zero and by (2.6) the second factor tends to zero as well.

Finally, for j = J the conditions (2.10) and (2.8) are identical.

The above result is particularly useful when the factorial moments of Sn are available

in a nice form. We will now describe a general situation when this happens.

For any numbers δj , j = 1, . . . , N, assuming values 0 or 1 we have

x
∑N

j=1 δj =

∑N
j=1 δj∑
m=0

(∑N
j=1 δj

m

)
(x− 1)m = 1 +

N∑
m=1

(x− 1)m
∑

1�j1<···<jm�N
δj1 · · · δjm .

Therefore, if (ε1, . . . , εN) is a random vector valued in {0, 1}N and S =
∑N

i=1 εi, then

E etS = 1 +

∞∑
m=1

(et − 1)m
∑

1�j1<···<jm�N
P(εj1 = εj2 = · · · = εjm = 1).

Comparing this formula with (2.2), we conclude that factorial moments of S have the

form

E(S)k = k!
∑

1�j1<···<jk�N
P(εj1 = εj2 = · · · = εjk = 1) =: ck, k = 1, 2, . . . . (2.11)
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If, in addition, the random variables (ε1, . . . , εN) are exchangeable, then the above formula

simplifies to

E(S)k = (N)k P(ε1 = · · · = εk = 1) =: ck, k = 1, 2, . . . . (2.12)

As we will see in Section 5, our sufficient condition for asymptotic normality will work

well for several set-ups falling within such a scheme. This will be preceded by a derivation

of new identities for integer partitions, which will give us a major enhancement of the

tools we will use to prove limit theorems.

3. Partition identities

Recall that if b = (bn) is a cumulant sequence for a sequence of numbers a = (an), that is,

b = f(a) with f given by (2.1), then for J � 1

bJ =
∑
π⊂J

Dπ

J∏
i=1

amii , where Dπ =
(−1)

∑ J
i=1 mi−1J!∏J

i=1 (i!)mi
∑J

i=1 mi

( ∑J
i=1 mi

m1, . . . , mJ

)
, (3.1)

and where the sum is over all partitions π of a positive integer J , i.e., over all vectors

π = (m1, . . . , mJ) with non-negative integer components which satisfy
∑J

i=1 imi = J (for a

proof, see, e.g., [12, Section 3.14]).

Note that for J � 2 ∑
π⊂J

Dπ = 0. (3.2)

This follows from the fact that all the cumulants, except for the first one, of the constant

random variable X = 1 a.s. are zero.

For π = (m1, . . . , mJ) we denote Hπ(s) =
∑J

i=1 i
smi, s = 0, 1, 2, . . . . The main result of this

section is the identity which considerably extends (3.2).

Proposition 3.1. Assume J � 2. Let I � 1 and si � 1, i = 1, . . . , I , be such that

I∑
i=1

si � J + I − 2.

Then

∑
π⊂J

Dπ

I∏
i=1

Hπ(si) = 0. (3.3)

Proof. We use induction with respect to J . Note that if J = 2 then I may be arbitrary,

but si = 1 for all i = 1, . . . , I . Thus the identity (3.3) follows from (3.2) since Hπ(1) = J for

any J and any π ⊂ J .
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Now assume that the result holds true for J = 2, . . . , K − 1, and consider the case of

J = K . That is, we want to study

∑
π⊂K

Dπ

I∏
i=1

Hπ(si)

under the condition
∑I

i=1 si � K + I − 2.

Let us introduce functions gi, i = 1, . . . , K , by letting

gi(m1, . . . , mK ) = (m̃1, . . . , m̃K−1)

=

⎧⎪⎪⎨
⎪⎪⎩

(m1, . . . , mi−1 + 1, mi − 1, . . . , mK−1) if i �= 1, K,

(m1 − 1, m2, . . . , mK−1) if i = 1,

(m1, . . . , mK−2, mK−1 + 1) if i = K.

Note that

gi : {π ⊂ K : mi � 1} → {π̃ ⊂ (K − 1) : m̃i−1 � 1}, i = 1, . . . , K,

are bijections. Here for consistency we assume m̃0 = 1.

Observe that for any s, any π ⊂ K such that mi � 1, and for π̃ = gi(π) ⊂ (K − 1) we

have

Hπ̃(s) = Hπ(s) − is + (i− 1)s = Hπ(s) − 1 − As(i− 1),

where

As(i− 1) =

s−1∑
k=1

(
s

k

)
(i− 1)k

is a polynomial of degree s− 1 in the variable i− 1 with constant term equal to zero. In

particular, for i = 1 we have Hπ̃(s) = Hπ(s) − 1. Therefore, expanding Hπ(s1) we obtain

∑
π⊂K

Dπ

I∏
i=1

Hπ(si) =

K∑
i=1

is1
∑
π⊂K
mi�1

miDπ

I∏
j=2

[
Hπ̃(sj) + 1 + Asj (i− 1)

]
.

Note that if mi � 1 then

1

K!
imiDπ

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)Mπ−1Mπ!

Mπ(m1 − 1)!
K−1∏
k=2

mk!(k!)mk

= − 1

(K − 1)!

K−1∑
j=1

Dπ̃m̃j if i = 1,

(−1)Mπ−1Mπ!

Mπ(mi − 1)!(i− 1)!(i!)mi−1
K∏
k=2
k �=i

mk!(k!)mk

=
1

(K − 1)!
Dπ̃m̃i−1 if i = 2, . . . , K,
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where π̃ = (m̃1, . . . , m̃K−1) = gi(π), respectively. Therefore,

1

K

∑
π⊂K

Dπ

I∏
i=1

Hπ(si) = −
K−1∑
i=1

∑
π̃⊂(K−1)

Dπ̃m̃i

I∏
j=2

[Hπ̃(sj) + 1]

+

K∑
i=2

∑
π̃⊂(K−1)
m̃i−1�1

Dπ̃m̃i−1i
s1−1

I∏
j=2

[Hπ̃(sj) + 1 + Asj (i− 1)]. (3.4)

The second term in the above expression can be written as

K−1∑
i=1

∑
π̃⊂(K−1)

Dπ̃m̃i(i+ 1)s1−1
I∏
j=2

[Hπ̃(sj) + 1 + Asj (i)]. (3.5)

Note that

(i+ 1)s1−1
I∏
j=2

[Hπ̃(sj) + 1 + Asj (i)]

=

s1−1∑
r=0

(
s1 − 1

r

) I−1∑
M=0

∑
2�u1<···<uM�I

ir
M∏
h=1

(Hπ̃(suh ) + 1)
∏

2�j�I
j �∈{u1 ,...,uM}

Asj (i).

The term with r = 0 and M = I − 1 in the above expression is
∏I

j=2

[
Hπ̃(sj) + 1

]
, so this

term of the sum (3.5) cancels with the first term of (3.4).

Hence, we only need to show that for any r ∈ {1, . . . , s1 − 1}, any M ∈ {0, . . . , I − 1},

and any 2 � u1 < · · · < uM � I ,

∑
π̃⊂(K−1)

Dπ̃

M∏
h=1

(Hπ̃(suh ) + 1)

K−1∑
i=1

m̃ii
r

∏
2�j�I

j �∈{u1 ,...,uM}

Asj (i) = 0. (3.6)

Observe that the expression

K−1∑
i=1

m̃ii
r

∏
2�j�I

j �∈{u1 ,...,uM}

Asj (i)

is a linear combination of Hπ̃ functions with the largest value of an argument equal to∑
2�j�I

j �∈{u1 ,...,uM}

(sj − 1) + r.

Therefore the left-hand side of (3.6) is a respective linear combination of terms of the

form

∑
π̃⊂(K−1)

Dπ̃

W∏
w=1

Hπ̃(tw), (3.7)
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where

W∑
w=1

tw �
M∑
j=1

suj − (M −W + 1) +
∑

2�j�I
j �∈{u1 ,...,uM}

(sj − 1) + s1 − 1

�
I∑
i=1

si − (M −W + 1) − (I − 1 −M) − 1.

But we assumed that
∑I

i=1 si � K + I − 2. Therefore

W∑
w=1

tw � K + I − 2 − (M −W + 1) − (I − 1 −M) − 1 = (K − 1) +W − 2.

Now, by the inductive assumption it follows that any term of the form (3.7) is zero, thus

proving (3.6).

Note that in a similar way one can prove that (3.3) is no longer true when

I∑
i=1

si = J + I − 1.

Remark 3.2. Richard Stanley [21] provided the following combinatorial description of

the left-hand side of (3.3). Put

Fn(x) =
∑
k

S2(n, k)xk,

and let (si) be a sequence of positive integers. Then the left-hand side of (3.3) is a

coefficient of xJ/J! in ∑
P

(−1)|P |−1(|P | − 1)!
∏
B∈P

FσB(x),

where the sum ranges over all partitions P of a set {1, . . . , I} into |P | non-empty pairwise

disjoint subsets, and where for any such subset B ∈ P

σB =
∑
i∈B

si.

In the simplest case when I = 1 for any positive integer s1, the left-hand side of equation

(3.3) is equal to J!S2(s1, J). Since this is the number of surjective maps from an s1-element

set to a J-element set, it must be 0 for s1 < J , which is exactly what Proposition 3.1

asserts. It is not clear to us how easy it would be to show that (3.3) holds for the larger

values of I .

4. Central Limit Theorem: general set-up

To illustrate and motivate how our approach is intended to work, consider a sequence

(Sn) of Poisson random variables, where Sn ∼ Poisson(λn). As is well known, if λn → ∞
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then Un = (Sn − E Sn)/
√

Var Sn converges in distribution to N (0, 1). To see how it follows

from our approach, note that E Sn = Var Sn = λn, and therefore the assumptions (2.6) and

(2.7) of Proposition 2.1 are trivially satisfied. Moreover, the factorial moments of Sn are

ci,n = λin. Consequently,
∏J

i=1 c
mi
i,n = λJn for any partition π = (m1, . . . , mJ) of J ∈ N, and

thus

fJ,n = fJ(cn) =
∑
π⊂J

Dπ

J∏
i=1

cmii,n = λJn

∑
π⊂J

Dπ.

It now follows from the simplest case (3.2) of our partition identity that fJ,n = 0 as long

as J � 2. Hence the assumption (2.8) of Proposition 2.1 is also trivially satisfied and we

conclude the asymptotic normality of (Un).

The key feature in the above argument was, of course, the very simple form of the

factorial moments ci,n of Sn, which resulted in factorization of the products of cmii,n in the

expression for fJ,n. It is not unreasonable, however, to expect that if the expression for

moments does not depart too much from the form it took for the Poisson variable, then

with the full strength of Proposition 3.1 one might be able to prove the CLT. This is

the essence of condition (4.1) in the next result. This condition, when combined with

the extension of (3.2) given in Proposition 3.1, allows us to greatly refine Proposition 2.1

towards a possible use in schemes of summation of indicators, as was suggested in the

final part of Section 2.

Theorem 4.1. Let (Sn) be a sequence of random variables with factorial moments ci,n, i, n =

1, 2, . . . . Assume that (2.6) and (2.7) are satisfied and suppose that ci,n can be decomposed

into the form

ci,n = Lin exp

(∑
j�1

Q
(n)
j+1(i)

jnj

)
, i, n = 1, 2, . . . , (4.1)

where (Ln) is a sequence of real numbers and Q(n)
j is a polynomial of degree at most j such

that

|Q(n)
j (i)| � (Ci)j , for all i ∈ N, (4.2)

with C > 0 a constant not depending on n or j. Assume further that for all J � 3

LJn

nJ−1 Var
J
2 Sn

n→∞−→ 0. (4.3)

Then

Un =
Sn − E Sn√

Var Sn

d→ N (0, 1), as n → ∞. (4.4)
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Proof. Due to Proposition 2.1 we only need to show that (2.8) holds. The representation

(4.1) implies

fJ,n =
∑
π⊂J

Dπ

J∏
i=1

cmii,n = LJn

∑
π⊂J

Dπe
zπ(J,n),

where

zπ(J, n) =
∑
j�1

A(n)
π (j)

jnj
with A(n)

π (j) =

J∑
i=1

mi Q
(n)
j+1(i).

Fix arbitrary J � 3. To prove (2.8), in view of (4.3) it suffices to show that
∑

π⊂J Dπe
zπ(J,n)

is of order n−(J−1). To do that, we expand ezπ(J,n) into power series to obtain

∑
π⊂J

Dπe
zπ(J,n) =

∑
π⊂J

Dπe
∑

j�1
1

jnj
A

(n)
π (j)

=
∑
π⊂J

Dπ

∞∑
s=0

1

s!

(∑
j�1

1

jnj
A(n)
π (j)

)s

=
∑
s�1

1

s!

∑
l�s

1

nl

∑
j1 ,...,js�1∑ s
k=1 jk=l

1∏s
k=1 jk

∑
π⊂J

Dπ

s∏
k=1

A(n)
π (jk).

We claim that whenever
∑s

k=1 jk � J − 2 then

∑
π⊂J

Dπ

s∏
k=1

A(n)
π (jk) = 0. (4.5)

To see this, note that by changing the order of summation in the expression for A(n)
π (j)

we can write it as

A(n)
π (j) =

j+1∑
k=0

α
(n)
k,j+1 Hπ(k),

where (α(n)
k,j ) are the coefficients of the polynomial Q(n)

j , that is,

Q
(n)
j (x) =

j∑
k=0

α
(n)
k,j x

k.

Consequently, (4.5) follows from identity (3.3).

To handle the terms for which
∑s

k=1 jk > J − 2, note that

|A(n)
π (j)| � (CJ)j+1

J∑
i=1

mi < K (CJ)j ,

where K > 0 is a constant depending only on J (and not on the partition π). Hence,∣∣∣∣∑
π⊂J

Dπ

s∏
k=1

A(n)
π (jk)

∣∣∣∣ �
∑
π⊂J

|Dπ|
s∏

k=1

K (CJ)jk � C̃Ks(CJ)
∑ s

k=1 jk , (4.6)
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where C̃ =
∑

π⊂J |Dπ| is a constant depending only on J . Therefore, restricting the sum

according to (4.5) and using (4.6), we get∣∣∣∣∑
π⊂J

Dπe
zπ(J,n)

∣∣∣∣ �
∑
s�1

1

s!

∑
l�max{s,J−1}

1

nl

∑
j1 ,...,js�1∑ s
k=1 jk=l

1∏s
k=1 jk

∣∣∣∣∑
π⊂J

Dπ

s∏
k=1

A(n)
π (jk)

∣∣∣∣
� C̃

∑
s�1

Ks

s!

∑
l�J−1

1

nl
ls(CJ)l .

Here we used the inequality ∑
j1 ,...,js�1∑ s
k=1 jk=l

1∏s
k=1 jk

< ls,

which may be seen by trivially bounding the sum by the number of its terms. Now we

change the order of summations, arriving at∣∣∣∣∑
π⊂J

Dπe
zπ(J,n)

∣∣∣∣ � C̃
∑
l�J−1

(
CJ

n

)l ∑
s�1

(lK)s

s!
� C̃

∑
l�J−1

(
CJeK

n

)l

= C̃

(
CJeK

n

)J−1 ∑
l�0

(
CJeK

n

)l

.

The result follows, since for n sufficiently large (such that CJeK < n), the series in the last

expression converges.

Remark 4.2. A typical way Theorem 4.1 will be applied is as follows. Assume that E Sn
and Var Sn are of the same order n. Then obviously, (2.6) and (2.7) are satisfied. Assume

also that (4.1) and (4.2) hold and that Ln is also of order n. Then clearly (4.3) is satisfied

and thus (4.4) holds true.

5. Applications

In this section we show how the tools developed in the previous section, and in particular

the decomposition (4.1) together with the condition (4.3), can be conveniently used for

proving CLTs in several situations, mostly in summation schemes of {0, 1}-valued random

variables, as was indicated in Section 2. First, four more or less standard limit results for

the binomial, negative binomial, hypergeometric and negative hypergeometric schemes

will be re-proved. Then more involved schemes of allocation problems for distinguishable

balls, indistinguishable balls, coloured balls, and random forests will be considered. The

CLTs for the number of boxes with exactly r balls in the first two problems and for the

number of trees with exactly r non-root vertices in the third problem will be derived.

While the CLT in the case of distinguishable balls has been known in the literature for

years (see, e.g., [16]), the main focus in the other two cases appears to be on the local limit

theorems (see, e.g., [14, 15, 19]). We have not found any references for the asymptotic

normality results for the problems we consider in GIAS models.
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The models in Sections 5.2.1–5.2.4 are examples of generalized allocation schemes (GAS),

that is,

P(ξ(n)
1 = k1, . . . , ξ

(n)
N = kN) = P(η1 = k1, . . . , ηN = kN |η1 + · · · + ηN = n), (5.1)

where η1, . . . , ηN are independent random variables.

On the other hand the models in Sections 5.3.1 and 5.3.2 are examples of what may be

called generalized inverse allocation schemes (GIAS), that is,

P(ξ(n)
1 = k1, . . . , ξ

(n)
N = kN) (5.2)

= C P(η1 = k1, . . . , ηN = kN |η0 + η1 + · · · + ηN = n+ k1 + · · · + kN),

where η0, η1, . . . , ηN are independent random variables, C is a proportionality constant,

and the equality is understood to hold whenever the right-hand side is summable. This last

requirement is not vacuous: if, e.g., N = 1 and η0 = n a.s., then trivially the probability on

the right-hand side of (5.2) is 1 regardless of the value of k1, and hence these probabilities

are not summable as long as η1 takes on infinitely many values.

In practical situations of GAS models the (ηj) are identically distributed, and in the

case of GIAS we assume that the ηj have the same distribution for j = 1, . . . , N, which

may differ from the distribution of η0.

In the derivations below we will often use the expansion(
1 − a

b

)c

= ec log(1− a
b ) = e

−c
∑ ∞

j=1
aj

jbj , (5.3)

which is valid for any 0 < |a| < |b| and any real c. We also recall (see, e.g., [5, Chapter 6.5])

that

Qj+1(M) :=

M−1∑
k=1

kj =
1

j + 1

j+1∑
l=1

(
j + 1

l

)
Bj+1−l M

l, (5.4)

where (Bk) are the Bernoulli numbers. Clearly, Qj is a polynomial of degree j satisfying

(4.2) with C = 1. For notational convenience we let

T (m, t) =

m−1∏
k=1

(
1 − k

t

)

for t > 0 and integer m > 0. It follows from (5.3) and (5.4) that for t > m

T (m, t) = e
−

∑
j�1

1

jtj
Qj+1(m)

. (5.5)

5.1. Classical discrete distributions

In this subsection we re-derive asymptotic normality of

Sn − E Sn√
Var Sn

for laws of Sn belonging to four classical families of discrete distributions: binomial,

negative binomial, hypergeometric and negative hypergeometric.
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5.1.1. Binomial scheme. Let (εi) be a sequence of i.i.d. Bernoulli random variables, P (ε1 =

1) = p = 1 − P (ε1 = 0). Then Sn =
∑n

i=1 εi has the binomial b(n, p) distribution. To see

how Theorem 4.1 allows us to re-derive the de Moivre–Laplace theorem,

Sn − np√
np(1 − p)

d→ N (0, 1), (5.6)

in a simple way, we first set Ln = np. Then E Sn = Ln and Var Sn = Ln(1 − p). Furthermore,

P(ε1 = · · · = εi = 1) = pi, and thus by (2.12) it follows that the ith factorial moment of Sn
is

ci,n = E(Sn)i = (n)ip
i = Lin T (i, n). (5.7)

Thus (5.5) implies representation (4.1) with Qj+1 = −Qj+1 and (5.6) follows from

Remark 4.2.

5.1.2. Negative binomial scheme. Let Sn denote the number of failures until the nth success

in Bernoulli trials, with p being the probability of success in a single trial, that is, Sn is

negative binomial nb(n, p) with

P(Sn = k) =

(
n+ k − 1

k

)
(1 − p)kpn, k = 0, 1, . . . .

We will show how Theorem 4.1 allows us to re-derive the CLT for (Sn) in a simple way,

which states that for n → ∞
pSn − n(1 − p)√

n(1 − p)

d→ N (0, 1). (5.8)

Set Ln = n(1 − p)/p so that E Sn = Ln and Var Sn = Ln/p. Furthermore, the ith factorial

moment of Sn is easily derived as

ci,n = E(Sn)i = Lin T (i,−n).

Hence (4.1) holds with Qj+1 = (−1)j+1Qj+1, and thus (5.8) follows from Remark 4.2.

5.1.3. Hypergeometric scheme. From an urn containing N white and M black balls we

draw subsequently without replacement n balls (n � min{M,N}). For i = 1, . . . , n, let εi = 1

if a white ball is drawn at the ith drawing and let εi = 0 otherwise. Then Sn =
∑n

i=1 εi
has a hypergeometric distribution Hg(N,M; n), that is,

P(Sn = k) =

(
N
k

) (
M
n−k

)
(
N+M
n

) , k = 0, 1, . . . , n.

Using Theorem 4.1 again, we will show that under the assumptions N = N(n) → ∞,

M = M(n) → ∞, and N/(N +M) → p ∈ (0, 1) with n → ∞,

(N +M)Sn − nN√
nNM(N +M − n)/(N +M − 1)

d→ N (0, 1). (5.9)

Setting Ln = nN/(N +M) we have

E Sn = Ln and Var Sn = Ln
M(N +M − n)

(N +M)(N +M − 1)
. (5.10)
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Moreover, on noting that (ε1, . . . , εn) is exchangeable by (2.12), we get

ci,n = E (Sn)i = (n)iP(ε1 = · · · = εi = 1) =
(n)i(N)i

(N +M)i
= Lin

T (i, n)T (i, N)

T (i, N +M)
.

As in earlier schemes we obtain representation (4.1) with

Qj+1 =

[
−1 −

(
n

N

)j

+

(
n

N +M

)j]
Qj+1.

Moreover, the condition (4.3) is fulfilled since E Sn, Var Sn and Ln are all of order n. See

again Remark 4.2 to conclude that (5.9) holds true.

5.1.4. Negative hypergeometric scheme. Let Sn be a random variable with negative hyper-

geometric distribution of the first kind, that is,

P(Sn = k) =

(
n

k

)
B(αn + k, βn + n− k)

B(αn, βn)
, k = 0, 1, . . . , n,

with αn = nα and βn = nβ. The CLT for Sn states that for n → ∞

(α+ β)
3
2 Sn − nα

√
α+ β√

nαβ(1 + α+ β)

d→ N (0, 1). (5.11)

To quickly derive it from Theorem 4.1, let Ln = nα/(α+ β) and note that

E Sn = Ln and Var Sn = Ln
nβ(1 + α+ β)

(α+ β)2(nα+ nβ + 1)
.

Further, the ith factorial moment of Sn is easily derived as

ci,n = E(Sn)i = Lin
T (i, n)T (i,−αn)
T (i,−(α+ β)n)

.

Thus, again due to (5.5) we conclude that representation (4.1) holds with

Qj+1 =

(
−1 − (−1)j

αj
+

(−1)j

(α+ β)j

)
Qj+1(i).

The final result follows by Remark 4.2.

5.2. Asymptotics of occupancy in generalized allocation schemes (GAS)

In this subsection we will derive asymptotics for

S (r)
n =

N∑
i=1

I(ξ(n)
i = r)

in several generalized allocation schemes as defined at the beginning of Section 5. As

we will see, when n → ∞ and N/n → λ ∈ (0,∞] the order of E S (r)
n is nr/Nr−1 for any

r = 0, 1, . . . , and the order of Var S (r)
n is the same for r � 2. When λ = ∞ and r = 0 or 1,

the order of Var S (r)
n is n2/N. Consequently, we will derive asymptotic normality of

Sn − E S (r)
n√

nr/Nr−1

when either
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(a) r � 0 and λ < ∞ or

(b) r � 2, λ = ∞ and nr/Nr−1 → ∞,

and asymptotic normality of

√
N
S (r)
n − E S (r)

n

n

when λ = ∞, n2/N → ∞ and r = 0, 1.

Although in all the cases the results look literally the same (with different asymptotic

expectations and variances and with different proofs), for the sake of precision we decided

to repeat formulations of theorems in each of the subsequent cases.

5.2.1. Indistinguishable balls. Consider a scheme of a random distribution of n indistin-

guishable balls into N distinguishable boxes, such that all distributions are equiprobable.

That is, if ξi = ξ
(n)
i denotes the number of balls which fall into the ith box, i = 1, . . . , N,

then

P(ξ1 = i1, . . . , ξN = iN) =

(
n+N − 1

n

)−1

for any ik � 0, k = 1, . . . , N, such that i1 + · · · + iN = n. Note that this is a GAS and that

(5.1) holds with ηi ∼ Geom(p), 0 < p < 1.

Let

S (r)
n =

N∑
i=1

I(ξi = r)

denote the number of boxes with exactly r balls. Note that the distribution of (ξ1, . . . , ξN)

is exchangeable. Moreover,

P(ξ1 = · · · = ξi = r) =

(
n−ri+N−i−1

n−ri
)

(
n+N−1

n

) .

Therefore, by (2.12) we get

ci,n = E(S (r)
n )i =

(N)i(N − 1)i(n)ir
(n+N − 1)i(r+1)

. (5.12)

Consequently,

E S (r)
n = c1,n =

N(N − 1)(n)r
(n+N − 1)r+1

,

and since Var S (r)
n = c2,n − c2

1,n + c1,n we have

Var S (r)
n =

N(N − 1)2(N − 2)(n)2r

(n+N − 1)2r+2
−

(
N(N − 1)(n)r

(n+N − 1)r+1

)2

+
N(N − 1)(n)r

(n+N − 1)r+1
.

In the asymptotics below we consider the situation when n → ∞ and N/n → λ ∈ (0,∞].

Then for any integer r � 0

Nr−1

nr
E S (r)

n →
(

λ

1 + λ

)r+1

(= 1 for λ = ∞). (5.13)
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It is also elementary but more laborious to prove that, for any r � 2 and λ ∈ (0,∞] or

r = 0, 1 and λ ∈ (0,∞),

Nr−1

nr
Var S (r)

n →
(

λ

1 + λ

)r+1(
1 − λ(1 + λ+ (λr − 1)2)

(1 + λ)r+2

)
=: σ2

r (= 1 for λ = ∞).

(5.14)

Further, for λ = ∞,

N

n2
Var S (0)

n → 1 =: σ̃2
0 and

N

n2
Var S (1)

n → 4 =: σ̃2
1 .

Similarly, in this case

N

n2
Cov

(
S (0)
n , S (1)

n

)
→ −2 and

N

n2
Cov

(
S (0)
n , S (2)

n

)
→ 1,

and thus for the correlation coefficient we have

ρ
(
S (0)
n , S (1)

n

)
→ −1 and ρ

(
S (0)
n , S (2)

n

)
→ 1. (5.15)

Now we are ready to deal with CLTs.

Theorem 5.1. Let N/n → λ ∈ (0,∞]. Let either

(a) r � 0 and λ < ∞, or

(b) r � 2, λ = ∞ and nr/Nr−1 → ∞.

Then

S (r)
n − E S (r)

n√
nr/Nr−1

d→ N (0, σ2
r ).

Proof. Note that (5.12) can be rewritten as

ci,n = Lin
T (i, N)T (i, N − 1)T (ir, n)

T (i(r + 1), n+N − 1)
with Ln =

N(N − 1)nr

(n+N − 1)r+1
.

Therefore, as in the previous cases, using (5.5) we conclude that representation (4.1) holds

with

Qj+1(i) = −
[(

n

N

)j

+

(
n

N − 1

)j]
Qj+1(i) − Qj+1(ri) +

(
n

n+N − 1

)j

Qj+1((r + 1)i).

To conclude the proof we note that E S (r)
n , Var S (r)

n and Ln are of the same order, nr/Nr−1,

and we use Remark 5.2 stated below.

Remark 5.2. If E S (r)
n and Var S (r)

n are of the same order and diverge to ∞, then (2.6) and

(2.7) hold. Moreover, if Ln and Var S (r)
n are both of order nr/Nr−1 then the left-hand side

of (4.3) is of order

1

nJ−1

(
nr

Nr−1

) J
2

=

(
n

N

) J
2 (r−1)

1

n
J
2 −1

.

That is, when either λ ∈ (0,∞) and r = 0, 1, . . . or λ = ∞ and r = 2, 3, . . . , the condition

(4.3) is satisfied.
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In the remaining cases we use asymptotic correlations.

Theorem 5.3. Let N/n → ∞ and n2/N → ∞. Then for r = 0, 1

√
N
S (r)
n − E S (r)

n

n

d→ N (0, σ̃r
2).

Proof. Due to the second equation in (5.15), it follows that

√
N
S (0)
n − E S (0)

n

σ̃0n
−

√
N
S (2)
n − E S (2)

n

σ2n

L2

→ 0.

Therefore the result for r = 0 holds. Similarly, for r = 1 it suffices to observe that the first

equation in (5.15) implies

√
N
S (0)
n − E S (0)

n

σ̃0n
+

√
N
S (1)
n − E S (1)

n

σ̃1n

L2

→ 0. �

5.2.2. Distinguishable balls. Consider a scheme of a random distribution of n distinguish-

able balls into N distinguishable boxes, such that any such distribution is equally likely.

Then, if ξi = ξ
(n)
i denotes the number of balls which fall into the ith box, i = 1, . . . , N,

P(ξ1 = i1, . . . , ξN = iN) =
n!

i1! · · · iN!
N−n

for any il � 0, l = 1, . . . , N, such that i1 + · · · + iN = n. This is a GAS with ηi ∼ Poisson(λ),

λ > 0, in (5.1).

For a fixed non-negative integer r let

S (r)
n =

N∑
i=1

I(ξi = r)

be the number of boxes with exactly r balls. Obviously, the distribution of (ξ1, . . . , ξN) is

exchangeable, and

P(ξ1 = · · · = ξi = r) =
n!

(r!)i(n− ir)!
N−ir

(
1 − i

N

)n−ir
.

Therefore, by (2.12) we get

ci,n = E
(
S (r)
n

)
i
=

(N)i(n)ir
(r!)iNri

(
1 − i

N

)n−ir
. (5.16)

Consequently, for any r = 0, 1, . . . ,

E S (r)
n = c1,n =

(n)r
(
1 − 1

N

)n−r

r!Nr−1

and

Var S (r)
n = c2,n − c2

1,n + c1,n

=
(N − 1)(n)2r

(
1 − 2

N

)n−2r

(r!)2N2r−1
−

(n)2
r

(
1 − 1

N

)2(n−r)

(r!)2N2(r−1)
+

(n)r
(
1 − 1

N

)n−r

r!Nr−1
.
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In the asymptotics below we consider the situation when n → ∞ and N/n → λ ∈ (0,∞].

Then, for any integer r � 0,

lim
n→∞

Nr−1

nr
E S (r)

n =
1

r!
e− 1

λ

(
=

1

r!
for λ = ∞

)
. (5.17)

It is also elementary but more laborious to check that, for any fixed r � 2 and λ ∈ (0,∞]

or r = 0, 1 and λ ∈ (0,∞),

lim
n→∞

Nr−1

nr
Var S (r)

n =
e− 1

λ

r!

(
1 − e− 1

λ (λ+ (λr − 1)2)

r!λr+1

)
:= σ2

r

(
=

1

r!
for λ = ∞

)
. (5.18)

Further, for λ = ∞,

N

n2
Var S (0)

n → 1

2
=: σ̃2

0 and
N

n2
Var S (1)

n → 2 =: σ̃2
1 .

Similarly one can prove that

N

n2
Cov

(
S (0)
n , S (1)

n

)
→ −1.

Therefore, for the correlation coefficients we have

ρ
(
S (0)
n , S (1)

n

)
→ −1. (5.19)

Since

N

n2
Var S (2)

n → 1

2
= σ

(2)
2 and

N

n2
Cov

(
S (0)
n , S (2)

n

)
→ 1

2

we also have

ρ
(
S (0)
n , S (2)

n

)
→ 1. (5.20)

We consider the cases when r � 2 and λ = ∞ or r � 0 and λ ∈ (0,∞).

Theorem 5.4. Let N/n → λ ∈ (0,∞]. Let either

(a) r � 0 and λ < ∞, or

(b) r � 2, λ = ∞ and nr/Nr−1 → ∞.

Then

S (r)
n − E S (r)

n√
nr/Nr−1

d→ N
(
0, σ2

r

)
.

Proof. Write ci,n as

ci,n = Lin e
i nN

(
1 − i

N

)n−ir
T (i, N)T (ir, n), where Ln =

nre− n
N

r!Nr−1
.

Then, the representation (4.1) holds with

Qj+1(i) =

(
r − j

j + 1

n

N

)(
n

N

)j

ij+1 −
(
n

N

)j

Qj+1(i) − Qj+1(ri).
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Since E S (r)
n , Var S (r)

n and Ln are of order nr/Nr−1, the final result follows by Remark 5.2.

As in the case of indistinguishable balls, using (5.20) and (5.19) we get the following.

Theorem 5.5. Let N/n → ∞ and n2/N → ∞. Then for r = 0, 1

√
N
S (r)
n − E S (r)

n

n

d→ N (0, σ̃r
2).

5.2.3. Coloured balls. An urn contains NM balls, M balls of each of N colours. From the

urn a simple random sample of n elements is drawn. We want to study the asymptotics

of the number of colours with exactly r balls in the sample. More precisely, let ξi = ξ
(n)
i

denote the number of balls of colour i, i = 1, . . . , N. Then

P(ξ1 = k1, . . . , ξN = kN) =

∏N
i=1

(
M
ki

)
(
NM
n

)
for all integers ki � 0, i = 1, . . . , N, such that

∑N
i=1 ki = n. Obviously, the random vector

(ξ1, . . . , ξN) is exchangeable and the GAS equation (5.1) holds with ηi ∼ b(M, p), 0 < p < 1.

For an integer r � 0 we want to study the asymptotics of

S (r)
n =

N∑
i=1

I(ξi = r).

For the ith factorial moment we get

ci,n = (N)i P(ξ1 = · · · ξi = r) = (N)i

(
M
r

)i((N−i)M
n−ri

)
(
NM
n

) . (5.21)

Consequently, for any r = 0, 1, . . . ,

E S (r)
n = c1,n = N

(
M
r

)(
(N−1)M
n−r

)
(
NM
n

)
and

Var S (r)
n = c2,n − c2

1,n + c1,n

= N(N − 1)

(
M
r

)2((N−2)M
n−2r

)
(
NM
n

) −N2

(
M
r

)2((N−1)M
n−r

)2

(
NM
n

)2
+N

(
M
r

)(
(N−1)M
n−r

)
(
NM
n

) .

In the asymptotics below we consider the situation when n → ∞, N/n → λ ∈ (0,∞], and

M = M(n) � n.

Although the computational details are different, asymptotic formulas for E S (r)
n , Var S (r)

n ,

Cov(S (0)
n , S (1)

n ) and Cov(S (0)
n , S (2)

n ) are literally the same as for their counterparts in the case

of occupancy for distinguishable balls studied in Section 5.2.2.

First we will consider the limit result in the case r � 2, λ = ∞, and r � 0, λ ∈ (0,∞).
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Theorem 5.6. Let N/n → λ ∈ (0,∞] and M = M(n) � n. Let either

(a) r � 0 and λ < ∞, or

(b) r � 2, λ = ∞ and nr/Nr−1 → ∞.

Then

S (r)
n − E S (r)

n√
nr/Nr−1

d→ N (0, σ2
r ).

Proof. Rewrite the formula (5.21) as

ci,n = Lin
T ((M − r)i, NM − n)T (i, N)T (ri, n)

T (Mi,NM)
with Ln = Nnr

(
M

r

)(
1 − n

NM

)M
(NM − n)r

.

Thus the representation (4.1) holds with

Qj+1(i) =

(
n

NM

)j

Qj+1(Mi) −
(

n

NM − n

)j

Qj+1((M − r)i) −
(
n

N

)j

Qj+1(i) − Qj+1(ri).

We need to see that the polynomials Qj satisfy bound (4.2). This is clearly true for each

of the last two terms in the above expression for Qj+1. For the first two terms we have∣∣∣∣
(

n

NM

)j

Qj+1(Mi) −
(

n

NM − n

)j

Qj+1((M − r)i)

∣∣∣∣
=

∣∣∣∣
(

n

NM

)j Mi−1∑
k=1

kj −
(

n

NM − n

)j (M−r)i−1∑
k=1

kj
∣∣∣∣

�
∣∣∣∣
(

n

NM

)j

−
(

n

NM − n

)j∣∣∣∣Qj+1(Mi) +

(
n

NM − n

)j Mi−1∑
k=(M−r)i

kj .

Since ∣∣∣∣
(

n

NM

)j

−
(

n

NM − n

)j∣∣∣∣ �
(

n

NM − n

)j
jn

NM
�

(
2n

NM − n

)j
n

NM
,

and

Mi−1∑
k=(M−r)i

kj � rMjij+1,

and Qj+1(Mi) � Mj+1 ij+1, we conclude that the Qj do satisfy (4.2).

Clearly, E S (r)
n , Var S (r)

n and Ln are of order nr/Nr−1, and again we conclude the proof

by referring to Remark 5.2.

Asymptotic normality for S (1)
n and S (0)

n for λ = ∞ also holds with an identical statement

to that of Theorem 5.5 for distinguishable balls.

5.2.4. Rooted trees in random forests. Let T (N, n) denote a forest with N roots (that is,

N-rooted trees) and n non-root vertices. Consider a uniform distribution on the set of
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such T (N, n) forests. Let ξi = ξ
(n)
i , i = 1, . . . , N, denote the number of non-root vertices in

the ith tree. Then (see, e.g., [3], [18] or [19]), for any ki � 0 such that
∑N

i=1 ki = n,

P(ξ1 = k1, . . . , ξN = kN) =
n!∏N
i=1 ki

∏N
i=1 (ki + 1)ki−1

N(N + n)n−1
.

Note that this distribution is exchangeable and that it is a GAS with ηi in (5.1) given by

P(ηi = k) =
λk(k + 1)k−1

k!
e−(k+1)λ, k = 0, 1, . . . , λ > 0.

We mention in passing that the distribution of ηi may be identified as an Abel distribution

discussed in [17] with (in their notation) p = 1 and θ = ln λ− λ. We refer to [17, Example

D] for more information on Abel distributions, including further references.

For a fixed number r � 0 we are interested in the number S (r)
n of trees with exactly r

non-root vertices:

S (r)
n =

N∑
i=1

I(ξi = r).

Since the ith factorial moment of S (r)
n is of the form

ci,n = (N)i P(ξ1 = · · · = ξi = r),

we have to find the marginal distributions of the random vector (ξ1, . . . , ξN). From the

identity

s

m∑
k=0

(
m

k

)
(k + 1)k−1(m− k + s)m−k−1 = (s+ 1)(m+ 1 + s)m−1,

which is valid for any natural m and s, we easily obtain that, for kj � 0 such that∑i+1
j=1 kj = n,

P(ξ1 = k1, . . . , ξi = ki) =
n!∏i+1

j=1 kj!

(N − i)(ki+1 +N − i)ki+1−1
∏i

j=1 (kj + 1)kj−1

N(N + n)n−1
.

Therefore

ci,n =
(r + 1)i(r−1)

(r!)i
N − i

N

(N)i(n)ri
(n+N − (r + 1)i)ri

(
1 − (r + 1)i

n+N

)n−1

. (5.22)

Hence

E S (r)
n = c1,n =

(r + 1)r−1

r!

(N − 1)(n)r
(n+N − r − 1)r

(
1 − r + 1

n+N

)n−1

.

Thus, if N/n → λ ∈ (0,∞] we have

Nr−1

nr
E S (r)

n → (r + 1)r−1

r!

(
λ

λ+ 1

)r

e− r+1
λ+1

(
=

(r + 1)r−1

r!
for λ = ∞

)
.
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Since Var S (r)
n = c2,n − c2

1,n + c1,n, elementary but cumbersome computations lead to

Nr−1

nr
Var S (r)

n → σ2
r

=
e− r+1

λ+1

(r + 1)!

(
λ(r + 1)

λ+ 1

)r[
1 − e− r+1

λ+1

(r + 1)!

(
r + 1

λ+ 1

)r]
− λ

(
e− r+1

λ+1 (λr − 1)

(r + 1)!(λ+ 1)

)2(
λ(r + 1)2

(λ+ 1)2

)r

for r � 2 and λ ∈ (0,∞] and for r = 0, 1 and λ ∈ (0,∞). For r = 0, 1 and λ = ∞, and

n2/N → ∞, we have

N

n2
Var S (0)

n → 3

2
= σ̃2

0 and
N

n2
Var S (1)

n → 6 = σ̃2
1 .

Similarly one can prove that

N

n2
Cov(S (0)

n , S (1)
n ) → −3.

Therefore, for the correlation coefficients we have

ρ(S (0)
n , S (1)

n ) → −1. (5.23)

Since

N

n2
Var S (2)

n → 3

2
= σ

(2)
2 and

N

n2
Cov(S (0)

n , S (2)
n ) → 1,

we also have

ρ(S (0)
n , S (2)

n ) → 1. (5.24)

Theorem 5.7. Let N/n → λ ∈ (0,∞]. Let either

(a) r � 0 and λ < ∞, or

(b) r � 2, λ = ∞ and nr/Nr−1 → ∞.

Then

S (r)
n − E S (r)

n√
nr/Nr−1

d→ N (0, σ2
r ).

Proof. Since the asymptotics of Var S (r)
n and E S (r)

n is of the same order as in Theorem 5.1,

the conditions (2.6) and (2.7) are satisfied. Using (5.22) we write

ci,n = Lin e
i (n−1)(r+1)

n+N

(
1 − (r + 1)i

n+N

)n−1−ri
T (i+ 1, N)T (ri, n),

where

Ln =
N(r + 1)r−1

r!

(
n

n+N

)r

e− (n−1)(r+1)
n+N .

Thus the representation (4.1) holds true with

Qj+1(i) =

(
r − j(r + 1)(n− 1)

(j + 1)(n+N)

)(
(r + 1)(n− 1)

n+N

)j

ij+1 −
(
n

N

)j

Qj+1(i+ 1) − Qj+1(ri).
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The final result follows again by Remark 5.2, on noting that E S (r)
n , Var S (r)

n and Ln are of

order nr/Nr−1.

Again, as in previous cases we use (5.23) and (5.24) to obtain the following result.

Theorem 5.8. Let N/n → ∞ and n2/N → ∞. Then for r = 0, 1

√
N
S (r)
n − E S (r)

n

n

d→ N (0, σ̃r
2).

5.3. Asymptotics in generalized inverse allocation schemes (GIAS)

Our final two settings are examples of the GIAS as defined in (5.2). As in the case of the

GAS for

S (r)
n =

N∑
i=1

I(ξ(n)
i = r),

we will obtain asymptotic normality of

S (r)
n − E S (r)

n√
n

when N/n → λ ∈ (0,∞).

5.3.1. Exchangeable negative multinomial model. Let (ξi) = (ξ(n)
i ) be a random vector with

a negative multinomial distribution, that is,

P(ξ1 = k1, . . . , ξN = kN) =
(n+

∑N
j=1 kj)!

n!
∏N

j=1 kj!
p

∑N
j=1 kj (1 −Np)n+1. (5.25)

Note that this is an exchangeable case of a model usually referred to as the Bates–

Neyman model, introduced in [1]. We refer to [9, Chapter 36, Sections 1–4] for a detailed

account of this distribution, its properties, applications, and further references. Here, we

just note that this is a GIAS for which (5.2) holds with η0 ∼ Poisson(λ0), ηi ∼ Poisson(λ1),

i = 1, . . . , N, and C = λ0/(λ0 +Nλ1). Thus (5.2) implies (5.25) with p = λ1/(λ0 +Nλ1).

For a fixed integer r we are interested in the asymptotics of

S (r)
n =

N∑
j=1

I(ξj = r).

Denoting βn = (Np)−1 − 1, we obtain

ci,n = (N)i
(n+ ri)!

n!(r!)i
(Nβn)

n+1

(Nβn + i)n+1+ri
. (5.26)

To study the asymptotic properties of S (r)
n we will assume that N/n → λ ∈ (0,∞).

Moreover we let p = pn depend on n in such a way that Npn → α ∈ (0, 1), i.e., βn → α−1 − 1.

Consequently, setting Δ := α/(λ(1 − α)), for any r = 0, 1, . . . ,

lim
n→∞

1

n
E S (r)

n =
λΔr

r!
e−Δ
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and

lim
n→∞

1

n
Var S (r)

n =
λΔre−Δ

r!

[
1 − Δre−Δ

r!
(1 − λ(r − Δ)2)

]
=: σ2

r . (5.27)

Theorem 5.9. Let N/n → λ ∈ (0,∞) and Npn → α ∈ (0, 1). Then, for any r = 0, 1, . . . ,

S (r)
n − E S (r)

n√
n

d→ N (0, σ2
r ),

with σ2
r defined in (5.27).

Proof. Write (5.26) as

ci,n = Lin e
i n
Nβn

T (ri+ 1,−n)T (i+ 1, N)(
1 + i

Nβn

)n+1+ri
with Ln =

nre− n
Nβn

r!Nr−1βrn
.

Thus the representation (4.1) holds true with

Qj+1(i) = − i

Nβn
+

(
r − j(n+ 1)

(j + 1)Nβn

)(
− n

Nβn

)j

ij+1

+ (−1)j+1Qj+1(ri+ 1) −
(
n

N

)j

Qj+1(i).

Moreover, E S (r)
n , Var S (r)

n and Ln are all of order n and thus the final conclusion follows

from Remark 4.2.

5.3.2. Dirichlet negative multinomial model. Finally we consider an exchangeable version

of what is known as the ‘Dirichlet model of buying behaviour’, introduced in a seminal

paper by Goodhart, Ehrenberg and Chatfield [4] and subsequently studied in numerous

papers up to the present. This distribution is also mentioned in [9, Chapter 36, Section 6].

Writing, as usual, ξ(n)
i = ξi, the distribution under consideration has the form

P(ξ1 = k1, . . . , ξN = kN) =

(
n+

∑N
i=1 ki

)
!

n!
∏N

i=1 ki!

Γ(Na+ b)

ΓN(a)Γ(b)

Γ(n+ 1 + b)
∏N

i=1 Γ(ki + a)

Γ
(
Na+ b+ n+ 1 +

∑N
i=1 ki

)
for any ki = 0, 1, . . . , i = 1, . . . , N. Here n > 0 is an integer and a, b > 0 are parameters. This

is again a GIAS, for which (5.2) holds with ηi ∼ nb(a, p), i = 1, . . . , N, η0 ∼ nb(b+ 1, p),

0 < p < 1, and C = b/(Na+ b). When a and b are integers we recall a nice interpretation

of (ξ1, . . . , ξN) via the Pólya urn scheme. An urn contains b black balls and a balls in

each of N non-black colours. In subsequent steps a ball is drawn at random and returned

to the urn together with one ball of the same colour. The experiment is continued until

the nth black ball is drawn. Then ξi is the number of balls of the ith colour at the end

of experiment, i = 1, . . . , N. This distribution can also be viewed as multivariate negative

hypergeometric law of the second kind.

From the fact that ci,n = (N)iP(ξ1 = · · · = ξi = r), we get

ci,n = (N)i
(n+ ri)!

n!(r!)i
Γ(ia+ b)

Γi(a)Γ(b)

Γ(n+ 1 + b)Γi(r + a)

Γ((r + a)i+ n+ 1 + b)
. (5.28)
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To study the asymptotic behaviour of S (r)
n we will assume that N/n → λ ∈ (0,∞) and that

b = bn depends on n in such a way that bn/n → β > 0.

Below we use the following product representation of the Gamma function:

Γ(x) =
1

xeγx

∏
k�1

e
x
k

1 + x
k

, (5.29)

where γ is the Euler constant and x > 0. We also recall (see, e.g., [23, Section 12.16]) that

for a digamma function Ψ(x) = d ln(Γ(x))/dx we have

Ψ(x+ 1) = −γ +
∑
k�1

(
1

k
− 1

k + x

)
, x �= −1,−2, . . . .

Then, for any 0 < x < y we can write

Γ(x+ y)

Γ(y)
= exΨ(y+1) y

x+ y
e
∑

k�1 ( x
k+y −log(1+ x

k+y )), (5.30)

and the series ∑
k�1

(
x

k + y
− log

(
1 +

x

k + y

))

converges. Note that

Ψ(y) − ln y → 0, as y → ∞, (5.31)

so that, if αn/n → α, then for any x > 0

n−xΓ(αn + x)

Γ(αn)
→ αx.

Consequently,

lim
n→∞

1

n
E S (r)

n =
λΓ(a+ r)

r!Γ(a)

βa

(1 + β)a+r
.

Similarly,

lim
n→∞

1

n
Var S (r)

n =
λΓ(r + a)βa

r!Γ(a)(1 + β)a+r

(
1 −

Γ(r + a)βa
[
1 + λ

(
(a+r)2

β+1
− a2

β
− r2

)]
r!Γ(a)(1 + β)a+r

)
=: σ2

r .

(5.32)

Theorem 5.10. Let N/n → λ ∈ (0,∞) and bn/n → β ∈ (0,∞). Then, for any r = 0, 1, . . . ,

S (r)
n − E S (r)

n√
n

d→ N (0, σ2
r ),

with σ2
r defined in (5.32).

Proof. Note that (5.28) can be written as

ci,n =

(
NΓ(r + a)nr

r!Γ(a)

)i

T (ir + 1,−n)T (i, N)
Γ(bn + ia)

Γ(bn)

Γ(n+ 1 + bn)

Γ(n+ 1 + bn + i(r + a))
.
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Moreover, setting

hj(x) =
∑
k�1

1

(k + x)j+1
, x > 0, j � 2,

we see that (5.30) can be developed into

Γ(x+ y)

Γ(y)
= exΨ(y+1) e

∑
j�1

(
(−x)j

jyj
+ (−x)j+1

j+1 hj (y)
)
.

Therefore, taking (x, y) = (ia, bn) and (x, y) = (i(r + a), n+ 1 + bn), we decompose ci,n
according to (4.1), where

Ln =
NΓ(r + a)nr

r!Γ(a)
eaΨ(1+bn)−(r+a)Ψ(2+n+bn)

and

Qj+1(i) =

[(
n(r + a)

bn + n+ 1

)j

−
(
na

bn

)j]
(−1)j+1ij

+
j(−n)j
j + 1

[
(r + a)j+1hj(bn + n+ 1) − aj+1hj(bn)

]
ij+1

+ (−1)j+1Qj+1(ir + 1) −
(
n

N

)j

Qj+1(i).

On noting that αn/n → α implies that njhj(αn) < cj(α) uniformly in n, we conclude that

polynomials Qj satisfy condition (4.2). Moreover, (5.31) yields that Ln is of order n. Since

E S (r)
n and Var S (r)

n are of order n too, the result follows by Remark 4.2.
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