
Survey Methodology 41-1

Catalogue no. 12-001-X 
ISSN 1492-0921

by Jan Kowalski and Jacek Wesołowski

Exploring recursion for optimal  
estimators under cascade rotation

Release date: June 29, 2015



Standard table symbols
The following symbols are used in Statistics Canada  
publications:

. not available for any reference period 

.. not available for a specific reference period 

... not applicable 
0 true zero or a value rounded to zero 
0s value rounded to 0 (zero) where there is a meaningful 
 distinction between true zero and the value that was rounded 
p preliminary 
r revised 
x suppressed to meet the confidentiality requirements  
 of the Statistics Act 
E use with caution 
F too unreliable to be published 
* significantly different from reference category (p < 0.05)

How to obtain more information
For information about this product or the wide range of services and data available from Statistics Canada, visit our website, 
www.statcan.gc.ca. 
 
You can also contact us by 
 
email at infostats@statcan.gc.ca 
 
telephone, from Monday to Friday, 8:30 a.m. to 4:30 p.m., at the following toll-free numbers: 

 • Statistical Information Service 1-800-263-1136
 • National telecommunications device for the hearing impaired 1-800-363-7629
 • Fax line 1-877-287-4369

 
Depository Services Program 

 • Inquiries line 1-800-635-7943
 • Fax line 1-800-565-7757

Published by authority of the Minister responsible for Statistics Canada

© Minister of Industry, 2015

All rights reserved. Use of this publication is governed by the Statistics Canada Open Licence Agreement.

An HTML version is also available.

Cette publication est aussi disponible en français.

Note of appreciation
Canada owes the success of its statistical system to a 
long-standing partnership between Statistics Canada, the  
citizens of Canada, its businesses, governments and other 
institutions. Accurate and timely statistical information could not 
be produced without their continued co-operation and goodwill.

Standards of service to the public
Statistics Canada is committed to serving its clients in a prompt, 
reliable and courteous manner. To this end, Statistics Canada has 
developed standards of service that its employees observe. To 
obtain a copy of these service standards, please contact Statistics 
Canada toll-free at 1-800-263-1136. The service standards 
are also published on www.statcan.gc.ca under “About us” > 
“The agency” > “Providing services to Canadians.”

http://www.statcan.gc.ca
mailto:infostats%40statcan.gc.ca?subject=
http://www.statcan.gc.ca/eng/reference/licence-eng.htm
http://www.statcan.gc.ca/pub/12-001-x/2015001/article/14192-eng.htm
http://www.statcan.gc.ca/eng/about/service/standards


Survey Methodology, June 2015 99 
Vol. 41, No. 1, pp. 99-126 
Statistics Canada, Catalogue No. 12-001-X 

 
1. Jan Kowalski, Warsaw University of Technology, Warsaw, Poland; Jacek Wesołowski, Warsaw University of Technology and Central 

Statistical Office, Warsaw, Poland. E-mail: J.Wesolowski@mini.pw.edu.pl. 

 

Exploring recursion for optimal estimators under cascade 
rotation 

Jan Kowalski and Jacek Wesołowski1 

Abstract 

We are concerned with optimal linear estimation of means on subsequent occasions under sample rotation 
where evolution of samples in time is designed through a cascade pattern. It has been known since the seminal 
paper of Patterson (1950) that when the units are not allowed to return to the sample after leaving it for certain 
period (there are no gaps in the rotation pattern), one step recursion for optimal estimator holds. However, in 
some important real surveys, e.g., Current Population Survey in the US or Labour Force Survey in many 
countries in Europe, units return to the sample after being absent in the sample for several occasions (there are 
gaps in rotation patterns). In such situations difficulty of the question of the form of the recurrence for optimal 
estimator increases drastically. This issue has not been resolved yet. Instead alternative sub-optimal approaches 
were developed, as K  composite estimation (see e.g., Hansen, Hurwitz, Nisselson and Steinberg (1955)), 
AK  composite estimation (see e.g., Gurney and Daly (1965)) or time series approach (see e.g., Binder and 

Hidiroglou (1988)). 
 
In the present paper we overcome this long-standing difficulty, that is, we present analytical recursion formulas 
for the optimal linear estimator of the mean for schemes with gaps in rotation patterns. It is achieved under 
some technical conditions: ASSUMPTION I and ASSUMPTION II (numerical experiments suggest that these 
assumptions might be universally satisfied). To attain the goal we develop an algebraic operator approach 
which allows to reduce the problem of recursion for the optimal linear estimator to two issues: (1) localization 
of roots (possibly complex) of a polynomial pQ  defined in terms of the rotation pattern ( pQ  happens to be 

conveniently expressed through Chebyshev polynomials of the first kind), (2) rank of a matrix S  defined in 
terms of the rotation pattern and the roots of the polynomial .pQ  In particular, it is shown that the order of the 

recursion is equal to one plus the size of the largest gap in the rotation pattern. Exact formulas for calculation of 
the recurrence coefficients are given - of course, to use them one has to check (in many cases, numerically) that 
ASSUMPTIONs I and II are satisfied. The solution is illustrated through several examples of rotation schemes 
arising in real surveys. 

 
Key Words: Repeated surveys; Rotation of sample; Recursive BLUE of the current mean; Chebyshev polynomials; 

Algebra of shift operators; Exponential correlations. 

 
 

1  Introduction 
 

Repeated surveys with rotation of elements in samples are commonly used by statistical offices and 
other institutions. Predesigned rotation of (groups of) elements in a form of cascade patterns, that is such 
schemes when, on each occasion the ‘oldest’ element (group of elements) leaves the sample and is 
replaced by a new one, is also very popular but information carried in the survey data is often not 
exploited in full. This in turn leads to constructing sub-optimal estimators with variance above the 
achievable minimum. To enhance the use of optimal estimators in rotation schemes, in the seminal paper 
Patterson (1950) introduced the idea of recurrence for best linear unbiased estimators (BLUEs) of the 
mean on each occasion. The main assumptions were that the unknown population means are deterministic 
and the responses are random variables whose variances and correlation structure are fully known. Under 
exponential correlation and assuming further that any element leaving the sample does not return to the 
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survey, Patterson proved that for any occasion t  the BLUE ˆ t  of the current mean t  at time t  (based on 

all past observations) can be computed from the following one-step recurrence: 

      0 1 11 1=ˆ ˆ T T
t tt ta t r t X r t X      (1.1) 

where iX  is the vector of observations at time = ,  1.i t t   The formulas for the recurrence coefficients, 

that is the numbers  1a t  and the vectors  0 1, ( ),r t r t  were given there as well. (Here and throughout the 

paper a vector, say ,r  is understood as a column, Tr  is its transpose. For two vectors  1= , , ,nr r r  

 1= , , n
nw w w    the expression 

1
=

nT
i ii

r w r w
  is just the scalar product of r  and .)w  

Patterson’s assumption that a unit leaving a sample never returns to the survey was a core of his 
approach. If this assumption is violated (that is, there are gaps in rotation patterns) it has been known for 
years that serious difficulties arise if one seeks an analogue of the recurrence (1.1). Being aware of this 
(see, e.g., Yansaneh and Fuller 1998) researchers rather tried alternative approaches: Classical K -
composite estimator was proposed in Hansen et al. (1955). Its optimality properties were developed in Rao 
and Graham (1964) and more recently in Ciepiela, Gniado, Wesołowski and Wojtyś (2012). The main 
difference is that instead of seeking the recurrence for BLUE, these authors restrict the optimality issue to 
linear unbiased estimators satisfying just the first order recurrence, that is the variance of the estimator 
based on the most recent estimator and observations from the last two occasions only is minimized. 
Adjustments, known as AK - composite estimator, introduced in Gurney and Daly (1965), have been 
developed, e.g., in Cantwell (1988, 1990) and Cantwell and Caldwell (1998) - actually in these papers the 
authors introduce the notion of balanced multi-level design, and one-level design corresponds to the 
cascade pattern we consider here. Another approach based on regression composite estimator has been 
considered in Bell (2001), Fuller and Rao (2001) and Singh, Kennedy and Wu (2001) (with implications 
for Canadian Labour Force Survey). 

The difficulty in recursive estimation in repeated surveys for patterns with gaps was raised in 
Yansaneh and Fuller (1998), who analyzed variances of composite estimators in several rotation schemes. 
For a relatively current description of the state of art in the area one can consult Steel and McLaren 
(2008), in particular Sec. IV on different rotation patterns and Sec. V on composite estimators. 
Comparisons of effectiveness under different cascade patterns can be found in McLaren and Steel (2000) 
and Steel and McLaren (2002). A very recent paper on optimal estimation under rotation is by Towhidi 
and Namazi-Rad (2010). Some of these references deal also with time series approach (which is not 
considered in this paper) in which the unknown means are treated as random quantities - an overview of 
such approach can be found in Binder and Hidiroglou (1988). For a more recent development of this 
setting see e.g., Lind (2005). 

As for the original approach of Patterson, the next result concerning the recursive form of the BLUE 
was presented in Kowalski (2009), where singleton gaps in the rotation pattern were allowed. As in 
Patterson (1950), this paper was devoted to the “classical” situation in which the coefficients in (1.2) 
below are allowed to depend on .t  Three conclusions from that work have an impact on this paper. 

Firstly, it was suggested that the formula (1.1) may be generalized to an arbitrary rotation scheme 
(including gaps in the pattern) by incorporating the optimal estimators and observations from a probably 
larger (but still as small as possible) number of past occasions and that the order of the recurrence should 
depend on the size of the largest gap. Secondly, it was observed there that the exponential correlation, as 
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assumed in Patterson (1950), is crucial for obtaining the recursive representation and that it is plausible to 
restrict oneself to the class of ‘cascade’ schemes. Both these assumptions are kept below. Finally, since 
according to numerical simulations the recurrence coefficients appear to be quickly convergent as 

,t    a suggestion was made to consider the ‘limiting’ case of the “classical” setting, in which the 

recurrence coefficients do not change in time. 

We want to stress that in the present paper any set of gaps in the cascade rotation pattern is allowed. 
The aim is to show that the recurrence 

 0 1 11 1=ˆ ˆ ˆ T T T
t t p t pt t p t pa a r X r X r X             (1.2) 

holds for any cascade rotation scheme and to find the order of recurrence ,p  the numerical coefficients 

1 , , pa a  and the vector coefficients 0 , , .pr r  Let us emphasize that the representation (1.2) is 

“stationary” in the sense that neither the order of the recurrence p  nor the recurrence coefficients  ia  

and  ir  depend on .t  

Our main result lies in reducing the recurrence problem to analysis of a certain polynomial pQ  (of 

degree ,p  where 1p   is the size of the largest gap in the rotation pattern) and to the question of unique 

solvability of a certain linear system of equations, which depends on roots of .pQ  Luckily the polynomial 

pQ  happens to be conveniently expressed through Chebyshev polynomials of the first kind. We provide a 

sufficient condition in terms of localization properties of roots of pQ  for existence of the recursive form 

of the BLUE of order ,p  as given in (1.2), and derive explicit formulas (exploiting roots of )pQ  for the 

recurrence coefficients  ia  and   .ir  The forms of the coefficients depend also on the unique solution of 

the linear system mentioned above. The result is illustrated by several examples related to the real life 
surveys. 

The convergence of recursion coefficients which we observed numerically in many “classical” 
schemes (that is, with coefficients in the analogue of (1.2) depending on )t  of different complexity 

indicates that solution to such “stationary” recurrence problem should exist universally (actually only in 
the Patterson case, = 1,p  such convergence is formally proved). If so it can be treated as an approximate 

solution for the “classical” scheme. As the reader will see, this intuition is largely confirmed in this paper. 
Our main result still is not universal even within models with exponential correlation. Our approach 
heavily relies on two assumptions (ASSUMPTION I and ASSUMPTION II below) which allow us to 
claim that the recurrence (1.2) holds true. Nevertheless, we performed many numerical experiments for 
different rotation patterns and different values of the correlation and they all suggest that both these 
assumptions may be universally satisfied. Unfortunately, at the present stage we are unable to confirm 
theoretically these observations. 

The plan of the paper is as follows. In Section 2 we introduce in mathematical terms the model we are 
working with. In Section 3 we introduce our two core assumptions and formulate the main result of the 
paper. Section 4 contains examples of applications of the main result in several popular rotation schemes. 
Section 5 presents a discussion. The main body of mathematics is deferred to Section 6. In its first part, 
6.1, algebraic properties of shift operators are considered. They are essential for the proof of the recursion 
formula which is given in the second part, 6.2, of Appendix. 



102 Kowalski and Wesołowski: Exploring recursion for optimal estimators under cascade rotation 
 

 
Statistics Canada, Catalogue No. 12-001-X 

2  Model 
 

Let  , ,i j i j
X

  be a doubly infinite matrix of random variables. Heuristically, ,i jX  represents the value 

of variable   measured for the unit (rotation group) i  on the occasion .j  We assume that the expectation 

of ,i jX  depends only on the occasion and not on the unit, that is  

 , = , , .i j jX i j      

Moreover, we assume exponential in time correlations between , ’si jX  for the same unit and no 

correlations between different units (following Patterson (1950) model), that is  

   | |
, , ,ov , = , , , ,j l

i j k l i kX X i j k l       

where  0,1   and , = 1i k  if = ,i k  otherwise , = 0.i k  (In practical situations often   is in 0,1 .  

In the case = 0  observations from the past cannot improve present linear estimator of the mean, 

therefore we do not consider such case below.) Consequently,  

 ,ar = 1, , .i jX i j     

For any j    we are interested in the BLUE of j  based on all available observations from 

occasions .i j  For a fixed positive integer N  denote by  

  , 1, 1,= , , ,
T

j j j j j j N jX X X X     

the maximal sample (of size )N  on the occasion .j   Then 

 = 1 , ,j jX j     

where  1 = 1,1, ,1 ,T N   and  

     ov , = = ov , , , 0,Tk
j j k j j kX X X X j k   C     

where C  is an N N  matrix of the form 

 

0 0

0
= .

0 0 0

 
 
 
 
 
 
  

C
 

 
  

Note that = 0nC  for any .n N  

The effective sample will be defined by a cascade pattern, which is a vector =  

   1 , , 0,1T N
N    with 1 = = 1.N   Let  



Survey Methodology, June 2015 103 
 

 
Statistics Canada, Catalogue No. 12-001-X 

 
=1

=   and  = .
N

j
j

n h N n    

Let H  be the set of zeros in the pattern ,  that is j H  iff = 0.j  Obviously, # = .H h  A gap of size 

m  is a maximal set of sequential m  zeros, that is a set satisfying 

  , 1, , 1   and  1, .j j j m H j j m H         

Consequently, H  is a union of, say, s  gaps of sizes , = 1, 2, , ,rm r s  and 
1

.
s

rr
m h


  

The coverage p  of the pattern (see Kowalski 2009 for equivalent definition) is the size of the largest 

gap increased by one: 

 
1

= 1 max .r
r s

p m
 

   

On each occasion j    we may not observe the maximal sample jX  but the effective sample of size 

n  defined by the cascade pattern ,  that is the vector  

   1,= , 1, , \ ,
T

j j k jY X k N H      

that is values of , ’si jX  represented by zeros (gaps) in the cascade pattern   are removed from the sample. 

We consider BLUE ˆ t  of the mean t  on the occasion t    which is based on observations 

, .jY j t  That is  

 
=0

=ˆ T
t it i

i

w Y


     

with , 0,n
iw i    which minimize ar ˆ t  under the unbiasedness constraints  

 0 1 = 1  and  1 = 0, 1.T T
iw w i     

It is both obvious and crucial for our approach that, equivalently, 

 
=0

=ˆ T
t iit

i

w X


   (2.1) 

with , 0,N
iw i   minimizing ar ˆ t  under unbiasedness constraints 

 0 1 = 1, 1 = 0, 1,T T
iw w i   (2.2) 

and cascade pattern constraints 

 = 0 0, ,T
i jw e i j H     (2.3) 

where  = 0, , 0,1, 0, , 0 T
je    (with 1 at thj  position) is thj  vector of the canonical basis in 

, .N j H  Note that the constraint (2.3) actually says that thj  entries  j H  of vectors , 0,iw i   

are all zeros.  
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3  Recurrence 
 

In order to formulate our main result which gives the exact recurrence for the BLUEs under any 
rotation pattern we need to introduce two objects: a polynomial pQ  and a matrix .S  They both look very 

technical and do not have immediate heuristic interpretations. Nevertheless they appear to be of essential 
importance for the final recurrence formula.  

 
3.1  Polynomial pQ  
 

Recall that ,kT  the thk  Chebyshev polynomial of the first kind, is defined by  

    = cos  arccos ,    = 0,1, .kT x k x k    

Define an m m  symmetric Toeplitz matrix polynomial function mT  by 

 

0 1 2 2 1

1 0 1 3 2

2 3 4 0 1

1 2 3 1 0

=T

m m

m m

m

m m m

m m m

T T T T T

T T T T T

T T T T T

T T T T T

 

 

  

  

 
 
 
 
 
 
 
 
  





     





 (3.1) 

and an m m  tridiagonal invertible matrix  

 

2

2

2

2

2

1 0 0 0

1 0 0

0 1 0 0
= .

0 0 0 1

0 0 0 1

R m

   
 
    
 
   
 
 
 
   
 
    







     





 (3.2) 

Note that mR  is non-singular. 

For a cascade pattern   with gaps sizes 1 , , sm m  and coverage p  define a polynomial pQ  by 

           22 2 2 1

=1

= 1 1 2 1 1 2 tr .T R
s

p m mj j
j

Q x N x x x                (3.3) 

Since   1tr m mx T R  is a polynomial of degree 1m   in ,x   

  
1

deg = 2 max 1 = .p j
j s

Q m p
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3.2  Matrix S  
 

Consider again a cascade pattern   with coverage p  and   1# = = .sH h m m   For complex 

numbers 1 , , pd d  define a    1 1ph h p h     matrix S  through its block structure  

  

        
 

 

 

1 2

1

1 2= , , = .

G G G

G 0 0

S S 0 G 0

0 0 G

p

p

p

d d d

d

d d d

d

 
 
 
 
 
 
 
 
 
 





 

   



 (3.4) 

The blocks   idG  are    1 1h h    matrices  

   
     

    1

2
 

2

 

1 1 1 1 11
=

1 1 1 diag , ,
G

H H s

T
h

m mh

N d d
d

d

        
 

     
 (3.5) 

with    =m m dH H  being an m m  upper bi-diagonal matrix 

   

1

= .

1

H m

d

d
d

  
 
 
 

  
 
  

 


 (3.6) 

The blocks  idG  are  1h h   matrices  

        
12

1= 1 1 ,  diag , , ,
1

G H H
sh m md d d d      

  (3.7) 

where  =m m dH H  is an m m  tri-diagonal matrix 

  

2

2

1

= .

1

H m

d

d
d

d

d

    
 
 
 
  
 
    

 

 
 (3.8) 

The numbers 1 , , pd d  considered above are related to (potentially complex) roots 1 , , px x  of the 

polynomial pQ  through the relation 2 = 1 ,i i ix d d  and < 1,id  = 1, , .i p  Some more details are 

given in the remark below. 
 

Remark 3.1 Let x    be such that either  0 or 1,1 .x x      
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Then the equation  

 
1 1

=
2

d x
d

  
 

  

in d  has exactly two roots, say,  d x  and  d x  such that 

    < 1    > 1.d x and d x    

If additionally = 0x  then  d x  and  d x  are real. 

By x   denote complex conjugate of x  with 0.x   Then  

          =     = .d x d x and d x d x
  

      

 
3.3  Main result 
 

Our main result gives the recursion of depth equal to the coverage p  of the cascade scheme together 

with analytic forms of the coefficients which are ready for numerical implementation. Actual examples of 
such implementations are presented in Section 4. The proof we offer (see Appendix) is based on two basic 
assumptions concerning the polynomial pQ  and the matrix .S  
 

ASSUMPTION I: The polynomial pQ  has distinct roots  1 , , 1,1 .px x    

ASSUMPTION II: The matrix  1= , , ,pd dS S   where  = , = 1, , ,i id d x i p   is of full rank. 

 

Theorem 3.1 If ASSUMPTIONs I and II are satisfied then for any t    the recursion 

 
=1 =0

=ˆ ˆ
p p

T
k t kt k t k

k k

a r X      (3.9) 

holds with  

  
1

1

1

1 < <

= 1 ,    = 1, , ,
k

k

k
k j j

j j p

a d d k p

 

 


   (3.10) 

and 

       1 ,
=1

= ,    = 0,1, , ,
p

T
i ji m i m m j m

m j H

r v d v d d c e i p


 
 

 
 I C ΔN    

where      0 0 1= 1, = 0 , = 1, = 0,e H H v d v d
   

  
=1

= ,    = 1, , ,
i

i i l
i l

l

v d d a d i p    (3.11) 

   1
= , =I CC N I CT d d


    and with 
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      ,1 ,2 ,= , , , , , ,
T

j j j pc c j H c j H c j H         

being the unique solution (it exists due to ASSUMPTION II) of the linear system 

   1= 1, 0, , 0 .T ph hc  S     

Moreover, 

   0,
=1

ar = .ˆ
p

t m
m

c   (3.12) 

In the next section we show how the above theoretical result can be applied in several basic schemes, 
in particular, in those which are used in real life surveys, while the proof of Theorem 3.1 is given in the 
second part, 6.2, of Appendix. It is based on a purely algebraic operator approach which is introduced 
earlier in the first part, 6.1, of Appendix. 

We would like to stress that intensive numerical experiments suggest that ASSUMPTIONS I and II 
may be universally satisfied, however at this moment we do not have mathematical proof of this fact 
(except the case = 1, 2p  and = 3p  for a special rotation pattern). Thus applications of the above 

recursion formula (for > 2)p  in surveys have to be preceded by a numerical check (which is rather 

straightforward) that ASSUMPTIONS I and II are satisfied. Examples are given in Section 4. 

 
4  Examples 
 

4.1  Patterson’s scheme, = 1p  
 

The cascade Patterson scheme is used e.g., for conducting the Labour Force Survey in Australia 
( = = 8,N n  see Australian Bureau of Statistics (2002)) and Canada ( = = 6,N n  see Singh, Drew, 

Gambino and Mayda (1990)). There are no zeros in the pattern, hence = 0h  and the polynomial 

1= ,pQ Q  see (3.3), does not contain the summand with the trace, that is  

      2 2
1 = 1 1 2 1 .Q x N x          

Its only root 
 

2 2

1

1 1
=

2 2 1
x

N

   
 

  
 is real and satisfies 

2

1

1
> > 1,

2
x

 


 that is ASSUMPTION I 

is satisfied. It yields also real  1 1=d d x  of the form  

 
     

 

2 22 2 2

1

2 2 4 1
= .

2 1

N N N N N
d

N

           
 

  

Moreover, S  as defined in (3.4) is a 1 1  matrix of the form   1
2

1
= 1 1 ,

1

d
N

       
S 0  that is 

ASSUMPTION II trivially holds. Thus from Theorem 3.1, for all t    we have  
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 0 1 11 1= ,ˆ ˆ T T
t tt ta r X r X       

where  

  

 

1 1

0 0,1 1

1 0,1 1

=

= 1 ,

= 1T

a d

r c d

r c d








N

C N

  

where  

 

 
0,1

1
2

1
= .

1
1 1

1

c
d

N
 

 
 

  

Taking for example = 6N  and = 0.9,  we obtain for all :t  

 11

0.1765 0.0000

0.1765 0.1588

0.1765 0.1588
= 0.7942 .ˆ ˆ

0.1765 0.1588

0.1765 0.1588

0.1176 0.1588

T T

t tt t X X 

   
   

   
   

   
      

   
   
   
   
      

  

 

Remark 4.1 Patterson (1950) considered the same scheme in the “classical” model. The recurrence 
coefficient  1a t  was formally proved to converge with t    and the limit was shown to be 1a  as 

given above. The vectors  0r t  and  1 ,r t  being continuous functions of  1 ,a t  converge to 0r  and 1 ,r  

respectively. That is, the “stationary” solution is indeed consistent with asymptotics of the “classical” 
one.  
 

4.2  Schemes with gaps of size 1, = 2p  
 

The polynomial 2= ,pQ Q  see (3.3), has the following form: 

        
2

2 2 2
2 2

4
= 2 2 1 1 1 1 .

1
h

Q x x N h x N h
            

 
  

As 21 > 0,   it is immediate that its discriminant 

        
2

2 22 2 2 2
2

4
= 4 2 1 4 1 1 1 > 4 1 > 0.

1

h
N h N h N


                

 (4.1) 

Thus 2Q  has two single real roots  
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    2
2

2 2 1
= 1 .

8

N h
x

h

     
 


  

Note that since the size of all gaps is one, then necessarily 1 1.N h h     Using this fact and 

inequality (4.1) we obtain therefore 

    
2

2 1 1
> 1 > 1,   since  0,1 .

22

N h
x

       


  

Thus the ASSUMPTION I of Theorem 3.1 is satisfied. 

By Remark 3.1 it follows that   2
1 = = 1 < 0d d x x x      and  2 = =d d x   

2 1 > 0x x    are real numbers. 

Since in this case =s h  and 1 = = = 1hm m  we have   1 = 1idH  and   2
1 = 1 , =H id i   

1, 2.  Therefore the equation =c eS  implies  

      2
0, ,1 1 = 0, = 1, , ,    = 1, 2.i i i k id d c c k h i          

Thus 1,1 2,1 ,1= = = hc c c  and 1,2 2,2 ,2= = = .hc c c  Consequently, the system =c eS  reduces to 

the system with four unknowns 0,1 1,1 0,2, ,c c c  and 1,2 :c  

     0,1 1,1 0,2 1,2, , , = 1, 0, 0, 0
T Tc c c cS   

with 

 

           

     
     

2 2
1 1 2 2

1 2

2 2
1 1 1

2
2 2 2

1 1 1 1 1 1 1 1

1 1 1 1
1= .

1 1 1 0 0

0 0 1 1

N d h d N d h d

d d

d d d

d d d

                
 
    
 

        
 
       

S   

To show that S  is non-singular we first show that  

  1 2 0. (4.2)d d    (4.2) 

To this end we first note that 

    2 2 1= 1 0.
2

N hx x
h 

        (4.3) 

Moreover,  

 

     

 

2 2
1 2 2 2

2 2

2 2

1 1 = 1
1 1

( )
1 1 .

1 1

x x
d d x x x x x x

x x

x x
x x x x

x x
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Due to (4.3) the last expression is non-negative since the second factor is strictly negative. Now we are 
ready to consider the determinant 

   

 
 2 1

1 242
det = , ,

1

d d
s d d

 

 
S   

where  

 
             

      

2 2 2
1 2 1 2 1 2

2 2
1 2 1 2 1 2

, 1 1 1 1 1 1

1 1 1 2 .

s d d N d d d d

h d d d d d d

              

            
  

We note that < 1, = 1, 2,id i  and thus 1 2 < 1.d d  Consequently, we have 

   2 2
1 2 1 21 > 1 1 > 0,1 > 0.d d d d         These inequalities together with (4.2) yield 

 

          
       
       

2 2 2
1 2 1 2 1 2

2 2
1 2

2
1 2

, > 1 1 1 1 1 2

> 1 1 1 1 2

> 1 1 2 1 1

0.

s d d d d N h d d

d d N h h

d d N h

             

           

       



  

Consequently, det 0.S  

Since   rank = rank 2 1h S S  we obtain  rank = 2 1h S  and thus the ASSUMPTION II of 

Theorem 3.1 is satisfied. Moreover, 
1

S  exists. Therefore  

      1

0,1 1,1 0,2 1,2, , , = 1, 0, 0, 0 .
T

c c c c


S   

Finally, we conclude that the recurrence has the following form:  

 0 1 1 2 21 1 2 2= ,ˆ ˆ ˆ T T T
t t tt t ta a r X r X r X           

where  

          
             

         

1 1 2

2 1 2

0 1 0,1 1,1 1,1 2 0,2 1,2 1,2

1 2 1 0,1 1,1 1,1 1 2 0,2 1,2 1,2

2 2 1 0,1 1,1 1,1 1 2 0,2 1,2 1,2

=

=

= 1 1 .

= 1 1

= 1 1

T T

T T

a d d

a d d

r d c c c d c c c

r d d c c c d d c c c

r d d c c c d d c c c





       


         


      

N N

I C N I C N

C N C N

  

For example, let  = 7, = 2, = 3, 6N h H  and let = 0.5.  Then 

   2
2 = 1.6 2 5.75Q x x x     

and 
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1

1 11 1

22 2

2 2

= 5.0439

= = 0.1983= 2.6211 = 0.2348
.

= 2.3091= 1.3711 = 0.0859

= = 0.4331

d x

d d xx a

d xx a

d d x












       
  




  

Finally, (3.9) assumes the form 

 11 2

0.2171 0.0093 0.0000

0.1904 0.1086 0.0047

0.0000 0.0000 0.0000

ˆ 0.2348 ˆ 0.0859 ˆ 0.2171 0.0093

0.1904 0.1086

0.0000 0.0000

0.1850 0.0010

T T

t tt t t X X  

   
   

   
   
   
   
          
   
   
   
   
   
      

2 .0.0476

0.0047

0.0000

0.0476

T

tX 

 
 
 
 
 
 
 
 
 
 
 
 
  

  

 
4.3  Szarkowski’s scheme, = 3p  
 

If there are 2h  gaps of size 2 and 1h  gaps of size 1 in the cascade pattern the polynomial 3= ,pQ Q  

see (3.3), assumes the form  

          2
22 2 2

3 2 12 4 2

2 2 1 1
= 1 1 2 1 1 2 .

1 1

x
Q x N x x h h

    
                    

  

The Szarkowski’s scheme is defined by the cascade pattern  = 1,1, 0, 0,1,1 T  (often denoted also as 
2 2 2),   used e.g., by the Central Statistical Office of Poland for conducting the Labour Force Survey 

(known under the label BAEL), see Szarkowski and Witkowski (1994) or Popiński (2006). Actually, such 
scheme is used also in LFS in other countries in Europe as well. Here = 6N  and  = 3, 4 .H  Thus 

2 1= 1, = 0,h h  and 

      
2

22 2 2
3 2 4

1
= 5 1 2 1 2 1 2 .

1

x
Q x x x

   
           

   
 (4.4) 

Wesołowski (2010) proved that in this case 3Q  is either strictly increasing or decreasing in the whole 

domain and has two complex conjugate roots 1 2, ,x x  and one real root  3 1,1 ,x    meaning that the 

ASSUMPTION I of Theorem 3.1 holds. It was also shown in that paper that the matrix ,S  in this case of 
dimensions 9 9,  is invertible (meaning that the ASSUMPTION II of Theorem 3.1 holds). Thus, just as 
for = 1, 2,p  the recurrence (3.9) for Szarkowski’s scheme always holds. 

In general, even in the case = 3,p  verification of ASSUMPTIONs I and II of Theorem 3.1 has to be 
done numerically, i.e., after assigning the value to the correlation coefficient .  However, it is worth 
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noting that all performed simulations confirm existence of the solution. Asymptotic approximation of the 
“classical” model parameters was also observed in numerical experiments we performed. 

The coefficients 1 2 3, ,a a a  depend on    1 1 2 2 1= , = =d d x d d x d 
   and  3 3=d d x  in the 

following way (see (3.10)):  

  

1 1 2 3

2 1 2 2 3 1 3

3 1 2 3

=

= .

=

a d d d

a d d d d d d

a d d d

 
   



  

For the Szarkowski scheme, taking for instance = 0.7  in (4.4), we obtain  

 

 

 

 

 

 

 

1

1 1

1 1

2

2 2

2 2

3 3

3

3 3

1.0368 3.1035

= 0.0968 0.2899
= 0.5668 1.4069 = 0.4060

1.0368 3.1035
= 0.5668 1.4069 = 0.0227

= 0.0968 0.2899
= 1.1336 = 0

1.6675

= 0.5997

d x i

d d x i
x i a

d x i
x i a

d d x i
x a

d x

d d x













  


  
  

       
   

 





.

.0560







  

Due to Theorem 3.1 we get the following form of (3.9): 

 

1 2 3

1

0.4060 0.0227 0.0560ˆ ˆ ˆ ˆ

0.2862 0.0036 0.0143

0.2217 0.2004 0.0026

0.0000 0.0000 0.0000

0.0000 0.0000 0.0000

0.2862 0.0036

0.2059 0.1984

t t t t

T T

t tX X

  



      

    
   

   
   
   

     
   
   
    
   
      

2 3

0.0000

0.0100

0.0000
.

0.0000

0.0143 0.0760

0.0033 0.0100

T T

t tX X 

   
   
   
   
   

   
   
   
   
   
      

  

 
4.4  CPS scheme, = 9p  
 

Let us consider the well-known and widely studied 4-8-4 scheme, that is the cascade pattern is  

  = 1,1,1,1, 0, 0, 0, 0, 0, 0, 0, 0,1,1,1,1 T   

which is used in the US in the Current Population Survey, see U.S. Bureau of Census (2002). In this case 
= 16, = 8,N h  and  = 5, ,12 .H   We do not have any analytical proof that ASSUMPTIONs I and II 

are satisfied in this scheme for any .  
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The polynomial 9= ,pQ Q  see (3.3), is of degree 9 and has the form 

         22 2 2 1
9 8 8= 15 1 2 1 1 2 tr .Q x x x x             T R   

Consequently, its analysis, as well as analysis of matrix S  (which is of dimension 81 81  in this 
scheme), can be done numerically, after assigning some value for .  To make use of the result of 

Theorem 3.1 we need to check numerically that ASSUMPTIONs I and II are satisfied for a given concrete 
value for .  We checked that they hold true for several values for   picked up at random from the 

interval  1,1 .  

Taking for instance = 0.9,  we obtain that 9Q  has eight complex roots and one real root of the form  

 

 

 

1 1 1

2 2 2

3

4

5

6

7

8

9

= 0.7667 0.0208 = 0.7419 0.6220

= 0.7667 0.0208 =

= 0.1746 0.0320

= 0.1746 0.0320

= 0.4989 0.0284

= 0.4989 0.0284

= 0.9391 0.0121

= 0.9391 0.0121

= 1.0006

x i d d x i

x i d d x

x i

x i

x i

x i

x i

x i

x





    


 


 

  
  







 

 

 

 

 

 

 

 

 

1

2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

= 0.7429

0.7419 0.6220 = 0.0

= 0.1689 0.9532

= 0.1689 0.9532

= 0.4825 0.8389

= 0.4825 0.8389

= 0.9064 0.3335

= 0.9064 0.3335

= 0.9682

a

i a

d d x i

d d x i

d d x i

d d x i

d d x i

d d x i

d d x


















  


  

   
   


 


 

  

  

3

4

5

6

7

8

9

019

= 0.0023

= 0.0029

= 0.0037 .

= 0.0049

= 0.0066

= 0.0088

= 0.0119

a

a

a

a

a

a

a



















  

The coefficient 1a  is dominant in terms of absolute value. The second largest, 9a  is smaller by one 
order of magnitude and the other coefficients by at least two. Results for other values of the parameter   

behave similarly. 

 
5  Discussion 
 

The main result of the paper is an explicit recurrence formula for the best linear unbiased estimator 
(BLUE) of the mean on any occasion in repeated surveys with any cascade rotation pattern. The principal 
novelty lies in allowing for gaps in the pattern. The results which have been known earlier either dealt 
with patterns with no gaps or with estimators which were not BLUEs. The approach, we developed, is 
heavily based on algebra of matrices and linear operators of infinite dimension as well as on properties of 
Chebyshev polynomials. Unfortunately, the explicit recursive formula we obtained in Theorem 3.1 needs 
two, seemingly technical, assumptions: ASSUMPTION I on localization of roots of a polynomial pQ  and 

ASSUMPTION II on rank of matrix .S  It is worth to emphasize that both these objects, pQ  and ,S  

depend ONLY on two parameters; the rotation pattern   and the correlation coefficient .  It is known 

that these two assumptions are satisfied if the coverage of the pattern = 1p  or = 2p  for any cascade 
scheme and = 3p  for 2-2-2 scheme. It is not known if they are satisfied in general. However numerical 
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experiments allow to formulate a conjecture that this is really the case. In these experiments we considered 
many different rotation patterns. For each such a pattern we considered several values for  1,1 .    

Having the rotation pattern   and the value of   chosen, we built respective polynomial pQ  and matrix 

.S  Numerically we looked for roots of .pQ  Often these roots were complex, but when they were real they 

were located outside of the interval  1,1  in all the experiments (that is, ASSUMPTION I was satisfied). 

Then we tried to solve numerically the equation   1= 1, 0, , 0 .ph hc  S    Again, in all the 

experiments we obtained the unique solution, meaning that S  was of full rank (that is, ASSUMPTION II 

was also satisfied). We do believe that both the assumptions are always satisfied but a mathematical proof 
of these facts is probably hard, though a paper with the proof that ASSUMPTION I is satisfied for any 
cascade pattern with a single gap of any size and any  1,1    is under preparation. 

There is other type of limitations of the method we propose - they are due to the model constraints. In 

particular, in the model the correlations are exponential (as in the original Patterson model). This property 
is very important for the argument we use, e.g., it makes the covariance matrix C  nilpotent of degree ,N  

that is N  is the smallest value of j  such that = 0.jC  Moreover, it has been observed (see Example 4.5 

in Kowalski 2009) that other covariance models may lead to major difficulties in analysis of the formula 

for the variance of the estimators. There is a possibility that some reasonable departures from the 
exponential correlation assumption, as e.g.,    , , ,ov , = 1 j l

i j k l i kX X        for a  0,1   (see 

Lent, Miller, Cantwell and Duff (1999), in particular their Table 1, its discussion as well as additional 

references) can lead to treatable formulas for the variance. Such a covariance model is probably the first 

one to look at in any future research aiming at extension of the model. 

In the model we also assumed that expectations on a given occasion are all the same and depend only 
on the occasion number: , = .i j jX   However other models may be of interest, e.g., , =i j j iX a   

(see Bailar 1975). Here the adjustments ia  can be understood as time-in-sample-bias caused by the 

number of occasions in which unit i  participated in the survey. Of course, if ia  is known, there is no 

problem: just adjust ,i jX  by subtracting ia  and use the approach we developed. If it is not known, the 

operational (but not mathematical) solution would be to adjust , ’si jX  with suitable estimators of ’sia  

(obtained outside the model we analyze). The exact mathematical solution is not known and is worth to 

pursue. 

Another aspect, which is of interest within the model considered in this paper, is the question of 
recurrence for the BLUE of a change of the mean 1.t t    We do believe that this question can be 

approached through the methods developed in this paper. Nevertheless, we expect it will need a lot of 

work in careful adaptations of the algebraic techniques used above. 

It is worth also to mention that the model considered in the paper has an infinite time horizon, why 

there is always finite number of occasions in real surveys. As already mentioned in Introduction, the 

results we obtained seem to be reasonable approximation of the finite horizon case, when coefficients of 

recursion (1.2) depend on .t  In particular, numerical experiments, performed for a wide range of 
 1,1    and several different cascade patterns ,  show that e.g., the value of the coefficients ( )t

ia  (for 

the finite horizon) was roughly the same as ia  (for the infinite horizon) already for 10.t   The same 

behavior was observed for the variances of the estimators. Nevertheless, the convergence has been 
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mathematically established only in the case = 1.p  Analytical bounds for the speed of convergence at 

present seem also to be out of reach. 

It is interesting to know how the estimators, obtained here, work in real surveys. Such question needs 
access to real data and gaining some interest of practitioners in the theoretical solutions we proposed. Very 
likely the exact formulas given in Theorem 3.1 may need some adjustments due to the discussed 
limitations of the model. 

 
6  Appendix 
 
6.1  Algebra of shift operators 
 

In the first part of Appendix we introduce and analyze an algebraic operator formalism which is crucial 
for the proof of our main result (given in Subsection 6.2). 

For a sequence of vectors  0 1 2= , , , , ,N
ix x x x x    define shifts to the left and to the right by  

 
   

   

1 2 3

0 1

, , , left shift,

0, , , right shift.

x x x x

x x x












  

Note that =   (identity), but  

    0 0= , 0, 0, = ,x x x e    (6.1) 

where  = 1, 0, 0, .e   

For any M N  matrix A  define  

  0 1 2= , , , .x x x xA A A A    

In particular, for a complex (real) number ,a  taking = aA I  we have  

  0 1 2= , , , .ax a x a x a x    

Moreover, by the above definitions, for any , 0i j    

 = .i j i jx xA A      

For a constant sequence of vectors  = , , ,x x x x   we have =x x  and thus for any , 0i j   

 
, for ,

=
, for < .

i j

j i

x i j
x

x i j








 (6.2) 

If = 1N  we write  0 1 2= = , , ,  ,iy y y y y y    and L := , R := .   Note that, for 

 
0

= n

n
y y


 we have 
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 L =j jy y y  (6.3) 

and thus  

 
, for ,

L R =
R , for < .

j i

j i

i j

y y j i
y

y j i









  

For any   0= n ny y   and any   0= n nx x   define   0= .nn nyx y x   Then for any complex (real) 

numbers , ,   any M N  matrices , ,A B  any , , , 0,i j k m   

          = R L L R .A B A Bi j m k i j i j m k m kyx y x y x              (6.4) 

Note also that if  = , ,x x x   is a constant sequence, then 

    = R L   and  = L R .i j i j j i j iyx y x yx y x     (6.5) 

 

Lemma 6.1 Let , = 1, , ,iv i p  be functions defined in (3.11), where 1 , , pa a  are arbitrary numbers. 

Let  = , ,x x x   and  
0

= .n

n
y y


 Then for any = 1, ,i p  

 
=1 =1

= ,
p p

i j p p j p i
j j

j j

a a     
    

   
        (6.6) 

      0
=1

= , 0, 0,
p

p p j p i
j i

j

a yx v y x  
  

 
       (6.7) 

and  

  
=1

= .
p

p p j
j p

j

a yx v y yx 
 

 
   (6.8) 

 

Proof. First, we prove (6.8). By (6.4) 

      
=1 =1

= L L .
p p

p p j p p p j p j
j j

j j

a yx y x a y x   
  

 
       

Note that L =k ky y y  and =k x x  for any = 0,1, .k   Therefore  

 
=1 =1

= .
p p

p p j p p m
j m

j m

a yx y a y y x     
     

    
     

Now (6.8) follows by the definition (3.11) for = .i p  

Again, from (6.2), (6.4) and (6.5) it follows that  

    
=1 =1

= I RL L L R .
p p

p p j p i p p j p i
j j

j j

a yx a y x        
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Since for any  0,1, ,k p    

  
=1 =1 = 1 = 1

L L R = R = R
p k p p

p p j p k k k j j k j k
j j j k j

j j j k j k

a y y y a y y a y v y y a y    

 

 
    

 
      

then  

    
=1

I RL L L R =
p

p p j p k
j k

j

a y v y e  
  

 
   

and thus (6.7) follows. 

The identity (6.6) follows by (6.2) since  

 
=1 =1 =1

= = .
p p p

i j i i j p p i p j p i
j j j

j j j

a a a   
   

 
             

 

Lemma 6.2 Let   be an operator on the space of sequences of vectors from N  defined by 

   
1

=1

= ,C C
N

kk k T k

k



      (6.9) 

where C  is the covariance matrix defined in Section 2. 

The operator   is invertible and 

    1 = .C Δ CT        (6.10) 

 

Proof. Note that  2 2= diag 1 , ,1 ,1 .T    I CC   Consequently,   1
=Δ I CCT 

  is well 

defined. Note also that 
1

=0

N k k

k

 C   is invertible and its inverse is . C   Similarly,  1

=0

kN T k

k

 C   

is invertible and its inverse is .T C   
 

Therefore  

 

       

   

   

   

1 11 1

1 1

=0 =0

1 1

, =0 , =1

1
1 1

, =1

.

C Δ C C Δ C

C I CC C

C C C C

C C

T T

N N
jk k T T j

k j

N N
j jk T k j k T k j

k j k j

N
jk T k j

k j
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6.2  Proof of the recurrence 
 

Proof of Theorem 3.1. Note first that since 1 , , pd d  are either real or come in conjugate pairs (see 

Remark 3.1) it follows from (3.10) that 1 , , pa a  are real numbers. 

 

Recall that 0 = 1e  and denote    = , , , = 0 .j jje e e j H H   Recall that the N N  

diagonal matrix Δ  is defined as 

    1 2
2

1= = diag 1, ,1,1 .
1

Δ I CCT 
  

 
   

With 1 , , pd d  and c  as defined in Theorem 3.1 let (see (6.10)) 

   1
0 1 ,

=1

= , , = ,
p

mj m j
m j H

w w w c d e


    (6.11) 

where  2= 1, , , , = 1, , .m m md d d m p   Note that iw  (the length of the vector )iw  is of order 

 1max , = 0,1, .
i

m p md i    By Remark 3.1 and ASSUMPTION II we have  1max 0,1 .m p md    

Hence (2.1) is a correct definition of a random series (with bounded variance). 

Consequently, it suffices to show that:  
 

1.  The sequence w  defined in (6.11) is the sequence of optimal weights. To this end we note that 

the variance of any linear estimator 
0

, , = 0,1, ,T N
ii ii

u X u i



   has the form  

 
1

=0 =0 =0 =1

ar = 2 .C
N

T T T k
ii i i i i k

i i i k

u X u u u u
   

    (6.12) 

We need to show that   0= :=i iu u w  with w  as defined in (6.11) minimize this expression 

under the constraints (2.2) and (2.3). Since the above variance as a function of u  is convex 

then the problem has the unique solution. Using the standard Lagrange method, that is 
differentiating the Lagrange function (with multipliers , , 0( ) )j i j H i   

  
1

,
=0 =0 =1 =0

= 2 2 ,
N

T T tk
i i i i k i jj i

i i k i j H

V u u u u u u e
   




    C   

with respect to   0i iu   and comparing the derivatives to zero, equivalently, we need to show 

that there exist real numbers (Lagrange multipliers) , , , = 0,1, ,j l j H l    such that 

   
1

=1

= = ,C C
N

kk k T k

k

w w
 

   
 

     (6.13) 

where w  is defined in (6.11) and  0 1= , ,     with 

 ,= , = 0,1,l jj l
j H

e l
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2.  The constraints (2.2) and (2.3) are satisfied for w  as defined in (6.11). 

3.  The basic recurrence (3.9) holds true with w  defined in (6.11), that is the sequence r  defined 

by 

 
=1

:=
p

m
m

m

r a w
 

 
 

   (6.14) 

has to satisfy 

 1 = 0p r  (6.15) 

and for any = 0,1, ,i p  

         1 ,
=1

= ,I C N
p

i T
ji m i m m j m

m j H

r v d v d d c e e


 
  

 
     (6.16) 

where    = .N Δ I Cd d  
 

Ad. 1. We will show that (6.13) holds with  

 , ,
=1

= , , = 0,1,
p

l
j l j m m

m

c d j H l    (6.17) 

By definition (6.11) of w  we have  

 , ,
=1 =1

= = , = 0,1, .
p p

l
jj m m j j m m

m j H j H m

w c d e c d e l
  

 
 
 

       

Therefore, by definition of , ’sj l  we obtain  

  0 1,= = , , = .jj l
j H

w e


 
    

 
    

To see that ,j l  as defined through (6.17) are real numbers take first conjugates of both sides of 

= .c eS  Note that  

    1 1= , , = , , .p pd d d d   S S S    

Since 1 , , pd d  are either real or come in conjugate pairs (see Rem. 3.1) the equation =c e S  implies 

that for any j H   and any = 1, ,m p  either = 0md  and then ,j mc  is real or 0md   and then 

there exists n m  (with = )n md d  such that , ,= .j n j mc c  Therefore the quantities ,
l

j m mc d  in (6.17) are 

either real or come in conjugate pairs. Consequently, by (6.17) it follows that ,j l  is real. 

Ad. 2. Note that applying (6.1) and (6.4) to (6.11) after an easy algebra we get  

 0 ,
=1

=
p

jj m m
m j H

w c d e


  N  
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and 

   1
,

=1

= , = 1, 2,
p

i T
i jj m m m m

m j H

w c d d d e i



  I C N  

Let us rewrite the constraints (2.2) and (2.3) using the above formulas for 0w  and , 1.iw i   The 
constraint (2.2) for = 0i  with 0w  as defined above takes on the form 

  ,
=1

1 = 1N
p

T
jj m m

m j H

c d e


   (6.18) 

and for 1i   

    1
,

=1

1 = 0.I C N
p

i T T
jj m m m m

m j H

c d d d e



   (6.19) 

The constraint (2.3) for = 0,i  that is for 0 ,w  has the form 

  ,
=1

= 0, .N
p

T
k jj m m

m j H

c e d e k H


   (6.20) 

For > 0i  it has the form 

    1
,

=1

= 0, .I C N
p

Ti T
k jj m m m m

m j H

c d e d d e k H



    (6.21) 

Note that N N  matrix  

   2

2

1 0 0

0 1 0

1=
1

0 1

0 0 0 1

N

d

d

d

 
 
 
 
 

   
 
 
   



 

    

 



  

and      2
=

1
T

N
dd d d
 

I C N H  - see (3.8). Thus, by elementary computations, we get 

  

    2

2

1 1 1 , = = 0,

1 , = 0,  or , = 0,1=
1 1, ,

, = 1, ,

0, otherwise,

NT
k j

N d k j

d k j H k H j
e d e

k j

d k j k j H

     


    
         

 (6.22) 

and 
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2

2 2

2

1 1 1 , = = 0,

1 , = 0,  or , = 0,

, = 1,1
1 1 , ,

, .
1,,

otherwise,0,

I C NT T
k je d d e

N d d d k j

d d k j H k H j

k j

d k j
k j H

k jd



       

      
              

 

 (6.23) 

Due to (6.22) and (6.23), the constraints (6.18), (6.19), (6.20) and (6.21) can be rewritten in a matrix 
form as 

 

        
     
     

     

1 2

1 2

1 1 2 2

1 1 2 2

= ,

G G G

G G G

G G G

G G G

p

p

p p

i i i
p p

d d d

d d d

d d d d d d
c e

d d d d d d

 
 
 
 
 
 
 
 
 
  







   



   

 (6.24) 

where   dG  is defined through (3.5) and (3.6),  

  
   

   

11 12

2

21 22

=
1

H H
G

H H

d d
dd

d d

 
 

   
 

  

with  

 

       

   

      

2
11

12 21

22 1

= 1 1 1 1 ,

= = 1 1 1 ,  

= diag , , ,

H

H H

H H H

T T
h

s

d N d d

d d

d d d

       

   



  

and matrices   , = 1, , ,i d i sH   are defined in (3.8). 

The infinite matrix at the left hand side of (6.24) can be written as  

 

        
 

 

 

1 2

1

1 2

2

1 2

,

I 0 0 0
G G G

0 I I I
G 0 0

0 I I I
0 G 0

0 I I I
0 0 G

p

p

i i i
p

p

d d d

d
d d d

d

d d d
d
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where 1= hI I  and 1= h0 0  are, respectively,    1 1h h    unit and zero matrices. Note that the 

first matrix in the product above is of full rank and can be written as  

 
1 2

1

1 2

1 0 0 0

0 1 1 1

0
.

0

p

h

i i i
p

d d d

d d d



 
 
 
 
  
 
 
 
 
  

I







    



    

  

Therefore (6.24) is equivalent to  

 

        
 

 

 

    

1 2

1

1 1
2 = 1, 0, ,0 .

G G G

G 0 0

0 G 0

0 0 G

p

T p h

p

d d d

d

cd

d

 

 
 
 
 
  
 
 
 
 
  







   



  (6.25) 

Assume that we prove that    1 1h h    matrices   , = 1, , ,G md m p  are singular. Note that 

      21 22, =d d d dH H G  due to (3.7). Therefore, the definition (3.4) of S  implies that (6.25) is 

equivalent to   1= 1, 0, , 0 .ph hc  S    It is obtained from (6.25) by deleting all rows determined 

through first rows of matrices   , = 1, , .md m pG   And the equation  = 1, 0, , 0cS   follows by 

ASSUMPTION II and the definition of .c  

Consequently, it suffices to show that  det = 0, = 1, , .md m pG   That is, we need to check that  

 
   

   

11 12

21 22

0 = det
H H

H H

m m

m m

d d

d d

 
 
  

  

for any = 1, , .m p  

Note that with = md d  the right hand side can be written as  

         1
22 11 12 22 21det detd d d d d  H H H H H  

and 

    22
=1

det = det .H H
s

mi
i

d d  (6.26) 

Since  m dH  can be decomposed as 

   1= ,H D R Dm m m md   (6.27) 
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where  2 1= diag 1, , , , m
m d d d D   and mR  is defined in (3.2) we see that  

  2 2det = 1 0.m
m d      H   

Now, from (6.26) it follows that 22det 0.H  

On the other hand 

              1 2 2 1
11 12 22 21

=1

det = 1 , 1 , 1 1 ,H H H H H
j

s
T

m
j

d d d d N d d               (6.28) 

where    2 1, = 1 .d d d         

The decomposition (6.27) of mH  gives  

    1 1 1 1 11 1 = tr 1 1 = tr 11 .TT T
m m m m m m m
    H D R D D D R   

Moreover, since    tr = tr TA A  

       1 1 1 1 1 1 11 1 = tr 11 = tr 11 = tr 11 .H D D R R D D D D R
TT T TT

m m m m m m m m m m
         

Combining the last two expressions for 11 1T
m
H  we get  

   1 1 1 11
21 1 = tr 11 11 .T TT

m m m m m m
   H D D D D R   

Note that  

  1 111 11 = ,T T i j i j
m m m m ij

d d    D D D D   

and that  

     11 1
2 2= , = 0,1, ,k k

kd d T d d k      

where  kT  is the thk  Chebyshev polynomials of the first type. 

Thus  

  1 11 1 = tr ,T
m m mx H T R   

where    11
2= =x x d d d   and the matrix mT  is defined in (3.1). Plugging this expression to (6.28) 

we find out that  

            1
11 12 22 21det = ,pd d d d Q x dH H H H   

where pQ  is the polynomial defined in (3.3). By ASSUMPTION I    = 0,p mQ x d  thus the above 

equality gives  det = 0, = 1, , .md m pG   Finally, we conclude that the constraints (2.2) and (2.3) are 

satisfied and thus the proof of point 2 is completed. 
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Ad. 3. First, we will show that for r  defined by (6.14) the identity (6.15) holds. To this end observe 
that by (6.6) for = ,i p  (6.10) and (6.13)  

 1 1 1

=1 =1 =1

= = .
p p p

p m p p m p p m
m m m

m m m

a w a a         
         

     
              

Note also that for any = 1, ,j p  by (6.8)  

  
=1

= .
p

p p m
m j p j j

m

a d v d d 
 

 
    

By the definition (3.10) of , = 1, ,ma m p  it follows that   = 0.p jv d  Due to the definition of   

through (6.17) we conclude that 1 = 0.p r  

In order to check (6.16) first we note that due to (6.10) it follows from (6.3) and (6.5) that for 

 
0

= n

n
y y


 and  = , ,x x x    

    1 = .Tyx y yx  C N     

Therefore for any 0i   any jd  and 
kje  by (6.6)  

 

 

   

1
  

=1 =1

1
 

=1

.

k k

k

p p
i m p p m p i

m j j m j j j
m m

p
p ip p m T

m j j j
m

a d e a d d e

a d d e

  

 

   
     

   

 
  

 

 



N

C N

      

  

  

Finally, we use (6.7) with  = , = N
kj j jy d x d e  to the first part and with = ,jy d  

   =
k

T
j jx d eC N  to the second part of the expression at the right hand side of the equation above 

arriving at  

           1
 1

1

= , 0, 0, .I C N
kk

p
i m T

jm j j i j i j j
m

a d e v d v d d e




 
   

 
         

Thus (6.16) holds true. 

Finally we will prove the formula (3.12) for the variance of the BLUE .ˆ t  To this end we observe first 

that  

  
 

 
1 1

=1 =1

ov , =ˆ
N i N

kk T
t i i i k i kt

k k

X w w w
  

     C C   

for any = 0,1, .i   On the other hand, due to (6.13), we see that the right hand side of the above equality 
is equal to .i  That is, for any = 0,1,i    

   ,ov , = .ˆ jt t i j i
j H

X e
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Now, we write  

   ,
=0 =0

ar = ov , = .ˆ ˆT T
jt i t t i j i i

i i j H

w X w e
 




       

Due to the constraints (2.2) and (2.3) it follows from the above formula that 0,0ar = .ˆ t   Thus, (3.12) 

follows from (6.17).  
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