
Supplement A: Proofs and some detailed

examples for ”A new prior for discrete DAG

models with a restricted set of directions”.

Hélène Massam∗, Jacek Wesol̷owski†

April 11, 2016

In this document, references to equation numbers are sometimes to the
main file and sometimes to this supplementary file. For readers having access
to colour, the difference is clear since references appearing in blue are to
this file and those appearing in black are to the main file. However, for
the comfort of readers without access to colour, we put a subindex ()mf to
equation numbers refering to the main file.

2 Preliminaries

2.1 Graph theoretical notions

We first give the proof of Lemma 2.1 .

Proof of Lemma 2.1 (1). ∙ Existence: Assume that, on the contrary, pv ∕= ∅
for any v ∈ V . Consider an arbitrary w1 ∈ V and for any k ≥ 2 as wk choose
a vertex from pwk−1

. Then w1 ← w2 ← . . . ... ← wm ← ... Since V is a
finite set there is a repetition in the sequence (wk). Due to acyclicity it is
impossible. We got a contradiction.
∙ Uniqueness: Assume that, on contrary, there exists w0 ∕= v0 such that
pw0 = ∅ = pv0 . Obviously, {v0, w0} ∕∈ E. Then consider a minimal path
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connecting v0 and w0, that is a sequence of vertices z0 = v0, z1, . . . , zm, zm+1 =
w0 such that {zi, zi+1} ∈ E, i = 0, 1, . . . , m but {zi, zj} ∕∈ E, ”j ∈ {0, . . . , m+
1} ∖ {i, i + 1}. Since v0 and w0 are both source vertices there exists i0 ∈
{1, . . . , m} such that {zi0−1, zi0+1} ⊂ pzi0 . By morality {zi0−1, zi0+1} must
belong to E but this contradicts the minimality of the path.

Proof of Lemma 2.1 (2). Denote by K the number of cliques of G. We will
define an order of cliques (C1, . . . , CK) which is p-perfect.

First step. We will now construct C1. To do so, we will define a sequence
of vertices (v1,1, v1,2, . . . , v1,k1) starting with the source vertex, denoted here
by v1,1, such that qv1,i−1

= pv1,i and terminates at k1 = i such that qv1,i is a
clique. Then we will take C1 = qv1,k1 .

(a) We first prove that there exists a vertex v1,2 ∕= v1,1 (not necessarily
unique) such that pv1,2 = {v1,1} = qv1,1 . Assume that it is not true. By
uniqueness of the source vertex v1,1, for any vertex v ∕= v1,1 we have pv ∖
{v1,1} ∕= ∅. Take any vertex w1 ∕= v1,1. For any j ≥ 2 choose as wj a vertex
from pwj−1

∖ {v1,1}. Then w1 ← w2 ← . . . ← wm ← . . .. Since the set V is
finite there are repetitions in the sequence (wj), but due to acyclicity this
is impossible. So we got a contradiction, therefore there exists a vertex v1,2
such that pv1,2 = qv1,1 = {v1,1}.

(b) We will prove now that for any i ≥ 3 either qv1,i−1
is a clique or there

exists a vertex v1,i ∕∈ qv1,i−1
such that pv1,i = qv1,i−1

. We have proved, in (a)
above, that for j = 2, there exists v1,j such that pv1,j = qv1,j−1

. Let us assume
that it is true for j = 2, . . . , i − 1 and we are now going to show that it is
true for j = i.

Assume that qv1,i−1
is not a clique. Then we will show that there exists a

vertex v1,i ∈ V ∖ qv1,i−1
such that pv1,i = qv1,i−1

. If not, then ∀v ∈ V ∖ qv1,i−1
,

we have pv ∕= qv1,i−1
. Since the DAG defined by the parent function p is

moral, qv for any v ∈ V is complete and therefore there exists a clique C
such that qv1,i−1

⊊ C. We know from our induction assumption that qv1,i−1
=

{v1,1, v1,2, . . . , v1,i−1} and therefore for any z ∈ qv1,i−1
we have pz ⊂ qv1,i−1

. As
a consequence, for any w ∈ C ∖qv1,i−1

we have pw ⊃ qv1,i−1
. Indeed, otherwise,

there exists u ∈ qv1,i−1
, u ∕∈ pw with w → u and since all elements in qv1,i−1

have their parent set in qv1,i−1
, this is impossible.

Moreover, the inclusion pw ⊃ qv1,i−1
implies that v1,1 ∈ pw of course and

if there was a u ∕∈ C such that u → w, that would create an immorality.
Therefore pw ⊂ C. Moreover since pw ⊃ qv1,i−1

and by our assumption that
pv ∕= qv1,i−1

for any v ∈ V ∖ qv1,i−1
, we have pw ∖ qv1,i−1

∕= ∅. Take an arbitrary
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w1 ∈ C ∖ qv1,i−1
and choose wk ∈ pwk−1

∖ qv1,i−1
⊂ C ∖ qv1,i−1

, k = 2, 3, . . ..
Similarly as above we have w1 ← w2 ← . . .← wm ← . . ., and again since C is
a finite set there is a repetition in the sequence (wk) which due to acyclicity
is impossible. Thus C1 = qv1,k1 for the first i = k1 such that the set qv1,i is a
clique.

Second step. Let us assume that we have built C1, . . . , Cj−1, j ≥ 2 with
the same property that, for some kl ≥ 2, Cl = qvl,kl , l = 1 . . . , j − 1. We

define Hl = ∪lt=1Ct. We will now construct Cj.
(a) We first show that there exists a vertex vj,1 ∈ V ∖ Hj−1 such that

pvj,1 ⊂ Hj−1. Assume that it is not true. That is for any v ∈ V ∖ Hj−1 we
have pv ∖ Hj−1 ∕= ∅. Take an arbitrary w1 ∈ V ∖Hj−1 and for k = 2, 3, . . .,
choose wk ∈ pwk−1

∖ Hj−1. With an argument similar to that in (a) we can
prove that, due to acyclicity, this is impossible. So there exists vj,1 as claimed.

(b) We will prove now that for any i ≥ 2, qvj,i−1
is either a clique or there

exists a vertex vj,i ∈ V ∖ (qvj,i−1
∪Hj−1) with the property that pvj,i = qvj,i−1

.
Let us prove it first for i = 2. Assume that qvj,1 is not a clique. Then we

want to show that there exists a vertex vj,2 ∈ V ∖
(

qvj,1 ∪Hj−1

)

with the prop-
erty that pvj,2 = qvj,1. Assume the contrary, i.e., ∀v ∈ V ∖

(

qvj,1 ∪Hj−1

)

, pv ∕=
qvj,1 . Consider a clique C such that qvj,1 ⊊ C. We claim that

(

C ∖ qvj,1
)

∩
Hj−1 = ∅: assume that it is not true, i.e., ∃w ∈

(

C ∖ qvj,1
)

∩Hj−1. Since w is
in C but not in qvj,1 , w has to be a child of vj,1 and we have w ← vj,1 ∕∈ Hj−1.
But for w ∈ Hj−1, by construction of the cliques C1, C2, . . . , Cj−1, w ∈ qvt,kt
for some t = 1, . . . , j − 1 and therefore we have pw ⊂ Hj−1. This is a contra-
diction to the fact that Hj−1 ∕∋ vj,1 ∈ pw.

Note that for any w ∈ C ∖ qvj,1 we have pw ⊃ qvj,1 : indeed, otherwise
there is z ∈ qvj,1 such that z ← w and this is impossible because either
z = vj,1 and its parent set is in Hj−1 or z ∈ Hj−1 and the same for its parent
set. Moreover, the relation pw ⊃ qvj,1 , due to morality, implies pw ⊂ C:
indeed, we know from above that

(

C ∖ qvj,1
)

∩ Hj−1 = ∅ and therefore w
cannot be in Hj−1; so if pw contained a vertex u not in C, we would have
the immorality C ∋ vj,1 → w ← u. Since we assumed that pw ∕= qvj,1 and
since pw ⊃ qvj,1 , we have pw ∖ qvj,1 ∕= ∅. Take w1 ∈ C ∖ qvj,1 and for any k ≥ 2
choose a vertex wk ∈ pwk−1

∖ qvj,1 ⊂ C ∖ qvj,1 . Therefore we have the path
w1 ← w2 ← . . . ← wm ← . . . with wm ∈ C ∖ qvj,1 . By finiteness of V we
conclude that there is a repetition in the sequence (wk)k=1,... which produces
a cycle and we have a contradiction. We name Cj the clique C.

Let us now assume that there exists vj,k ∈ Cj ∖ qvj,k−1
with the property
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that pvj,k = qvj,k−1
⊂ Cj , k = 2, . . . , i− 1. We are going to prove that either

qvj,i−1
is the clique Cj or we can choose vj,i ∈ V ∖ (qvj,i−1

∪Hj−1) such that
pvj,i = qvj,i−1

. Assume that qvj,i−1
is not a clique. Then we want to show that

there exists vj,i ∈ V ∖ (qvj,i−1
∪ Hj−1) such that pvj,i = qvj,i−1

. To do so, we
can use the same argument by contradiction that we used above for i = 2,
replacing vj,1 by vj,i−1, vj,2 by vj,i and replacing C by Cj. In this way, we
construct the sequence of cliques C1, C2, . . . , CK .

We claim that the ordering (C1, . . . , CK) chosen as above is a p-perfect
ordering of the cliques. To see this we note that Sj := Cj ∩ Hj−1 is equal to
pvj,1 : this follows from the fact that Cj = pvj,1 ∪ {vj,1, . . . , vj,kj}. Thus since
the DAG is moral, then Sj being a set of parents is complete and moreover
since Sj is included in Hj−1, we must have Sj ⊂ Ci for some i < j. Therefore
(C1, . . . , CK) is a perfect ordering of cliques. Now it is clear that the sets
Sj, j = 2, . . . , K are the separators for the graph G. Since vj,1 ∈ Cj and
pvj,1 = Sj , the ordering (C1, . . . , CK) is also p-perfect.

Proof of Lemma 2.1 (3). The numbering in (2.1)mf is now immediately ob-
tained by taking v1,1 as defined in the proof of Lemma 2.1 (1) and taking
v1,i, i = 2, . . . , c1 = k1 as defined in the first step of the proof of Lemma 2.1
(2), Part (a) above. For j ≥ 2 we take, as vj,sj+1 and as vj,l, l = sj + 2, . . . , cj
respectively the vertices vj,1 and vj,l, l = 2, . . . , kj defined in the proof of
Lemma 2.1 (2), Part (b) above, where clearly kj = cj − sj . This completes
the proof of Lemma 2.1.

Example 2.1. Let us now illustrate the p-perfect ordering of cliques and
vertices as given in (2.1) and the sets P(V ) and Q(V ).

1 3 1 3

4 2 4 2

DAG p DAG p′

Figure 1: Ordering of the vertices

Consider DAG p in Fig. 1. above. Clearly v1,1 = 2 because p2 = ∅. Then
v1,2 = 1 because 1 is the only vertex with parent set 1. At this point we can
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choose between v1,3 = 3 and v1,3 = 4 and following the construction in the
proof of Lemma 2.1, this determines whether C1 = {1, 2, 3} or C1 = {1, 2, 4}
respectively. Both possibilities lead to a p-perfect ordering of the cliques,
that is

op = (C1 = {1, 2, 3}, C2 = {1, 2, 4}) or op = (C1 = {1, 2, 4}, C2 = {1, 2, 3}).

Let us now consider DAG p′ with the same skeleton. Again, v1,1 = 2 but
v1,2 is now 3 since this is the only vertex with parent set {2} and therefore
C1 = {1, 2, 3}. We no longer have a choice for the p′-perfect ordering of
cliques: it has to be

op′ = (C1 = {1, 2, 3}, C2 = {1, 2, 4}).

For P = {p, p′}, the sets P(V ) and Q(V ) are

P(V ) = {∅, {2}, {1, 2}}, Q(V ) = {{2}, {1, 2, 3}, {1, 2, 4}}

and we verify that P(V ) ∖ S = Q(V ) ∖ C = {{2}}.

4 Moments

4.2 The P-Dirichlet

4.2.1 Example 3.1 continued

Given nonnegative integers ri, i ∈ ℐ, for any D ⊂ V we define

rDm =
∑

i∈ℐ: iD=m

ri.
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For D = ∅ we write r∅ = r =
∑

i∈ℐ ri. The equality of the moments obtained

from (4.1)mf (and (4.1) below) for both p and p′ yields

E
∏

i∈ℐ

p(i)ri =
∏

m∈ℐ2
(�2

m)
r2m

(�̃)r

∏

n∈ℐ2

∏

m∈ℐ5

(

�
5∣2

m∣n

)r25
(n,m)

(�̃2
n)

r2n

∏

n∈ℐ25

∏

m∈ℐ1

(

�
1∣25

m∣n

)r125
(m,n)

(�̃25,1
n )

r25n

×
∏

n∈ℐ25

∏

m∈ℐ3

(

�
3∣25

m∣n

)r325
(m,n)

(�̃25,3
n )

r25n

∏

n∈ℐ35

∏

m∈ℐ4

(

�
4∣35

m∣n

)r435
(m,n)

(�̃35
n )

r35n

=
∏

m∈ℐ3
(�3

m)
r3m

(�̃)
r

∏

n∈ℐ3

∏

m∈ℐ5

(

�
5∣3

m∣n

)r35
(n,m)

(�̃3
n)

r3n

∏

n∈ℐ35

∏

m∈ℐ2

(

�
2∣35

m∣n

)r235
(m,n)

(�̃35,2
n )

r35n

×
∏

n∈ℐ35

∏

m∈ℐ4

(

�
4∣35

m∣n

)r435
(m,n)

(�̃35,4
n )r

35
n

∏

n∈ℐ25

∏

m∈ℐ1

(

�
1∣25

m∣n

)r125
(m,n)

(�̃25
n )r

25
n

.

Since there are no factorial powers in r2m on the right-hand side of the equation
above the terms in r2m on the left-hand side must cancel out, that is �2

m = �̃2
m.

Similarly, �3
m = �̃3

m. The factorial power r125n on the right- and left-hand

side must be the same and therefore �
1∣25
m∣n = �

1∣25
m∣n . Similarly, �

3∣25
m∣n = �

2∣35
m∣n ,

�
4∣35
m∣n = �

4∣35
m∣n and also �̃ = �̃. For the factorial powers in r25n we observe

that on the left-hand side there is one power in the numerator and two in
the denominator, while on the right-hand side there is only one power in the
denominator. Therefore the factorial power in the numerator must cancel
with one of the two factorial powers of �̃25,3

n or of �̃25,1
n in the denominator.

This means that ∀n ∈ ℐ25

∙ either we have the cancelation �
5∣2
n = �̃25,3

n and therefore �̃25
n = �̃25,1

n ,

∙ or we have the cancelation �
5∣2
n = �̃25,1

n and therefore �̃25
n = �̃25,3

n .

The first choice means that we associate the separator {2, 5} with the clique
{1, 2, 5} while in the second we associate {2, 5} with the clique {2, 3, 5}. This
two choices correspond to two different p-perfect orders of the cliques:

o
(1)
p = (C1 = {2, 3, 5}, C2 = {1, 2, 5}, C3 = {3, 4, 5})

o
(2)
p = (C1 = {1, 2, 5}, C2 = {2, 3, 5}, C3 = {3, 4, 5}),

respectively. Of course, we could also exchange the cliques C2 and C3 in both
orders. What is important is the pairings ({2, 5}, {1, 2, 5}) or ({2, 5}, {2, 3, 5}),
respectively.
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Similarly, for the factorial powers r35n on the right-hand side one can
choose to cancel the factorial power of r35n in the numerator with factorial

powers of either �̃35,2
n or �̃35,4

n . Consequently, ∀n ∈ ℐ35

∙ either we have the cancelation �
5∣3
n = �̃35,2

n and therefore �̃35
n = �̃35,4

n ,

∙ or we have the cancelation �
5∣3
n = �̃35,4

n and therefore �̃35
n = �̃35,2

n ,

which corresponds to the two p′-perfect orders:

o
(1)
p′ = (C1 = {2, 3, 5}, C2 = {3, 4, 5}, C3 = {1, 2, 5})

o
(2)
p′ = (C1 = {3, 4, 5}, C2 = {2, 3, 5}, C3 = {1, 2, 5}),

respectively. Again here we could exchange C2 and C3 in both cases. What
is important are the pairings ({3, 5}, {3, 4, 5}) and ({3, 5}, {2, 3, 5}), respec-
tively.

From any of these cancelation possibilities we obtain the same formula of
moments

E
∏

i∈ℐ

p(i)ri =
∏

n∈ℐ125
(�125n )

r125n ∏
n∈ℐ235

(�235n )
r235n ∏

n∈ℐ345
(�345n )

r345n

(�)r
∏

m∈ℐ25
(�25

m)
r25m ∏

m∈ℐ35
(�35

m )
r35m

,

but with different constraints for the parameters:
either (I)

� =
∑

m∈ℐ125

�125
m =

∑

m∈ℐ345

�345
m (=

∑

m∈ℐ235

�235
m ),

�25
n =

∑

m∈ℐ1

�125
(m,n) =

∑

m∈ℐ3

�235
(m,n),

�35
n =

∑

m∈ℐ4

�345
(m,n) =

∑

m∈ℐ2

�235
(m,n),

corresponding to the family of orders OP = (o
(2)
p , o

(2)
p′ ).

or (II)

� =
∑

m∈ℐ125

�125
m =

∑

m∈ℐ235

�235
m ,
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�25
n =

∑

m∈ℐ1

�125
(m,n) =

∑

m∈ℐ3

�235
(m,n),

�35
n =

∑

m∈ℐ4

�345
(m,n),

corresponding to the family of orders OP = (o
(2)
p , o

(1)
p′ ).

or (III)

� =
∑

m∈ℐ235

�235
m =

∑

m∈ℐ345

�345
m ,

�25
n =

∑

m∈ℐ1

�125
(m,n),

�35
n =

∑

m∈ℐ4

�345
(m,n) =

∑

m∈ℐ2

�235
(m,n),

corresponding to the family of orders OP = (o
(1)
p , o

(2)
p′ ).

or (IV)

� =
∑

m∈ℐ235

�235
m ,

�25
n =

∑

m∈ℐ1

�125
(m,n),

�35
n =

∑

m∈ℐ4

�345
(m,n),

corresponding to the family of orders OP = (o
(1)
p , o

(1)
p′ ).

We note that we obtained four different families of distributions, that
is as many as the number of combinations of pairs (Sl, Cl), where Sl =
{2, 5} or Sl = {3, 5}. Of course, in general, choices will multiply with the
number of separators with different possible pairings. In fact, more generally,
choices may multiply with the number of elements of P with different possible
pairings in Q and also with the size of P.

In this example, we see that we have the poset (IV ) → (II, III) → (I)
of families of P-Dirichlet distributions, with family (IV ) being the maximal
family, while the minimal family (I) is just the hyper Dirichlet. Though in
our example it is easy to see that (IV ) is the maximal family of the poset we
are unable to prove that for any given P, there exists such a unique maximal
family. On the other hand, the minimal family is always the hyper Dirichlet.
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4.2.2 The moment formula

Proof of Theorem 4.1. Assume that (p(i), i ∈ ℐ) is P-Dirichlet distributed.
That is representation (3.1)mf holds and for any p ∈ P, the random vectors

(p
v∣pv
m∣k , m ∈ ℐv) follow a Dirichlet distribution Dir(�

v∣pv
m∣k , m ∈ ℐv), k ∈ ℐpv ,

v ∈ V and are independent. We have to identify the parameters �
v∣pv
m∣k ,

m ∈ ℐv, k ∈ ℐpv , v ∈ V , such that (see (4.1)mf and (4.2)mf)

E
∏

v∈V

∏

k∈ℐpv

∏

m∈ℐv

(

p
v∣pv
m∣k

)r
qv
(k,m)

=
∏

v∈V

∏

k∈ℐpv

∏
m∈ℐv

(�
v∣pv
m∣k

)
r
qv
(k,m)

(�̃pv
k )

r
pv
k

, (4.1)

with
�̃pv
k =

∑

m∈ℐv

�
v∣pv
m∣k ∀ k ∈ ℐpv , (4.2)

is equal to the right-hand side of (4.3)mf with consistency conditions given
in (4.4)mf .

Note that the result in the opposite direction, that is the fact that the
formula (4.3)mf for moments, together with the constraints (4.4)mf , implies
that the P-Dirichlet distribution for (p(i), i ∈ ℐ), follows immediately from
the property that the distribution is uniquely determined by moments.

Consider an arbitrary collection OP of p-perfect orders, p ∈ P. Fix an
arbitrary p ∈ P and consider a p-perfect order op ∈ OP . We will now relate
the sets QC

i , i = 0, 1, . . . , jC , C ∈ C, to the numbering of vertices imposed
by op as given in (2.1). Clearly C = Cl for some l ∈ {1, . . . , K}. For ease
of notation, we suppress the subscript l on Cl in the remainder of this proof.
We define j(l, i), i ∈ {1, . . . , jC − 1} to be the index of the vertex which
satisfies

QC
i = qvl,j(l,i) = pvl,j(l,i)+1

. (4.3)

We also note that

C = QC
0 = qvl,cl and S = Sl = QC

jC
= pvl,sl+1

. (4.4)

We will now define the �
v∣pv
m∣k ’s in terms of the �A’s. For any l ∈ {1, . . . , K},

if v = vl,j(l,i), set

�
v∣pv
m∣k := �

QC
i

(k,m) ∀ (k,m) ∈ ℐQC
i
. (4.5)

For any l ∈ {1, . . . , K}, if v = vl,j and j ∕= j(l, i) for any i, we define

ij = min{i : qv ⊂ QCl

i } (4.6)
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and then set

�
v∣pv
m∣k :=

∑

n∈ℐ
QC
ij

∖qv

�
QC

ij

(n,m,k) ∀ (k,m) ∈ ℐqv . (4.7)

We will now show that, if vl,j is such that j ∕= j(l, i) for any i ∈ {0, . . . , jC−
1}, then we have

�
vl,j ∣pvl,j
m∣k = �̃

pvl,j+1

(k,m) ∀ (k,m) ∈ ℐpvl,j+1
. (4.8)

Consider first the case when j(l, ij) = j + 1. By (4.7) we have

�
vl,j ∣pvl,j
m∣k =

∑

n∈ℐvl,j+1

�
QC

ij

(n,k,m) .

Since QC
ij

= qvl,j+1
from the above equality and (4.5) we get

�
vl,j ∣pvl,j
m∣k =

∑

n∈ℐvl,j+1

�
vl,j+1∣pvl,j+1

n∣(k,m) .

Thus (4.8) follows from (4.2).
Second, consider the case j(l, ij) > j + 1. By (4.7) we have

�
vl,j ∣pvl,j
m∣k =

∑

n∈ℐ
QC
ij

∖qvl,j

�
QC

ij

(n,k,m) =
∑

n1∈ℐvl,j+1

∑

n2∈ℐQC
ij

∖qvl,j+1

�
QC

ij

(n1,n2,k,m),

where the second equality follows from the fact that qvl,j+1
= qvl,j ∪ {vl,j+1}.

Applying (4.7) to the inner sum we obtain

�
vl,j ∣pvl,j
m∣k =

∑

n1∈ℐvl,j+1

�
vl,j+1∣pvl,j+1

n1∣(k,m) .

Thus (4.8) follows from (4.2).
Due to (4.8) we have cancelations in the right-hand side of (4.1) and the

only terms left are:

∙ in the numerator: �
v∣pv
m∣k = �

QC
i

(k,m) for v = vl,j(l,i), where i ∈ {0, . . . , jC −

1}.

10



∙ in the denominator: �̃pv
k for v = vl,j(l,i)+1 where i ∈ {1, . . . , jC}.

In particular, j(l, jC) = sl in general and for l = 1, sl = 0 so that, in the
denominator, we have parameters indexed by pvl,sl+1

= Sl and pv1,1 = ∅.
To complete the proof, that is to show that the right-hand side of (4.1)

is equal to the right-hand side of (4.3)mf , it remains to show that for any
l ∈ {1, . . . , K} and i ∈ {1, . . . , jC}, we have

�
QC

i

k = �̃
pvl,j(l,i)+1

k ∀ k ∈ ℐQC
i
. (4.9)

Note that

(i) either j(l, i) + 1 = j(l, i− 1), that is qvl,j(l,i)+1
= QC

i−1,

(ii) or j(l, i)+1 is not of the form j(l, ĩ) for some ĩ ∈ {i+1, . . . , jC} (observe
- see (4.6) - that in this case we have ij(l,i)+1 = i− 1).

Let’s consider case (i) first. Using (4.2) and then (4.5) for all k ∈ ℐQC
i

(note that QC
i = pvl,j(l,i)+1

) we obtain

�̃
pvl,j(l,i)+1

k =
∑

m∈ℐvl,j(l,i)+1

�
vl,j(l,i)+1∣pvl,j+1

m∣k =
∑

m∈ℐvl,j(l,i)+1

�
QC

i−1

(k,m).

Since {vl,j(l,i)+1} = qvl,j(l,i)+1
∖ qvl,j(l,j) = QC

i−1 ∖ Q
C
i , due to (4.4)mf we obtain

(4.9).
For case (ii), we use again (4.2) and then (4.7) to arrive at

�̃
pvl,j(l,i)+1

k =
∑

m∈ℐvl,j(l,i)+1

∑

n∈ℐ
QC
i−1

∖qvl,j(l,i)+1

�
QC

i−1

(m,n,k) =
∑

(m,n)∈ℐ
QC
i−1

∖qvl,j(l,i)

�
QC

i−1

(m,n,k),

where the last equation follows from the fact that qvl,j(i,l)+1
= qvl,j(l,i) ∪

{vl,j(l,i)+1}. Moreover qvl,j(l,i) = QC
i , therefore (4.9) follows now from as-

sumption (4.2).

5 The P-Dirichlet as a prior distribution

5.1 Dimension of the P-Dirichlet family

Proof of Theorem 5.1. From (4.3)mf and (4.4)mf , we see that the parame-
ters are the �A

m and we need not count the �B
n since they are defined by the

11



constraints of the type (4.4)mf . Clearly, there are
∑

Q∈Q

∏

v∈Q ∣ℐv∣ such pa-

rameters �A
m. They are not all free since an element S ∈ S can be equal to

an element QC
jC

for several C ∈ C. More precisely for all C ∈ C such that

there exists o ∈ OP with S
o
→ C, we would have

QC
jC
⊈ QC

jC−1

and therefore by (4.4)mf , we have (NS − 1) equality of the type

�S
n = �

QC
jC

n =
∑

k∈I
QC
jC−1

∖S

�
QC

jC−1

(n,k)

and thus (NS − 1) constraints for a given �
QC

jC−1

(n,k) and thus a total of (NS −

1)
∏

v∈S ∣ℐv∣ constraints for each S. We now note that if B ∈ ℜ, that is if
B is not a separator, the corresponding equation (4.4)mf is not a constraint
since then there is only one clique to which B can belong , i.e. only one A
such that

B = QC
i ⊈ A = QC

i−1 and �B
n =

∑

k∈IA∖B

�A
(n,k) .

It follows that (5.1)mf is proved.
In the case of the hyper Dirichlet, a similar argument shows us that the

total number of parameters is
∑

C∈C

∏

v∈Q ∣ℐv∣. The constraints given by
equations of the type (4.4)mf are of the form

�S
n =

∑

k∈C∖S

�C
(n,k)

for any C containing S. Since considering the hyper Dirichlet is equivalent
to taking P as the set of all DAGs Markov equivalent to G, NS is nothing
but the number of cliques containing S and equation (5.2)mf follows.

To see that NP is always strictly greater than NHP , we observe that if
ℜ ∕= ∅, then C ⊈ Q and therefore

∑

Q∈Q

∏

v∈Q

∣ℐv∣ >
∑

C∈C

∏

v∈C

∣ℐv∣

Moreover, even if ℜ = ∅ but the P-Dirichlet is not the hyper Dirichlet, then,
by Theorem 4.4, (4.16)mf cannot be satisfied and for each S, NS in the P-
Dirichlet is less than or equal to the corresponding NS in the hyper Dirichlet.
Inequality (5.3)mf follows immediately.
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5.2 Conjugacy and directed strong hyper Markov prop-
erty

Proof of Theorem 5.2. The conditional distribution of N given p has the
density (with respect to the counting measure) which, up to a multiplicative
scalar, is equal to

∏

i∈ℐ [p(i)]N(i). Then, by the generalized Bayes formula
for any table (r(i), i ∈ ℐ) of nonnegative integers

E

⎛

⎝

∏

i∈ℐ

[p(i)]ri

∣

∣

∣

∣

∣

∣

N = (n(i), i ∈ ℐ)

⎞

⎠ =
E

∏
i∈ℐ [p(i)]

ri+n(i)

E
∏

i∈ℐ [p(i)]n(i) .

Applying (4.3)mf to the numerator and denominator we see that the right
hand side above can be written as

∏
A∈Q

∏
m∈ℐA

(�Am)
rAm+nA

m

∏
A∈Q

∏
m∈ℐA

(�Am)
nA
m

∏
B∈P

∏
k∈ℐB

(�B
k )

nB
k

∏
B∈P

∏
k∈ℐB

(�B
k )

rB
k

+nB
k

.

Note that

(�Am)
rAm+nA

m

(�Am)n
A
m

= (�A
m + nA

m)r
A
m and

(�B
k )

rBk +nB
k

(�B
k
)
nB
k

= (�B
k + nB

k )r
B
k .

Consequently,

E

⎛

⎝

∏

i∈ℐ

[p(i)]ri

∣

∣

∣

∣

∣

∣

N

⎞

⎠ =
∏

A∈Q

∏
m∈ℐA

(�Am+nA
m)

rAm

∏
B∈P

∏
k∈ℐB

(�B
k
+nB

k
)
rB
k

and thus it follows from (4.3)mf and the fact that the distribution is uniquely
determined by moments that the posterior distribution of p given the counts
N = (n(i), i ∈ ℐ) is P-Dirichlet with parameters updated by counts. We note
that the parameters: �A

m +nA
m, A ∈ Q, and �B

k +nB
k , B ∈ P, of the posterior

distribution of p satisfy the constraints of the type (4.4)mf . Indeed, this is
due to the facts that these constraints are linear in the parameters, that the
original parameters �A

m and �B
k satisfy such constraints by assumption and

that such constraints are also trivially satisfied by the counts nA
m and nB

m.
This proves that the P-Dirichlet forms a conjugate family of distribution.

The directed strong hyper Markov property of the P-Dirichlet holds true
for every p ∈ P because of the independences (see Def. 3.1 in the main file)
given in its construction.
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5.3 Arbitrary DAGs

In the main file, we mentioned the possibility of extending the P-Dirichlet
to arbitrary DAGs, not necessarily moral. For such an extension, given an
undirected graph G, we take the family P to be the family of arbitrary DAGs
Markov equivalent to a given essential graph. We will now give two examples
that suggest what this extended P-Dirichlet might look like.

Let the essential graph of the Markov equivalence class of DAGs be as
Figure 2 (a) below (see also Figure 3 of [1]). The equivalence class consists
of graphs (b), (c) and (d) in Figure 2.

1 2 1 2 1 2 1 2

3 4 3 4 3 4 3 4

(a) (b) (c) (d)

Figure 2: Essential graph (a) and its equivalence class {(b), (c), (d)}.

Equating moments as in the proof of Theorem 4.1 we see that (4.3)mf

holds with P = {∅, 1, 123} and Q = {12, 13, 1234} and the following con-
straints

∑

m∈ℐ3

�13
(n,m) =

∑

m∈ℐ2

�12
(n,m) = �1

n, n ∈ ℐ1,

∑

m∈ℐ4

�1234
(n,m) = �123

n , n ∈ ℐ123.

In general, essential graphs are chain graphs without flags and with com-
ponents equal to decomposable graphs. In the example above there is one
component, the three-chain 2-1-3. From the moments and constraints we
see that the distribution of (p123

m , m ∈ ℐ123) is hyper-Dirichlet and the condi-

tional distribution of (p
4∣123
m∣n , m ∈ ℐ4) for any n ∈ ℐ123 is another independent

Dirichlet. This pattern may extend to arbitrary essential graphs. Since like
in the standard hyper Dirichlet, we have used all the DAGs in the equiva-
lence class to derive the distribution of p we would call this new distribution
the G∗ hyper Dirichlet. If instead of considering all DAGs in the Markov
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equivalence class we only use a subset P of them, e.g. only (b) and (c) in our
example, then we would obtain a distribution analogous to the P-Dirichlet
but for arbitrary DAGs from the given equivalence class.

As a second example of the family P being the family of DAGs represented
by an essential graph, let us consider the essential graph in Figure 3 (a). The
two graphs (b) and (c) in Figure 3 make up the class of Markov equivalent
graphs.

1 2 1 2 1 2

3 4 3 4 3 4

(a) (b) (c)

Figure 3: The essential graph (a) and its equivalence class {(b), (c)}

For this family of DAGs, we have

P = {∅, ∅, 23}, Q = {2, 3, 1234}.

Our usual moment argument yields the moment formula (4.3)mf with con-
straints

∑

m∈ℐ2

�2
m = �∅,2

∑

m∈ℐ3

�3
m = �∅,3

∑

m∈ℐ14

�1234
(m,n) = �23

n , n ∈ ℐ23 .

We see that p2 follows a Dirichlet and so does p3 and they are independent.
The conditional distribution of p14 given p23 is a hyper Dirichlet (on the
complete induced subgraph G14 and therefore a Dirichlet).
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6 Characterization by local and global inde-

pendence

6.1 The P-Dirichlet and the hyper Dirichlet

Proof of Theorem 6.1. In this proof, to avoid double layers of brackets, we
write rqvk,l rather than rqv(k,l) as we did in the main file and so far in this file.

Note that according to Def. 3.2 it suffices to show that the formula for
moments as given in (4.1)mf and (4.2)mf holds for any p ∈ P.

From (6.1)mf it follows that for any DAG from P with parent function p

and any table of non-negative integers r = (r(i), i ∈ ℐ)

E
∏

i∈ℐ

[p(i)]ri =
∏

v∈V

∏

k∈ℐpv

f pv
k

(

rqvk,l, l ∈ ℐv
)

, (6.1)

where for any v ∈ V and any k ∈ ℐpv

f pv
k (zl, l ∈ ℐv) = E

∏

l∈ℐv

[

p
v∣pv
l∣k

]zl
, zl ∈ {0, 1, . . .}, l ∈ ℐv.

In order to prove Theorem 6.1 we identify the functions f pv
k , k ∈ ℐpv ,

v ∈ V . Our method relies on the identification of the general form of the
functions f pv

k , which will appear to be a ratio of products of gamma functions
as in the formula for the moments of the P-Dirichlet distribution. Our main
tool is equation (8.2) of Lemma 8.1. The proof is divided into two parts,
(a) and (b). In part (a) we transform the moment equation (6.1) into the
seemingly cumbersome but useful (6.5). In part (b) through a judicious
choice of sparse r’s in (6.5) we will obtain the general form of f pv

k ’s using
Lemma 8.1.

(a) We first aim for the simplified functional equation (6.5). Fix an
arbitrary � = (�v ∈ ℐv, v ∈ V ) and consider a d-way table � = (�i, i ∈ ℐ)
such that

�i =

{

1, if i = � ,
0, otherwise.

Changing r into r + � in (6.1) we get

E
∏

i∈ℐ

[p(i)]ri+�i =
∏

v∈V

[f pv
�pv

(

rqv�qv + 1, rqv�pv ,l, l ∈ ℐv ∖ {�v}
)

(6.2)

×
∏

k∈ℐpv∖{�pv }

f pv
k

(

rqvk,l, l ∈ ℐv
)

]
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We will now obtain an equation of the type (8.2) by equating the right-
hand side of (6.2) for different p’s from P. Fix a DAG in P, that is a p ∈ P,
and fix a vertex v ∈ V . Then, by separation property (6.2)mf there exists
another DAG in P with parent function p′ such that p′v ∕= pv. For each of
p and p′ the right-hand side of (6.2) is split into three parts: the first (first
line below) concerns v, the second (second line) cv and the third (third line)
the remainder of V . Thus we obtain

f pv
�pv

(

rqv�qv + 1, rqv�pv ,l, l ∈ ℐv ∖ {�v}
)

∏

k∈ℐpv∖{�pv }

f pv
k

(

rqvk,l, l ∈ ℐv
)

∏

w∈cv

f pw
�pw

(

rqw�qw + 1, rqw�pw ,l, l ∈ ℐw ∖ {�w}
)

∏

k∈ℐpw∖{�pw}

f pw
k

(

rqwk,l , l ∈ ℐw
)

∏

w ∕∈cv∪{v}

f pw
�pw

(

rqw�qw + 1, rqw�pw ,l, l ∈ ℐw ∖ {�w}
)

∏

k∈ℐpw∖{�pw}

f pw
k

(

rqwk,l , l ∈ ℐw
)

= f p′v
�p′v

(

rq
′
v

�q′v
+ 1, r

q′v
�p′v

,l, l ∈ ℐv ∖ {�v}
)

∏

k∈ℐp′v
∖{�p′v

}

f
p′v
k

(

r
q′v
k,l, l ∈ ℐv

)

(6.3)

∏

w∈c′v

f p′w
�p′w

(

rq
′
w

�q′w
+ 1, r

q′w
�p′w

,l, l ∈ ℐw ∖ {�w}
)

∏

k∈ℐp′w
∖{�p′w

}

f
p′w
k

(

r
q′w
k,l , l ∈ ℐw

)

∏

w ∕∈c′v∪{v}

f p′w
�p′w

(

rq
′
w

�q′w
+ 1, r

q′w
�p′w

,l, l ∈ ℐw ∖ {�w}
)

∏

k∈ℐp′w
∖{�p′w

}

f
p′w
k

(

r
q′w
k,l , l ∈ ℐw

)

We now write this equation above for two distinct values first for �v = �
and then for �v = � in ℐv, while keeping �k the same for all k ∕= v. We obtain
two equations, say E� and E� and we then write the identity

lhs(E�)

lhs(E�)
=

rhs(E�)

rhs(E�)
. (6.4)
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Many simplifications occur (see part 8.2 of Appendix) and we arrive at

fpv
�pv

(

rqv
�pv ,� + 1, r

qv
�pv ,l

, l ∈ ℐv ∖ {�}

)

f
pv
�pv

(

r
qv
�pv ,� + 1, r

qv
�pv ,l

, l ∈ ℐv ∖ {�}

)

∏

w∈cv

f
pw
(�

pw∖{v},�)

(

r
qw
(�

pw∖{v},�),�w
+ 1, r

qw
(�

pw∖{v},�),l
, l ∈ ℐw ∖ {�w}

)

f
pw
(�

pw∖{v},�)

(

r
qw
(�

pw∖{v},�),�w
+ 1, r

qw
(�

pw∖{v},�),l
, l ∈ ℐw ∖ {�w}

)

f
pw
(�

pw∖{v},�)

(

r
qw
(�

pw∖{v},�),l
, l ∈ ℐw

)

f
pw
(�

pw∖{v},�)

(

r
qw
(�

pw∖{v},�),l
, l ∈ ℐw}

)

=

f
p
′
v

�
p′
v

(

r
q
′
v

�
p′
v
,� + 1, r

q
′
v

�
p′
v
,l
, l ∈ ℐv ∖ {�}

)

f
p′
v

�
p′
v

(

r
q′
v

�
p′
v
,� + 1, r

q′
v

�
p′
v
,l
, l ∈ ℐv ∖ {�}

) (6.5)

∏

w∈c′v

f
p
′
w

(�
p′
w∖{v}

,�)

(

r
q
′
w

(�
p′
w∖{v}

,�),�w
+ 1, r

q
′
w

(�
p′
w∖{v}

,�),l
, l ∈ ℐw ∖ {�w}

)

f
p′
w

(�
p′
w∖{v}

,�)

(

r
q′
w

(�
p′
w∖{v}

,�),�w
+ 1, r

q′
w

(�
p′
w∖{v}

,�),l
, l ∈ ℐw ∖ {�w}

)

f
p
′
w

(�
p′
w∖{v}

,�)

(

r
q
′
w

(�
p′
w∖{v}

,�),l
, l ∈ ℐw

)

f
p′
w

(�
p′
w∖{v}

,�)

(

r
q′
w

(�
p′
w∖{v}

,�),l
, l ∈ ℐw}

)

(b) We now simplify (6.5) further by writing it for properly chosen sparse
r’s. This will lead us to functional equations for functions defined on ℐv.

We define
dv = p′v ∩ cv and d′v = pv ∩ c′v.

Note that due to the separation property (6.2)mf at least one of them is not
empty. Without loss of generality let us assume that dv ∕= ∅. Fix �dv ∈ ℐdv
such that �i ∕= �i for any i ∈ dv. For any l ∈ ℐv denote by i(l) the cell with
labels

iv = l, idv = �dv , iy = �y for y ∕∈ dv ∪ {v}.

Define
xl = ri(l) l ∈ ℐv.

Consider any r = (ri) such that ri = 0 for all i ∕∈ {i(l), l ∈ ℐv}. Since
pv ∩ dv = ∅, by (6.2)mf

rqv�pv ,l = xl, l ∈ ℐv. (6.6)

Again, by (6.2)mf and since p′v ⊃ dv ∕= ∅ we have

r
q′v
�p′v

,l = 0, l ∈ ℐv. (6.7)

Moreover, for l ∈ ℐw and k ∈ ℐv (particularly for k = � or k = �, which we
shall use here)

rqw(�pw∖{v},k),l
=

{

xk, if pw ∩ dv = ∅ and either (w ∕∈ dv, and l = �w) or (w ∈ dv and l = �w),
0, otherwise

18



and

r
q′w
(�p′w∖{v},k),l

=

{

xk, if p′w ∩ dv = ∅ and either (w ∕∈ dv, and l = �w) or (w ∈ dv and l = �w),
0, otherwise.

These last two observations imply that the products
∏

w∈cv
and

∏

w∈c′v
on

lines 2 and 4 of equation (6.5) factor into a function of x� and a function of
x�. Therefore their quotient can be written as av,�(x�)/av,�(x�). Note, that
potentially these functions may depend of p and p′, but it will not impact
our final result.

Moreover, by (6.6) and (6.7) it follows that (6.5) assumes the form

f pv
�pv

(x� + 1, xl, l ∈ ℐv ∖ {�})

f pv
�pv (x� + 1, xl, l ∈ ℐv ∖ {�})

= Kv

av,�(x�)

av,�(x�)
,

where

Kv =
f
p′v
�p′v

(1�, 0l, l ∈ ℐv ∖ {�})

f
p′v
�p′v

(1�, 0l, l ∈ ℐv ∖ {�})
.

Since �pv was arbitrary in ℐpv we conclude from Lemma 8.1 that for any
k ∈ ℐpv either

f pv
k (zl, l ∈ ℐv) =

∏

l∈ℐv

(

A
v∣pv
l∣k

)zl

(

Ãpv
k

)∣z∣
, (6.8)

where ∣z∣ =
∑

l∈ℐv
zl and Ãpv

k =
∑

l∈ℐv
A

v∣pv
l,k or it is a product of univariate

power functions

f pv
k (zl, l ∈ ℐv) =

∏

l∈ℐv

[

A
v∣pv
l∣k

]zl
. (6.9)

However the latter case is impossible due to the parameter independence as-
sumption which requires that the distribution of the random vector (ℙp(Xv =
l∣Xpv = k), l ∈ ℐv) is non-degenerate.

We now want to identify the functions f
p′v
k , k ∈ ℐp′v . If d′v ∕= ∅ we can

repeat the argument used to derive f pv
k and obtain an analogue of (6.8) with

p replaced by p′. If d′v = ∅ we need to do some more work. We will use
another sparse r with new i(l)’s defined by substituting d′v for dv. Note that
under this new sparsity pattern for any k ∈ ℐv (particularly for k = � or
k = �, which we shall use here)

rqw(�pw∖{v},k),l
= r

q′w
(�p′w∖{v},k),l

=

{

xk if l = �w,
0 if l ∕= �w,
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and
rqv�pv ,l = r

q′v
�p′v

,l = xl, l ∈ ℐv.

Thus, (6.5) becomes

f pv
�pv

(x� + 1, xl, l ∈ ℐv ∖ {�})

f pv
�pv (x� + 1, xl, l ∈ ℐv ∖ {�})

=
av,�(x�)

av,�(x�)

f
p′v
�p′v

(x� + 1, xl, l ∈ ℐv ∖ {�})

f
p′v
�p′v

(x� + 1, xl, l ∈ ℐv ∖ {�})
.

Plugging (6.8) into the left hand side above we obtain

f
p′v
�p′v

(x� + 1, xl, l ∈ ℐv ∖ {�})

f
p′v
�p′v

(x� + 1, xl, l ∈ ℐv ∖ {�})
=

A
v∣pv
�∣�pv

+ x�

A
v∣pv
�∣�pv

+ x�

a′v,�(x�)

a′v,�(x�)
or

A
v∣pv
�∣�pv

A
v∣pv
�∣�pv

a′v,�(x�)

a′v,�(x�)
,

respectively. Again we use Lemma 8.1 in the Appendix below to conclude
that one of the representations (6.8) or (6.9) (with p changed into p′) holds

also for f
p′v
k for any k ∈ ℐp′v . Similarly, as above, we conclude that non-

degeneracy implies that the representation given in (6.9) is not a valid one.
Given an arbitrary v ∈ V , so far, we have derived the expression of f pv

k and

f
p′v
k in (6.8) for an arbitrary separating pair p, p′ ∈ P. Clearly, (6.8) is valid

for any p ∈ P and any v ∈ V . Indeed, given v ∈ V and the separating pair
p, p′, consider another p′′. Then, either p′′(v) ∕= p(v) and then we consider
the pair p, p′′ or p′′(v) ∕= p′(v) and then we consider the pair p′, p′′.

Now, returning to (6.1) we see that for any d-way table r = (ri, i ∈ ℐ) of
non-negative integers, any p ∈ P, any v ∈ V and any (k, l) ∈ ℐqv there exist

numbers A
v∣pv
l∣k such that

E
∏

i∈ℐ

[ℙp(X = i)]ri =
∏

v∈V

∏

k∈Ipv

∏

l∈ℐv

(

A
v∣pv
l∣k

)r
pv,v
k,l

(

Ãpv
k

)r
pv
k

, (6.10)

where
Ãpv

k =
∑

l∈ℐv

A
v∣pv
l∣k . (6.11)
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8 Appendix

8.1 An auxiliary result on a functional equation

Lemma 8.1. Let F be a positive function defined on the n-th cartesian prod-
uct of the non-negative integers such that F (0) = 1 and

F (x) =
n

∑

i=1

F (x + �i), (8.1)

where �i has all components equal to 0 except for the i-th component which
is 1. Assume that for any distinct p, q ∈ {1, . . . , n}

F (x + �p)

F (x + �q)
=

ℎp(xp)

ℎq(xq)
∀ x = (x1, . . . , xn) ∈ {0, 1, . . .}n (8.2)

for some functions ℎi, i = 1, 2, . . . , n.
Then there exists a vector A = (A1, . . . , An) ∈ ℝn such that ∀ x =

(x1, . . . , xn) ∈ {0, 1, . . .}n either

F (x) =

∏n
i=1 (Ai)

xi

(∣A∣)∣x∣
,

where ∣u∣ = u1 + . . . + un for any vector u = (u1, . . . , un) or

F (x) =
n
∏

i=1

xAi

i .

Lemma 8.1, as given above, is a special version of Lemma 3.1 from [18]
(it simply suffices to take A = {1, . . . , n} in this lemma). This lemma is also
closely related to the argument used in the proof of Theorem 2 in [3].

8.2 Proof of (6.5)

1. Let A1(�) and A1(�) be the values of A1 =
∏

k∈ℐpv∖{�v}
f pv
k (rqvk,l, l ∈ ℐv),

the second factor in the first line of the left hand side of (6.3), for �v = � and
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�v = �, respectively. Let A′
1(�) and A′

1(�) be the analog quantities for the
right-hand side of (6.3). Clearly

A1(�) =
∏

k∈ℐpv∖{�pv }

f pv
k (rqvk,�, r

qv
k,�, r

qv
k,l, l ∈ ℐv ∖ {�, �}) = A1(�).

Similarly A′
1(�) = A′

1(�).

2. Let A2(�) and A2(�) be the values of the factor for fixed w ∈ cv in the
second line of the left hand side of (6.3), for �v = � and �v = �, respectively.
Let A′

2(�) and A′
2(�) be the analog quantities for the right-hand side of (6.3).

Clearly

A2(�) = f pw
(�pw∖{v},�)

(rqw(�pw∖{v},�),�w
+ 1, rqw(�pw∖{v},�),l

, l ∈ ℐw ∖ {�w})

f pw
(�pw∖{v},�)

(rqw(�pw∖{v},�),l
, l ∈ ℐw)

∏

k∈ℐpw∖{�pw ,(�pw∖{v},�)}

f pw
k (rqwk,l , l ∈ ℐw)

and

A2(�) = f pw
(�pw∖{v},�)

(rqw(�pw∖{v},�),�w
+ 1, rqw(�pw∖{v},�),l

, l ∈ ℐw ∖ {�w})

f pw
(�pw∖{v},�)

(rqw(�pw∖{v},�),l
, l ∈ ℐw)

∏

k∈ℐpw∖{�pw ,(�pw∖{v},�)}

f pw
k (rqwk,l , l ∈ ℐw).

Note that the two sets appearing in the indices: {�pw , (�pw∖{v}, �)} in A2(�)
and {�pw , (�pw∖{v}, �)} in A2(�) are identical. Therefore, for each w ∈ cv the

ratio A2(�)
A2(�)

is equal to the factor in the second line of the left hand side of

(6.5). Similarly, for each w ∈ cv the ratio
A′

2(�)

A′
2(�)

is equal to the factor in the

second line of the right-hand side of (6.5).

3. Since v appears in the third line of neither the left hand side nor the
right-hand side of (6.3), these lines cancel out in the ratios of (6.4).

22


