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Abstract

Dual Lukacs type characterizations of random variables in free probability are studied here. First, we
develop a freeness property satisfied by Lukacs type transformations of free-Poisson and free-binomial
non-commutative variables which are free. Second, we give a characterization of non-commutative free-
Poisson and free-binomial variables by properties of first two conditional moments, which mimic Lukacs
type assumptions known from classical probability. More precisely, our result is a non-commutative version
of the following result known in classical probability: if U , V are independent real random variables, such
that E(V (1−U)|UV ) and E(V 2(1−U)2|UV ) are non-random then V has a gamma distribution and U has
a beta distribution.
© 2013 Elsevier Inc. All rights reserved.
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1. Introduction

Characterizations of non-commutative variables and their distributions are a field which devel-
ops through non-commutative probability with results which parallel their classical counterparts.
It is not completely well understood why the results mirror so much these from the classical
setting since the nature of objects under study seems to be much different.

An example of such a result is the Bernstein characterization of the normal law of independent
random variables X and Y by independence of X +Y and X −Y in classical probability [3] (see
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also [21]), and a characterization of non-commutative semicircular variables X and Y which are
free and such that X+Y and X−Y are free by Nica in [30]. Similarly, the classical characteri-
zation of the normal law by independence of the mean X̄ = 1

n

∑n
i=1 Xi , and empirical variance

S2 = 1
n−1

∑n
i=1(Xi − X̄)2, where (Xi)i=1,...,n are independent, identically distributed real ran-

dom variables from [22] is paralleled by a non-commutative characterization of the Wigner law
exploiting freeness of X̄ = 1

n

∑n
i=1 Xi and S

2 = 1
n−1

∑n
i=1(Xi − X̄)2 built on free identically

distributed non-commutative random variables (Xi )i=1,...,n – see [20].
In this paper we are concerned with the celebrated Lukacs characterization of the gamma

distribution [28]. It says that if X and Y are positive, non-degenerate and independent random
variables and such that

U = X

X + Y
and V = X + Y (1)

are independent then X and Y have gamma distributions, G(p,a) and G(q,a). Here by the
gamma distribution G(r, c), r, c > 0, we understand the probability distribution with density

f (x) = cr

Γ (r)
xr−1e−cxI(0,∞)(x).

The direct result: If X ∼ G(p,a) and Y ∼ G(q,a) are independent then U and V , defined
through (1), are independent; is rather simple. It suffices just to compute the Jacobian of the
bijective transformation (0,∞)2 � (x, y) �→ ( x

x+y
, x + y) ∈ (0,1) × (0,∞) and to follow how

the densities transform. Immediately it follows also that V ∼ G(p+q, a) and U is a beta random
variable BI (p,q), which has the density

f (x) = Γ (p + q)

Γ (p)Γ (q)
xp−1(1 − x)q−1I(0,1)(x).

The same computation while read backward proves the opposite implication: if U and V are
independent, U ∼ G(p + q, a) and V ∼ BI (p,q) then X = UV and Y = (1 − U)V are inde-
pendent, X ∼ G(p,a) and Y ∼ G(q,a).

For random matrices the role of the gamma law is taken over by Wishart distribution defined,
e.g. on the cone V+ of non-negative definite real n × n symmetric matrices by the Laplace trans-
form L(s) = ( det a

det(a+s) )
p for positive definite a and p ∈ {0, 1

2 , 2
2 , . . . , n−1

2 } ∪ ( n−1
2 ,∞), and for s

such that a + s is positive definite. If p > n−1
2 then Wishart distribution has density with respect

to the Lebesgue measure on V+ of the form

f (x) ∝ (det x)p− n+1
2 e− Tr axIV+(x).

Matrix variate beta distribution, in the case of real n×n matrices, is a probability distribution on
the set D = {x ∈ V+: I − x ∈ V+} defined by the density

g(x) ∝ (det x)p−1(det(I − x)
)q−1

,

where the parameters p,q ∈ ( n−1 ,∞).
2
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Analogues of Lukacs characterizations have been studied since Olkin and Rubin [32,33]. In
particular, Casalis and Letac [15] obtained such a characterization in a general setting of prob-
ability measures on symmetric cones (including positive definite real symmetric and hermitian
matrices), though they assumed an additional structural invariance property. Under smoothness
conditions on densities Bobecka and Wesołowski [4] proved that if X and Y are independent

V+-valued random matrices and U = (X + Y)− 1
2 X(X + Y)− 1

2 and V = X + Y are independent
then X and Y are Wishart matrices. For recent extensions see [7,8,23].

In the context of Lukacs type characterizations of distributions of random variables in non-
commutative setting the analogue of gamma distribution is free-Poisson (Marchenko–Pastur)
distribution (note that this analogy follows neither Bercovici–Pata bijection [2], nor analogy be-
tween classical and free Meixner distributions defined in [1] and developed in [9] i.e. it is not
free gamma distribution). Let X and Y be free non-commutative variables having free-Poisson
distributions (with properly defined parameters). Define

U= (X+Y)−1/2
X(X+Y)−1/2 and V=X+Y.

One would suspect that by the analogy to the classical case or to the matrix variate situation, U
and V are free. This is still an open problem. The closest result has been derived in [14] (referred
to by CC in the sequel). They proved that for complex Wishart independent matrices X and Y
the matrices U and V defined as for the real case above are asymptotically free and the limiting
(in non-commutative sense) distributions of U and V were derived to be free-Poisson and a
distribution which, by the analogy to the classical (univariate or matrix-variate) cases could be
called free-beta, but it has already been known under the name free-binomial (for details, see
Section 7 in CC; consult also the first part of Section 3 below where a complete description of
the set of parameters of this distribution is presented). The main result of Section 3 goes in the
opposite direction. Assuming that free variables U and V have, respectively, free-binomial and
free-Poisson distributions we prove that X and Y are free with suitable free-Poisson distribution
each. This is done through developing some ideas from CC.

The direct non-commutative version of Lukacs characterization, saying that if X and Y are
free and U and V, as defined above, are free then X and Y are free-Poisson was obtained in [9,
Proposition 3.5].

The classical Lukacs characterization can be obtained with weaker assumptions than inde-
pendence of U and V . Such assumptions may be formulated in the language of constancy of
regressions. For instance, it is known that if X and Y are positive, non-degenerate and indepen-
dent and

E(X|X + Y) = c(X + Y) and E
(
X2

∣∣X + Y
) = d(X + Y)2 (2)

for some real numbers c and d then X and Y are necessarily gamma distributed, G(p,a) and
G(q,a), where the parameters p and q depend on c and d . This can be traced back to Bolger
and Harkness [6]. But the result is also hidden as one of special cases in the celebrated Laha
and Lukacs paper [24]. Regression versions of Lukacs type characterizations of Wishart random
matrices were obtained in [25] and more recently in the framework of regressions of quadratic
forms in [26,27].

The non-commutative version can be found in [9], which is devoted mostly to Laha–Lukacs
type characterizations. The authors assumed that ϕ(X|X+Y) = 1

2 (X+Y) which is an analogue
of first part of (2) for identically distributed X and Y , but instead of a direct non-commutative
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version of the second part of (2) they considered, following the classical setting of [24], a more
general condition

ϕ
(
X

2
∣∣X+Y

) = a(X+Y)2 + b(X+Y) + cI.

They used a cumulant approach to derive possible distributions of X and Y. A related result in
converse direction for free-Poisson variables has been given recently in [18]

Our aim here is to consider the dual regression scheme of Lukacs type. In the classical setting
it means that we take independent U which is (0,1)-valued and V which is positive and assume
that

E
(
(1 − U)V |UV

) = c and E
(
(1 − U)2V 2

∣∣UV
) = d

for some constants c and d . It was proved in [5] that then necessarily U and V are, respectively,
beta and gamma random variables (see also [16] for a more general characterization). A version
of this characterization in the non-commutative setting which is considered in Section 4, is the
main result of this paper.

The next section is devoted to basics of non-commutative probability we need to explain the
results and derivations.

2. Preliminaries

Following [38] or [31] we will recall basic notions of non-commutative probability which are
necessary for this paper.

A non-commutative probability space is a pair (A, ϕ), where A is a unital algebra over C

and ϕ : A → C is a linear functional satisfying φ(I) = 1. Any element X of A is called a (non-
commutative) random variable.

Let H be a Hilbert space. By B(H) denote the space of bounded linear operators on H . For
A ⊂ B(H) and ϕ ∈ H we say that (A, ϕ) is a W ∗-probability space when A is a von Neumann
algebra and ϕ is a normalized, faithful and tracial state, that is ‖ϕ‖ = 1, ϕ(X2) = 〈X2ϕ,ϕ〉 = 0
iff X= 0 and ϕ(XY) = ϕ(Y∗

X) for any X,Y ∈ B(H).
The ∗-distribution μ of a self-adjoint element X ∈A⊂ B(H) is a probabilistic measure on R

such that

ϕ
(
X

r
) =

∫
R

t r μ(dt) ∀r = 1,2, . . . .

In a setting of a general non-commutative probability space (A, ϕ), we say that the distribu-
tion of the family (Xi )i=1,...,q is a linear functional μX1,...,Xq

on the algebra C〈x1, . . . , xq〉 of
polynomials of non-commuting variables x1, . . . , xq , defined by

μX1,...,Xq
(P ) = ϕ

(
P(X1, . . . ,Xq)

) ∀P ∈C〈x1, . . . , xq〉.

Unital subalgebras Ai ⊂ A, i = 1, . . . , n, are said to be freely independent if ϕ(X1, . . . ,

Xk) = 0 for Xj ∈ Ai(j), where i(j) ∈ {1, . . . , n}, such that ϕ(Xj ) = 0, j = 1, . . . , k, if neigh-
bouring elements are from different subalgebras, that is i(1) �= i(2) �= · · · �= i(k − 1) �= i(k).
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Similarly, random variables X,Y ∈ A are free (freely independent) when subalgebras generated
by (X, I) and (Y, I) are freely independent (here I denotes identity operator).

For free random variables X and Y having distributions μ and ν, respectively, the distribution
of X+Y, denoted by μ� ν, is called free convolution of μ and ν.

For self-adjoint and free X, Y with distributions μ and ν, respectively, and X positive, that is
the support of μ is a subset of (0,∞), free multiplicative convolution of μ and ν is defined as
the distribution of

√
XY

√
X and denoted by μ� ν. Due to the tracial property of ϕ the moments

of YX, XY and
√
XY

√
X match.

Let χ = {B1,B2, . . .} be a partition of the set of numbers {1, . . . , k}. A partition χ is a crossing
partition if there exist distinct blocks Br,Bs ∈ χ and numbers i1, i2 ∈ Br , j1, j2 ∈ Bs such that
i1 < j1 < i2 < j2. Otherwise χ is called a non-crossing partition. The set of all non-crossing
partitions of {1, . . . , k} is denoted by NC(k).

For any k = 1,2, . . . , (joint) cumulants of order k of non-commutative random variables
X1, . . . ,Xn are defined recursively as k-linear maps Rk : Ak → C through equations

ϕ(Y1, . . . ,Ym) =
∑

χ∈NC(m)

∏
B∈χ

R|B|(Xi , i ∈ B)

holding for any Yi ∈ {X1, . . . ,Xn}, i = 1, . . . ,m, and any m = 1,2, . . . , with |B| denoting the
size of the block B .

Freeness can be characterized in terms of behaviour of cumulants in the following way: Con-
sider unital subalgebras (Ai )i∈I of an algebra A in a non-commutative probability space (A, ϕ).
Subalgebras (Ai )i∈I are freely independent iff for any n = 2,3, . . . and for any Xj ∈ Ai(j) with
i(j) ∈ I , j = 1, . . . , n, any n-cumulant

Rn(X1, . . . ,Xn) = 0

if there exists a pair k, l ∈ {1, . . . , n} such that i(k) �= i(l).
In sequel we will use the following formula from [10] which connects cumulants and moments

for non-commutative random variables

ϕ(X1 · · ·Xn) =
n∑

k=1

∑
1<i2<···<ik�n

Rk(X1,Xi2, . . . ,Xik )

k∏
j=1

ϕ(Xij +1 · · ·Xij+1−1) (3)

with i1 = 1 and ik+1 = n + 1 (empty products are equal 1).
The classical notion of conditional expectation has its non-commutative counterpart in the

case (A, ϕ) is a W ∗-probability spaces, that is A is necessarily a von Neumann algebra. Namely,
if B ⊂ A is a von Neumann subalgebra of the von Nuemann algebra A, then there exists a
faithful normal projection from A onto B, denoted by ϕ(·|B), such that ϕ(ϕ(·|B)) = ϕ. This
projection ϕ(·|B) is a non-commutative conditional expectation given subalgebra B. If X ∈ A
is self-adjoint then ϕ(X|B) defines a unique self-adjoint element in B. For X ∈ A by ϕ(·|X)

we denote conditional expectation given von Neumann subalgebra B generated by X and I.
Non-commutative conditional expectation has many properties analogous to those of classical
conditional expectation. For more details one can consult e.g. [36]. Here we state two of them
we need in the sequel. The proofs can be found in [9].
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Lemma 2.1. Consider a W ∗-probability space (A, ϕ).

• If X ∈ A and Y ∈ B, where B is a von Neumann subalgebra of A, then

ϕ(XY) = ϕ
(
ϕ(X|B)Y

)
. (4)

• If X,Z ∈ A are freely independent then

ϕ(X|Z) = ϕ(X)I. (5)

For any n = 1,2, . . . , let (X
(n)
1 , . . . ,X

(n)
q ) be a family of random variables in a non-

commutative probability space (An,ϕn). The sequence of distributions (μ
(X

(n)
i , i=1,...,q)

) con-

verges as n → ∞ to a distribution μ if μ
(X

(n)
i , i=1,...,q)

(P ) → μ(P ) for any P ∈ C〈x1, . . . , xq〉.
If additionally μ is a distribution of a family (X1, . . . ,Xq) of random variables in a non-

commutative space (A, ϕ) then we say that (X
(n)
1 , . . . ,X

(n)
q ) converges in distribution to

(X1, . . . ,Xq). Moreover, if X1, . . . ,Xq are freely independent then we say that X(n)
1 , . . . ,X

(n)
q

are asymptotically free.
Now we introduce basic analytical tools used to deal with non-commutative random variables

and their distributions.
For a non-commutative random variable X its r-transform is defined as

rX(z) =
∞∑

n=0

Rn+1(X)zn. (6)

In [37] it is proved that r-transform of a random variable with compact support is analytic in a
neighbourhood of zero. From properties of cumulants it is immediate that for X and Y which are
freely independent

rX+Y = rX + rY. (7)

This relation explicitly (in the sense of r-transform) defines free convolution of X and Y. If X
has the distribution μ, then often we will write rμ instead of rX.

Another analytical tool is an S-transform, which works nicely with products of freely inde-
pendent variables. For a non-commutative random variable X its S-transform, denoted by SX, is
defined through the equation

RX

(
zSX(z)

) = z, (8)

where RX(z) = zrX(z). For X and Y which are freely independent

SXY = SXSY. (9)

The Cauchy transform of a probability measure ν is defined as

Gν(z) =
∫

ν(dx)

z − x
, �(z) > 0.
R
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The Cauchy transforms and r-transforms are related by

Gν

(
rν(z) + 1

z

)
= z. (10)

Finally we introduce the moment generating function MX of a random variable X by

MX(z) =
∞∑

n=1

ϕ
(
X

n
)
zn. (11)

The moment generating function and S-transform of X are related through

MX

(
z

1 + z
SX(z)

)
= z. (12)

3. Free transformations of freely independent free-Poisson and free-binomial variables

A non-commutative random variable X is said to be free-Poisson variable if it has Marchenko–
Pastur (or free-Poisson) distribution ν = ν(λ,α) defined by the formula

ν = max{0,1 − λ}δ0 + λν̃, (13)

where λ� 0 and the measure ν̃, supported on the interval (α(1 −√
λ)2, α(1 +√

λ)2), α > 0, has
the density (with respect to the Lebesgue measure)

ν̃(dx) = 1

2παx

√
4λα2 − (

x − α(1 + λ)
)2

dx.

The parameters λ and α are called the rate and the jump size, respectively.
Marchenko–Pastur distribution arises in a natural way as an almost sure weak limit of empir-

ical distributions of eigenvalues for random matrices of the form XXT where X is a matrix with
zero mean iid entries with finite variance, in particular for Wishart matrices (see [29]) and as a
marginal distribution of a subclass of classical stochastic processes, called quadratic harnesses
(see e.g. [13]).

It is worth to note that a non-commutative variable with Marchenko–Pastur distribution arises
as a limit in law (in non-commutative sense) of variables with distributions ((1− λ

N
)δ0 + λ

N
δα)�N

as N → ∞, see [31]. Therefore, such variables are often called free-Poisson.
It is easy to see that if X is free-Poisson, ν(λ,α), then Rn(X) = αnλ, n = 1,2, . . . . Therefore

its r-transform has the form

rν(λ,α)(z) = λα

1 − αz
.

A non-commutative random variable Y is free-binomial if its distribution β = β(σ, θ) is de-
fined by

β = (1 − σ)I0<σ<1δ0 + β̃ + (1 − θ)I0<θ<1δ1, (14)
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where β̃ is supported on the interval (x−, x+),

x± =
(√

σ

σ + θ

(
1 − 1

σ + θ

)
±

√
1

σ + θ

(
1 − σ

σ + θ

))2

,

and has the density

β̃(dx) = (σ + θ)

√
(x − x−)(x+ − x)

2πx(1 − x)
dx.

This distribution appears in CC (unfortunately, the constant α +β is missing in the expression
given for the density part in Corollary 7.2 in CC) as a limit distribution for beta matrices as well
as spectral distribution for free Jacobi processes in [17] and for a subclass of free quadratic
harnesses (see [12] and [11]). The nth free convolution power of distribution

pδ0 + (1 − p)δ1/n

is free-binomial distribution with parameters σ = n(1 − p) and θ = np, which justifies the name
of the distribution (see [35]).

Its Cauchy transform is of the form (see e.g. the proof of Corollary 7.2 in CC)

Gσ,θ (z) = (σ + θ − 2)z + 1 − σ − √[(σ + θ − 2)z + 1 − σ ]2 − 4(1 − σ − θ)z(z − 1)

2z(1 − z)
. (15)

So far the range of parameters σ, θ for which (14) is a true probability distribution has not been
completely described in the literature. In CC the authors seem to assume θ, σ > 0, which appar-
ently is not enough for a correct definition. On the other hand [17] assumes σ, θ > 1 which is too
restrictive in general. The complete set of parameters is described below.

Proposition 3.1. The formula (14) defines correctly a probability (free-binomial) distribution if
and only if (σ, θ) ∈ G defined as

G =
{
(σ, θ):

σ + θ

σ + θ − 1
> 0,

σ θ

σ + θ − 1
> 0

}
.

Proof. Recall a result from [11] which says that the two parameters Askey–Wilson probability
measure, which has the form

ν(dx) = 2(1 − ab)

π

√
1 − x2

(1 + a2 − 2ax)(1 + b2 − 2bx)
dx + a2 − 1

a2 − ab
I|a|>1δ a+1/a

2

+ b2 − 1

b2 − ab
I|b|>1δ b+1/b

2
, (16)

is well defined iff ab < 1. With an additional natural assumption ab �= 0, this probability law can
be easily transformed into a free-binomial distribution. Indeed, if we take a random variable X

with the above Askey–Wilson distribution, then Y defined as
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Y = a

(a − b)(ab − 1)

(
2bX − (

1 + b2)) (17)

has a free-binomial distribution (14) with parameters

(θ, σ ) = ψ(a, b) =
(

1 − ab

a(a − b)
,

1 − ab

b(b − a)

)
.

Define now

H = {
(a, b): 1 − ab > 0, ab �= 0

}
. (18)

It is rather immediate to see that if (a, b) ∈ H then ψ(a, b) ∈ G.
Conversely, define an equivalence relation on H by (a, b) ∼ (−a,−b) and note that ψ is a

bijection between H/∼ and G.
Finally, referring to the result in [11] on Askey–Wilson distributions mentioned above,

we conclude that (14) defines correctly a probability measure (free-binomial distribution) iff
(σ, θ) ∈ G. �

Note that in [35] the parameters of free-binomial distributions are σ = n(1 − p), θ = np, and
n � 2 so the above conditions are satisfied. Nevertheless, their parametrization does not cover
whole G, e.g. the situation when one of the parameters is negative, which is allowed. It is worth
to note that our derivation extends free-binomial distribution to the case σ + θ < 0, in this case
continuous part of free-binomial is not supported in (0,1), in the case σ < 0 continuous part is
supported on (−∞,−1), in the case θ < 0 continuous part is supported on (1,∞).

In CC authors consider complex Wishart matrices N × N , corresponding Gindikin set is
{1,2, . . . ,N − 2} ∪ [N − 1,∞) (see [34]). To define a beta matrix as Z = (X + Y)−1/2X(X +
Y)−1/2, where X, Y are independent Wishart matrices, matrix X + Y must be invertible, so one
has to assume pN + qN > N − 1. For existence of non-degenerate asymptotic distributions it
is necessary that pN/N → σ > 0 and qN/N → θ > 0. Moreover, either σ + θ − 1 > 0 and
(σ, θ) ∈ G, or σ + θ = 1 and the limit distribution (in non-commutative sense) of beta matrices
has only discrete part. In the sequel we are concerned only with the case (σ, θ) ∈ G and σ, θ > 0.

The main result of this section, as announced in Introduction, is a direct dual version of Lukacs
characterization.

Theorem 3.2. Let (A, ϕ) be a W ∗-probability space. Let V and U in A be freely independent,
such that V is free-Poisson with parameters (λ,α) and U is free-binomial with parameters (σ, θ),
σ + θ = λ. Define

X =V
1
2 UV

1
2 and Y=V−V

1
2 UV

1
2 . (19)

Then X and Y are freely independent and their distributions are free-Poisson with parameters
(θ,α) and (σ,α), respectively.

Throughout this paper we use the framework of W ∗-probability space, since essentially we
work with conditional expectations, however the above theorem holds true in a more general
setting when (A, ϕ) is a C∗-probability space with tracial state (see [31, Chapter 3]) with exactly
the same proof.
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Proof of Theorem 3.2. Since freeness is defined for subalgebras then, without any loss of
generality, instead of V we can take 1

α
V which is free-Poisson with the jump size equal 1.

Consider a non-commutative probability space (AN,ϕN) of p-integrable for any 1 � p < ∞
random matrices of dimension N × N defined on a classical probability space (Ω,F,P) with
ϕN(A) = 1

N
ETr A for any A ∈ AN . From the proof of Theorem 5.2 and Proposition 5.1 in CC, in

which asymptotic freeness of U and V is stated, it follows that there exist independent sequences
(UN)N and (VN)N of complex N × N matrices such that (UN,VN) converges in distribution
in the non-commutative sense (as elements of non-commutative probability spaces (AN,ϕN))
to (U,V) which are freely independent. Moreover, UN is a beta matrix with suitable positive
parameters pN , qN such that pN

N
→ σ , qN

N
→ θ and VN is a Wishart matrix with parameters

pN + qN and 1
N

IN , where IN is an N × N identity matrix. It is well known in such a case, see
e.g. [15], that

XN = V
1
2
NUNV

1
2
N and YN = VN − V

1
2
N UNV

1
2
N

are independent complex Wishart matrices with parameters (pN, 1
N

IN) and (qN , 1
N

IN), respec-
tively. By Theorem 5.2 from CC it follows that (XN,YN) are asymptotically free. Therefore, see
Proposition 4.6 in CC, it follows that there exist freely independent non-commutative variables
X

′ and Y
′ with free-Poisson distributions with jump parameter 1 and rate parameters σ and θ ,

respectively, such that (XN,YN) converges in distribution (in the non-commutative sense) to
(X′,Y′).

By asymptotic freeness it follows that

lim
N→∞ϕN

(
P(XN,YN)

) = ϕ
(
P

(
X

′,Y′)) (20)

for an arbitrary non-commutative polynomial P ∈ C〈x1, x2〉. On the other hand by the definition
of XN and YN

ϕN

(
P(XN,YN)

) = ϕN

(
P

(
VN − V1/2

N UNV1/2
N ,V1/2

N UNV1/2
N

))
.

By the tracial property of ϕN the last expression can be written as

ϕN

(
Q(UN,VN)

)
,

for some polynomial Q from C〈x1, x2〉. Since (UN,VN) converge in distribution (in non-
commutative sense) to (U,V) it follows that

lim
N→∞ϕN

(
P(XN,YN)

) = lim
N→∞ϕN

(
Q(UN,VN)

) = ϕ
(
Q(U,V)

)
.

Using the tracial property of ϕ we can return from Q to P , so that

ϕ
(
Q(U,V)

) = ϕ
(
P

(
V−V

1/2
UV

1/2,V1/2
UV

1/2)) = ϕ
(
P(X,Y)

)
.

Therefore (20) implies that for any P ∈C〈x1, x2〉
ϕ
(
P

(
X

′,Y′)) = ϕ
(
P(X,Y)

)
.

Consequently, they have the same distribution. �
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Corollary 3.3. Let U and V be freely independent random variables in a W ∗-probability space.
Assume that V is free-Poisson with parameters θ + σ and α and U is free-binomial with param-
eters σ and θ . Then

ϕ
(
V−V

1
2 UV

1
2
∣∣V 1

2 UV
1
2
) = θαI

and

ϕ
((
V−V

1
2 UV

1
2
)2∣∣V 1

2 UV
1
2
) = θ(θ + 1)α2

I.

Proof. By Theorem 3.2 we know that X = V
1
2 UV

1
2 and Y = V − V

1
2 UV

1
2 are freely indepen-

dent. Therefore (5) of Lemma 2.1 implies

ϕ(X|Y) = ϕ(X)I

and

ϕ
(
X

2
∣∣Y) = ϕ

(
X

2)
I.

Due to Theorem 3.2 X is free-Poisson with parameters θ , α. It is well known that for free-Poisson
X its first two moments are ϕ(X) = θα and ϕ(X2) = θ(θ + 1)α2. �
4. Non-commutative dual Lukacs type regression

In this section we formulate and prove the main result of the paper which may be treated
as a counterpart of the regression characterization of free-Poisson distribution given in Theo-
rem 3.2(ii) of [9]. It is also a non-commutative version of Theorem 1 of [5], and a converse to
Corollary 3.3 above.

Theorem 4.1. Let (A, ϕ) be a W ∗-probability space and U,V be non-commutative variables in
(A, ϕ) which are freely independent, V has a distribution compactly supported in (0,∞) and
distribution of U is supported in [0,1]. Assume that there exist real constants c1 and c2 such that

ϕ
(
V−V

1
2 UV

1
2
∣∣V 1

2 UV
1
2
) = c1I (21)

and

ϕ
((
V−V

1
2 UV

1
2
)2∣∣V 1

2 UV
1
2
) = c2I. (22)

Then V has free-Poisson distribution, ν(λ,α) with λ = σ + θ (σ > 0, θ = c2
1

c2−c2
1

> 0), α =
c2−c2

1
c1

> 0 and U has free-binomial distribution, β(σ, θ).

Proof. For any positive integer n multiply both sides of (21) and (22) by (V
1
2 UV

1
2 )n and take

expectations ϕ. Therefore, by (4) of Lemma 2.1 we obtain, respectively,
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ϕ
(
V(VU)n

) − ϕ
(
(VU)n+1) = c1ϕ

(
(VU)n

)
(23)

and

ϕ
(
V

2(VU)n
) − 2ϕ

(
V(VU)n+1) + ϕ

(
(VU)n+2) = c2ϕ

(
(VU)n

)
. (24)

Introduce three sequences of numbers (αn)n�0, (βn)n�0 and (γn)n�0 as follows

αn = ϕ
(
(VU)n

)
, βn = ϕ

(
V(VU)n

)
, and γn = ϕ

(
V

2(VU)n
)
, n = 0,1, . . . .

Then Eqs. (23) and (24) can be rewritten as

βn − αn+1 = c1αn (25)

and

γn − 2βn+1 + αn+2 = c2αn. (26)

Multiplying (25) and (26) by zn, z ∈ C, and summing up with respect to n = 0,1, . . . , we
obtain the equations

B(z) − 1

z

(
A(z) − α0

) = c1A(z) (27)

and

C(z) − 2

z

(
B(z) − β0

) + 1

z2

(
A(z) − α1z − α0

) = c2A(z), (28)

where

A(z) =
∞∑

n=0

αnz
n, B(z) =

∞∑
n=0

βnz
n, C(z) =

∞∑
n=0

γnz
n

and the above series converge at least in some neighbourhood of zero, due to the fact that supports
of U and V are compact. Note also, that since α0 = 1, we have A = MVU + 1.

Before we proceed further with Eqs. (27) and (28) we need to establish some useful rela-
tions between sequences (αn), (βn) and (γn). To this end we need to define additional sequence
(δn)n�0, by setting

δn = ϕ
(
U(VU)n

)
, n = 0,1, . . . .

Consider first the sequence (αn). Note that by formula (3) it follows that

αn =R1ϕ
(
U(UV)n−1)

+R2
[
ϕ(U)ϕ

(
U(UV)n−2) + ϕ(UVU)ϕ

(
U(VU)n−3) + · · · + ϕ

(
U(VU)n−2)ϕ(U)

]



48 K. Szpojankowski, J. Wesołowski / Journal of Functional Analysis 266 (2014) 36–54
+ · · ·
+Rnϕ

n(U),

where Rn =Rn(V) is the nth cumulant of the variable V. Therefore, in terms of δn’s we obtain

αn =R1δn−1 +R2(δ0δn−2 + δ1δn−3 + · · · + δn−2δ0) + · · · +Rnδ
n
0

and thus for any n = 1,2, . . .

αn =
n∑

k=1

Rk

∑
i1+···+ik=n−k

δi1 · · · δik .

Consequently,

A(z) = 1 +
∞∑

n=1

zn
n∑

k=1

Rk

∑
i1+···+ik=n−k

δi1 · · · δik

= 1 +
∞∑

n=1

n∑
k=1

Rkz
k

∑
i1+···+ik=n−k

δi1z
i1 · · · δik z

ik

= 1 +
∞∑

k=1

Rkz
k

∞∑
n=k

∑
i1+···+ik=n−k

δi1z
i1 · · · δik z

ik

= 1 +
∞∑

k=1

Rkz
k

∞∑
m=0

∑
i1+···+ik=m

δi1z
i1 · · · δik z

ik

= 1 +
∞∑

k=1

Rkz
k

( ∞∑
i=0

δiz
i

)k

.

Therefore

A(z) = 1 +
∞∑

k=1

Rk

(
zD(z)

)k
,

where D is the generating function of the sequence (δn), that is D(z) = ∑∞
i=0 δiz

i . Finally, with
r being the r-transform of V, that is r(z) = ∑∞

k=0 Rk+1z
k we obtain

A(z) = 1 + zD(z)r
(
zD(z)

)
. (29)

Similarly, by (3),

βn =R1αn +R2(α0δn−1 + α1δn−2 + · · · + αn−1δ0) + · · · +Rn+1α0δ
n
0

and thus for any n = 0,1, . . .
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βn =
n+1∑
k=1

Rk

∑
i1+···+ik=n−k+1

αi1δi2 · · · δik .

Therefore,

B(z) =
∞∑

n=0

n+1∑
k=1

Rk

∑
i1+···+ik=n−k+1

αi1δi2 · · · δik

=
∞∑

n=0

n+1∑
k=1

Rkz
k−1

∑
i1+···+ik=n−k+1

αi1z
i1δi2z

i2 · · · δik z
ik

=
∞∑

k=1

Rkz
k−1

∞∑
n=k−1

∑
i1+···+ik=n−k+1

αi1z
i1δi2z

i2 · · · δik z
ik

=
∞∑

k=1

Rkz
k−1

∞∑
m=0

∑
i1+···+ik=m

αi1z
i1δi2z

i2 · · · δik z
ik

=
∞∑

k=1

Rkz
k−1A(z)Dk−1(z) = A(z)r

(
zD(z)

)
.

Finally, applying (29) we get

B(z) = zD(z)r2(zD(z)
) + r

(
zD(z)

)
. (30)

The formula for γn is again based on (3)

γn =R1βn +R2(αn + β0δn−1 + β1δn−2 + · · · + βnδ0)

+R3
[
(α0δn−1 + · · · + αn−1δ0) + (

β0δ0δn−2 + · · · + βn−2δ
2
0

)] + · · · +Rn+2α0δ
n
0

and thus it splits in two parts for any n = 0,1, . . .

γn =
n+2∑
k=2

Rk

∑
i1+···+ik−1=n−k+2

αi1δi2 · · · δik−1 +
n+1∑
k=1

Rk

∑
i1+···+ik=n−k+1

βi1δi2 · · · δik .

Therefore, also C(z) splits in two parts

C(z) = C1(z) + C2(z),

where

C1(z) =
∞∑

zn
n+2∑

Rk

∑
αi1δi2 · · · δik−1
n=0 k=2 i1+···+ik−1=n−k+2
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and

C2(z) =
∞∑

n=0

zn

n+1∑
k=1

Rk

∑
i1+···+ik=n−k+1

βi1δi2 · · · δik .

The expression for the second part, C2, can be derived exactly in the same way as it was done
for B(z). The computation yields

C2(z) = B(z)r
(
zD(z)

) = zD(z)r3(zD(z)
) + r2(zD(z)

)
. (31)

For the first part the derivation is similar though little more complicated

C1(z) =
∞∑

n=0

n+2∑
k=2

Rkz
k−2

∑
i1+···+ik−1=n−k+2

αi1z
i1δi2z

i2 · · · δik−1z
ik−1

=
∞∑

k=2

Rkz
k−2

∞∑
m=0

∑
i1+···+ik−1=m

αi1z
i1δi2z

i2 · · · δik−1z
ik−1

=
∞∑

k=2

Rkz
k−2A(z)Dk−2(z) = A(z)

zD(z)

(
r
(
zD(z)

) −R1
)
.

Recalling (29) we get

C1(z) = r
(
zD(z)

)[
r
(
zD(z)

) −R1
] + r(zD(z)) −R1

zD(z)
. (32)

Finally, (31) and (32) together with R1 = β0 give

C(z) = zD(z)r3(zD(z)
) + r2(zD(z)

) + r
(
zD(z)

)[
r
(
zD(z)

) − β0
] + r(zD(z)) − β0

zD(z)
. (33)

Now we can return to the system of equations (27) and (28). Plugging expressions (29)
and (30) into (27) we get

zD(z)r2(zD(z)
) + (

1 − D(z)
)
r
(
zD(z)

) = c1
(
1 + zD(z)r

(
zD(z)

))
. (34)

Define a new function h

h(z) = zD(z)r
(
zD(z)

)
.

Note that h = A − 1 = MVU.
Multiply both sides of the above equation by zD(z). Then (34) can be written as

h2(z) = [
(1 + c1z)D(z) − 1

]
h(z) + c1zD(z). (35)

Therefore,
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h3(z) = h(z)
([

(1 + c1z)D(z) − 1
]
h(z) + c1zD(z)

)
and thus

h3(z) = ([
(1 + c1z)D(z) − 1

]2 + c1zD(z)
)
h(z) + [

(1 + c1z)D(z) − 1
]
c1zD(z). (36)

Similarly, plugging (29), (30) and (33) into (28) we obtain

zD(z)r3(zD(z)
) + 2r2(zD(z)

) − β0r
(
zD(z)

) + r(zD(z)) − β0

zD(z)

− 2

z

[
zD(z)r2(zD(z)

) + r
(
zD(z)

) − β0
] + 1

z2

[
zD(z)r

(
zD(z)

) − α1z
]

= c2
[
zD(z)r

(
zD(z)

) + 1
]
.

In terms of h the above equation reads

h3(z) + 2
(
1 − D(z)

)
h2(z) − [

β0zD(z) − 1 + 2D(z) − D2(z) + c2z
2D2(z)

]
h(z)

= c2z
2D2(z) + β0zD(z)

(
1 − 2D(z)

) + α1zD
2(z). (37)

Inserting (36) and (35) into (37) after cancelations we get

h(z) = λαD(z)

c1αzD(z) + λα − c1
− 1, (38)

where

α = c2
1 − c2

α1 − β0
= c2 − c2

1

c1
,

λ = c1(α1 + c1 − 2β0)

c2
1 − c2

= c2
1

c2 − c2
1

+ c1(α1 + 2c1 − 2β0)

c2
1 − c2

= θ + σ.

Plugging (38) into (35), after canceling D (which is allowed at least in a neighbourhood of zero,
since δ0 > 0) we obtain the following quadratic equation for D:

α

(
1 + c1

(
1 − 1

λ

)
z

)
zD2(z) −

{
1 +

(
α(1 − λ) + c1

(
1 − 2

λ

))
z

}
D(z) + 1 − c1

αλ
= 0.

We want to express h(z) as a function of zD(z). To this end we write the above equation as
a1z

2D2(z)+a2zD
2(z)+a3zD(z)+a4D(z)+a5 = 0, where a1, . . . , a5 are suitable coefficients.

Then we substitute one D(z) in the second term and D(z) in the fourth term at the right hand
side by

D(z) = 1

αλ

(
h(z) + 1

)(
αλ + c1αzD(z)

)
.

Note that the last identity is a consequence of (38).
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After canceling αc1zD(z) + α1, which is allowed at least in the neighbourhood of zero since
limz→0 zD(z) = 0 and α1 > 0, we obtain

h(z)

zD(z)
= λα

1 − αzD(z)
. (39)

Recall that h(z) = zD(z)r(zD(z)). Since r is analytic at zero and limz→0 zD(z) = 0, we con-
clude that

r(z) = λα
1

1 − αz
. (40)

Note that the above equation defines the r-transform of the free-Poisson distribution with rate λ,
and jump size α.

It remains to show that U has free-binomial distribution, which can be done through calculat-
ing S-transforms.

Combining (38) and (39) we obtain the quadratic equation

αzh2(z) − {
1 + (

c1 − α(1 + λ)
)
z
}
h(z) − (c1 − αλ)z = 0.

Since h = MVU, from the above equation for ΨVU = h−1, we get

αΨVU(z)z2 − {
1 + (

c1 − α(1 + λ)
)
ΨVU

}
z − (c1 − αλ)ΨVU(z) = 0,

which implies

ΨVU(z) = z

(1 + z)(αλ − c1 + αz)
.

Now we use Eq. (12) to find corresponding S-transform as

SVU(z) = 1

αλ − c1 + αz
.

Moreover S-transform of V is

SV(z) = 1

αλ + αz
.

Since U and V are free by (9) we arrive at

SU(z) = 1 + c1

αλ − c1 + αz
.

Now we use (8) and (10) to find the Cauchy transform for U as

GU(z) =
1 + c1

α
− λ + (λ − 2)z +

√
(1 + c1

α
− λ + (λ − 2)z)2 − 4(1 − λ)z(z − 1)

.

2z(1 − z)
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From (15) it follows that GU is the Cauchy transform of free-binomial distribution with parame-
ters σ , θ (λ − c1

α
= σ , c1

α
= θ ).

Finally, let us mention that a W ∗-probability space with free random variables V and U with,
respectively, free-Poisson and free-binomial distributions, can be constructed in a standard way
as a free product of two W ∗-probability spaces, one containing free-Poisson random variable,
second with free-binomial distribution. For details see [19,38]. �

Combining Theorems 3.2 and 4.1 we get equivalence, as in the classical situation.

Corollary 4.2. Let U,V be free random variables in a W ∗-probability space. Then V −
V

1/2
UV

1/2 and V
1/2

UV
1/2 are free if and only if V has free-Poisson distribution and U has

free-binomial distribution.

Proof. The “if” part is trivially read out from Theorem 3.2. Since freeness implies that con-
ditional moments are constant (see (5) in Lemma 2.1) the “only if” part follows from Theo-
rem 4.1. �
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The authors thank M. Bożejko and W. Bryc for helpful comments and discussions. They are
also grateful to the referee for a careful reading of the manuscript, in particular, for remarks
concerning final stages of the proof of Theorem 4.1.

References

[1] M. Anshelevich, Free martingale polynomials, J. Funct. Anal. 201 (1) (2003) 228–261.
[2] H. Bercovici, V. Pata, Stable laws and domains of attraction in free probability theory, Ann. of Math. (2) 149 (3)

(1999) 1023–1060, with an appendix by Philippe Biane.
[3] S.N. Bernstein, On a property which characterizes a gaussian distribution, Proc. Leningrad Polytech. Inst. 217 (3)

(1941) 21–22.
[4] K. Bobecka, J. Wesołowski, The Lukacs–Olkin–Rubin theorem without invariance of the “quotient”, Studia Math.

152 (2) (2002) 147–160.
[5] K. Bobecka, J. Wesołowski, Three dual regression schemes for the Lukacs theorem, Metrika 56 (1) (2002) 43–54.
[6] E.M. Bolger, W.L. Harkness, Characterizations of some distributions by conditional moments, Ann. Math. Statist.

36 (1965) 703–705.
[7] I. Boutouria, Characterization of the Wishart distribution on homogeneous cones in the Bobecka and Wesolowski

way, Comm. Statist. Theory Methods 38 (13–15) (2009) 2552–2566.
[8] I. Boutouria, A. Hassairi, H. Massam, Extension of the Olkin and Rubin characterization of the Wishart distribution

on homogeneous cones, arXiv:1002.1451v1, 2010.
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