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a b s t r a c t

Different concepts of neutrality have been studied in the literature in context of indepen-
dence properties of vectors of randomprobabilities, in particular, for Dirichlet random vec-
tors. Some neutrality conditions led to characterizations of the Dirichlet distribution. In this
paper we provide a new characterization in terms of neutrality with respect to two parti-
tions, which generalizes previous results. In particular, no restrictions on the size of the
vector of random probabilities are imposed. In the proof we enhance themoments method
approachproposed in Bobecka andWesołowski (2009) [2] by combining itwith somegraph
theoretic techniques.
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1. Introduction

Let X = (X1, . . . , Xn) be a random vector of probabilities, i.e. Xi ≥ 0, i = 1, . . . , n, and
n

i=1 Xi = 1. A concept of
neutralitywas first introduced for such vectors by Connor andMosimann in [5]. They indicated that given a vector of random
probabilities X = (X1, . . . , Xn) it is desirable in some situations to eliminate one of the proportions, say X1, and to analyse its
effects on proportions of the form X2/(1 − X1), . . . , Xn/(1 − X1). This led to the following definition (see [5]): X1 is neutral
in X whenever X1 and the vector (X2/(1 − X1), . . . , Xn/(1 − X1)) are independent. These authors defined also neutrality
of a subvector in a random vector of proportions and complete neutrality of a vector. Similar notions of neutrality to the
right and neutrality to the left were defined in Doksum [7]. There were also other related notions of neutrality studied in
the literature. All these notions embed in the notion of neutrality with respect to partition of an index set (introduced in [2])
which we recall below.

We say thatπ = {P1, . . . , PK } is a partition of a set E when P1, . . . , PK are nonempty pairwise disjoint subsets of E, whose
union is E. The elements of π are called blocks.

Definition 1.1. Let π = {P1, . . . , PK } be a partition of E = {1, . . . , n}. We say that a vector of random probabilities
X = (X1, . . . , Xn) is neutral with respect to π (from here abbreviated nwrt π ) if the following random vectors are mutually
independent:

U =


i∈P1

Xi, . . . ,

i∈PK

Xi


,

WP1 =


Xj

i∈P1
Xi

, j ∈ P1


, . . . ,WPK =


Xj

i∈PK
Xi

, j ∈ PK


.
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The notion of neutrality appeared to be a useful tool in studying independence properties of the Dirichlet distribution.
In particular, the Dirichlet distribution, which can be imposed on a vector of random probabilities X , is neutral with respect
to all possible partitions of the corresponding index set. For a recent accounts on Dirichlet distributions, including relations
to neutrality concepts see e.g. Ng, Tian and Tang [13] (in particular, Ch. 2.6) or Chang, Gupta and Richards [3].

Recall that a random vector X = (X1, . . . , Xn−1) has the Dirichlet distribution Dir(α1, . . . , αn) if its density is of the form

f (x1, . . . , xn−1) =

Γ


n

i=1
αi


n

i=1
Γ (αi)

n−1
i=1

xαi−1
i


1 −

n−1
i=1

xi

αn−1

1Tn−1(x1, . . . , xn−1),

where αi > 0, i = 1, . . . , n, and Tn−1 = {(x1, . . . , xn−1) : xi > 0,
n−1

i=1 xi < 1}. In the sequel we will say that a vector of
random probabilities X = (X1, . . . , Xn) has the Dirichlet distribution if a subvector (X1, . . . , Xn−1) has the density given by
the above formula.

Characterizations of the Dirichlet distribution by different independence assumptions related to neutralities were
discussed by several authors. All these results can be formulated in terms of neutrality with respect to partitions, although
this notion had not been explicitly referred to. Darroch and Ratcliff proved in [6] a characterization of the Dirichlet
distribution, using neutralities with respect to partitionsπi = {{1}, . . . , {i−1}, {i+1}, . . . , {n−1}, {i, n}}, i = 1, . . . , n−1.
A result by Fabius, [8], concerned partitions πi = {{i}, {1, . . . , i − 1, i + 1, . . . , n}}, i = 1, . . . , n − 1. James and Mosimann
presented in [10] a characterization by neutrality with respect to partitions πi = {{1}, . . . , {i}, {i + 1, . . . , n}}, i =

1, . . . , n−2, andπn−1 = {{n−1}, {1, . . . , n−2, n}}. Their result was further generalized in [1] by Bobecka andWesołowski,
where partitionsπi = {{1}, . . . , {i}, {i+1, . . . , n}}, i = 1, . . . , n−2, andπn−1 = {{i0}, {i0+1}, . . . , {n−1}, {1, . . . , i0−1, n}}
for an arbitrary fixed i0 were considered. Note that for a vector of size n all of these characterizations require exactly
n − 1 partitions. Another result, requiring only 2 partitions for any n not being a prime number, was presented in [9] by
Geiger and Heckerman. These authors proved, assuming the existence of a density, a characterization of an L × M Dirichlet
randommatrix, with one partition determined by its rows and another one by its columns. The proof was based on solving
a functional equation for densities (further developed by Járai in [11], see also Chapter 23 of [12]). See also Heckerman,
Geiger and Chickering [4] for a thorough description of the Bayesian networks context of this characterization. Bobecka and
Wesołowski, [2], refined this result proving an analogous characterization bymeans ofmomentsmethod and, consequently,
without additional density assumption. They also generalized it to multi-way tables. The result of Geiger and Heckerman
(and its extension) has been also recently proved within the Bayesian framework by Ramamoorthi and Sangalli in [15].

The aim of this paper is to present a new characterization of the Dirichlet distribution, which generalizes all the previous
results when neutrality with respect to only two partitions is assumed. Actually we determine a set of all pairs of partitions
such that neutralitywith respect to both elements of the pair characterizes theDirichlet distribution for the vector of random
probabilities.We use themomentsmethod as in [2], hence no density assumption is needed. In the proofwe also rely heavily
on graph theoretic techniques.

The paper is organized as follows. Section 2 contains some definitions and facts from graph theory which are used in
the proof of the main result. In Section 3 we state and prove the characterization of the Dirichlet law, which is our main
result. In the proof we use also an auxiliary result on a functional equation which is formulated in Section 3 and proved in
the Appendix. In Section 4 we illustrate the characterization with several examples.

2. Facts from graph theory

In this section we present some definitions and facts from graph theory that will be used in the proof of our main result.

Definition 2.1. LetG = (V , E), where V is the set of vertices and E is the set of edges, be a connected graph. The vertex v ∈ V
is called a cut vertex if removing v from G disconnects the graph. Otherwise, we say that v is a non-cut vertex. Alternatively,
v is non-cut if for any u, w ∈ V \ {v} there exists a path between u and w that does not contain v.

Below we state a fact on non-cut vertices, which belongs to the graph theory folklore. Since we were not able to find an
exact reference, a short proof is also given.

Lemma 2.2. In every connected graph G = (V , E), |V | ≥ 2, there exist at least two non-cut vertices.

Proof. Let T denote a spanning tree of the graph G. Since |V | ≥ 2, there exist at least two leaves u, v in T . As the removal
of leaves does not disconnect the tree, u, v are non-cut in T , and hence they are non-cut in G. �

For the purpose of this paper we introduce a notion of significance of a vertex.

Definition 2.3. Let C be a maximal clique in a graph G and v ∈ C . Denote by N(v) the set of neighbours of v. We say that v
is significant in C if N(v) ∪ {v} = C .
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Belowwegive someproperties of significant verticeswhich are important in the proof of the characterization in Section 3.

Lemma 2.4. Let C be a maximal clique in a connected graph G and v ∈ C be significant in C. Then v is non-cut in G.

Proof. If C consists of two elements, the significance of v in C means that v is a leaf and hence non-cut. Assume that C has
more than two elements. Then N(v) contains at least two elements, and all of them are connected. Thus if between some
vertices u, w of G there exists a path containing v, we can modify its part contained in C by replacing v with some of its
neighbours. Hence v is non-cut in G. �

Definition 2.5. Let G = (V , E). We say that a subgraph G = (W ,E) of G is induced by the set of vertices W (denoteG = G[W ]) if W ⊂ V andE consists of all the edges from E whose endpoints are both inW .

Lemma 2.6. Let G = (V , E) be a connected graph andC = {C1, . . . , Ck} be any family of maximal cliques in G such that for
every i = 1, . . . , k there exists at least one vertex vi ∈ Ci significant in Ci, and Ci consists of at least 3 elements. Let G = G[V \V ′

],
where V ′

= {vi, i = 1, . . . , k}, denote a subgraph of G induced by the set of vertices V \ V ′. If a vertex is non-cut inG then it is
also non-cut in G.

Proof. Note first thatG is connected. Indeed, by Lemma 2.4 removal of any vertex vi ∈ V ′ does not disconnect G, and the
remaining vertices V ′

\ {vi} in G[V \ {vi}] are still significant in the corresponding cliques. Hence removing all of the vertices
V ′, we do not disconnect G. Suppose that there exists w which is non-cut inG, but it is cut in G. We will show that it leads
to a contradiction. Removing w from G, we divide it into connectivity components with vertices in sets V1, . . . , Vk. Since w
is non-cut inG, it follows that V \ V ′

⊂ Vi ∪ {w} for some i, 1 ≤ i ≤ k. Consequently, no vertex u ∈


j≠i Vj ⊂ V ′ can be
adjacent in G to any – except for w – vertex from V \ V ′. This means that either u is a leaf (adjacent to w) or u is adjacent to
a vertex y ∈ V ′. But u cannot be a leaf since the vertices in V ′ come from cliques of at least 3 elements. Therefore u, y ∈ V ′

are adjacent. However, this is impossible since vertices from V ′ are significant in different cliques. �

3. The characterization

In this section we state and prove a characterization of the Dirichlet distribution which is the main result of this paper.
First we present an auxiliary lemma on a solution of a system of functional equations for a function of multivariate variables
satisfying a structure condition (3.1). The result of this lemma will be used in the proof of the characterization theorem.

Note that if (Θ1, . . . , Θn) is a random vector such that
n

i=1 Θi = 1, then F defined as F(x) = E (Θ
x1
1 . . . Θxn

n ) (provided
the moments are finite) satisfies the structural condition (3.1).

Lemma 3.1. Let F be a positive function defined on the n-fold cartesian product of non-negative integers, such that F(0) = 1
and

F(x) =

n
l=1

F(x + εl), (3.1)

where εl is a unit vector of length n with 1 at the lth coordinate. Assume that there exist a set A ⊂ {1, . . . , n}, k = #A > 1,
functions αj, j ∈ A, and constants bj, j ∈ {1, . . . , n} \ A, such that for every i ∈ A

F(xA + εi)

F(xA + εl)
=

αi(xi)
αl(xl)

, l ∈ A (a)

αi(xi)
bl

, l ∉ A (b)
(3.2)

where xA = (xAi )
n
i=1:

xAi =


xi, i ∈ A
0, i ∉ A .

Then there exist a ∈ R and bi ∈ R, i ∈ A, such that

αi(x) = ax + bi, i ∈ A. (3.3)

If a ≠ 0, then

F(xA) =
Γ

|d|


Γ

|d| + |xA|

 
i∈A

Γ (xi + di)
Γ (di)

,

where |d| =
n

i=1 di and di = bi/a, i = 1, . . . , n.
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If a = 0, then

F(xA) =


i∈A

dxii ,

where di = bi/|b|.

The above result in the case A = {1, . . . , n} can be read out from the proof of Theorem 2 of [2]. Actually, the proof of this
result that we give in the Appendix, borrows a lot from the one given in [2].

We denote by ∨ and ∧ the standard operations of taking maximum and minimum in the lattice of partitions of a given
set.

Now we can state the characterization of the Dirichlet distribution through neutralities.

Theorem 3.2. Let X = (X1, . . . , Xn) be a vector of random non-degenerate probabilities and π1, π2 be two different partitions
of the index set E = {1, . . . , n}. Let πi, i = 1, 2, be a partition created from πi by merging into one block all blocks of size one.
Assume that

π1 ∨ π2 = π∗
= {{1, . . . , n}} (3.4)

and π1 ∧π2 = π∗ = {{1}, . . . , {n}}. (3.5)

If X is neutral with respect to partitions π1 and π2, then it has the Dirichlet distribution.

Note that considering πi instead of πi in (3.5) is necessary to obtain the characterization. The crucial issue is that any
block of one partition has to contain at most one block of size one of the other partition. This fact will play an important role
in the proof. Also, in Section 4 belowwewill give an example showing that if (3.5) holds just for π1 and π2, there exist other
distributions than Dirichlet satisfying all other assumptions of Theorem 3.2.

Note also that the characterization is invariant under permutation of elements of the set E = {1, . . . , n}, since (3.4) and
(3.5) are preserved under any permutations. �

Proof. For any set D ⊂ {1, . . . , n} we denote by |D| the cardinality of D, and by rD—the vector of length |D| indexed by
elements from this set. For any vector v = (v1, . . . , vk) we denote |v| = v1 + · · · + vk. Further we define vectors related to
the partition π1 = {B1, . . . , BL}: εi denotes a unit vector of length Lwith 1 at the ith coordinate, εi

p, i = 1 . . . , L, p ∈ Bi ∈ π1,
denotes a vector of length |Bi| created from rBi by replacing all entries with 0 except for the pth entry, which is replacedwith
1. Similarly, we define the unit vectors connected with the partition π2 = {C1, . . . , CM}: δi of lengthM and δi

p, i = 1, . . . ,M
of length |Ci|, Ci ∈ π2. Denote by rA,L

= (rA,L
i )Li=1 for A ⊂ {1, . . . , L} a vector of length L of the form

rA,L
i =


ri, i ∈ A
0, i ∉ A .

Let Y = (Y1, . . . , Yn) be a vector having the Dirichlet distribution Dir(z1, . . . , zn). Then for any ρ1, . . . , ρn ∈ N0 we have

EY ρ1
1 . . . Y ρn

n =
Γ (|z|)

Γ (|z| + |ρ|)

n
i=1

Γ (zi + ρi)

Γ (zi)
, (3.6)

where z = (z1, . . . , zn) and ρ = (ρ1, . . . , ρn). Since the Dirichlet distribution is characterized by its moments, it suffices to
show that (3.6) holds for X .

By neutrality of X with respect to π1 and π2 we have for any r1, . . . , rn ∈ N0:

EX r1
1 . . . X rn

n = E


i∈B1


Xi

R1

ri


. . . E


i∈BL


Xi

RL

ri


E(Rs1
1 . . . RsL

L )

= E


i∈C1


Xi

T1

ri


. . . E


i∈CM


Xi

TM

ri


E(T t1
1 . . . T tM

M ), (3.7)

where

Ri =


j∈Bi

Xj, si =


j∈Bi

rj, i = 1, . . . , L,

Ti =


j∈Ci

Xj, ti =


j∈Ci

rj, i = 1, . . . ,M.
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For any vectors mi = (mi
1, . . . ,m

i
|Bi|

), l = (l1, . . . , lL), mi = (mi
1, . . . ,mi

|Ci|
),l = (l1, . . . ,lM) we define functions F , fi,

i = 1, . . . , L, G, gj, j = 1, . . . ,M , as follows:

fi(mi) = E


j∈Bi


Xj

Ri

mi
j


, F(l) = E(Rl1
1 . . . RlL

L ),

gj(mj) = E


i∈Cj


Xi

Tj

mj
i

 , G(l) = E(T
l1
1 . . . T

lM
M ).

Note that the property (3.1) holds for all the functions defined above.
After plugging these functions into (3.7) we obtain the equation

F(|rBi |, i = 1, . . . , L)
L

i=1

fi(rBi) = G(|rCi |, i = 1, . . . ,M)

M
i=1

gi(rCi). (3.8)

We will show that the moments of X are of the form (3.6). The proof proceeds in the following steps:

I. Determining the form of function F (and G):
(1) at point rA,L for some A ⊂ {1, . . . , L}:

(a) construction of the set A,
(b) showing that the assumptions of Lemma 3.1 hold for A,

(2) at any point r .
II. Determining the form of functions gl, l = 1, . . . ,M (and fl, l = 1, . . . , L).
III. Identification of the parameters of functions F , G, gl, l = 1, . . . ,M .

I. Determining the form of function F
(1)(a) First we identify a k-element set A ⊂ {1, . . . , L} that satisfies the assumptions of Lemma 3.1 in order to determine

the form of F(rA,L).
For any blocks Bp, Bq ∈ π1 we denote

C(Bp, Bq) = {C ∈ π2 : Bp ∩ C ≠ ∅ ∧ Bq ∩ C ≠ ∅}.

Consider two different blocks Bp, Bq ∈ π1. By (3.4) there exists a set of blocks Dpq
= {Bp = Bi0 , Bi1 , . . . , Bim , Bim+1 = Bq}

such that

C(Bij−1 , Bij) ≠ ∅, j = 1, . . . ,m + 1. (3.9)

The set Dpq will be further referred to as a path between Bp and Bq.
It will be convenient to use the following graph representation for partitions π1, π2. We assume that the blocks Bi ∈ π1,

i = 1, . . . , L, correspond to vertices of the graph G = (V , E), and the existence of an edge between two vertices Bi, Bj is
defined by the conditionC(Bi, Bj) ≠ ∅. Note that for vertices of the graph Gwewill alternatively use symbols v ∈ {1, . . . , L}
or B ∈ π1. Then (3.4) is equivalent to G being connected. Additionally, we associate with each vertex its type being a number
of elements in the corresponding block. Note that for every vertex B of type one the set N(B) ∪ {B} forms a maximal clique
(whose all edges may be assumed to come from one block C ∈ π2). Every vertex of type one is then always significant in a
clique (but not necessarily the only one in the clique with this property). In addition, by (3.5) in every clique there exists at
most one vertex of type one.

Let us first notice that every set A satisfying the assumptions of Lemma 3.1 must consist of at least two elements. We
will identify A ⊂ {1, . . . , L} by choosing a family BA of blocks of π1, i.e. by choosing a subset of vertices of graph G. This
will be done in two steps. First we will choose a single special vertex B1. Then we will choose remaining vertices through an
algorithm with a starting point in B1.

Let B1 be a non-cut vertex of G such that either it is a leaf or it is not of type one. We will show that such a vertex always
exists. To this end, we will use Lemma 2.6. LetC = {C1, . . . , Ch} denote a subfamily of all maximal cliques such that each of
them contains a vertex of type one not being a leaf. Note that each such a clique has at least 3 elements. Let vi be the vertex
of type one from the ith clique, i = 1, . . . , h. Define V ′

= {vi, i = 1, . . . , h}. Consider a subgraphG of G induced by a vertex
set V \ V ′. Since vi is of type one, it is significant in Ci, i = 1, . . . , h. Hence the assumptions of Lemma 2.6 are satisfied forC ,
V ′ andG. Therefore, to find a non-cut vertex of G which either is a leaf or is not of type one, it suffices to find a vertex that
is non-cut inG and has this property. Since every vi ∈ V ′ is significant in Ci, i = 1, . . . , h, by Lemma 2.4 graph G[V \ {vi}]

is connected, and vertices V ′
\ {vi} are still significant in the corresponding cliques. Then the same reasoning for all of the

remaining vertices V ′
\ {vi} leads toG being connected. Hence by Lemma 2.2 there exist inG at least two non-cut vertices.

Let us choose any of them. By definition of V ′, if this vertex is of type one, it has to be a leaf in G, which completes the proof.
To identify the remaining elements of BA, we will first specify appropriate unique paths D1q for all q ≠ 1. To this end,

we assign weights to the edges of G and use a greedy algorithm to find a minimal spanning tree TG in G (in general TG is not
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unique for G). The algorithm (for details see [14]) starts from an arbitrary vertex, and until all vertices from V are in the tree,
in every step one edge of minimal weight, connecting one of the already chosen vertices with one of the remaining ones,
is added (if there are multiple edges with the same weight, any of them may be chosen). Let B1 be a starting vertex of the
algorithm (the root in the resulting spanning tree). Weights are assigned as follows.

1. In every maximal clique that contains a vertex B of type one edges incident to B are given weight w0;
2. If the vertex B1 does not belong to any clique considered in (1), we assign weight w1 > w0 to one fixed edge incident to

B1, and to the rest of them—weight w2 > w1;
3. All remaining edges in G are given weight w1.

This method of assigning weights implies in particular that:

(i) the resulting tree contains only one edge incident to the root B1 (note that the fact that B1 was chosen to be non-cut is
important here),

(ii) if amaximal clique K ofG contains a vertex B of type one, the only edges in K that remain in the tree are the ones incident
to B. This means that two vertices from K that are not of type one are not adjacent in the tree.

The resulting spanning tree TG with a root in B1 determines uniquely the set of paths {D1q, q = 2, . . . , L}. Since the root
is fixed, we can consider the tree directed. Then we define the set BA as the union of {B1} and the set of leaves of TG. Note
that BA is then symmetric with respect to its elements, i.e. if we chose another vertex Bi ∈ BA to be the root, B1 would
become a leaf.

(b) Let BA be as defined above. Without loss of generality we will assume that BA = {B1, . . . , Bk}, k ≥ 2. We will show
that the corresponding set A = {1, . . . , k} satisfies the assumptions of Lemma 3.1. To this end, we will consider all pairs of
vertices adjacent in TG. Consider B1 and the path D1q

= {B1, Bi1 , . . . , Bim , Bq} to a certain leaf Bq in TG. Let Bu, Bv ∈ D1q be
two adjacent vertices. Then there exists a block Cl ∈ C(Bu, Bv). It follows from (3.5) that Cl can contain at most one block
B ∈ π1 of size one. In addition, if none of Bu, Bv is of size one, Cl contains no 1-element blocks. Indeed, if there existed 1-
element block B ⊂ Cl, B ∉ {Bu, Bv}, then vertices Bu, Bv and B would belong to a maximal clique K (with edges defined by
the block Cl) in G. But then (since B is of type one) – by (ii) – vertices Bu, Bv would not be adjacent in TG, which leads to a
contradiction. Hence the only possible situations are:

(1) |Bv| = 1 and |Bu| > 1;
(2) |Bu| = 1 and |Bv| > 1;
(3) The block Cl does not contain any blocks of size one from π1.

Consider first (1). Then since Bv ⊂ Cl, and no other blocks are contained in Cl,

∀Bs ∈ π1, Bs ≠ Bv, ∃s ∈ Bs \ Cl. (3.10)

Again by (3.5), the last condition is also satisfied under (3) (in the latter case additionally there exists an elementv ∈ Bv \Cl).
We will discuss these two cases together, using the condition (3.10) only.

Let us go back to Eq. (3.8), and consider Bu, Bv as defined above (without loss of generality we can assume that Bu is the
predecessor of Bv). By (3.5) there exist elements a, b such that {a} = Bu ∩ Cl and {b} = Bv ∩ Cl. (Actually it follows from the
fact that π1 ∧ π2 = π∗, which is a weaker condition than (3.5).) First we add 1 to ra in (3.8). Then we divide the resulting
equation by (3.8) with 1 added to rb. After cancellations we get

fu(rBu + εu
a)fv(r

Bv )

fu(rBu)fv(rBv + εv
b)

F

|rB1 |, . . . , |rBu | + 1, . . . , |rBL |


F

|rB1 |, . . . , |rBv | + 1, . . . , |rBL |

 =
gl(rCl + δl

a)

gl(rCl + δl
b)

. (3.11)

Next, using (3.10), we choose from each block Bs ∈ π1, Bs ≠ Bv , an elements that does not belong to the block Cl, and
from Bv we choose the element b. We define r as a vector of length L with rs at the sth coordinate, s = 1, . . . , L, s ≠ v, and
rb at the vth one. In Eq. (3.11) we replace with zeros all rκ that are not the elements of r . We get after some transformations

F(r + εu)

F(r + εv)
=

fu(ruεuu)fv((rb + 1)εv
b)

fu(ruεuu + εu
a)fv(rbε

v
b)

gl(δl
a + rbδl

b)

gl((rb + 1)δl
b)

=
α2
u(ru)

α1
v,u(rb)

. (3.12)

The function

α1
v,u(rb) =

fv((rb + 1)εv
b)

fv(rbεv
b)

gl(δl
a + rbδl

b)

gl((rb + 1)δl
b)

depends on the block Bu through a in gl(δl
a + rbδl

b), however, the vertex Bu – as the predecessor of Bv in the tree TG – is
uniquely determined for Bv . Hence we can write α1

v,u(rb) = α1
v(rb).

Now we consider the case (2). Then the condition (3.10) with v replaced by u holds. By similar to the above procedure
we get

F(r + εu)

F(r + εv)
=

fu(raεu
a)fv(rvεvv + εv

b)

fu((ra + 1)εu
a)fv(rvεvv)

gl((ra + 1)δl
a)

gl(raδl
a + δl

b)
=

α2
u,v(ra)
α1

v(rv) . (3.13)
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Note that this time the function α2
u,v may depend on Bv since in general the successor Bv of Bu is not uniquely determined

for all paths D1t , t ∈ A. Hence if there exists another successor Bz of Bu on a certain path D1t , we will be also interested
in determining the quotient of the form (3.13) for the pair Bu, Bz , and the corresponding function α2

u,z appearing in the
numerator of the right-hand side may differ from α2

u,v .
If in the latter case Bu = B1, Eq. (3.13) can be rewritten as

F(r + ε1)

F(r + εv)
=

α2
1,v(ra)

α1
v(rv) .

Since as noted in (i) there exists for the root B1 only one successor, the functionα1,v is uniquely determined for B1, so it does
not depend on v. We denote it byα1.

Summarizing all the three cases, we see that for any adjacent Bu, Bv (where Bu is the predecessor of Bv), u = ij, v = ij+1,
j = 1, . . . ,m (where im+1 = q) we have

(1)
F(r + εu)

F(r + εv)
=

α2
u(ru)

α1
v(rv)

∨ (2)
F(r + εu)

F(r + εv)
=

α2
u,v(ru)
α1

v(rv)

and

F(r + ε1)

F(r + εi1
)

=
α1(r1)
α1
i1
(ri1)

for some functions α1, α1
i1
, α2

u (α2
u,v), α

1
v , u = i1, . . . , im, v = i2, . . . , im+1 = q. Since (1) is a special case of (2), we can assume

without loss of generality that for the elements of the path D1q we have:

F(r + ε1)

F(r + εi1
)

=
α1(r1)
α1
i1
(ri1)

,

F(r + εij
)

F(r + εij+1
)

=

α2
ij,ij+1

(rij)

α1
ij+1

(rij+1)
, j = 1, . . . ,m, im+1 = q.

Note that α1 does not depend on the path, because the root B1 has the same successor in every path. Multiplying consecu-
tively the above equations, we get

F(r + ε1)

F(r + εi1
)

=
α1(r1)
α1
i1
(ri1)

, (3.14)

F(r + ε1)

F(r + εij+1
)

=
α1(r1)
α1
i1
(ri1)

j
t=1

α2
it ,it+1

(rit )

α1
it+1

(rit+1)
, j = 1, . . . ,m, im+1 = q.

Denote rk = (r1, . . . , rk, 0, . . . , 0). Note that the only elements from the path D1q that belong to the set BA are the
blocks B1 and Bq. Hence after replacing with zeros all rλ, λ ∉ A = {1, . . . , k}, in the above equations we get

F(rk + ε1)

F(rk + εij
)

=
α1(r1)
bij

, j = 1, . . . ,m,

F(rk + ε1)

F(rk + εq)
= C

α1(r1)
α1
q (rq)

,

where

bij =

F(εij
)α1(0)

F(ε1)
, j = 1, . . . ,m, and C =

F(ε1)α
1
q (0)

F(εq)α1(0)
.

In order to obtain a condition of the form (3.2)(a), we then substitute αq(rq) := α1
q (rq)/C .

Since q is arbitrary in A, the above procedure allows to determine the quotients

F(rk + ε1)

F(rk + εj)
(3.15)
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for all j = 1, . . . , L. Thus for a fixed index 1 ∈ A there exist uniquely determined functions α1, . . . , αk and constants
bk+1, . . . , bL such that

F(rk + ε1)

F(rk + εj)
=

α1(r1)
αj(rj)

, j = 1, . . . , k, (3.16)

F(rk + ε1)

F(rk + εj)
=

α1(r1)
bj

, j = k + 1, . . . , L.

Hence the assumptions (3.2)(a)–(3.2)(b) of Lemma 3.1 hold for i = 1. After appropriate multiplications of the above equa-
tionswe obtain that they hold for all i = 1, . . . , kwith the same functions αj, j = 1, . . . , k, and constants bj, j = k+1, . . . , L.
Indeed, we have for any n ∈ A

F(rk + εn)

F(rk + εj)
=

F(rk + εn)

F(rk + ε1)

F(rk + ε1)

F(rk + εj)
=

αn(rn)
α1(r1)

α1(r1)
αj(rj)

=
αn(rn)
αj(rj)

, j ∈ A \ {n}

and

F(rk + εn)

F(rk + εj)
=

αn(rn)
α1(r1)

α1(r1)
bj

=
αn(rn)

bj
, j = k + 1, . . . , L.

From Lemma 3.1 we conclude that

F(rk) =
Γ

|d|


Γ


|d| +

k
i=1

ri

 k
i=1

Γ (ri + di)
Γ (di)

(3.17)

with some d ∈ RL, or

F(rk) =

k
i=1

diri (3.18)

with some d ∈ Rk.
(2) In the next steps we will complement the arguments of F with other non-zero coordinates until we arrive at its form

at any point r . To this end, we define TG as a tree made from TG by removing all of the leaves (i.e. all of the elements from
BA, except for B1). We will show that if Bi is a leaf in TG then we can determine the form of F at the point rk + riεi for any
ri. Since TG is a tree, by removing one leaf in each step we obtain eventually a tree consisting of one vertex B1, and thereby
determine the form of F at any point r .

Let us first go back to Eq. (3.14) and consider rim . Assume without loss of generality that after removing the leaves (in-
cluding Bq) from the tree TG, Bim became a leaf in TG. Note that the quotients

F(r + ε1)

F(r + εj)
(3.19)

for j ∈ {i1, . . . , im−1} do not depend on rim . Obviously, the quotients of this form for other j ∉ A = {1, . . . , k} do not depend
on rim either. Assume without loss of generality that im = k + 1.

Consider first the case of (3.17). We will show by induction that for any rk+1 and any rk we have

F(rk+1) = F(rk)
Γ (dk+1 + rk+1)

Γ (dk+1)

Γ

|d| + |rk|


Γ

|d| + |rk| + rk+1


=

Γ

|d|


Γ

|d| + |rk+1|

 k+1
i=1

Γ (ri + di)
Γ (di)

. (3.20)

The equality holds for rk+1 = 0. Assume that it holds for rk+1 = 0, . . . , l − 1 and consider rk+1 = l.
Let us rewrite (3.1) for F(rk + (l − 1)εk+1) as

F(rk + lεk+1) = F(rk + (l − 1)εk+1) −

k
i=1

F(rk + (l − 1)εk+1 + εi) −

L
i=k+2

F(rk + (l − 1)εk+1 + εi). (3.21)
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We start with computing the last sum in the above expression. Since the quotients (3.19) for j ∉ A do not depend on
rim = rk+1, we get by (3.16)

F(rk + ε1)

F(rk + εj)
=

F(rk + ε1 + (l − 1)εk+1)

F(rk + εj + (l − 1)εk+1)
=

α1(r1)
bj

for k + 1 < j ≤ L. After plugging into the above equation the form (3.3) of the function αq for q = 1 we obtain

F(rk + εj + (l − 1)εk+1) = F(rk + ε1 + (l − 1)εk+1)
dj

r1 + d1
. (3.22)

Using the induction assumption and (3.17), we can rewrite the right-hand side as

F(rk + ε1 + (l − 1)εk+1) = F(rk + ε1)
Γ (dk+1 + l − 1)

Γ (dk+1)

Γ

|d| + |rk| + 1


Γ

|d| + |rk| + 1 + l − 1


= F(rk)

d1 + r1
|d| + |rk|

Γ (dk+1 + l − 1)
Γ (dk+1)

Γ

|d| + |rk| + 1


Γ

|d| + |rk| + l

 .

After plugging the above into (3.22) we get

F(rk + εj + (l − 1)εk+1) = F(rk)
dj

|d| + |rk|
Γ (dk+1 + l − 1)

Γ (dk+1)

Γ

|d| + |rk| + 1


Γ

|d| + |rk| + l

 (3.23)

for all j = k + 2, . . . , L.
For the remaining elements of (3.21), by induction assumption we have

F(rk + (l − 1)εk+1) = F(rk)
Γ (dk+1 + l − 1)

Γ (dk+1)

Γ

|d| + |rk|


Γ

|d| + |rk| + l − 1


and

F(rk + (l − 1)εk+1 + εi) = F(rk)
di + ri

|d| + |rk|
Γ (dk+1 + l − 1)

Γ (dk+1)

Γ

|d| + |rk| + 1


Γ

|d| + |rk| + l

 ,

i = 1, . . . , k, where to write the last expression we used also (3.17). Plugging the above into (3.21), we get

F(rk + lεk+1) = F(rk)
Γ (dk+1 + l − 1)

Γ (dk+1)

×


Γ

|d| + |rk|


Γ

|d| + |rk| + l − 1

 −
Γ

|d| + |rk| + 1


(|d| + |rk|)(Γ


|d| + |rk| + l


)


k

i=1

(di + ri) +

L
i=k+2

di



= F(rk)
Γ (dk+1 + l − 1)

Γ (dk+1)

Γ

|d| + |rk|


Γ

|d| + |rk| + l

 (|d| + |rk| + l − 1) −


k

i=1

(di + ri) +

L
i=k+2

di



= F(rk)
Γ (dk+1 + l)

Γ (dk+1)

Γ

|d| + |rk|


Γ

|d| + |rk| + l

 .
Hence the proof of (3.20) is complete.

Similarly, we determine the form of F at the point rk+1
+ riεi for the next leaf Bi of the tree TG, and we proceed until we

determine the form of F at any point r . We obtain eventually

F(r) =
Γ

|d|


Γ

|d| + |r|

 L
i=1

Γ (di + ri)
Γ (di)

. (3.24)

Consider now the case of (3.18). We will follow the inductive proof of (3.20) to show that

F(rk+1) = F(rk)d rk+1
k+1 ,

where dk+1 =
bk+1
|b| .

In order to determine the terms of (3.21), we first observe that (3.22) now becomes

F(rk + εj + (l − 1)εk+1) = F(rk + ε1 + (l − 1)εk+1)
bj
b1

= F(rk)d1dl−1
k+1

bj
b1

,
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for all j = k+2, . . . , L, where in the second equalitywe used (3.18) and the induction assumption. Similarly, by the induction
assumption we obtain

F(rk + (l − 1)εk+1) = F(rk)d l−1
k+1,

F(rk + (l − 1)εk+1 + εi) = F(rk)did l−1
k+1, i = 1, . . . , k.

Plugging all the terms into (3.21), we get

F(rk + lεk+1) = F(rk)d l−1
k+1

1 −

k
i=1

di −
L

i=k+2

bi
L

j=1
bj



= F(rk)d l−1
k+1

1 −

k
i=1

bi +
L

i=k+1
bi − bk+1

L
j=1

bj

 = F(rk)d l
k+1.

We proceed for the remaining coordinates until we arrive at

F(r) =

L
i=1

diri , (3.25)

where di =
bi
|b| .

Because of the symmetry between the assumptions for π1 and π2 we determine the form of G as one of the following

G(r) =
Γ (|c|)

Γ (|c| + |r|)

M
i=1

Γ (ci + ri)
Γ (ci)

, (3.26)

G(r) =

M
i=1

ciri ,

for r = (r1, . . . , rM) ∈ {0, 1, . . .}M and some c = (c1, . . . , cM) ∈ RM .
II. Determining the form of functions gl, l = 1, . . . ,M and fl, l = 1, . . . , L

Wewill nowdetermine the formof gl for every Cl, l = 1, . . . ,M . Let us first note that if Cl is 1-element then gl ≡ 1. Assume
then that Cl has at least two elements. Consider any a, b ∈ Cl. By (3.5) there exist blocks Bu, Bv ∈ π1 such that {a} = Bu ∩ Cl
and {b} = Bv ∩ Cl. In Eq. (3.8) we add 1 first to ra and then to rb. Dividing the first equation by the second one, we arrive at
(3.11). After applying the known forms of F and plugging rλ = 0 for all λ ∉ Cl the quotient of functions F appearing in (3.11)
can be reduced to one of two forms, depending on whether F admits (3.24) or (3.25). Suppose first that (3.24) holds. Then

F

|rB1 |, . . . , |rBu | + 1, . . . , |rBL |


F

|rB1 |, . . . , |rBv | + 1, . . . , |rBL |

 =


k≠u

Γ (dk+|rBk |)

Γ (dk)


Γ (du+|rBu |+1)

Γ (du)
k≠v

Γ (dk+|rBk |)

Γ (dk)


Γ (dv+|rBv |+1)

Γ (dv)

=
Γ (rb + dv)

Γ (ra + du)
Γ (ra + du + 1)
Γ (rb + dv + 1)

=
ra + du
rb + dv

. (3.27)

Hence with rλ = 0 for all λ ∉ Cl we have

gl(rCl + δl
a)

gl(rCl + δl
b)

=
fu

(ra + 1)εu

a


fv(rbεv

b)

fu(raεu
a)fv


(rb + 1)εv

b

 ra + du
rb + dv

=
γa,u(ra)
γb,v(rb)

, (3.28)

where

γa,u(ra) =
fu

(ra + 1)εu

a


(ra + du)

fu(raεu
a)

is a function potentially depending on a and the block Bu. However, it follows from (3.5) that for every element s ∈ Cl there
exists exactly one block Bt ∈ π1 such that Bt ∩ Cl = {s}, and consequently we will write γa,u = γa.
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Thus for all pairs of elements {e, f } ⊂ Cl we can rewrite (3.28) as

gl(rCl + δl
e)

gl(rCl + δl
f )

=
γe(re)
γf (rf )

for some functions γλ, λ ∈ Cl. By Lemma 3.1 for any l = 1, . . . ,M there exists a vector z l = (z l1, . . . , z
l
|Cl|

) such that for any
x = (x1, . . . , x|Cl|)

gl(x) =
Γ (|z l|)

Γ (|z l| + |x|)

|Cl|
i=1

Γ (z li + xi)
Γ (z li)

,

or

gl(x) =

|Cl|
i=1

(z li)
xi .

In the case where F is given by (3.25), the quotient (3.27) becomes

F

|rB1 |, . . . , |rBu | + 1, . . . , |rBL |


F

|rB1 |, . . . , |rBv | + 1, . . . , |rBL |

 =
du
dv

,

and the conclusion holds.
Similarly, we determine the functions fl, l = 1, . . . , L, to be given by

fl(x) =
Γ (|t l|)

Γ (|t l| + |x|)

|Bl|
i=1

Γ (t li + xi)
Γ (t li )

,

or

fl(x) =

|Bl|
i=1

(t li )
xi ,

for any x = (x1, . . . , x|Bl|) and some vector t l = (t l1, . . . , t
l
|Bl|

).
We showed that each of the functions F , G, fi, i = 1, . . . , L, gj, j = 1, . . . ,M , can take one of two forms—either the gamma

form, or the exponential form. Note that if all the functions are of the exponential form, the moments (3.7) of the vector X
are given by

EX r1
1 . . . X rn

n =

n
i=1

D ri
i ,

for some constants Di, i = 1, . . . , n, which corresponds to the case of all variables Xi, i = 1, . . . , n, being degenerate. This
means that for the non-degenerate case at least one function must take the gamma form. We will show that this results in
all other functions being of the gamma form. In order to do it, let us go back to Eq. (3.8), and assume that fi is of the gamma
form. Then

fi(rBi) =
Γ (|t i|)

Γ (|t i| + |rBi |)

|Bi|
j=1

Γ (t ij + rj)

Γ (t ij )
,

appears on the left-hand side of (3.8). Since none of the blocks Cj ∈ π2, j = 1, . . . ,M , can be equal to the block Bi ∈ π1, a
term of the form Γ (|t i| + |rBi |) (depending on the sum |rBi |) will never appear on the right-hand side of (3.8), regardless of
the form of G, gl, l = 1, . . . ,M . Hence for (3.8) to be true, this term must cancel with a term coming from another function
on the left-hand side, and it can only happen when F takes the gamma form (3.24). Then on the left-hand side of (3.8) we
obtain terms of the form Γ (dj + |rBj |) for all other j = 1, . . . , L, j ≠ i. As they can never appear on the right-hand side,
they must cancel, which in turn forces the gamma form for all other functions fj, j = 1, . . . , L, j ≠ i. Now the equality (3.8)
implies the gamma form for G and gl, l = 1, . . . ,M .

III. Identification of the parameters of functions F , G, gl, l = 1, . . . ,M
To show that the moments of X are of the form (3.6), it remains to find certain relations between the components of

vectors c , z j, j = 1, . . . ,M . After plugging into (3.8) the forms of functions F , G and gl, l = 1, . . . ,M , obtained in the previous
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steps we get

L
i=1


fi(rBi)

 Γ (|d|)

Γ


|d| +

L
i=1

|rBi |
 L

i=1

Γ (di + |rBi |)
Γ (di)

=

M
i=1

 |Ci|
j=1

Γ


z ij + rCij


Γ (z ij)

 Γ

|z i|


Γ

|z i| + |rCi |


 Γ (|c|)

Γ


|c| +

M
i=1

|rCi |
 M

i=1

Γ (ci + |rCi |)
Γ (ci)

. (3.29)

Consider again Cl ∈ π2. After replacing with zeros all rλ for λ ∉ {a, b}, where {a} = Bu ∩ Cl, {b} = Bv ∩ Cl, we obtain

fu(raεu
a)fv(rbε

v
b)

Γ (|d|)Γ (ra + du)Γ (rb + dv)

Γ (|d| + ra + rb)Γ (du)Γ (dv)

=
Γ (ra + z la)

Γ (z la)
Γ (rb + z lb)

Γ (z lb)
Γ (|z l|)

Γ (|z l| + ra + rb)
Γ (|c|)Γ (ra + rb + cl)
Γ (|c| + ra + rb)Γ (cl)

. (3.30)

Define m(ra, rb) as

m(ra, rb) =
Γ (|c| + ra + rb)
Γ (|d| + ra + rb)

Γ (|z l| + ra + rb)
Γ (ra + rb + cl)

. (3.31)

Then by (3.30) m(ra, rb) = m(ra + rb) = m1(ra)m2(rb) for some functions m1 and m2. Thus functions m,m1,m2 satisfy the
Pexider equation, and hence m = ρνx, where ρ, ν are some constants. However, m as the quotient of Gamma functions
is rational, which implies m = ρ. It follows from (3.31) that either cl = |c| or cl = |z l|. By (3.26) the first case implies
G(rlδl) = 1, which contradicts the definition of G. Thus cl = |z l|. We follow this reasoning for all other blocks Cλ ∈ π2,
λ = 1, . . . ,M , and get cλ = |zλ

|. Then the formula (3.7) on the moments of X can be expressed as

EX r1
1 . . . X rn

n

=

M
i=1

 |Ci|
j=1

Γ


z ij + rCij


Γ (z ij)

 Γ

|z i|


Γ

|z i| + |rCi |


 Γ (|c|)

Γ


|c| +

M
i=1

|rCi |
 M

i=1

Γ (ci + |rCi |)
Γ (ci)

=

M
i=1

 |Ci|
j=1

Γ


z ij + rCij


Γ (z ij)

 Γ


M
i=1

|z i|


Γ


M
i=1

|z i| +

M
i=1

|rCi |
 =

n
i=1

Γ (zi + ri)
Γ (zi)

Γ (|z|)
Γ (|z| + |r|)

,

where z = (z1, . . . , zn) is a vector made of elements of vectors z1, . . . , zM so that the jth element of z corresponds to rj,
j = 1, . . . , n. Hence the distribution of X is Dirichlet Dir(z1, . . . , zn). �

4. Examples

It is clear that the assumptions of Theorem 3.2 are satisfied for the known 2-partition characterizations. As mentioned
before, the characterizations involving only two partitions presented in [6,8,10,1] work only for vectors of dimension 3. On
the other hand, matrix characterization [9,2], involving two partitions, can be applied to any n-element vector, provided
that n is not prime. Actually, in these characterizations it was important that any block of one partition has non-empty
intersection with any block of the other partition. Additionally, no 1-element blocks were allowed.

An example of a class of two partitions leading to the characterization, which is not covered by any previous results, is
given below.

Example 4.1. Let n > 3 be any odd number. Define the partitions π1 = {{1}, {2, 3}, {4, 5}, . . . , {n − 1, n}} and π2 =

{{1, 2}, . . . , {n − 2, n − 1}, {n}}. Then π1 and π2 satisfy the assumptions (3.4)–(3.5).

Note that the assumptions (3.4)–(3.5) are minimal in the sense that none of them is separately sufficient to imply the
Dirichlet distribution for a given vector. We will illustrate it with two following examples.

Example 4.2. Consider first a random vector X = (X1, . . . , X6) and two partitions π1 = {{1, 2}, {3}, {4, 5}, {6}}, π2 =

{{1}, {2, 3}, {4}, {5, 6}}. Then π1 ∧ π2 = π∗, but π1 ∨ π2 = {{1, 2, 3}, {4, 5, 6}}. Let (Y1, Y2, Y3) and (Y4, Y5, Y6) be two
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independent Dirichlet vectors and define Xi = Yi/2, i = 1, . . . , 6. Then X is nwrt π1 and π2. The first neutrality means
that (Z1, Z2) = (X1 + X2, X4 + X5), Z3 =

X1
X1+X2

and Z4 =
X4

X4+X5
are mutually independent, which is obvious due to the

independence of (X1, X2, X3) and (X4, X5, X6) and neutralities of Dirichlet vectors. The neutrality with respect to π2 follows
by symmetry.

Example 4.3. Consider now a vector X = (X1, X2, X3, X4) and partitions π1 = {{1, 2}, {3}, {4}}, π2 = {{1}, {2, 3, 4}}. Then
π1 ∨π2 = π∗, butπ1 ∧π2 = {{1}, {2}, {3, 4}}. Let X be defined as follows: (X1, X2) ∼ Dir(α1, α2, α3), X3 = U(1−X1 −X2),
where U is a uniform random variable on (0, 1) independent of (X1, X2), and X4 = 1−X1 −X2 −X3. Neutrality with respect
to π1 is equivalent to the independence of (X1 + X2,U(1 − X1 − X2)) – which is a function of (X1 + X2,U) – and X1

X1+X2
.

In order to prove this neutrality, it suffices to notice that (X1 + X2,
X1

X1+X2
) is independent of U by definition, and X1 + X2,

X1
X1+X2

are independent by the property of the Dirichlet distribution. Hence X1 + X2,U,
X1

X1+X2
are mutually independent.

Similarly, neutrality with respect to π2 is equivalent to the independence of X1 and (
X2

1−X1
,

U(1−X1−X2)
1−X1

), which is a function

of (U,
X2

1−X1
). The vector (X1,

X2
1−X1

) is independent of U by definition, and X1 is independent of X2
1−X1

by the property of the

Dirichlet distribution. Hence X1,
X2

1−X1
,U are mutually independent.

Note that – as illustrated by the above example – assuming π1 ∧ π2 = π∗ instead of π1 ∧ π2 = π∗ while keeping the
assumption (3.4) is not sufficient for the characterization.

To better illustrate a gain fromTheorem3.2 let us consider vectors of randomprobabilities consisting of 4 and 5 elements.

Remark 4.4. In the case of 4 elements the only pairs of partitions π1, π2 that are sufficient to characterize a Dirichlet
distribution of a vector X , whenever X is neutral with respect to π1 and π2, are (up to a permutation)

1. π1 = {{1, 2}, {3, 4}}, π2 = {{1, 3}, {2, 4}},
2. π1 = {{1, 2}, {3, 4}}, π2 = {{1, 3}, {2}, {4}}.

The first characterization has been already known from [9], and the second one is due to Theorem 3.2.

Remark 4.5. In the case of 5 elements the only pairs of partitions π1, π2 leading to the characterization are (up to a
permutation)

1. π1 = {{1, 2}, {3, 4, 5}}, π2 = {{3}, {1, 4}, {2, 5}},
2. π1 = {{1}, {2, 3}, {4, 5}}, π2 = {{2}, {1, 4}, {3, 5}},
3. π1 = {{1}, {2}, {3, 4, 5}}, π2 = {{3}, {1, 4}, {2, 5}}.

All the three cases are new and follow from Theorem 3.2.

For all other pairs of partitions of 4 or 5 elements it is easy to construct vectors that are not Dirichlet and are neutral with
respect to these partitions.
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Appendix

Proof of Lemma 3.1. We follow the approach from the proof of the main result in [2].
Fix p ∈ A. From Eqs. (3.2)(a)–(3.2)(b) (after substituting i = p) we determine F(xA + εl) for all l = 1, . . . , n, and we get

with x = xA in (3.1):

F(xA) = F(xA + εp)


1 +


l∈A\{p}

αl(xl)
αp(xp)

+


l∉A

bl
αp(xp)


,

which for xp ≥ 1 can be rewritten as

F(xA) = F(xA − εp)
αp(xp − 1)

αp(xp − 1) +


l∈A\{p}
αl(xl) +


l∉A

bl
. (A.1)
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Iterating the equality xp − 1 times, we obtain

F(xA) = F(xA − xpεp)

xp−1
i=0

αp(i)
αp(i) +


l∈A\{p}

αl(xl) +

l∉A

bl
.

Similarly, we iterate xq times the expression F(xA − xpεp) with respect to q ∈ A, q ≠ p, and we plug it into the above
equation:

F(xA) = F(xA − xpεp − xqεq)

xp−1
i=0

αp(i)
αp(i) +


l∈A\{p}

αl(xl) +

l∉A

bl

xq−1
j=0

αq(j)
αp(0) + αq(j) +


l∈A\{p,q}

αl(xl) +

l∉A

bl
.

After changing the order of iteration with respect to p and q we get:

F(xA) = F(xA − xqεp − xqεq)

xq−1
j=0

αq(j)
αq(j) +


l∈A\{q}

αl(xl) +

l∉A

bl

xp−1
i=0

αp(i)
αq(0) + αp(i) +


l∈A\{p,q}

αl(xl) +

l∉A

bl
.

We compare both equations to obtain

xp−1
j=0


αp(j) + αq(xq) + C

 xq−1
i=0


αp(0) + αq(i) + C


=

xq−1
j=0


αq(j) + αp(xp) + C

 xp−1
i=0


αq(0) + αp(i) + C


, (A.2)

where

C =


l∈A\{p,q}

αl(xl) +


l∉A

bl.

Since p and q were chosen arbitrarily, the above equality holds for all p, q ∈ A. Now we substitute xp = xq = 1 in (A.2) and
arrive at

αq(0) + αp(1) = αp(0) + αq(1). (A.3)

We will show by induction on j that

αq(j) − αq(j − 1) = αq(1) − αq(0). (A.4)

The equation holds for j = 1. Assume that it holds for all j = 1, . . . , l and consider j = l+ 1. We rewrite (A.2) for xq = l+ 1
and xp = 1:

(αp(0) + αq(l + 1) + C)

l
i=0

(αp(0) + αq(i) + C) =

l
j=0

(αq(j) + αp(1) + C)(αq(0) + αp(0) + C). (A.5)

On the other hand
l

i=0

(αp(0) + αq(i) + C) = (αp(0) + αq(0) + C)

l−1
i=0

(αp(0) + αq(i + 1) + C)

= (αp(0) + αq(0) + C)

l−1
i=0

(αp(0) + αq(i) + αq(1) − αq(0) + C)

= (αp(0) + αq(0) + C)

l−1
i=0

(αq(i) + αp(1) + C), (A.6)

where the two last equalities follow consecutively from the induction assumption and (A.3). After dividing (A.5) by (A.6) we
get

αp(0) + αq(l + 1) = αq(l) + αp(1),

which by (A.3) implies (A.4).
It follows from (A.4) that for every q ∈ A there exist real numbers aq and bq such that for every j

αq(j) = aqj + bq. (A.7)

Additionally, by (A.3) aq = a (it does not depend on q).
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Let us go back to (A.1) and number elements of the set A = {s1, . . . , sk}. Substituting p = s1 in (A.1) and iterating it
consecutively with respect to all other variables s2, . . . , sk, we get

F(xA) =

k
j=1

xsj−1
i=0

αsj(i)
j−1
l=1

αsl(0) + αsj(i) +

k
l=j+1

αsl(xsl) +

l∉A

bl

.

After plugging into the above equation the form of αsj , j = 1, . . . , k, we obtain

F(xA) =

k
j=1

xsj−1
i=0

ai + bsj
j−1
l=1

bsl + ai + bsj +
k

l=j+1
(axsl + bsl) +


l∉A

bl

.

If a = 0, the equation reduces to

F(xA) =

k
j=1

xsj−1
i=0

bsj
j−1
l=1

bsl + bsj +
k

l=j+1
bsl +


l∉A

bl

=

k
j=1

d
xsj
j ,

where

dj =
bsj

k
l=1

bsl +

l∉A

bl

=
bsj
|b|

.

Otherwise, we can rewrite it as

F(xA) =

k
j=1

xsj−1
i=0

i +
bsj
a

k
l=1

bsl
a + i +

k
l=j+1

xsl +

l∉A

bl
a

.

Hence

F(xA) =

Γ


n

i=1
di


Γ


n

i=1
di +


i∈A

xi

 
i∈A

Γ (di + xi)
Γ (di)

,

where di =
bi
a . �
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