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Linearity of regression for weak records, revisited
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ABSTRACT
Since many years characterization of distribution by linearity of regres-
sion of non-adjacent weak records E(Wi+s|Wi) = β1Wi + β0 for discrete
observations has been known to be a difficult question. López-Blázquez
[Linear prediction ofweak records. The discrete case. Theory Probab Appl.
2004;48(4):718–723] proposed an interesting idea of reducing it to the adja-
cent case and claimed to have the characterization problem completely
solved. We will explain that, unfortunately, there is a flaw in the proof
given in that paper. This flaw is related to fact that in some situations the
operator responsible for reduction of the non-adjacent case to the adja-
cent one is not injective. The operator is trivially injective when β1 ∈ (0, 1).
We show that when β1 ≥ 1 the operator is injective when s= 2,3,4. There-
fore in these cases the method proposed by López-Blázquez is valid. We
also show that the operator is not injective when β1 ≥ 1 and s ≥ 5. Con-
sequently, in this case the reduction methodology does not work and thus
the characterization problem remains open.
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1. Introduction

The issue of characterization of the common distribution of a sequence (Xn)n≥1 of iid variables by
linearity of regression of records E(Rm |Rn) = β1Rn + β0 for m �= n has attracted the attention of
researchers since the seventies in the last century, when Nagaraja [1], assuming that the common dis-
tribution of Xn’s is continuous and following methods developed by Ferguson [2] for order statistics,
characterized the triplet of exponential, power and Pareto type distributions in the casem=n+1. In
Nagaraja [3] the case m=n−1 for continuous distribution was solved by reducing the problem to
the one for order statistics. As a result another triplet of distributions was characterized. The char-
acterization in the case m=n+2 was done in [4] through reducing the problem to second-order
ordinary differential equation and a careful look at its probabilistic solutions. The characterization
issue for continuous distributions was finally resolved in the general case of linearity of regression
for non-adjacent records in [5] by using integrated Cauchy functional equation in case m>n and
in case m<n by reducing the problem to an analogous problem for order statistics, the latter being
solved by a similarmethod earlier in [6]. Since that time the case of continuous parent distribution has
been studied further, for example, for generalized order statistics and for other patterns of regression
functions. For these and related issues see, for example, [7–16].

In the case of discrete distribution instead of records (Rn), which are defined through a strict
inequality, it is more natural to consider weak records (Wn), which are defined by ‘≥ ’ relation. That
is, a repetition of the last weak record is the next weak record, while for regular records repetitions
of records are discarded. In this case, the issue of characterization of the distribution of Xn’s through
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linearity of regression E(Wm |Wn) = β1Wn + β0 form �= n seems not to be related to the methods
developed in the continuous case. In particular, under natural assumption that the support of the
common law of Xn’s is a set of the form {0, 1, . . . ,N} with N ≤ ∞ we see that in the case of m<n,
due to monotonicity of (Wn) sequence, we have β0 = 0. To the best of our knowledge, under this
assumption (m<n) the characterizationwas obtained only in two special cases:E(W1 |W2) = β1W2
for β1 > 0 in [17] and E(Wm |Wn) = (m/n)Wn in [18].

For the casem>n the characterization of distribution of Xn’s was first given in [19] form=n+1
with an improvement in [20] – see also related papers [21–23]. The case m=n+2 for β1 = 1 was
considered in [24] and for general β1 in [20], where an approach via solution of a nonlinear difference
equation was applied. In this way a triplet of geometric and negative hypergeometric distributions of
the first and second kind was characterized. For the general case m>n, López-Blázquez in [25] (we
refer to this paper by LB in the sequel) proposed an intriguing idea of reduction of the problem to
the adjacent case ofm=n+1, for which the solution has been already known. However, as it will be
explained below, this interesting approach is not as universal as it is claimed in that paper. It appears
that there are some inaccuracies in the proof in the case β1 ≥ 1, that is when N = ∞. When we
encountered these inaccuracies we were rather confident that it would be possible to overcome them
while preserving this brilliant idea of reduction to the adjacent case m=n+1. As we will see, this
can be done only if 0 < m − n ≤ 4. Unfortunately, for higher distances between m and n the idea
introduced in LB does not work. Therefore the characterization in the casem>n+4 and β1 ≥ 1 still
remains an open problem.

Finally, let us mention that the issue of characterization of discrete distributions by linearity of
regression of ordinary records E(Rm |Rn) = β1Rn + β0 has also been considered in the literature.
If m>n only characterizations of tails o distribution were eventually obtained, see, for example,
[26–32]. If m<n no elegant characterization seems to be possible, see [18], except the case m= 1,
n= 2, see [17,33].

2. Passing from the non-adjacent case to the adjacent one is problematic

We consider a sequence (Xn) of iid random variables having the common distribution p = (pk)
supported on {0, 1, . . . ,N}, N ≤ ∞. That is, pk = P(X1 = k), and we also write qk = P(X1 ≥ k),
k = 0, 1, . . . ,N. For such a sequence,we consider the respective sequence ofweak records (Wn)which
is defined as follows: LetT1 = 1 andTn = inf{k > Tn−1 : Xk ≥ XTn−1 ,n> 1. ThenWn = XTn ,n ≥ 1.
The joint distribution of the first n weak records can be easily derived as

P(W1 = k1, . . . ,Wn = kn) = pkn
n−1∏
j=1

pkj
qkj

, 0 ≤ k1 ≤ · · · ≤ kn.

Weak records were introduced in [34] and since then are one of the basic models for ordered
discrete random variables. Their basic properties can be found in any monograph on records, for
example, Ch. 2.8 of [35], Ch. 16 of [36] or in Ch. 6.3. of relatively recent monograph [37]. It is well-
known that weak records form a homogeneous Markow chain with the transition probability of the
form

P(Wn = kn |Wn−1 = kn−1) = pkn
qkn−1

, kn ≥ kn−1 ≥ 0.

Therefore, form<n

P(Wn = kn |Wm = km) =
∑

km≤km+1≤···≤kn−1≤kn

n−1∏
i=m

pki+1

qki
, kn ≥ km ≥ 0.

For fixed positive integers i,swe will be interested in conditional expectationE(Wi+s |Wi). There-
fore we need to assume that p is such that this conditional expectation is finite. Since the conditional
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distribution of Wi+s |Wi does not depend on i, we will denote the set of distributions p for which
E(Wi+s |Wi) is finite byMs.

Let us consider a family Cs of discrete distributions p = (pk)k≥0 ∈ Ms, concentrated on
{0, 1, 2, . . . ,N} (N ≤ ∞) with property that if the common law of iid random variables (Xn)n≥1
belongs to Cs then the regression of weak records E(Wi+s |Wi) is linear. It is known that C1 ⊆ Cs
for all s ≥ 1. We are interested in the opposite inclusion. In LB it is claimed that the opposite implica-
tion holds true, however the proof of this inclusion given in there is not correct. We will explain why
it is not correct, then improve the method proposed in LB to show that the inclusion holds true for
s= 2,3,4 and finally we will show that the method fails for s ≥ 5.

Before we state the result from LB we need to introduce some notation. Let v = (v(0), v(1), . . . ,
v(N)) ∈ C

N+1 (for N = ∞, v = (v(0), v(1), . . .)). Let us define a linear operator:

A : D(A) −→ C
N+1; Av(l) = 1

ql

N∑
k=l

v(k)pk, l = 0, 1, . . . ,N,

where

D(A) =
{
v ∈ C

N+1 :
N∑
k=0

|v(k)|pk < ∞
}
.

We also define the domain of composition of operator A with itself since we will need that later
on:

D(Am) = {v ∈ D(A) : Akv ∈ D(A) for k = 1, . . . ,m − 1} form ≥ 2,

where

A0v = v and Amv = A(Am−1v) form ≥ 1.

Below we present matrix representation of the operator A (which is an infinite matrix when
N = ∞):

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p0 p1 p2 . . . pN

0
p1
q1

p2
q1

. . .
pN
q1

0 0
p2
q2

. . .
pN
q2

...
...

...
. . .

...

0 0 0 . . .
pN
qN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Note that A is an upper-triangular matrix with non-zero diagonal entries. Let em(l) =
E(Wi+m |Wi = l). Then, directly from the form of the conditional distribution it follows that

em+1 = Aem form = 1, 2, . . . (1)

In particular em is in the domain of A, given that em+1 exists. Now we can state the theorem
proposed in LB.

Theorem 2.1: Let X be a random variable with discrete distribution with support {0, 1, 2, . . . ,N}
(N ≤ ∞). Let (Wn) be the sequence of weak records built on a sequence (Xn) of iid random variables
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having the same distribution as X. Assume that for some i, s ≥ 1

E(Wi+s |Wi) = β0 + β1Wi, (2)

where β0,β1 ∈ R. Then β0,β1 > 0. Let γ0, γ1 be unique solutions of

β1 = γ s
1 , β0 = γ0

1 − γ s
1

1 − γ1
. (3)

Then

(1) if 0 < β1 < 1, then γ0/(1 − γ1) ∈ N

X ∼ nhI
(
1,

γ1

1 − γ1
,

γ0

1 − γ1

)
,

(2) if β1 = 1, then

X ∼ geo
(

1
1 + γ0

)
,

(3) if β1 > 1, then

X ∼ nhII
(
1,

γ0 + 1
γ1 − 1

,
γ0

γ1 − 1

)
.

The symbols of distributions above have the following meaning: nhI is for the negative hyperge-
ometric distribution of the first kind, geo is for the geometric distribution, nhII is for the negative
hypergeometric distribution of the second kind (more details on nhI and nhII laws can be found, e.g.,
in [20]).

We will now recall basic steps in the proof given in LB. Observe, that since es(l) = E(Wi+s |Wi =
l) is strictly increasing, we have β1 > 0 and β0 = es(0) > 0. Let γ0, γ1 be unique solutions of (3). Now,
form = 1, . . . , s we define dm through the equality

em(j) = γ0
1 − γm

1
1 − γ1

+ γm
1 j + dm(j), j = 0, 1, . . . ,N. (4)

Directly from the definition of dm and the assumption that es exists we obtain that dm is in the
domain of A for m = 1, . . . , s − 1. From Equation (2) we have that ds = 0. After easy algebra we
obtain

dm+1 = γm
1 d1 + Adm, m = 1, . . . , s − 1. (5)

From Equation (5) we can obtain that dm is in the domain of A2 for m = 1, . . . , s − 1 and by
iterating (5) we get that d1 is in the domain of As−1. This can be iterated and, consequently,

dm = Bmd1, m = 1, . . . , s, where Bm =
m−1∑
k=0

γm−1−k
1 Ak. (6)

Let us note that A and, consequently, Bm depends on the unknown distribution p = (pn)n≥0. To
emphasize this fact, sometimes we will write B(p)

m instead of Bm.
At this stage of argument we read in LB:
Note that Bm is an upper-triangular matrix with non-zero diagonal entries; then Bm has an inverse

(even in the infinite case)
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This is why, besides the case N < ∞ (equivalent to γ1 ∈ (0, 1)), the proof is incorrect. The above
statement is false in the case N = ∞ (that is γ1 ≥ 1). Infinite matrices represent linear operators
between linear spaces. In general such transformations, which are represented by infinite upper-
triangular matrices with non-zero diagonal entries, do not have to be invertible and even injective.
As an example consider a linear transformation B : R

∞ → R
∞ represented by the matrix

B = [bij]∞i,j=0; bij =
{
1 for i = j or j = i + 1,
0 otherwise.

Obviously, B is an upper-triangular matrix with non-zero diagonal entries. Let v = (1,−1,
1,−1, . . .). Then Bv= 0 and thus B is not injective inR

∞, consequently, it cannot be invertible. How-
ever, if we considerB as a linear operator on the space of sequences convergent to 0, thenB is invertible
with B−1 being also upper-triangular with nth row of the form (0, . . . , 0, 1,−1, 1,−1, . . .), where the
first 1 is at the position n, n ≥ 1.

In the next section we will discuss in detail injectivity of the operator Bs defined in Equation (6),
which is of crucial importance since the rest of the argument from LB lies in plugging m= s in
Equation (6). Since, as it was observed before, ds = 0, it follows that

B(p)
s d1 = 0.

So if B(p)
s was injective for any p ∈ Ms we would get d1 = 0 and, consequently,

e1(j) = γ0 + γ1j for j = 0, 1, . . . ,N.

That is, the crucial problem for validity of the proof as suggested in LB is a question of injectivity
of B(p)

s for any p ∈ Ms.

3. Is the operator B(p)
s injective?

In this section we will show how injectivity of B(p)
s defined on D(B(p)

s ) = D(As−1) depends on s. Let
us recall that we are considering here only such distributions p for which E(Wi+s |Wi) < ∞ and, as
it has already been mentioned, this condition depends only on s and not on i. First, we will consider
operators with domains being subsets of C

∞ = {(x0, x1, . . .) : xk ∈ C}, the linear space of sequences
of complex numbers.

Theorem 3.1: Let B(p)
s be the operator defined by Equation (6) with N = ∞ on a domain D(B(p)

s ) ⊂
C

∞. Then B(p)
s is injective for any distribution p ∈ Ms iff s ∈ {2, 3, 4}.

Proof: Since
∑s−1

k=0 z
k = ∏s−1

k=1(z − λk), where λk = cos(2kπ/s) + i sin(2kπ/s), k = 1, . . . , s − 1,
s ≥ 2, we can represent the operator Bs in the following way

Bs =
s−1∏
k=1

(A − γ1λkI), (7)

where I is the identity operator. Thus if γ1λ� is an eigenvalue of A for some � = 1, 2, . . . , s − 1, then
Bs is not injective. Indeed, if x� ∈ D(Bs) is a respective non-zero eigenvector of γ1λ�, then (note that
(A − γ1λjI) and (A − γ1λkI) commute)

Bsx� =

⎡
⎢⎢⎣

s−1∏
k=1
k�=�

(A − γ1λkI)

⎤
⎥⎥⎦ (A − γ1λ�I)x� = 0.

Consequently, Bs is not injective.
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Assume now that none of γ1λ�, � = 1, 2, . . . , s − 1 is an eigenvalue of A. Then Bs is a composition
of injective operators, so Bs must also be injective.

Finally, we conclude that Bs is injective if and only if all γ1λ�, � = 1, 2, . . . , s − 1, are not
eigenvalues of A.

Wewill now examine eigenvalues ofAwhich are of the formλ = γ1λ�. Letλ ∈ C, x ∈ D(A), x �= 0,
be such that Ax = λx which is equivalent to

∞∑
j=i

pjxj = λxiqi ∀i ≥ 0. (8)

After subtracting the equality for i and i+1 sidewise we obtain

xipi = λ(xiqi − xi+1qi+1).

Hence we have

xi+1 = λqi − pi
λqi+1

xi ∀i ≥ 0.

Expanding this recursion gives

xi+1 = λqi − pi
λqi+1

λqi−1 − pi−1

λqi
· · · λq0 − p0

λq1
x0 ∀i ≥ 0.

We assumed that x ∈ D(A) and x �= 0 which now, given the expression above and (8) for i= 0,
implies

λ is an eigenvalue of A ⇐⇒
∞∑
k=1

|bk(λ)|pk < ∞ and 0 = p0 − λq0 +
∞∑
k=1

bk(λ)pk, (9)

where

bk(λ) =
k−1∏
i=0

λqi − pi
λqi+1

.

Let us denote

Sn(λ) =

⎧⎪⎨
⎪⎩
p0 − λq0 for n = 0

p0 − λq0 +
n∑

k=1

bk(λ)pk for n ≥ 1
and S∗

n(λ) =
n∑

k=1

|bk(λ)|pk.

By an easy induction argument we obtain the following product representation of Sn(λ) for n ≥ 1

Sn(λ) = (p0 − λq0)
n∏

k=1

λqk − pk
λqk

= (p0 − λq0)
n∏

k=1

(
1 − ck

λ

)
, where ck = pk

qk
∈ (0, 1).

As observed in Equation (9), we have to consider the situation when limn→∞ S∗
n(λ) < ∞ and

limn→∞ Sn(λ) = 0. Note that

lim
n→∞ Sn(λ) = 0 ⇐⇒ lim

n→∞ |Sn(λ)|2 = 0 ⇐⇒ lim
n→∞ |p0 − λq0|2

n∏
k=1

∣∣∣1 − ck
λ

∣∣∣2 = 0.
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Since λ = γ1λ� for some � = 1, . . . s − 1, p0 − λ �= 0. Furthermore, we observe that 1/λ� = λ̄� =
λs−�. Consequently

lim
n→∞ Sn(γ1λ�) = 0 ⇐⇒

∞∏
k=1

∣∣∣∣1 − λs−�

γ1
ck

∣∣∣∣2 = 0.

Since the single factor in the product has the form

∣∣∣∣1 − λs−�

γ1
ck

∣∣∣∣2 = 1 − 2
ck
γ1

cos
(
2(s − �)π

s

)
+
(
ck
γ1

)2
= 1 − 2

ck
γ1

cos
(
2�π
s

)
+
(
ck
γ1

)2
,

we see that for all k ≥ 1 it assumes the minimum for � = 1. With that and Equation (9) in mind, we
can conclude that γ1λ1 is not an eigenvalue iff γ1λ� are not eigenvalues for any � = 1, 2, . . . , s − 1
which leads to

B(p)
s is not injective ⇐⇒

∞∏
k=1

∣∣∣∣1 − λ1

γ1
ck

∣∣∣∣2 = 0 and lim
n→∞ S∗

n(γ1λ1) < ∞. (10)

Thus we need to examine if the condition

0 =
∞∏
k=1

(
1 − 2

ck
γ1

cos
(
2π
s

)
+
(
ck
γ1

)2
)

︸ ︷︷ ︸
ak,s

is satisfied.
Note that

• ak,2 = 1 + 2(ck/γ1) + (ck/γ1)2 > 1,
• ak,3 = 1 + ck/γ1 + (ck/γ1)2 > 1,
• ak,4 = 1 + (ck/γ1)2 > 1.

Thus, in these three cases the above condition does not hold. Consequently, for any distribution p
the operator B(p)

s is injective for s= 2,3,4.
Now consider s ≥ 5 and a geometric distribution p with parameter p ∈ (0, 1). We choose the

parameter p in such a way that cos(2π/5) > p/2. Note that for geometric distribution ck = p, k =
1, 2, . . . Then

2 cos
(
2π
s

)
≥ 2 cos

(
2π
5

)
> p ≥ p

γ1
,

and thus

2
p
γ1

cos
(
2π
s

)
>

(
p
γ1

)2
,

which yields

1 > 1 − 2
p
γ1

cos
(
2π
s

)
+
(

p
γ1

)2

︸ ︷︷ ︸
ak,s

= const.
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Furthermore

S∗
n(γ1λ1) =

n∑
k=1

k−1∏
i=0

∣∣∣∣γ1λ1qi − pi
γ1λ1qi+1

∣∣∣∣ pk =
n∑

k=1

q0pk
qk

k−1∏
i=0

∣∣∣∣γ1λ1qi − pi
γ1λ1qi

∣∣∣∣
= p

n∑
k=1

k−1∏
i=0

√
ak,s = p

n∑
k=1

(
√
a1,s)k.

Since ak,s = a1,s < 1, we obtain that limn→∞ S∗
n < ∞. Therefore Equation (10) yields that in the

case of geometric distribution p with the parameter p satisfying the inequality as above B(p)
s for s ≥ 5

is not injective. �

In Theorem 3.1 we examined injectivity of B(p)
s with domainD(B(p)

s ) ⊂ C
∞, but for the purposes

of the problemwe should only consider the injectivity or its lack onD(B(p)
s ) ∩ R

∞. Of course, injectiv-
ity onD(B(p)

s ) ⊆ C
∞ implies injectivity onD(B(p)

s ) ∩ R
∞. Consequently, it follows fromTheorem3.1

that for any p the operator B(p)
s is injective in D(B(p)

s ) ∩ R
∞ for s= 2,3,4. The opposite implication

may not be true in general but in the case we consider it turns out that it holds.

Theorem 3.2: For any p the operator B(p)
s is injective on D(B(p)

s ) ∩ R
∞ iff s ∈ {2, 3, 4}.

Proof: As already mentioned the implication ‘⇐’ is an immediate consequence of the same implica-
tion from Theorem 3.1.

We will prove the opposite implication by contradiction, that is, we will show that there exists a
distribution p such that for s ≥ 5 the operator B(p)

s is not injective in D(B(p)
s ) ∩ R

∞. Let s ≥ 5 and
p = (pk)∞k=0 be geometric distribution with parameter p ∈ (0, 1) such that cos(2π/5) > p/2. Then,
from the proof of Theorem 3.1, we obtain that γ1λ1, γ1λ̄1 are eigenvalues of A. We denote a non-
zero eigenvector attached to λ = γ1λ1 by x = (x0, x1, . . .) and the vector with conjugate entries by
x̄ = (x̄0, x̄1, . . .).

We will first note that x cannot be of the form x = iy for a vector y ∈ R
∞. Indeed, in such a case

we would have Ay = λy which is impossible since λ is not a real number.
Note that x̄ is an eigenvector of A attached to the eigenvalue λ̄, because

Ax̄ = Ax = λx = λ̄x̄,

where the first equality holds since A is a matrix with real entries. Consider

B(p)
s x =

s−1∏
k=1

(A − γ1λkI)x.

Now, due to the fact that (A − γ1λkI) and (A − γ1λ�I) commute, we obtain:

B(p)
s x =

(s−1∏
k=2

(A − γ1λkI)

)
(A − γ1λ1I)x =

s−1∏
k=2

(A − γ1λkI)0 = 0.

The fact that λ̄1 = λs−1 and that x̄ is an eigenvector of A respective to λ̄ yield

B(p)
s x̄ =

s−2∏
k=1

(A − γ1λkI)(A − γ1λs−1I)x̄ =
s−2∏
k=1

(A − γ1λkI)0 = 0.
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Fix z = x + x̄ ∈ R
∞. Note that z �= 0, because as it has already been observed, x cannot have all

entries which are purely imaginery. Finally,

B(p)
s z = B(p)

s (x + x̄) = B(p)
s x + B(p)

s x̄ = 0.

Hence B(p)
s is not injective in D(B(p)

s ) ∩ R
∞ for s ≥ 5. �

4. Conclusion

The above considerations on injectivity of B(p)
s lead to the following correction to the result proposed

in LB and recalled in Theorem 2.1.

Proposition 4.1: The assertion of Theorem 2.1 holds true when γ1 < 1 (that is, N < ∞) for any s ≥ 1.
For γ1 ≥ 1 (that is, N = ∞) the assertion of Theorem 2.1 holds true for s ∈ {1, 2, 3, 4}.

Proof: It is well known (see Section 1) that the result for s= 1 holds true. The proof in the case
γ1 < 1 (which implies N < ∞) given in LB is correct since in this case the operator B(p)

s is invertible
for any s ≥ 2. For γ1 ≥ 1 (which implies N = ∞) due to Theorem 3.2 we have injectivity of B(p)

s for
s ∈ {2, 3, 4} therefore the method of the proof proposed in LB is correct and thus the respective part
of the assertion from Theorem 2.1 holds true. �

Finally, let us emphasize that for β1 ≥ 1 and s ≥ 5 it follows fromTheorem 3.1 thatB(p)
s may not be

injective for some distributions p ∈ Ms, even such that appear in the conclusion of Theorem 2.1 (the
geometric law was identified as such in the proof of Theorem 3.1) and thus the argument used in LB
is no longer valid. Therefore the problem of characterization of the parent distribution of the sequence of
iid observations from the discrete distribution by the condition E(Wi+s |Wi) = β1Wi + β0 for β1 ≥ 1
and s ≥ 5 remains open !
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