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a b s t r a c t

We consider distributional limit of the Pearson chi-square statistic when the number of
classes mn increases with the sample size n and n/

√
mn → λ. Under mild moment

conditions, the limit is Gaussian for λ = ∞, Poisson for finite λ > 0, and degenerate
for λ = 0.

© 2016 Elsevier B.V. All rights reserved.

1. Preliminaries

The Pearson chi-square statistic is probably one of the best-known and most important objects of statistical science and
has played a major role in statistical applications ever since its first appearance in Karl Pearson’s work on ‘‘randomness
testing’’ (Pearson, 1900). The standard test for goodness-of-fit with the Pearson chi-square statistic tacitly assumes that
the support of the discrete distribution of interest is fixed (whether finite or not) and unaffected by the sampling process.
However, this assumption may be unrealistic for modern ‘big-data’ problems which involve complex, adaptive data
acquisition processes (see, e.g., Grotzinger et al., 2014 for an example in astro-biology). In many such cases the associated
statistical testing problems may be more accurately described in terms of triangular arrays of discrete distributions whose
finite supports are dependent upon the collected samples and increase with the samples’ size (Pietrzak et al., 2016).
Motivated by ‘big-data’ applications, in this notewe establish some asymptotic results for the Pearson chi-square statistic for
triangular arrays of discrete randomvariables forwhich their number of classesmn growswith the sample sizen. Specifically,
let Xn,k, k = 1, . . . , n, be i.i.d. random variables having the same distribution as Xn, where

P(Xn = i) = pn(i) > 0, i = 1, 2, . . . ,mn < ∞, n = 1, 2, . . . .
Recall that the standard Pearson chi-square statistic is defined as

χ2
n = n

mn
i=1


p̂n(i) − pn(i)

2
pn(i)

, (1)

where the empirical frequencies p̂n(i) are

p̂n(i) = n−1
n

k=1

I(Xn,k = i), i = 1, . . . ,mn.
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As stated above, in what follows we will be interested in the double asymptotic analysis of the weak limit of χ2
n , that is, the

case whenmn → ∞ as n → ∞.
Observe that χ2

n given in (1) can be decomposed into a sum of two uncorrelated components as follows

χ2
n = n−1 (Un + Sn) − n, (2)

where

Un =


1≤k≠l≤n

I(Xn,k = Xn,l)

pn(Xn,k)
(3)

and

Sn =

n
k=1

1
pn(Xn,k)

=

n
k=1

p−1
n (Xn,k). (4)

The second equality above introduces notational conventionweuse throughout. Note that for fixed n the statistic Sn is simply
a sum of i.i.d. random variables and Un is an unnormalized U-statistic (see, e.g., Korolyuk and Borovskich, 2013). It is routine
to check that

EUn = n(n − 1) and E Sn = nmn

and consequently

E χ2
n = mn − 1.

Moreover, since we also have Cov(Un, Sn) = 0, it follows that

Varχ2
n = n−2(Var Sn + VarUn) = n−1

[Var p−1
n (Xn) + 2(n − 1)(mn − 1)].

When mn = m is a constant then the classical result (see, e.g., Shao, 2003, chapter 6) implies that the statistic χ2
n

asymptotically follows theχ2-distributionwith (m−1) degrees of freedom. Consequently, whenm is large the standardized
statistic (χ2

n − (m− 1))/
√
2(m − 1) may be approximated by the standard normal distribution. However, in the case when

mn → ∞ as n → ∞ the matters appear to be more subtle and the above normal approximation may or may not be valid
depending upon the asymptotic relation of mn and n, as described below. Since Sn is a sum of i.i.d. random variables, the
case when Sn contributes to the limit of normalized χ2

n may be largely handled with the standard theory for arrays of i.i.d.
variables. Consequently, we focus here on a seeminglymore interesting casewhen the asymptotic influence ofUn dominates
over that of Sn. Specifically, throughout the paper we assume that as n,mn → ∞

(C) (mnn)−1Var p−1
n (Xn) → 0.

Note that (C) implies n−1(Sn − nmn)/
√
2mn → 0 in probability and, in particular, is trivially satisfied when Xn is a uniform

random variable on the integer lattice 1, . . . ,mn, that is, when pn(i) = m−1
n for i = 1 . . . ,mn. Under condition (C) we

get a rather complete picture of the limiting behavior of χ2
n . Our main results are presented in Section 2 where we discuss

the Poissonian and Gaussian asymptotics. Some examples, relations to asymptotics known in the literature and further
discussions are provided in Section 3. The basic tools used in our derivations are listed in the appendix. In what follows
limits are taken as n → ∞ with mn → ∞ and

d
→ stands for convergence in distribution.

2. Poissonian and Gaussian asymptotics

We start with the case when a naive normal approximation for the standardized χ2
n statistic fails. Indeed, as it turns out,

whenmn is asymptotically of order n2, we have the following Poisson limit theorem for χ2
n .

Theorem 2.1. Assume that the condition (C) holds, as well as

n
√
mn

→ λ ∈ (0, ∞). (5)

Then

χ2
n − mn
√
2mn

d
→

√
2

λ
Z −

λ
√
2
, Z ∼ Pois


λ2

2


. (6)
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Proof. Due to (C) it suffices to consider the asymptotics of Un alone. We write

Un − n(n − 1)
n
√
2mn

=

√
2mn

n

n
k=1

An,k −
n − 1
√
2mn

, (7)

where An,1 = 0 and for k = 2, . . . , n

An,k = m−1
n

k−1
j=1

I(Xn,j = Xn,k)

pn(Xn,j)
= m−1

n p−1
n (Xn,k)

k−1
j=1

I(Xn,j = Xn,k). (8)

The above representation implies that to prove (6) we need only to show that
n

k=1 An,k
d

→ Pois


λ2

2


. To this end

we will verify the conditions of Theorem A.1 in the appendix, due to Beśka et al. (1982). Denote Fn,0 = {∅, Ω} and
Fn,k = σ(Xn,1, . . . , Xn,k), k = 1, . . . , n. Then using the first form of An,k from (8) we see that

max
1≤k≤n

E(An,k|Fn,k−1) = m−1
n max

1≤k≤n

k−1
j=1

E


I(Xn,j = Xn,k)

pn(Xn,j)

Fn,k−1


= max

1≤k≤n

k − 1
mn

=
n − 1
mn

→ 0

due to (5) and thus (A.1) holds. Similarly,

n
k=1

E(An,k|Fn,k−1) =

n
k=1

k − 1
mn

=
n(n − 1)

2mn
→

λ2

2
(9)

and thus (A.2) also follows with η =
λ2

2 . Since An,k ≥ 0 the required convergence in (A.3) (for any ϵ > 0) will follow from
convergence of the unconditional moments

n
k=1

E An,kI(|An,k − 1| > ϵ) ≤ ϵ−2
n

k=1


E A3

n,k − 2E A2
n,k + E An,k


. (10)

Using the second form of An,k from (8) we see that the conditional distribution of mn pn(Xn,k) An,k given Xn,k follows a
binomial distribution Binom(k − 1, pn(Xn,k)). Since for M ∼ Binom(r, p) we have EM = rp, EM2

= rp + r(r − 1)p2 and
EM3

= rp + 3r(r − 1)p2 + r(r − 1)(r − 2)p3, we thus obtain
n

k=1

E An,k =
1
mn

n
k=1

(k − 1) ≃
n2

2mn
→

λ2

2
,

n
k=1

E A2
n,k =

1
m2

n

n
k=1

((k − 1)mn + (k − 1)(k − 2)) ≃
n2

2mn
+

n3

3m2
n

→
λ2

2
.

Similarly,
n

k=1

E A3
n,k =

1
m3

n

n
k=1


(k − 1)E p−2

n (Xn) + 3(k − 1)(k − 2)mn + (k − 1)(k − 2)(k − 3)


≃
n2

2m3
n
E p−2

n (Xn) +
n3

m3
n

+
n4

4m3
n
.

Note that (C) and (5) implym−2
n E p−2

n (Xn) → 1 and therefore
n

k=1

E A3
n,k ≃

n2

2m3
n
E

1
p2n(Xn)

→
λ2

2
.

Combining the limits of the last three expressions we conclude that the right-hand side of (10) tends to zero and hence (A.3)
of Theorem A.1 is also satisfied. The result follows. �

Let us now consider the case n
√
mn

→ ∞. As it turns out, under this condition the statistic χ2
n is asymptotically Gaussian.

Theorem 2.2. Assume that condition (C) is satisfied and that there exists δ > 0 such that

sup
n

m−(1+δ)
n E p−(1+δ)

n (Xn) < ∞ (11)
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as well as

n
√
mn

→ ∞. (12)

Then

χ2
n − mn
√
2mn

d
→ N, N ∼ Norm(0, 1). (13)

Remark 2.3. Note that under (C) the conditions (11) (with δ = 1) and (12) are implied by the conditionn/mn → λ ∈ (0, ∞).

Proof. As in Theorem 2.1, under our assumption (C) it suffices to show convergence in distribution to N ∼ Norm(0, 1) of
the normalized Un variable

Un − n(n − 1)
√
n(n − 1)2(mn − 1)

=

n
k=1

Yn,k,

where

Yn,k =

√
2

√
n(n − 1)(mn − 1)

k−1
j=1


I(Xn,j = Xn,k)

pn(Xn,j)
− 1


=

√
2 Bn,k

√
n(n − 1)(mn − 1)

(14)

and the last equality defines Bn,k. Since E(I(Xn,k = Xn,j)|Fn,k−1) = pn(Xn,j) for any j = 1, . . . , k − 1, it follows that
E(Yn,k|Fn,k−1) = 0. Consequently, (Yn,k, Fn,k)k=1,...,n are martingale differences. Therefore, to prove (13) we may use the
Lyapunov version of the CLT for martingale differences (see Theorem A.2 in the appendix).

Due to (14) we have

E(B2
n,k|Fn,k−1) =

k−1
j=1

Var(I(Xn = Xn,j)|Fn,k−1)

p2n(Xn,j)
+


1≤i≠j≤k−1

Cov(I(Xn = Xn,i), I(Xn = Xn,j)|Fn,k−1)

pn(Xn,i)pn(Xn,j)
.

Since Var(I(Xn = Xn,j)|Fn,k−1) = pn(Xn,j)(1 − pn(Xn,j)) and

Cov(I(Xn = Xn,i), I(Xn = Xn,j)|Fn,k−1) = I(Xn,i = Xn,j)pn(Xn,i) − pn(Xn,i)pn(Xn,j)

we obtain

E(B2
n,k|Fn,k−1) =

k−1
j=1


p−1
n (Xn,j) − 1


+


1≤i≠j≤k−1


I(Xn,i = Xn,j)

pn(Xn,i)
− 1


.

Consequently, (A.4) is equivalent to

n
k=1

k−1
j=1


p−1
n (Xn,j) − mn


n(n−1)

2 (mn − 1)
+

n
k=1


1≤i≠j≤k−1


I(Xn,i=Xn,j)
pn(Xn,i)

− 1


n(n−1)
2 (mn − 1)

P
→ 0. (15)

To show the above, we separately consider moments of the summands on the left-hand side of (15). For the first one, note
that

n
k=1

k−1
j=1


p−1
n (Xn,j) − mn


=

n−1
j=1

(n − j)

p−1
n (Xn,j) − mn


d
=

n−1
j=1

j

p−1
n (Xn,j) − mn
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where the last equality denotes the distributional equality of random variables. Therefore, using inequality (B.2) given in
the appendix, we get (possibly with different universal constants C from line to line)

E


n

k=1

k−1
j=1


p−1
n (Xn,j) − mn


n(n−1)

2 (mn − 1)



1+δ

≤ C

E

n−1
j=1

j

p−1
n (Xn,j) − mn


1+δ

n2+2δm1+δ
n

≤ C

E
p−1

n (Xn,j) − mn
1+δ n

δ−1
2 ∨0

n−1
j=1

j1+δ

n2+2δm1+δ
n

≤ C
E
p−1

n (Xn,j) − mn
1+δ n

3(1+δ)
2 ∨(2+δ)

n2+2δm1+δ
n

≤ C
E
p−1

n (Xn,j) − mn
1+δ

n
1+δ
2 ∧δm1+δ

n

.

In view of this and the elementary inequality |a+b|p ≤ C(|a|p +|b|p) valid for any p > 0 and any real a, bwe have for some
constants C1, C2

E


n

k=1

k−1
j=1


p−1
n (Xn,j) − mn


n(n−1)

2 (mn − 1)



1+δ

≤
C1

n
1+δ
2 ∧δ

E p−(1+δ)
n (Xn)

m1+δ
n

+
C2

n
1+δ
2 ∧δ

→ 0.

For the numerator of the second part on the left hand side of (15) we may write

n
k=1


1≤i≠j≤k−1


I(Xn,i = Xn,j)

pn(Xn,i)
− 1


= 2


1≤i<j≤n−1

(n − j)

I(Xn,i = Xn,j)

pn(Xn,i)
− 1


.

Moreover,

E

 
1≤i<j≤n−1

(n − j)

I(Xn,i = Xn,j)

pn(Xn,i)
− 1

2

=


1≤i<j≤n−1

(n − j)2 E

I(Xn,i = Xn,j)

pn(Xn,i)
− 1

2

,

since the expectations of the other terms resulting from squaring the large-bracketed first expression above are equal to
zero. Consequently

E

 
1≤i<j≤n−1

(n − j)

I(Xn,i = Xn,j)

pn(Xn,i)
− 1

2

= (mn − 1)


1≤i<j≤n−1

(n − j)2

≤ C mnn4

and thus for the squared expectation of the second term in (15) we get

E


n

k=1


1≤i≠j≤k−1


I(Xn,i=Xn,j)
pn(Xn,i)

− 1


n(n−1)
2 (mn − 1)


2

≤ C m−1
n → 0.

Note that here we used the fact thatmn → ∞. To finish the proof we only need to show (A.5). Again we will rely on the
representation of Yn,k given in (14). Note that

E
Yn,k

2+δ
≤ Cn−(2+δ)m

−


1+ δ

2


n E

p−(2+δ)
n (Xn,k)

 k−1
j=1

(I(Xn,j = Xn,k) − pn(Xn,k))


2+δ
 .

Since I(Xn,j = Xn,k) − pn(Xn,k), j = 1, . . . , k − 1, are conditionally i.i.d. given Xn,k and

E((I(Xn,j = Xn,k) − pn(Xn,k))|Xn,k) = 0
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then by conditioning with respect to Xn,k and applying Rosenthal’s inequality (see (B.1) in the appendix) to the conditional
moment of the sum we obtain

n
k=1

E
Yn,k

2+δ
≤

C

n2+δm
1+ δ

2
n

n
k=1

E

p−(2+δ)
n (Xn)


(k − 1)pn(Xn) + [(k − 1)pn(Xn)]

1+ δ
2



≤ C


n−δm

−


1+ δ

2


n E p−(1+δ)

n (Xn) + n−
δ
2 m

−


1+ δ

2


n E p

−


1+ δ

2


n (Xn)


. (16)

By virtue of the Schwartz inequality we obtain that

n−
δ
2 m

−


1+ δ

2


n E p

−


1+ δ

2


n (Xn) = n−

δ
2 m

−


1+ δ

2


n E p

−
1
2

n (Xn) p
−

1+δ
2

n (Xn)

≤ n−
δ
2


m−(1+δ)

n E p−(1+δ)
n (Xn) → 0

in view of (11). Therefore, it only suffices to show that the first term in the last expression in (16) converges to zero. But this
follows due to (11) and (12), since

E p−(1+δ)
n (Xn)

nδm
1+ δ

2
n

=

√
mn

n

δ E p−(1+δ)
n (Xn)

m1+δ
n

→ 0. �

3. Discussion

We will now illustrate the results of the previous section with some examples as well as put them in a broader context
of earlier work by others. For the sake of completeness, we first note

Remark 3.1 (The Case λ = 0). Consider n
√
mn

→ 0. Then the last part of the right hand side of (7) converges to zero and we
are left with the sum of non-negative random variables which satisfies

2
√
mn

n

n
k=1

An,k
P

→ 0.

To see the above, it suffices to consider the convergence of the first moments. To this end note that

2
√
mn

n

n
k=1

E An,k =
2
√
mn

n

n
k=1

k − 1
mn

=
n − 1
√
mn

→ 0.

The simple illustration of Theorem 2.2 is as follows.

Example 3.1. Let α ∈ [0, 1) and set pn(i) = (Cα iα)−1 for i = 1, . . . ,mn. Here Cα =
mn

i=1 i
−α

≃ m1−α
n /(1 − α) in view of

the general formula

mn
i=1

iβ ≃ mβ+1
n /(β + 1) for β > −1. (17)

Note that for 0 < α < 1 the condition (C) is equivalent to

n/mn → ∞ (18)

and implies (12). Applying (17) again we see that for any δ > 0

E p−(1+δ)
n (Xn)

m1+δ
n

=

Cδ
α

mn
i=1

iαδ

m1+δ
n

≃
m(1−α)δ

n m1+αδ
n

(1 − α)δ(1 + αδ)m1+δ
n

= (1 − α)−δ(1 + αδ)−1 < ∞

and therefore (11) is also satisfied. Hence, the conclusion of Theorem 2.2 holds true under (18) for 0 < α < 1.

Note that in the above example the assumption (5) of Theorem 2.1 cannot be satisfied for 0 < α < 1 (see (18)) but
can hold for α = 0, that is, when the distribution is uniform. We remark that in our present setting such distribution is of
interest, for instance, when testing for signal-noise threshold in data with large number of support points (Pietrzak et al.,
2016). Combining the results of Theorems 2.1 and 2.2 and Remark 3.1 one obtains the following.
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Corollary 3.2 (Asymptotics of χ2
n for Uniform Distribution). Assume that pn(i) = m−1

n for i = 1, 2, . . . ,mn and n = 1, 2, . . .
as well as

n/
√
mn → λ.

Then

χ2
n − mn
√
2mn

d
→


0 when λ = 0,
√
2

λ
Z −

λ
√
2
, Z ∼ Pois


λ2

2


when λ ∈ (0, ∞),

N ∼ Norm(0, 1) when λ = ∞. �

We note that the asymptotic distribution of χ2
n when both n and mn tend to infinity has been considered by several

authors, typically in the context of asymptotics of families of goodness-of-fit statistics related to different divergence
distances. Some of these results considered also the asymptotic behavior of such statistics not only under the null hypothesis
(as we did here) but also under simple alternatives and hence are, in that sense, more general. However, when applied to
the chi-square statistic under the null hypothesis they appear to be special cases of our theorems in Section 2. We briefly
review below some of the most relevant results.

Tumanyan (1954, 1956) proved asymptotic normality of χ2
n under the assumption min1≤i≤mn npn(i) → ∞ which in the

case of the uniform distribution is equivalent to n/mn → ∞, a condition obviously stronger than n/
√
mn → ∞we use (see

Corollary 3.2).
Steck (1957) generalized these results on normal asymptotics assuming among other conditions that infn n/mn > 0

which again is stronger than n/
√
mn → ∞. He also obtained the Poissonian and degenerate limit in the case of uniform

distribution, in agreementwith the first two cases in Corollary 3.2. Themain result of Holst (1972) for the chi-square statistic
gives normal asymptotics under the regime n/mn → λ ∈ (0, ∞) and max1≤j≤n pn(j) < β/n which also is stronger than
our assumptions. In the uniform case under this regime the result was proved earlier in Harris and Park (1971). The main
result of Morris (1975) for the chi-square statistics gives asymptotic normality under nmin1≤j≤n pn(j) > ϵ > 0 for all n ≥ 1,
max1≤j≤n pn(j) → 0 and the ‘‘uniform asymptotically negligible’’ condition of the form max1≤i≤mn σ 2

n (i)/s2n → 0, where
σ 2
n (i) = 2 +

(1−mnpn(i))2

npn(i)
, i = 1, . . . ,mn, and s2n =

mn
i=1 σ 2

n (i). In the case of the uniform distribution it gives asymptotic
normality of χ2

n under the condition n/mn > ϵ > 0, the result apparently weaker than the third part of Corollary 3.2.
Following the paper of Cressie and Read (1984) introducing the family of power divergence statistics (of which the chi-

square statistic is a member), much effort was directed at proving asymptotic normality for wider families of divergence
distances aswell as formore than onemultinomial independent sample, see e.g. Menéndez et al. (1998) and Pérez and Pardo
(2002) (in both papers the authors considered the regime n/mn → λ ∈ (0, ∞)) and Inglot et al. (1991) and Morales et al.
(2003) (in both papers the authors considered the regime m1+β

n log2(n)/n → 0 and mβ
n min1≤j≤n pn(j) > c > 0 for some

β ≥ 1) or Pietrzak et al. (2016) (with the regime n/mn → ∞). Note that for the asymptotic normality results all these
regimes are again more stringent than what we consider here.

Finally, for completeness, we briefly address one of the scenarios when condition (C) does not hold.

Remark 3.3. Note that if mnn
Var p−1

n (Xn)
→ 0 then the asymptotic behavior of standardized χ2

n is the same as that of Zn =n
k=1 Yn,k, where

Yn,k =
p−1
n (Xn,k) − mn
nVar p−1

n (Xn)
, k = 1, . . . , n.

Since for any fixed n ≥ 1 random variables Yn,k, k = 1, . . . , n, are i.i.d. (zero mean) and Var Yn,k = n−1 it follows that
{Yn,k, k = 1, . . . , n}n≥1 is an infinitesimal array. Therefore classical CLT for row-wise i.i.d. triangular arrays (cf., e.g., Shao,
2003, chapter 1) applies. Note also that the remaining case when mnn

Var p−1
n (Xn)

→ λ ∈ (0, ∞) appears more complicated and
requires a different approach.
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Appendix A. Limit theorems

Below, for convenience of the readers, we recall some results which are used in the proofs. The first one is found in Beśka
et al. (1982) and the second one is a version of the martingale CLT (see, e.g., Hall and Heyde, 1980).

Theorem A.1 (Poissonian Conditional Limit Theorem). Let {Zn,k, k = 1, . . . , n; n ≥ 1} be a double sequence of non-negative
random variables adapted to a row-wise increasing double sequence of σ -fields {Gn,k−1, k = 1, . . . , n; n ≥ 1}. If for n → ∞

max
1≤k≤n

E(Zn,k|Gn,k−1)
P

→ 0, (A.1)

n
k=1

E(Zn,k|Gn,k−1)
P

→ η > 0, (A.2)

and for any ϵ > 0

n
k=1

E(Zn,kI(|Zn,k − 1| > ϵ)|Gn,k−1)
P

→ 0, (A.3)

then
n

k=1 Zn,k
d

→ Z, where Z ∼ Pois(η) is a Poisson random variable.

Theorem A.2 (Lyapunov-Type Martingale CLT). Let {(Zn,k, Fn,k) k = 1, . . . , n; n ≥ 1} be a double sequence of martingale
differences. If

n
k=1

E

Y 2
n,k|Fn,k−1

 P
→ 1 (A.4)

and

n
k=1

E Y 2+δ
n,k → 0 (A.5)

then
n

k=1 Zn,k
d

→ N, where N ∼ Norm(0, 1) is a standard normal random variable.

Appendix B. Moment inequalities

The following moment inequalities are used in Section 2.

Rosenthal inequality
Rosenthal (1970). If X1, . . . , Xn are independent and centered random variables such that E|Xi|

r < ∞, i = 1, . . . , n and
r > 2 then

E

 n
i=1

Xi


r

≤ Cr max

 n
i=1

E|Xi|
r ,


n

i=1

E X2
i

 r
2


≤ Cr

 n
i=1

E|Xi|
r
+


n

i=1

E X2
i

 r
2
 . (B.1)

MZ–BE inequality
Marcinkiewicz and Zygmund (1937) for r ≥ 2, von Bahr and Esseen (1965) for 1 ≤ r ≤ 2. If X1, . . . , Xn are independent

and centered random variables such that E|Xi|
r < ∞, i = 1, . . . , n then for r > 1

E

 n
i=1

Xi


r

≤ Cr nr∗
n

i=1

E|Xi|
r , (B.2)

where r∗ = 0 ∨
 r
2 − 1


.
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