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Abstract Quantitative methods for studying biodiversity have been traditionally
rooted in the classical theory of finite frequency tables analysis. However, with the
help of modern experimental tools, like high-throughput sequencing, we now begin to
unlock the outstanding diversity of genomic data in plants and animals reflective of the
long evolutionary history of our planet. This molecular data often defies the classical
frequency/contingency tables assumptions and seems to require sparse tableswith very
large number of categories and highly unbalanced cell counts, e.g., following heavy-
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tailed distributions (for instance, power laws). Motivated by the molecular diversity
studies, we propose here a frequency-based framework for biodiversity analysis in the
asymptotic regime where the number of categories grows with sample size (an infinite
contingency table). Our approach is rooted in information theory and based on the
Gaussian limit results for the effective number of species (the Hill numbers) and the
empirical Renyi entropy and divergence. We argue that when applied to molecular
biodiversity analysis, our methods can properly account for the complicated data fre-
quency patterns on one hand and the practical sample size limitations on the other. We
illustrate this principle with two specific RNA sequencing examples: a comparative
study of T-cell receptor populations and a validation of some preselected molecular
hepatocellular carcinoma (HCC) markers.

Keywords Hill number · Central limit theorem · Next-generation sequencing ·
Triangular arrays · T-cell receptors

Mathematics Subject Classification 60F05 · 60G42 · 94A17

1 Introduction

Developing effective methods for quantifying and comparing empirical diversity of
various biological populations is one of the fundamental problems of modern life
sciences, as it has direct impact on our understanding of the basic operating principles
of our planet’s ecosystem and its evolution (cf., eg., Berkov et al. 2014). In the course
of its 3.5 billion years of evolutionary history, nature has developed an outstanding
bio- and molecular diversity among the Earth’s species of plants and animals. Indeed,
it is estimated that there are currently about 8.7 million eukaryotic species on earth,
both marine and terrestrial, 88% of which are still waiting to be described (Mora
et al. 2011). The diversity at the molecular level is perhaps even more spectacular,
as it occurs at different levels of biological organization: within one individual (e.g.,
through RNA, DNA, proteins, and metabolites), between individuals of the same and
related species, within and between species and ecosystems, as well as throughout
evolution (see, e.g., Campbell 2003). For instance, the number of different molecular
types of human T cells is estimated at 1018 (Cea 2005) which is only slightly less
than the currently estimated number of stellar objects in the known universe (the latter
believed to be of the order 1021).

Whereas the power of modern computing has allowed us to make steady progress
toward building even more robust empirical measures of biodiversity based on a vari-
ety of considerations (see, e.g., Presley et al. 2014), the most relevant to our discussion
here are the measures borrowed from the field of information theory. They include
among others the Hill number (or the effective number of species) and the related
concept of the Renyi entropy (see, e.g., the recent review Chiu et al. (2014) and ref-
erences therein). Although originally proposed for quantifying ecological diversity in
the macroscale ecosystems (Chao et al. 2010), the use of the empirical Renyi entropy
as a descriptor of diversity was also adopted for molecular populations in de Andrade
and Wang (2011). Since then, the Renyi-type measures have been applied to prob-
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lems of molecular populations ranging from analyzing regulatory variants and testing
genome-wide associations (Sun and Hu 2013; Sadee et al. 2014) to comparing dif-
ferent T-cell populations (Cebula et al. 2013; Rempala and Seweryn 2013). Despite
their growing usage in biodiversity studies of bothmacro- andmolecular-level popula-
tions, it appears that some important statistical properties of the Renyi-type measures
have not been yet sufficiently understood, especially in the context of frequency-based
analysis and large sample behavior.

Currently, the standard methods of obtaining molecular-level data on the tran-
scriptome (RNA) abundance rely on the so-called next-generation sequencing (NGS)
technology and especially on the high-throughputRNAsequencingorRNA-seq (Wang
et al. 2009). However, the molecular count data from NGS often elude standard statis-
tical analysis due to the fact that exhaustive sampling of the DNA and RNA fragments
for the purpose of sequence reconstruction is not feasible and the sequencing errors
increase with sampling intensity or sequencing depth (O’Rawe et al. 2015). It has
been therefore generally conceded (Oh et al. 2014) that the standard, fixed-dimension,
non-parametric frequency/contingency table analysis (see, e.g., Agresti 2002) does
not readily apply to the NGS data and that a different, infinite-size contingency table
framework, more reflective of the current sequencing technology, appears necessary.
Due to the nature of the NGS methods, such framework should be based on the large
sample (high-throughput) considerations but, at the same time, should also account
for the increase in the number of sequencing errors with increasing sample size as
well as for the undersampling bias.

Motivated by the questions on comparing biodiversity in molecular data (espe-
cially, arriving from the NGS experiments) in the current paper, we establish some
large sample results for the empirical Renyi entropy and divergence to bridge the
gap between the current heuristic approaches and a more formal statistical theory of
large samples. To this end, we derive herein several central limit theorems (CLTs)
which yield approximate confidence bounds for the (Renyi) entropy-based measures
of diversity and similarity in the setting of an infinite contingency table. Our CLT
results complement both the law of large number theorems in Rempala and Seweryn
(2013) and the CLT for the plugin estimates of the Shannon entropy Zhang and Zhang
(2012) and the Kullback–Leibler divergence estimates (Paninski 2003; Zhang and
Grabchak 2014). Since in the NGS experiments, one typically expects to undersample
the transcriptome, we focus here on the Renyi entropy exponent (which is denoted
below by α) less than one so as to upweight the contributions of the lower counts, and
our CLT results are restricted to this case. The extensions to arbitrary exponents are
straightforward, but not considered here. To provide examples of the types of appli-
cations motivating the mathematical results, we analyze two real biological datasets
from two different types of NGS experiments. In the first experiment, described in
the study Cebula et al. (2013), one compares multiple T-cell receptors populations
taken from mice before and after treatment with antibiotics. The goal of the second
experiment is the elucidation of differences in gene expression profiles between can-
cer and control tissues in individuals with hepatocellular carcinoma, as described in
Chan et al. (2014). In both presented examples, the NGS datasets are analyzed and
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de-noised by applying a multi-stage process developed on the basis of our theoretical
results.

As already indicated above, the problem of empirically estimating entropy and
divergence has been extensively studied in the statistical and machine learning lit-
erature over the past several decades, both in the context of discrete and continuous
distributions. See, for instance, the monograph by Pardo (2005) or the review in Krish-
namurthy et al. (2014) for more details. In the general case of Renyi’s entropy and
closely related Tsallis’ entropy of a fixed continuous distribution f in R

m , a class
of consistent estimators was proposed in Leonenko et al. (2008) based on the k-th
nearest-neighbor distances computed from the appropriate random samples of size n
from f . The idea was later also extended to the Renyi entropy functionals in Källberg
et al. (2012) and it appears that similar results could be expected to hold in the discrete
case as well. Themain difference between these types of results andwhat is considered
here is that in our setting, the discrete density function f is allowed to change as the
sample size n increases and that we only analyze the basic empirical frequency (the
so-called plug-in) estimates.

The paper is organized as follows. In the next section (Sect. 2) we outline the rel-
evant mathematical concepts along with the necessary notation. In Sect. 3 we state
the main theoretical results of the paper, namely the CLTs for the Hill number (or
the Tsallis entropy) and the Renyi entropy and divergence in the asymptotic regime
when the diversity of the population (i.e., the number of different types) grows with
the sample size. The results for the simpler case (Theorems 1 and 2), when Renyi
entropy statistics admit linear approximations, are established via the intermediate
CLT results for the corresponding power sums, which are closely related to the CLTs
for Hill’s numbers and Tsallis’ entropies. These results are also included as parts of
formulations of Theorems 1 and 2. In case of the uniform distribution for the Renyi
entropy as well as the equal-marginal bivariate distribution for the Renyi divergence,
the power sum CLTs are no longer valid (there is no linear approximation available)
and other methods are required to establish weak convergence to Gaussian variates
under slightly more stringent conditions. These results are presented as Theorems 3
and 4 in Sect. 3. As it turns out, the key ingredient needed to establish Theorems 3 and
4 is the CLT result for two Pearson-type Chi-square statistics in an infinite contingency
table. This latter result is of interest in itself and is presented as Lemma 2 in Sect. 3.
In the following Sect. 4, we provide some simulation-based examples of the asymp-
totic behavior of estimates from Sect. 3 in the case (relevant to our applications) of
power law distributions under various sampling scenarios. These examples illustrate
in particular how the CLTs of Sect. 3 may hold or not, depending on the relations
between the dimensions of the relevant contingency tables and the empirical sample
sizes. In the second part of Sect. 4, we also discuss in detail two biological examples
of NGS data analysis and show how the results of Sect. 3 may be used to analyze
the biodiversity of T-cell receptors and to profile the multiple sets of transcriptomes.
The final Sect. 5 offers a summary and brief conclusions. The proofs of all more
complicated results are provided in the appendix along with some auxiliary technical
lemmas.
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2 Power sums, entropy and divergence

Consider a triangular array of bivariate row-wise independent random variables Zn,k

for k = 1, . . . , n which in each row are equidistributed with the random variable
Zn = (Xn,Yn), such that P(Xn = i,Yn = j) = p(n)

i j for i, j = 1, . . . ,mn . Below,
we suppress the index n when possible, writing, m, Zk, Z , pi j , etc. for simplicity.

Let α > 0 and for any probability distribution p = (pi )mi=1 define

Sα( p) =
m∑

i=1

pα
i . (2.1)

Similarly, for any pair of distributions p = (pi )mi=1 and q = (qi )mi=1, define

Sα( p, q) =
m∑

i=1

pα
i q

1−α
i . (2.2)

(Note thatS1 ≡ 1). Thewell-known special case of the above isα = 1/2,which results
in a symmetric index S1/2( p, q) = S1/2(q, p) often referred to as the Bhattacharyya
coefficient (see, e.g., Nielsen and Boltz 2011).

Recall (Renyi 1961) that for a given distribution p, its Renyi entropyHα is defined
as

Hα( p) = 1

1 − α
log

(∑
pα
i

)
= 1

1 − α
logSα( p),

and that for a pair of distributions ( p, q), their Renyi divergence Dα is defined as

Dα( p, q) = 1

α − 1
logSα( p, q).

Note that the sign change in the normalizing constant is needed to ensure non-negativity
ofHα andDα . The special case ofDα with α = 1/2 is referred to as the Bhattacharyya
distance andmay be expressed in terms of theMahalanobis distance (see, e.g., Nielsen
and Boltz 2011), whereas the linear approximation of Hα( p) given by

Tα( p) = 1

1 − α
(Sα( p) − 1) (2.3)

is sometimes referred to as the Tsallis entropy and has important applications in the
field of statistical mechanics (Tsallis 1988). Note that for our current purposes, we
will only consider the quantities Dα,Hα , and Tα for α satisfying 0 < α < 1.

In what follows, the summation symbol without subscripts (
∑

) will indicate sum-
mation with respect to the index i (i = 1, . . . ,m), whereas p = (pi )mi=1 and
q = (qi )mi=1 will (typically) denote the marginal distributions of the bivariate variable
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Z = (X,Y ) whose distribution is denoted by (pi j )mi, j=1. Additionally, the uniform
distribution onm points will be denoted by u. An important relation between the Renyi
entropy and the Renyi divergence is

Hα( p) = logm − Dα( p, u). (2.4)

We note also the following monotonicity property of Dα and Hα with respect to the
index α.

Lemma 1 For 0 < α < β < 1, we have Dα( p, q) ≤ Dβ( p, q) and, thus, in view of
(2.4), alsoHα( p) ≥ Hβ( p).

Proof Note that for x ≥ 0, the function x → x
α−1
β−1 is strictly convex for 0 < α <

β < 1. Therefore, by Jensen’s inequality,

Dα( p, q) = 1

α − 1
log

∑
pα
i q

1−α
i = 1

α − 1
log

∑
pi

(
qi
pi

)(1−β) α−1
β−1

≤ 1

β − 1
log

∑
pi

(
qi
pi

)(1−β)

= Dβ( p, q).

Example 1 (Hill’s Number) For a given 0 < α < 1, the measure of diversity of a
distribution p alsoknownas the effective numberof classes maybedefined as (see, e.g.,
Jost 2007;Chao et al. 2012;Rempala andSeweryn 2013) ENCα( p) = exp(Hα( p)) =
Sα( p)1/(1−α). It follows then from Lemma 1 that for any 0 < α < β < 1, we have
ENCα( p) ≥ ENCβ( p). (As it turns out, this inequality may be in fact extended to
arbitrary positive α < β).

2.1 Low diversity condition and projection variables

The notion of an infinite-dimension contingency table brought up in the introduction
may be now formally introduced simply as a requirement that for n-size sample from
(pi j )mi, j=1 we have m → ∞ as n → ∞. Throughout the paper, let a ∧ b denote
min(a, b) for any real a, b and let an ∼ bn (resp. an ∼ O(bn)) denote an/bn → 1
(resp. A < lim supn an/bn < B for some finite A, B) as n → ∞ for any real
sequences an, bn . Throughout the paper, we consider only the low diversity (LD)
schemes in which the marginals p, q, of Z satisfy the following LD condition.

(np∗)−1 = o(n−τ ) for some τ > 0, (2.5)

where p∗ = mini (pi )∧mini (qi ). Note that since p∗ ≤ 1/m. (2.5) implies in particular
m/n = o(n−τ ). As it turns out, for many distributions p, the two conditions are in
fact equivalent, as seen in the following.

Example 2 (PowerLawModel)Let p = q and assume that pi = H−1(β,m)/(iβl(i)),
(i = 1, . . . ,m) where β > 0, l(x) is a non-decreasing slowly varying function (see,
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e.g., Soulier 2009, chapter 1), and H−1(β,m) = 1/
∑m

i=1(i
βl(i))−1 is the normalizing

constant. Note that if 0 < β < 1, then H−1(β,m) ∼ (1 − β)l(m)/m1−β and (2.5) is
implied by m/n = o(n−τ ), since

(nmin
i

pi )
−1 ∼ (1 − β)−1 mβl(m)

nmβ−1l(m)
= (1 − β)−1m

n
.

For any 0 < α < 1 and a given pair (m, n), let us define two random variables
which will play an important role in the following section. Let W (α)

n be defined as

P
(
W (α)

n = αpα−1
i

)
= pi (2.6)

for i = 1, . . . ,m. Similarly, define also V (α)
n as

P

(
V (α)
n = α

(
qi
pi

)1−α

+ (1 − α)

(
p j

q j

)α
)

= pi j (2.7)

for i, j = 1, . . . ,m. In the following, for the reasons discussed below, we refer to
(2.6) and (2.7) as the projection variables or simply projections.

Remark 1 Note that

EW (α)
n = αSα( p)

and VarW (α)
n = 0 iff pi = 1/m for all i , that is, p = (pi ) = u is a uniform

distribution on m support points (this case is often referred to as a maximal diversity
model or a pure noise model). Similarly,

EV (α)
n = Sα( p, q)

and it is also easy to see that VarV (α)
n = 0 iff pi = qi for all i , that is, p = q.

As it turns out, both cases p = u and p = q require special consideration in the
asymptotic analysis of Hα and Dα . In view of the remark above, they are referred to
in what follows as the cases of “degenerate” (zero variance) projections.

Example 3 (Noise-and-signal and pure noise models) A distribution concentrated on
m + 1 support points, such that p0 > 0 and pi = (1− p0)/m for 1 ≤ i ≤ m, may be
considered as a simple model of signal contamination. Note that in this case, we have
P(W (α)

n = αpα−1
0 ) = p0, P(W (α)

n = αm1−α(1 − p0)α−1) = 1 − p0 and

VarW (α)
n = α2

(
m1−α(1 − p0)

α

(
p0

1 − p0

)1/2

− pα
0

(
1 − p0
p0

)1/2
)2

.
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For the pure noise model p0 = 0, in which case the support reduces to m points, the
above formula is not valid. However, as already pointed out before, in this case we
may show directly that VarW (α)

n = 0.

3 Limit theorems

Let N (0, 1) denote the standard Gaussian random variable and ⇒ denote the usual
weak convergence in the space of probability distributions. Define also the plug-in n-
sample estimates of p and q as, respectively, p̂ = ( p̂i )mi=1,where p̂i = ∑n

k=1 I (Xk =
i)/n and q̂ = (q̂i )mi=1, where q̂i = ∑n

k=1 I (Yk = i)/n. Here and elsewhere in the
paper, I (·) denotes the indicator function. As it turns out, two distinct sets of CLTsmay
be derived depending on whether the variables W (α)

n and V (α)
n are degenerate (that is,

their respective variances vanish) or not. For the non-degenerate case, the appropriate
CLTs may be established by expanding on the usual projection and Taylor’s expansion
arguments (see, e.g., Shao 2003, chapter 1) as well as some elementary bounds on
binomialmoments (Knoblauch 2008). This is a simpler case to consider andwe discuss
it first.

3.1 CLTs for non-degenerate projections

The first two CLT results for the empirical (plug-in) Renyi entropy and divergence
and their corresponding power sums are provided in Theorems 1 and 2 below. Their
respective hypotheses (iii) may be viewed as complementing the analogous results
established for the Shannon entropy and the Kullback–Leibler divergence (Paninski
2003; Zhang and Zhang 2012; Zhang and Grabchak 2014). Note also that Sα =
(ENCα)1−α where the Hill number ENCα is defined in Example 1. The proofs are
deferred to the appendix.

Recall that for any square integrable random variable X , such that EX �= 0, we
define its coefficient of variation as CV(X) = (Var X)1/2|EX |−1.

Theorem 1 (Renyi EntropyCLT)Let W (α)
n be a sequence of random variables defined

by (2.6) such that CV(W (α)
n ) > 0 and let

∑
pα−1
i (nVarW (α)

n )−1/2 → 0 for m, n → ∞. (3.1)

Then, under the LD condition (2.5), as m, n → ∞,

(i) Sα( p̂)/Sα( p) → 1 in probability,
(ii)

√
n(Sα( p̂) − Sα( p))/(VarW (α)

n )1/2 ⇒ N (0, 1),
(iii)

√
n (1/α − 1)(Hα( p̂) − Hα( p))/CV(W (α)

n ) ⇒ N (0, 1).

Remark 2 Note that the first two assertions of the theorem may be equivalently stated
in terms of the convergence of the Tsallis plug-in entropy defined by (2.3).

Remark 3 Note that the condition (3.1) is typically stronger than (2.5). Indeed, taking
α > 1/2 and the power law model from Example 2 with 0 < β < 1, we obtain
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∑
pα
i ∼ (1−β)α m1−α/(1−αβ) and

∑
p2α−1
i ∼ (1−β)2α−1 m2−2α/(1−2αβ+β).

Consequently, for some constant C > 1

C
∑

pα−1
i√

n
(∑

p2α−1
i − (∑

pα
i

)2)
≥ m√

n

(maxi pi )α−1

m1−α
≥ m√

n

for large m, n, and (3.1) implies (2.5) with τ = 1/2. Similarly, (possibly for different
C > 1),

∑
pα−1
i√

n
(∑

p2α−1
i − (∑

pα
i

)2)
≤ Cm√

n

(mini pi )α−1

m1−α
≤ C

m√
n

and therefore in this case, (3.1) is seen to be equivalent to (2.5) with τ = 1/2.

Remark 4 (Plug-in bias)Note that, in viewof Jensen’s inequality applied to the strictly
concave function x → xα for x > 0 and 0 < α < 1, we have ESα( p̂)/Sα( p) ≤ 1.
This and the assertion (i) above imply together that under the assumptions of Theo-
rem 1, the relative bias of Sα( p̂) satisfies ESα( p̂)/Sα( p) − 1 → 0 as n,m → ∞.
The standard inequality log x ≤ x − 1 valid for x > 0 implies then that the bias of the
plug-in entropy estimate satisfies

EHα( p̂) − Hα( p) → 0 as n,m → ∞. (3.2)

Unfortunately, as may be seen from the proof of Theorem 1 in the appendix, a more
careful analysis of the tail events for the plug-in estimate than the one currently per-
formed is needed to establish the actual convergence rate in (3.2).

Turning now to our second result, note that the relation (2.4) suggests that CLT of
Theorem 1 could be also extended to the Renyi divergence. The proof is again based
on the Taylor expansion method where now the projection variable (2.6) is replaced
by (2.7).

Theorem 2 (Renyi Divergence CLT) Let V (α)
n be a sequence of random variables

defined by (2.7) such that CV(V (α)
n ) > 0 and let

(∑
(qi/pi )

1−α +
∑

(pi/qi )
α
)

(nVarV (α)
n )−1/2 → 0 for m, n → ∞. (3.3)

Then, under the LD condition (2.5), as m, n → ∞
(i) Sα( p̂, q̂)/Sα( p, q) → 1 in probability,
(ii)

√
n(Sα( p̂, q̂) − Sα( p, q))/(VarV (α)

n )1/2 ⇒ N (0, 1),
(iii)

√
n (α − 1)(Dα( p̂, q̂) − Dα( p, q))/CV(V (α)

n ) ⇒ N (0, 1).

Remark 5 (Plug-in bias) Note that, similarly as in Remark 4, we have
ESα( p̂, q̂)/Sα( p, q) ≤ 1 and, by a similar argument as before, Theorem 2(i) implies

EDα( p̂, q̂) − Dα( p, q) → 0 as m, n → ∞.
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Example 4 (Symmetric divergence for power laws) Consider the symmetric diver-
gence D1/2( p, q) with independent marginals, the case which is often of interest in

NGS applications. Note that in this situation, VarV (1/2)
n = 1/2−(

∑ √
piqi )2/2. Sup-

pose additionally that pi = H−1(β1,m)/(iβ1l1(i)) and qi = H−1(β2,m)/(iβ2l2(i)),
(i = 1, . . . ,m) where the notation is as in Example 2 with 0 < β1 �= β2 < 1. Then,

VarV (1/2)
n ∼ 1

2
−

√
(1 − β1)(1 − β2)

2 − β1 − β2

and, consequently, (3.3) is seen as equivalent tom/
√
n → 0 (cf. also Remark 3 above).

With some additional effort, the two CLT results of this section may be extended
to degenerate projections. This is discussed in the next section.

3.2 CLTs for degenerate projections

In case of a degenerate projection, the linear term of the power sum Taylor’s expansion
disappears (cf. formula (B.6) in the appendix) and the condition (3.1) is no longer
needed. However, the LD assumption (2.5) has to be slightly strengthened to establish
the asymptotic results for the leading (quadratic) term of the appropriate expansion.

3.2.1 Chi-square statistic CLT

The following lemma describing the Chi-square statistic CLT may be of independent
interest for models of sparse contingency tables. For a recent discussion of a nor-
mal approximation to the Chi-square distribution in such settings, see, e.g., Horgan
and Murphy (2013). Here, we apply the Chi-square CLT formulated below to obtain
weak limits for the quadratic terms in the entropy and divergence Taylor’s expansions
leading to Theorems 3 and 4 described in the next subsection. To begin, consider a
pair of distributions ( p, q) and a set of positive weights r = (ri )mi=1 and define the
corresponding Chi-square (χ2) distance function as

X 2
r ( p, q) = n

∑ (pi − qi )2

ri
.

Note that, for instance, theχ2-distance statistic between the empiricalmarginals ( p̂, q̂)

is obtained by setting ri = pi + qi

X 2
p+q( p̂, q̂) = n

∑ ( p̂i − q̂i )2

pi + qi

and the Pearson χ2-statistic is obtained by setting ri = pi

X 2
p( p̂, p) = n

∑ ( p̂i − pi )2

pi
. (3.4)

Below, we denote X 2
u (û, u) =: X 2

u .
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Lemma 2 Let (pi j )mi, j=1 be the bivariate distribution of Z = (X,Y ) with X and Y
having marginals (pi )mi=1 and (qi )mi=1, where pi = qi > 0. Assume m → ∞ as
n → ∞ and

(mn)−1
∑

max
(
p−1
i , p−2

i m−1
)

→ 0. (3.5)

Then as n → ∞,

(i)
X 2

p( p̂, p) − m√
2m

⇒ N (0, 1),

and if additionally

sup
n

max
i j

pi j
pi p j

= B < ∞ (3.6)

then also

(ii)
X 2
2 p( p̂, q̂) − μn√

2γn
⇒ N (0, 1),

where

μn =
∑

i

(1 − pii/pi )

γ 2
n =

∑

i

(pi − pii )2

p2i
+

∑

1≤i �= j≤m

(pi j + p ji )
2

4pi p j
. (3.7)

Remark 6 Note that for X 2
u the condition (3.5) simplifies to m/n → 0.

Remark 7 Note that under the assumption (3.6), we have m − 2B ≤ γ 2
n ≤ m + B2

and therefore γ 2
n ∼ m. In particular, if pi j = pi p j then μn = γ 2

n = m − 1.

The proof of the result borrows some ideas from theory of U-statistics (Koroljuk and
Borovskich 1994) and may be found in the appendix. Its application is discussed next.

3.2.2 Pure noise and equal marginals CLTs

The first result covers the case of the Renyi entropy when p := u. The proof
is outlined in the appendix. Recall that for real a and integer k, we define(a
k

) = a(a − 1) · · · (a − k + 1)/k!
Theorem 3 (Uniform Entropy CLT) Assume m → ∞ as n → ∞ and m2/n =
o(n−τ ) for τ > 0. Then, as n → ∞,

(i)
n(α

2)
−1[mα−1Sα(û)−1]−m√

2m
⇒ N (0, 1),

(ii)
n[Hα(û)−logm−(1−α)−1log(1+(α

2)
m
n )]

α
√
m/2

⇒ N (0, 1).
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Our second CLT result is the following theorem for Renyi divergence when p = q.
The proof is again deferred to the appendix.

Theorem 4 (Degenerate divergence CLT) Let (pi j )mi, j=1 be the bivariate distribution
of Z = (X,Y ) with X and Y having marginals p = (pi )mi=1 and q = (qi )mi=1, where
pi = qi > 0. Let μn and γ 2

n be given by (3.7). Assume that m → ∞ as n → ∞ and
that (3.6) holds, as well as that

max

{
1

nmmin p2i
,

m

nmin pi

}
= o(n−τ ). (3.8)

Then as n → ∞,

(i) n(α(α−1))−1[Sα( p̂,q̂)−1]−μn√
2γn

⇒ N (0, 1),

(ii)
n[Dα( p̂,q̂)−(α−1)−1 log(1+α(α−1) μn

n )]
α
√
2γn

⇒ N (0, 1).

Remark 8 Note that for p = q = u, the condition (3.8) reduces to m2/n = o(n−τ )

required in Theorem 3.

3.2.3 Random sample size

When analyzing NGS data, some part of the sequenced reads is frequently removed
for technical reasons, for instance, due to poor amplification or reading errors (see next
section). In such cases, one effectively deals with a molecular sample of random size.
Our CLT results derived earlier may be extended to this case as well, with the help of
the following simple result described in Theorem 5 below. Its various versions have
been discussed, for instance, in the context of random allocations (see, e.g., Kolchin
et al. 1978).

Theorem 5 (Randomized Sample CLT) Let (Zn)
∞
n=1 be a sequence of bivariate

variables supported on an mn × mn integer lattice with distribution (pi j )
mn
i, j=1. Let

(Ẑn) = ( p̂i j )
mn
i, j=1 (n = 1, 2, 3, . . . , ) be the sequence of the empirical estimates, each

based on an iid sample of (deterministic) size n. Suppose that the statisticGn = Gn( p̂i j )
satisfies bn(Gn − an) ⇒ N (0, 1) as n → ∞ with some non-random (an, bn). Let
(νn)

∞
n=1 be a sequence of random variables independent of (Ẑn)

∞
n=1 and following the

binomial distributions bin(n, τn) with 0 < infn τn ≤ supn τn < 1. Then also,

bνn (Gνn − aνn ) ⇒ N (0, 1).

Proof Denote by Gnk the random variable Gνk conditional on the event νk = nk and by
Φ the distribution function of the standard normal randomvariable. By assumption, for
any real x wehave P(Gnk ≤ x) → Φ(x), provided that nk → ∞ as k → ∞. Let ε > 0
be sufficiently small and define Cε(k0) = {nk : k(τk − ε) ≤ nk ≤ k(τk + ε), k > k0}.
Note that by the weak law of large numbers, P(νk ∈ Cε(k0)) → 1 as k0 → ∞.
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Therefore,

P(Gνk ≤ x, νk ∈ Cε(k0)) =
∑

nk∈Cε(k0)

P(Gnk ≤ x)P(νk = nk)

= (Φ(x) + δ(k0))P(νk ∈ Cε(k0)),

where δ(k0) → 0 as k0 → ∞. Accordingly, as k0 → ∞ the left-hand side converges
to limk P(Gνk ≤ x) and the right-hand side to Φ(x) and the result follows.

4 Examples and NGS applications

We start by providing some numerical examples illustrating that, in general, the CLT
results discussed above do not hold without assumptions on the relative rate of m and
n. Next, we show two examples of applicability of our results to analyzing biodiver-
sity of NGS data. The first one is concerned with comparing the diversity of T-cell
receptor populations in transgenic mice, whereas the second one aims at identifying
the hepatocellular carcinoma transcription profiles in humans. For the purpose of the
T-cell receptors example, we propose a sequential statistical procedure of NGS signal
filtering based on our CLT results from the previous sections. We begin by pointing
out to some subtleties in the CLT results discussed in Sect. 3.

4.1 Power law and pure noise models

Consider the power law model from Example 2 in Sect. 2.1 with β = 1
and l(x) ≡ 1. Note that in this case (nmini pi )−1 ∼ m logm/ n as well as∑

pα−1
i (nVarW (α)

n )−1/2 ∼ O(m(log2α m/n)1/2) and therefore the assumptions of
Theorem 1 are satisfied as soon as

nτ−1m → 0 (4.1)

for some τ > 1/2. Similarly, the assumption (3.5) of Lemma 2 is satisfied as soon as

log2 m
m

n
→ 0. (4.2)

In Fig. 1, we illustrate the convergence results of Theorem 1(iii) and Lemma 2(i)
for this power law model and α = 0.5. The panels of Fig. 1 presents the sample
vs standard normal quantile (QQ) plots for the normalized Renyi entropy statistic
and the normalized Pearson statistic (3.4) based on B = 5000 samples from the
power law distribution, each with m = 1000 and three different values of n = m1+ε

(ε = −0.5, 0.5, 1.5). As seen from the plots, in absence of (4.1) the CLT result for the
Renyi entropy (cf. Theorem 1(iii)) does not hold. Moreover, the middle panel QQ plot
indicates that for large m, n satisfying n = m3/2 the discrepancy between distribution
of the entropy function and its plug-in estimate appears in a form of deterministic
shift, indicating the presence of substantial asymptotic bias and hence the lack of
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Fig. 1 Projection CLTs. Normal QQ plots for the normalized Renyi entropy (Theorem 1(iii), lower (green)
curve) and normalized Pearson χ2 statistic (Lemma 2(i), upper(blue) curve) for the power law distribution
pi = 1/ i . The panels shows quantile plots with different values of n = m1+ε (ε = −0.5, 0.5, 1.5) and
m = 1000. The solid (red) line gives quantiles of the standard normal distribution for reference (Color
figure online)

Fig. 2 Degenerate projection CLTs. Normal QQ plots for the normalized uniform Renyi entropy (Theo-
rem 3(ii), represented by the lower (green) curve) and the normalized Pearson χ2-statistic (Lemma 2(i),
represented by the upper (blue) curve) with pi = m−1. The panels shows quantile plots with different
values of n = m1+ε (ε = −0.5, 0.5, 1.5) and m = 1000. The solid (red) line gives the quantiles of the
standard normal distribution for reference. Note that the normalized Renyi entropy is undefined for the first
panel (Color figure online)

convergence (3.2). Similarly, when (4.2) is not satisfied, then the Pearson statistic
CLT given in Lemma 2(i) fails with the middle panel again indicating that the bias of
the estimate does not vanish when m is too large relative to n.

For comparison, we also considered the uniform distribution (pure noise) model
pi = 1/m. Note that it may be viewed as a degenerate power law where β = 0
and l(x) ≡ 1. Recall that according to Theorem 3(ii) and Lemma 2(i), the sufficient
conditions for the respective CLTs are m2/n1−τ → 0 and m/n → 0 (see Remark 6
for the latter one). The necessity of these conditions is illustrated in the panels of
Fig. 2, where we again present the (normal) QQ plots for the Renyi (α = 0.5) and
the Pearson statistics for the same values of B, n and m as in Fig. 1. As seen from
these plots, only in the last panel, when m2/n ≈ 0, we get good CLT approximation
for both statistics. These results appear consistent with our theoretical results from
Theorem 3 and Lemma 2.

Although not presented here due to space considerations, similar examples based
on the bivariate power laws may be used to illustrate the necessity of the assump-

123



668 M. Pietrzak et al.

tions of type (3.3) and (3.8) in the CLT results for divergence in Theorems 2(iii) and
4(ii).

4.2 Applications to NGS data

Our CLT results described in Sect. 3 were originally motivated by questions rising in
NGS data analysis. Below, we describe two examples which adhere to the following
basic framework. Denote by ε1, ε2 two independent noise distributions each onm sup-
port points and assume that a pair ( p, q) of marginal distributions may be represented
as

( p, q) = λ( p̃, q̃) + (1 − λ)(ε1, ε2) (4.3)

where ( p̃, q̃) is a pair of marginal distributions having no common support points with
(ε1, ε2), and λ is the mixing proportion (or prior probability of signal). We assume
that each ε is a simple finite mixture of K uniform distributions on separate support.
Note that the noise-and-signal model from Example 3 in Sect. 2.1 may be viewed as
a (univariate) special case of (4.3) with K = 1. In the first example below, we took
K = 2.

Algorithm 1 (NGS diversity analysis with Dα or Sα)

(i) Exponent (α) selection. Use problem-specific criteria (e.g., sample coverage;
see Rempala and Seweryn 2013) to identify the appropriate α value. If no prior
knowledge exists, the value α = 1/2 (the Bhattacharyya distance) may be often
used.

(ii) Noise filtering. Identify the number of mixture components K and the cutoff
count(s) km for the support of εi in (4.3)with a sequential (starting from the lowest
empirical frequency) procedure based on Lemma 2(i) with p = εi (i = 1, 2).
The values of λ is then estimated as the proportion of a sample falling into the m
’noise’ categories.

(iii) Equality testing. For a predetermined value of α, test the hypothesis H0 : p̃ = q̃
by comparing the observed value of Dα (alternatively, Sα) with the asymptotic
normal distribution in Theorem 4.

(iv) Difference quantification. If H0 is not rejected, conclude that Dα ≡ 0 (Sα ≡ 1).
Otherwise, apply Theorem 2 to obtain confidence bounds for Dα (Sα).

4.2.1 T-cell receptor populations

In this example,we applyAlgorithm1 tomeasure the similarity between a pair of T-cell
receptor (TCR) populations based on the observed NGS counts of receptor-specific
nucleotide sequences. With the current NGS technology, the two main difficulties in
comparingTCRpopulations are to adjust the undersampling bias due to the unobserved
rare types and the ‘ghost‘ types created due to the sequencing errors (Wang et al.
2014). The first problem may be often alleviated by applying diversity criteria, like
the Renyi entropy and divergence, which allow for the sample-based upweighting

123



Limit theorems for empirical Rényi entropy. . . 669

Fig. 3 Power law fit for TCR data. QQ plot of the TCR data against quantiles of a power law distribution
with β1 = 0.87 (SE = .05) and β2 = 0.97 (SE = .05) values fitted via the least squares method

of rare counts (see Rempala and Seweryn 2013). The second one requires typically
additional assumptions, to perform analysis as outlined in Algorithm 1(ii). A recent
detailed overview of the TCR diversity analysis methods was presented by Rempala
and Seweryn (2013) and earlier on, in a more general context of biodiversity, by
Hsieh et al. (2006) and Magurran (2005). For illustration, we analyze two populations
derived from the mesenteric lymph nodes (MLN) of a TCR mini-mouse before and
after an antibiotic treatment. The details of the experiments and a dataset description
are given in Cebula et al. (2013). For the current analysis, it is important to note that,
since the experimental groups consisted of different animals, we may consider two
experimental groups as independent. The total combined sample size (or sequencing
depths) was n = 72, 030, with initial m0 = 6, 336 receptor types. After performing
step (ii) of Algorithm 1,m = 165 types were identified as “signal” based on the cutoff
km = 17 in both populations. The signal population corresponded to the remaining
sample size of 38,896 or about 54% of the original NGS counts. We used Dα with
α = 1/2 as the diversitymeasure in step (iii)–(iv) ofAlgorithm1.Based onTheorem2,
the asymptotic P-value for testing H0 : p̃ = q̃ was found to be less than 10−4

and hence the hypothesis of equal diversity of the two populations was rejected (see
Algorithm 1(iii)).

To compare this finding with a more standard parametric analysis, we additionally
fitted, with the least squares method, the counts of 165 receptor types in two popula-
tions to the power law distributions. Since the respective exponent values for the two
fitted populations were found to be different, with β1 = .87 (for antibiotic-treated
mice) and β2 = .97 (for untreated), the parametric analysis confirmed the findings
of Algorithm 1. For illustration, the plots of the fitted power law quantiles versus the
empirical ones are presented in Fig. 3. Additionally, the diversity of each of the TCR
populations in terms of its respective Renyi entropyH1/2 and theHill number ENC1/2
as well as the diversity difference measured by the Renyi divergence D1/2 are listed
in Table 1, along with the corresponding asymptotic confidence intervals obtained via
Theorems 1 and 2. As seen from the values in Table 1, although the diversity of each
of the NGS populations was relatively similar in terms of the two populations count
patterns, it differed in terms of the specific TCR types expressed.
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Table 1 Results of TCR data analysis

Antibiotic ( p̃) Control (q̃)

n 39,084 39,084

m 165 165

km 17 17

λ̂ 0.46 0.46

β̂ 0.869 (0.05) 0.971 (0.05)

H1/2 4.81 (4.79, 4.82) 4.64 (4.63, 4.67)

ENC1/2 122.73 (120.30, 123.97) 103.54 (102.51, 106.70)

D1/2 0.155 (0.147, 0.163)

The mixture model (4.3) with heavy-tailed power laws fitted to two sets of TCR counts derived frommouse
MLN before and after an antibiotic treatment as described in Cebula et al. (2013). The empirical Renyi
entropy, the Hill number and the Renyi diversity CIs (in parenthesis) are obtained from the CLT results of
Theorems 1 and 2

4.2.2 Gene expression profiling

Beyond Algorithm 1, the results of Sect. 3 may be applied to facilitate various other
biodiversity analysis, for instance, in simultaneous comparison of several pairs of
molecular samples. We illustrate this with an NGS data example from the recent hepa-
tocellular carcinoma (HCC) study in Chan et al. (2014) which we obtained through the
gene expression omnibus (GEO) database. The GEO dataset consists of HCC tumor-
infected (T ) and healthy liver (N ) tissue samples from three individuals denoted below
as follows in relation to their original database designations T 1 = HCC448T, T 2 =
HCC473T, T 3 = HCC510T and N1 = HCC448N , N2 = HCC473N , N3 =
HCC510N . For this dataset, one of the questions of research interest was whether the
expression profiles of genes associated with regulation of cell proliferation and pro-
grammed cell death differ across T and N samples as well as across individuals (cf.,
e.g., Kong et al. 2013). To address this specific question, in contrast to the previous
TCR example, wewere thus only interested in a pre-selected subset of theNGS counts.
The final values ofm = 1332 and n between 1.2 and 1.9 million reads1 were obtained
after aligning the pre-selected NGS fragments to the HG19 reference genome with the
Tophat2/Bowtie2 software (Kim et al. 2013) and performing the transcript annotation
with the Ensembl genome browser (www.ensembl.org). After the final fragments-
to-counts conversion, our data analysis was performed in three steps. First, the null
hypothesis of the tissue homogeneity Hall

0 = {T1 = N1 = T2 = N2 = T3 = N3}
was tested (and rejected) based on the result of Theorem 4 and the corresponding
asymptotic p-value obtained from the χ2(3) distribution. Next, the hypothesis of the
across-individuals homogeneity was tested by evaluating three pairwise null hypoth-
esis Hi j

0 = {D1/2(Ti , Ni ) = D1/2(Tj , N j )]}, 1 ≤ i < j ≤ 3 (each rejected) based
on Theorem 4. Finally, having rejected the homogeneity hypothesis, we have used

1 Based on these values, the empirical versions of the conditions for the relevant theorems in Sect. 3 were
considered satisfied.
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Table 2 The 95% confidence intervals for the pairwise symmetric Renyi divergence D1/2 between the
tumor and control (healthy) tissues from three individuals based on the profile of expression of pre-selected
m = 1332 transcripts related to cell proliferation

Hypothesis Statistic P-value D1/2 value (CI)

Hall
0

∑
wi [D1/2(i) − μi ]2 <0.001 NA

H1,2
0 D1/2(1) − D1/2(2) <0.01 D1/2(1)=0.553 (0.551, 0.555)

H2,3
0 D1/2(2) − D1/2(3) D1/2(2)=0.292 (0.291, 0.294)

H3,1
0 D1/2(3) − D1/2(1) D1/2(3)= 0.346 (0.345 0.348)

Here D1/2(i) denotes D1/2(Ti , Ni )

the result of Theorem 2 to quantify the differences between the three sets of T and
N tissue samples. The details of the analysis are presented in Table 2. As seen from
the numerical results, it seems that despite the large individual differences between
patients, the set of m = 1332 genes associated with cell proliferation and death may
be used to distinguish between T-type and N-type samples in HCC patients.

5 Summary and Conclusions

We derived two sets of limit theorems for the Renyi entropy and divergence statis-
tics. The first set of results holds for linearalizable statistics (their first-order Taylor
approximations exist), whereas the second one holds in the degenerate case (when
the first-order approximations vanish) and requires analyzing the quadratic terms in
the Taylor expansions. Our Renyi entropy limit theorems complement those obtained
elsewhere for the Shannon entropy and divergence.

Based on the CLT results, we have proposed here a new framework for analyzing
the diversity of molecular (especially, NGS) data based on the idea of analyzing the
frequency/contingency tables where cell counts are highly unbalanced (for instance, as
arriving frommixtures of heavy-tailed, power law type and uniform distributions) and
the number of cells or, equivalently, the counts distribution support size, m, increases
with the sample size n. For analyzing such tables, we suggested using the empirical
Renyi entropy and divergence as the statistical measures of, respectively, diversity and
pairwise similarity of different molecular sub-populations.

In the two examples of NGS analysis, we have shown how the Renyi entropy
methods may be used for filtering out low-frequency noise and for establishing valid
confidence bounds in pairwise divergence analysis for pre-selected transcripts. How-
ever, it was also seen that to apply our CLT results, the number of transcripts had to
be small relative to the sequencing depth. For the special class of heavy-tailed power
law distributions, our results in particular indicate that the appropriate entropy CLTs
are valid (and thus so is our proposed analysis framework) when, roughly speaking,
m/

√
n → 0 and not otherwise. Such, restriction may be often limiting in very high-

diversity NGS data, and other statistics beyond those discussed here and not requiring
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such condition could be also of interest. We hope to pursue this matter in our future
work.
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