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ABSTRACT
Allocation of samples in stratified and/or multistage sampling is one of
the central issues of sampling theory. In a survey of a population often
the constraints for precisionof estimators of subpopulationsparameters
have to be taken care of during the allocation of the sample. Such issues
are often solved with mathematical programming procedures. In many
situations it is desirable to allocate the sample, in a way which forces
the precision of estimates at the subpopulations level to be both: opti-
mal and identical, while the constraints of the total (expected) size of
the sample (or samples, in two-stage sampling) are imposed. Here our
main concern is related to two-stage sampling schemes. We show that
such problem in a wide class of sampling plans has an elegant mathe-
matical and computational solution. This is done due to a suitable defi-
nition of the optimization problem, which enables to solve it through a
linear algebra setting involving eigenvalues and eigenvectors of matri-
ces defined in terms of some population quantities. As a final result, we
obtain a very simple and relatively universal method for calculating the
subpopulationoptimal andequal-precision allocationwhich is basedon
one of the most standard algorithms of linear algebra (available, e.g.,
in R software). Theoretical solutions are illustrated through a numeri-
cal example based on the Labour Force Survey. Finally, we would like to
stress that the method we describe allows to accommodate quite auto-
matically for different levels of precision priority for subpopulations.

1. Introduction

Consider a populationU partitioned into subpopulationsU1, . . . ,UJ , i.e.,U = ⋃J
j=1 Ui and

Ui ∩Uj = ∅ for i �= j, i, j = 1, . . . , J. Assume that we are interested in estimation ofmeans of
a variable Y in all subpopulations. In eachUi a sample of ni elements, i = 1, . . . , J, is chosen
according to simple random sampling without replacement (SRSWOR). Assume additionally
that the size of the total sample n = n1 + . . . + nJ is fixed. A natural requirement is to allocate
the sample among subpopulations in such a way that the precision (here and throughout the
paper understood as coefficients of variation, CVs) of the estimators in each of the subpopula-
tions are the same. Throughout this paper by equal-precision, we alwaysmean equal-precision
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in subpopulations. That is, we want to have

Tj =
(
1
nj

− 1
Nj

)
γ 2
j = const =: T for all j = 1, . . . , J,

where γ j is the CV of Y inUj and Nj = #Uj, j = 1, . . . , J. Expressing nj in terms of Tj, j =
1, . . . , J, the constraint on the size of the total sample n = n1 + . . . + nJ gives the equation

n =
J∑

j=1

Njγ
2
j

γ 2
j + TNj

with unknown T . It is easy to see that the above equation has a unique solution, which can be
easily computed numerically (however, no analytical explicit formula is available). Obviously,
such a solution, T ∗, gives the optimal allocation nj = Njγ

2
j

γ 2j +T∗Nj
, j = 1, . . . , J – for more details

see, e.g., Lednicki and Wesołowski (1994).
On the other hand, if one imposes requirements on CVs of estimators in subpopulations,

i.e. whenTj, j = 1, . . . , J, are given (not necessarily identical) there is no freedom in the sense
that they determine uniquely the total sample size. If instead one assumes only the restriction
that CVs of domain mean estimators are bounded from above by (possibly) different con-
straints Tj, j = 1, . . . , J, the minimization of the total sample size is a valid question. It has
been solved recently (with additional constraint on the CV of the estimator of the population
mean) for stratified SRSWOR by Choudhry et al. (2012) through a non linear programming
(Newton–Raphson) procedure. These authors followed earlier application of such procedures
to optimal allocation of the sample among strata for the populationmeans estimation in mul-
tivariate setting as proposed in Huddlestone et al. (1970) and Bethel (1989) (see also Ch. 12.7
in Särndal et al., 1992). For an alternative numerical method (Nelder–Mead simplex method)
used to sample allocation (and strata construction) undermultivariate setting, where subpop-
ulations were also taken under account, see Lednicki and Wieczorkowski (2003).

In an allocation problem for stratified two-stage sampling, when only the optimality of the
estimator for the population as a whole is considered, traditionally a single constraint based
on the expected total cost is imposed – see, e.g., Ch. 2.8 in Särndal et al. (1992) or Ch. 10.9
and Ch. 10.10 in Cochran (1977). Such issues were also considered more recently – see, e.g.,
Clark and Steel (2000), Khan et al. (2006) and Clark (2009), and references therein. From the
practical point of view, the total cost of the two-stage survey may be difficult to model; there-
fore, alternatively, constraints in terms of (expected) total sizes of SSUs (secondary sampling
units) and PSUs (primary sampling units) may be imposed. Under such constraints, we are
interested in the allocation of PSUs and SSUs which guarantees optimal and equally precise
estimators of means in all the domains. We allow stratification on both stages and propose
quite general approach to the problem which is valid not only for simple random sampling
without replacement in strata. Suitable definition of theminimization issue allows to reduce it
to an eigenproblem for a rank-two perturbation of a diagonalmatrix. Such an approach, in the
context of allocation of samples, was for the first time proposed in Niemiro and Wesołowski
(2001) (denoted NW in the sequel), where stratification was allowed only either at the first
or at the second stage with SRSWOR on both stages only. Moreover, some technical condi-
tions were required in that paper, which allowed to use the famous Perron–Frobenius the-
orem in the proof of the main result. Such approach was applied in agricultural surveys in
Kozak (2004) and in a forestry survey in Kozak and Zieliński (2005). Also it has been slightly
developed theoretically by allowing CVs in domains to be of the form κ jT , j = 1, . . . , J, with
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known coefficients (levels of priority) κ j, j = 1, . . . , J, and unknown optimal T , in Kozak
et al. (2008).

The eigenvalue–eigenvector solutionwe present here is quite universal. In particular, it cov-
ers also classical Neyman optimal allocation as a boundary case of J = 1, i.e., the case of one
subpopulation (see, e.g., Särndal et al., 1992, Ch. 3.7.3), or related solution in the two-stage
sampling (see, e.g., Särndal et al., 1992, Ch. 12.8.1). It includes also equal-precision allocation
derived in Lednicki andWesołowski (1994). Though these issues are rather standard andwell-
understood, as far as we know, they have never been embedded into and eigenproblem setting.
Nevertheless, our main concern here is two-stage sampling schemes. The point of departure
for the present paper is that of NW, where optimal equal-precision allocation was consid-
ered in two special cases of two-stage sampling: (1) stratified SRSWOR at the first stage and
SRSWOR at the second, (2) SRSWOR at the first stage and stratified SRSWOR at the second.
In that paper, eigenproblem approach together with the Perron–Frobenius theory of positive
matrices were used. Here we develop a similar approach (though we go beyond the Perron–
Frobenius theory) to a wider class of two-stage sampling schemes and with less restrictive
requirements for the population characteristics. It is given in Section 3, where an eigenvalue–
eigenvector solution of a general minimization problem leads to optimal and equal-precision
estimators in subpopulations for some stratified sampling plans. Section 2 is a kind of a
warm-up: the proposed method is introduced in rather standard settings of single-stage sam-
pling. A numerical example comparing the eigenvalue–eigenvector allocation with the stan-
dard one in the Polish Labour Force Survey (LFS) is discussed in Section 4. Conclusions,
involving incorporation of different levels of priority in the proposed method, are given in
Section 5.

2. Equal-precision optimal allocation in single-stage sampling

In this section, we consider single-stage stratified simple random sampling. Themain purpose
of this section is to give a friendly introduction to the approach via eigenvalues and eigenvec-
tors, since in this case the proofs are less complicated than in the case of two-stage sampling.
It also confirms relative universality of such purely linear-algebraic solution to the allocation
problem, when the constraint of equal-precision is imposed. Nevertheless, in a single-stage
setting one can use alternatively a direct numerical method as described in Remarks 2.2 or
a combination of the direct numerical approach and the Neyman optimal allocation method
as explained in 2.3. We would like to emphasize that such approaches are not possible in the
two-stage setting considered in Section 3.

We start with a general minimization problem, which, as we show, can be treated through
linear algebra methods.

2.1. Minimization problem - generalities

Consider strictly positive numbers: c j, Aj,h, h = 1, . . . ,Hj, j = 1, . . . , d and x. Denote

a = (a j, j = 1, . . . , d) = 1√
x

⎛⎝ Hj∑
h=1

√
Aj,h, j = 1, . . . , d

⎞⎠ , c = (c j, j = 1, . . . , d).

(1)
Let

D = aaT − diag(c). (2)



COMMUNICATIONS IN STATISTICS—THEORY ANDMETHODS 2215

Theorem 2.1. Assume that D as defined in (2) has the unique simple positive eigenvalue λ and
let v = (v1, . . . , vd ) be a respective eigenvector. Then the problem of minimization of

T =
Hj∑
h=1

Aj,h

x j,h
− c j, j = 1, . . . , d, (3)

where x j,h > 0, h = 1, . . . ,Hj, j = 1, . . . , d, under the constraint

d∑
j=1

Hj∑
h=1

x j,h = x, (4)

where x is a given positive number, has the solution

x j,h = x
v j
√
Aj,h∑d

k=1 vk
∑Hk

g=1
√
Ak,g

.

Moreover, T = λ, the unique positive eigenvalue of matrix D.

Proof. For x = (x j,h, h = 1, . . . ,Hj, j = 1, . . . , d) consider the Lagrange function

F(T, x) = T +
d∑
j=1

μ j

⎛⎝ Hj∑
h=1

Aj,h

x j,h
− c j − T

⎞⎠+ μ

d∑
j=1

Hj∑
h=1

x j,h.

Differentiate with respect to x j,h to get equations for stationary points

∂ F
∂ x j,h

= μ − μ j
A j,h

x2j,h
= 0.

Therefore, μ/μ j > 0 and

x j,h =
√

μ j

μ

√
Aj,h, h = 1, . . . ,Hj, j = 1, . . . , d.

Plugging it to (4) we obtain

x =
d∑
j=1

v j

Hj∑
h=1

√
Aj,h, (5)

where v j = √
μ j/μ, j = 1, . . . , d. Now the constraint (3) gives

Hj∑
h=1

√
Aj,h − c jv j = Tv j, j = 1, . . . , d.

By (5) it can be written as

1
x

⎛⎝ d∑
k=1

vk

Hk∑
g=1

√
Ak,g

⎞⎠ Hj∑
h=1

√
Aj,h − c jv j = Tv j, j = 1, . . . , d.

Alternatively, it can be written as

D v = T v,

where the matrixD is defined in (2). That is 0 < T = λ is the unique positive eigenvalue and
v is the eigenvector related to T .
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To show that the eigenvector v attached to the eigenvalue λ has all coordinates of the same
sign we use the celebrated Perron–Frobenius theorem: If A is a matrix with all strictly positive
entries then there exists a simple positive eigenvalueμ such thatμ ≥ |ν| for any other eigenvalue
ν of A. The respective eigenvector (attached to μ) has all entries strictly positive (up to scalar
multiplication) – see, e.g., Kato (1981), Th. 7.3 in Ch. 1.

Fix a number α > max1≤ j≤J c j > 0. The matrixD + αI, where I is the identity matrix, has
all entries strictly positive. For any eigenvalue δ j of D and respective eigenvector w j

(D + αI)w j = (δ j + α)w j, j = 1, . . . , d.

That is, δ j + α, andw j, j = 1, . . . , d, are respective eigenvalues and eigenvectors of thematrix
D + αI. By the Perron–Frobenius theorem, there exists j0 such that δ j0 + α ≥ |δ j + α| for any
j and respective eigenvectorw j0 has all entries of the same sign. Consequently, δ j0 + α ≥ δ j +
α, and thus δ j0 ≥ δ j for any j. Therefore, by assumption that λ is the unique simple positive
eigenvalue of D it follows that T = λ = δ j0 and the respective eigenvector v = w j0 has all
entries of the same sign. �

Proposition 2.2. Let a, c ∈ (0, ∞)d be such that

d∑
i=1

a2i
ci

> 1. (6)

Then the matrix D defined in (2) has a unique simple positive eigenvalue λ.

Proof. For any d × d Hermitian matrix M denote by λi(M), i = 1, . . . , d, non decreasingly
ordered eigenvalues of M. Recall the Weyl inequalities (see, e.g., Th. 4.3.1 in Horn and
Johnson, 1985): Let A and B be Hermitian d × d matrices. Then

λk(A + B) ≤ λk(A) + λd(B) ∀ k = 1, . . . , d. (7)

Note first that D, as rank one perturbation of diagonal matrix, is non singular and thus
all eigenvalues of D are non zero. Since aaT is non negative definite of rank 1, we have
λ j(aaT ) = 0 for j = 1, . . . , d − 1. Thus, (7) with A = aaT and B = −diag(c) for k = d − 1
implies λd−1(D) < 0 since all eigenvalues of B are negative and all eigenvalues of D are non
zero.

Therefore,

sgn det D = (−1)d−1sgn(λd(D)). (8)

On the other hand, expanding determinant of D

det D = det

⎡⎢⎢⎣
a21 − c1 a1a2 . . . a1ad
a1a2 a22 − c2 . . . a2ad
. . . . . . . . . . . .

a1ad a2ad . . . a2d − cd

⎤⎥⎥⎦
and using the fact that aaT is of rank one we obtain

det D = (−1)d−1
d∑
i=1

a2i
d∏

k=1
k�=i

ck + (−1)d
d∏

k=1

ck = (−1)d
d∏

k=1

ck

(
1 −

d∑
i=1

a2i
ci

)
.
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Comparing the above formula with (29), we have

sgn(λd(D)) = −sgn

(
1 −

d∑
i=1

a2i
ci

)
.

Due to (28) we obtain λ := λd(D) > 0. �

2.2. Application to stratified simple random sampling

The populationU = {1, . . . ,N} consists of subpopulationsU1, . . . ,UJ , i.e.,U = ⋃J
j=1 Uj and

Ui ∩Uj = ∅ whenever i �= j, i, j = 1, . . . , J. Consider a non negative variable Y in this pop-
ulation, i.e., let yk = Y(k), k ∈ U . We want to estimate the total value of Y in each of subpop-
ulations, i.e., we are interested in t j = 	k∈Uj yk, j = 1, . . . , J. We use stratified simple random
sampling without replacement (SSRSWOR) in each subpopulation. That is,Uj = ⋃Hj

h=1 Uj,h,
Uj,h ∩Uj,g = ∅ for any h �= g, g, h = 1, . . . ,Hj, where Hj is the number of strata in Uj,
j = 1, . . . , J. Thus, the standard estimator has the form

t̂ j =
Hj∑
h=1

Nj,h

n j,h

∑
k∈s j,h

yk,

where Nj,h = #(Uj,h), nj,h = #(s j,h) and s j,h denotes the sample chosen from Uj,h, h =
1, . . . ,Hj, j = 1, . . . , J.

Recall that its variance is

D2(t̂ j) =
Hj∑
h=1

N2
j,h

(
1
nj,h

− 1
Nj,h

)
S2j,h,

where S2j,h is the population variance in Uj,h, that is S2j,h = 1
Nj,h−1	k∈Uj,h (yk − ȳUj,h )

2 and
ȳUj,h = 1

Nj,h
	k∈Uj,h yk.

The problem we study is to allocate the sample of size n among subpopulations and strata
in such a way that precision (expressed through CV) of the estimation is the same and the best
possible in all subpopulations. That is, we would like to find the two-way array (nj,h)h=1,...,Hj

j=1,...,J
such that

J∑
j=1

Hj∑
h=1

nj,h = n (9)

and

1
t2j

Hj∑
h=1

N2
j,hS

2
j,h

n j,h
− 1

t2j

Hj∑
h=1

Nj,hS2j,h = T, j = 1, . . . , J, (10)

withminimal possible T , which, actually, is the square of the CV. Then the double array (nj,h)

is called the optimal equal-precision allocation in strata.
Define

Aj,h :=
N2

j,hS
2
j,h

t2j
, c j :=

Hj∑
h=1

Nj,hS2j,h
t2j

, x j,h := nj,h, x := n.
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For such Aj,h and c j define a and c as in (1) and note that d = J in the present setting.
Let D be as defined in (2) for such a and c. Then directly from Theorem 2.1 we obtain an
allocation which ensures both optimal and the same CVs (precisions) of estimators of means
in subpopulations:

Theorem 2.3. Assume that the matrix D, as defined above, has a unique positive eigenvalue λ.
Then the optimal equal-precision allocation under the constraint (9) is

n j,h = n
v jNj,hS j,h/t j∑J

k=1 vk

(∑Hk
g=1 Nk,gSk,g

)
/tk

, h = 1, . . . ,Hj, j = 1, . . . , J,

where v = (v1, . . . , vJ )
T is the eigenvector of D associated to λ (with all coordinates of the same

sign).
Moreover, the common optimal value of the square of CVs T = λ.

Remark 2.1. Assume that the overall sample size n in (9) satisfies

n <

J∑
j=1

(∑Hj
h=1 Nj,h S j,h

)2
∑Hj

h=1 Nj,h S2j,h
. (11)

Let D be the J × J matrix defined through (2) with a and c as above. Then by Proposition 2.2
it follows that assumptions of Theorem 2.3 are satisfied. Therefore, the allocation using the
eigenvector as given in the thesis of Theorem 2.3 is correct.

Remark 2.2. Consider SRSWOR in each of subpopulations and the question of allocation
(n1, . . . , nJ ) under the constraint

∑J
j=1 nj = n, where nj denotes the size of the sample in

Uj, j = 1, . . . , J. Moreover,

N2
j S2j

t2i n j
− 1

t2j
NjS2j = T, j = 1, . . . , J, (12)

where Nj = #(Uj) and S2j = 1
Nj−1

∑
k∈Uj

(yk − ȳUj )
2 with ȳUj = 1

Nj

∑
k∈Uj

yk, j = 1, . . . , J.
This situation is embedded in the one we considered in Theorem 2.3 by taking Hj = 1,

j = 1, . . . , J. Then the vectors a and c od Corollary 2.2 are of the form

a = 1√
n

(
1
t1
N1S1, . . . ,

1
tN

NJSJ
)T

and c =
(
1
t21

N1S21, . . . ,
1
t2N

NJS2J

)T

.

Note that assumption (11) is automatically satisfied since its right-hand side equals N (> n).
With v denoting the eigenvector from Theorem 2.3 we obtain

nj = n
v jNjS j/t j∑J
i=1 viNiSi/ti

, j = 1, . . . , J.

Alternatively, we can follow the approach described in Introduction: T can be obtained as
the unique solution of equation

n =
J∑

j=1

N2
j S2j

T t2j + NjS2j
; (13)

then

nj = N2
j S2j/t2j

T + NjS2j/t2j
, j = 1, . . . , J. (14)
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Remark 2.3. An alternative approach to the general situation in which sub-populations are
stratified is via the optimal Neyman allocation in each of sub-populations. That is, we assume
that for any i = 1, . . . , J

n j,h = nj
Nj,hS j,h∑Hj
g=1 Nj,gS j,g

, h = 1, . . . , Lj (15)

were n1 + . . . + nJ = n. Therefore, (10) leads to(∑Hj
h=1 Nj,hS j,h

)2
njt2j

−
∑Hj

h=1 Nj,hS2j,h
t2j

= T, j = 1, . . . , J. (16)

Therefore (similarly as in Introduction), we can solve (16) for nj, j = 1, . . . , J. Then using
the constraint for the overall size of the sample we arrive at the equation for unknown T

n =
J∑

j=1

(∑Hj
h=1 Nj,hS j,h

)2
T t2j +∑Hj

h=1 Nj,hS2j,h
. (17)

Note that under condition (11) a unique solution forT exists. It is obtained numerically. Then
nj is obtained from (16) and finally nj,h can be computed from (15). One can also derive
the Equation (17) by minimizing the sample size in each subpopulation nj = nj,1 + . . . +
nj,Hj , j = 1, . . . , J, subject to a common precision T (see Särndal et al., 1992, Ch. 3.7.3).

3. Equal-precision optimal allocation in subpopulations in two-stage sampling

In this section, we consider optimal equal-precision allocations under two-stage sampling.
In the case of stratification on both stages and stratified simple random sampling with-
out replacement (SRSWOR), we improve the result from NW in two directions. First, we
relax some technical assumptions which originally were designed in order to use directly
the Perron–Frobenius theorem on eigenvalues of matrices with positive entries. Second, we
allow more flexible sampling designs, as stratified SRSWOR on both stages or Hartley and
Rao (1962) systematic πps scheme at the first stage and SRSWOR at the second. In NW strat-
ification was allowed either at the first or at the second stage, but not at both. Additionally, we
consider a particular case of fixed sizes of samples of SSUs within PSUs – such an additional
restriction is sometimes imposed in real surveys, see, e.g., Łysoń et al. (2013), p. 28–30.

Similarly, as in the previous section we start with a more general minimization problem.

3.1. General minimization problem

In this section, we consider and solve a minimization problem which unifies a wide class
of optimal allocation problems with the same precision in subpopulations. The approach is
similar to the previous section, however we have two vectors to allocate: one responsible for
allocation of PSUs and one for allocation of SSUs. The direct numerical method as described
in Remark 2.2 does not work in such two-stage setting. The reason is that there is no way to
express the elements of allocation vectors in terms of unknown common precision T . Con-
sequently, analogues of (13) and (14) or (16) and (17) are no longer available.
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Consider real numbers: c j > 0, Aj,h > 0, Bj,h,i ≥ 0, α j,h,i > 0, i ∈ V j,h, h = 1, . . . ,Hj, j =
1, . . . , d, x, z > 0. Denote

a = (a j, j = 1, . . . , d) = 1√
x

⎛⎝ Hj∑
h=1

√
Aj,h, j = 1, . . . , d

⎞⎠ , (18)

b = (b j, j = 1, . . . , J) = 1√
z

⎛⎝ Hj∑
h=1

∑
i∈V j,h

√
α j,h,i B j,h,i, j = 1, . . . , d

⎞⎠ ,

c = (c j, j = 1, . . . , d). (19)

Let

D = aaT + bbT − diag(c). (20)

Theorem3.1. Assume that D has the unique positive eigenvalue λ > 0 and let v = (v1, . . . , vd)

be a respective eigenvector. Then the problem of minimization of

0 < T =
Hj∑
h=1

1
x j,h

⎛⎝Aj,h +
∑
i∈V j,h

B j,h,i

z j,h,i

⎞⎠− c j, j = 1, . . . , d, (21)

where x j,h > 0, z j,h,i > 0, i ∈ V j,h, h = 1, . . . ,Hj, j = 1, . . . , d, under the constraints

d∑
j=1

Hj∑
h=1

x j,h = x (22)

and

d∑
j=1

Hj∑
h=1

x j,h

∑
i∈V j,h

α j,h,i z j,h,i = z, (23)

where x and z are given positive numbers, has the solution

x j,h = x
v j
√
Aj,h∑d

k=1 vk
∑Hk

g=1
√
Ak,g

, (24)

and

z j,h,i = z
x j,h

v j

√
B j,h,i
α j,h,i∑d

k=1 vk
∑Hk

g=1
∑

l∈Vk,g
√

αk,g,l Bk,g,l
. (25)

Moreover, T = λ, the unique positive eigenvalue of matrix D.

Proof. The proof adapts the argument used in the proof of Theorem 2.1 to the more complex
situation of Theorem 3.1.

Consider the Lagrange function

F(T, x, z) = T +
d∑
j=1

λ j

⎛⎝ Hj∑
h=1

1
x j,h

⎛⎝Aj,h +
∑
i∈V j,h

B j,h,i

z j,h,i

⎞⎠− c j − T

⎞⎠
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+ μ

J∑
j=1

Hj∑
h=1

x j,h + ν

J∑
j=1

Hj∑
h=1

x j,h

∑
i∈V j,h

α j,h,i z j,h,i.

Differentiate with respect to x j,h and z j,h,i to get equations for stationary points:

∂ F
∂ x j,h

= − λ j

x2j,h

⎛⎝Aj,h +
∑
i∈V j,h

B j,h,i

z j,h,i

⎞⎠+ μ + ν
∑
i∈V j,h

α j,h,i z j,h,i = 0 (26)

and
∂ F

∂ z j,h,i
= − λ j B j,h,i

x j,h z2j,h,i
+ ν x j,h α j,h,i = 0. (27)

From (27) we have

x j,h z j,h,i =
√

λ j B j,h,i

ν α j,h,i
.

Inserting the above expression into (23) we obtain

√
ν = 1

z

J∑
j=1

√
λ j

Hj∑
h=1

∑
i∈V j,h

√
α j,h,i B j,h,i.

On the other hand, inserting it into (26), upon cancelations, yields

x j,h =
√

λ j A j,h

μ
.

Returning now to (22) we end up with

√
μ = 1

x

J∑
j=1

√
λ j

Hj∑
h=1

√
Aj,h.

Returning to (21) we obtain√
μ

λ j

Hj∑
h=1

√
Ah, j +

√
ν

λ j

Hj∑
h=1

∑
i∈V j,h

√
α j,h,i B j,h,i − c j = T.

Multiply by v j :=
√

λ j and plug in the formulas for √
μ and

√
ν to arrive at

1
x

⎛⎝ J∑
k=1

vk

Hk∑
g=1

√
Ak,g

⎞⎠ Hj∑
h=1

√
Ah, j

+1
z

⎛⎝ J∑
k=1

vk

Hk∑
g=1

∑
l∈Vk,g

√
αk,g,l Bk,g,l

⎞⎠ Hj∑
h=1

∑
i∈V j,h

√
α j,h,i B j,h,i − c jv j = Tv j.

Note that the above equation is equivalent to

D v = T v,

i.e., 0 < T = λ is the unique positive eigenvalue and v is the eigenvector related to T .
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To show that the eigenvector v attached to the eigenvalue λ has all coordinates of the same
sign the argument is exactly the same as in the last part of the proof of Theorem 2.1. �

Remark 3.1. In practical applications, it is often important that instead of a constant T there
are priority weights κ j > 0, assigned to each constraint (21), j = 1, . . . , d. That is, T is
replaced by κ jT at the left-hand side of (21) for every j = 1, . . . , d. Note that this situation
can be rather trivially reduced to the one considered in Theorem 3.1. This is done by dividing
both sides of the jth new constraint equation (with κ jT at the left-hand side) by κ j. Then we
obtain (21) with Aj,h, Bj,h,i and c j changed, respectively, into Aj,h/κ j, Bj,h,i/κ j and c j/κ j. The
vectors a and b given in (18) and (19) and the matrix D in (20) have to be updated similarly.
Consequently, the solution of the minimization problem as given in (24) and (25) refers to
the eigenvector v of such updated matrix D; moreover in the formulas (24) and (25) all the
quantities of the form Aj,h, Bj,h,i have to be changed into Aj,h/κ j, Bj,h,i/κ j.

Since D is a rank two perturbation of a diagonal matrix one may use Weyl inequalities to
establish conditions under whichD has a unique positive eigenvalue. Such a sufficient condi-
tion is given below.

Proposition 3.2. Let a, c ∈ (0, ∞)d and b ∈ [0, ∞)d be such that

d∑
i=1

a2i + b2i
ci

−
d∑

i, j=1
i �= j

(aib j − a jbi)2

cic j
> 1. (28)

Then the matrix D defined in (20) has a unique positive eigenvalue λ.

Proof. By λ1(X ) ≤ . . . ≤ λd(X ) we denote eigenvalues of d × d matrix X . Take A = aaT +
bbT and B = −diag(c). Since A is of rank at most 2, we have λd−2(A) = 0. Consequently, the
Weyl inequality (7)with k = d − 2 impliesλd−2(D) < 0 since all eigenvalues ofB are negative.

Therefore,

sgn det D = (−1)d−2sgn(δd−1δd ). (29)

On the other hand, expanding determinant of D

det D = det

⎡⎢⎢⎣
a21 + b21 − c1 a1a2 + b1b2 . . . a1ad + b1bd
a1a2 + b1b2 a22 + b22 − c2 . . . a2ad + b2bd

. . . . . . . . . . . .

a1ad + b1bd a2ad + b2bd . . . a2d + b2d − cd

⎤⎥⎥⎦
and using the fact that aaT + bbT is of rank at most two we obtain

det D = (−1)d−2
d∑

i, j=1
i �= j

(aib j − a jbi)2
d∏

k=1
k�∈{i, j}

ck + (−1)d−1
d∑
i=1

(a2i + b2i )
d∏

k=1
k�=i

ck + (−1)d
d∏

k=1

ck

= (−1)d
d∏

k=1

ck

⎡⎢⎢⎣1 −
d∑
i=1

a2i + b2i
ci

+
d∑

i, j=1
i �= j

(aib j − a jbi)2

cic j

⎤⎥⎥⎦ .
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Comparing the above formula with (29), we have

sgn(δd−1) sgn(δd) = sgn

⎡⎢⎢⎣1 −
d∑
i=1

a2i + b2i
ci

+
d∑

i, j=1
i �= j

(aib j − a jbi)2

cic j

⎤⎥⎥⎦
which is negative due to (28). Since λd−1(D) ≤ λd(D) then necessarily λd−1(D) < 0 <

λd(D) := λ. �

Note that if a2i + b2i > ci, i = 1, . . . , d, then D is a matrix with all positive entries and the
result of Theorem 3.1 holds by the Perron–Frobenius theorem. Under such assumption there
are situations in which condition (28) may not be satisfied, that is Proposition 3.2 does not
cover fully this classical case.

3.2. Application to stratified two-stage sampling

The populationU consists of subpopulationU1, . . . ,UJ . Each subpopulationUj is partitioned
into PSUs which are structured into strata W j,h, h = 1, . . . ,Hj, j = 1, . . . , J. Each primary
unit i ∈ W j,h consists of SSUs which are again structured into strataW j,h,i,g, g = 1, . . . ,Gj,h,i.
LetMj,h be the number of PSUs inW j,h and Nj,h,i,g be the number of SSUs inW j,h,i,g. In the
schemes we describe below stratified SRSWOR is used at the second stage.

... SRSWOR at the first stage
The sample is chosen as follows: at the first stage a sample S of size mj,h of PSUs is selected
fromW j,h,h = 1, . . . ,Hj, j = 1, . . . , J, according to SRSWOR.At the second stage a sample S
of size nj,h,i,g of SSUs is selected fromW j,h,i,g, g = 1, . . . ,Gj,h,i, only for PSUs i ∈ S , according
to SRSWOR.

The variance of π-estimator of the total of Y over subpopulationUj has the form, see, e.g.,
Särndal et al. (1992), Ch. 4.3

Hj∑
h=1

(
1

mj,h
− 1

Mj,h

)
M2

j,hD
2
j,h +

Hj∑
h=1

Mj,h

mj,h

∑
i∈W j,h

G j,h,i∑
g=1

(
1

nj,h,i,g
− 1

Nj,h,i,g

)
N2

j,h,i,gS
2
j,h,i,g

where

D2
j,h = 1

Mj,h − 1

∑
i∈W j,h

(
ti − t̄ j,h

)2
with

ti =
∑
k∈Vi

yk ∀ PSUs Vi and t̄ j,h = 1
Mj,h

∑
i∈W j,h

ti

and

S2j,h,i,g = 1
Nj,h,i,g − 1

∑
k∈W j,h,i,g

(
yk − t̄ j,h,i,g

)2
with

t̄ j,h,i,g = 1
Nj,h,i,g

∑
k∈W j,h,i,g

yk.
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We assume that the size of the PSUs sample S is

J∑
j=1

Hj∑
h=1

mj,h = m (30)

and expected size of the SSUs sample S is

J∑
j=1

Hj∑
h=1

mj,h

Mj,h

∑
i∈W j,h

G j,h,i∑
g=1

nj,h,i,g = n. (31)

Additionally, we assume that the precision of π-estimator in every subpopulation is constant,
i.e.,

Hj∑
h=1

Mj,h

mj,h

⎛⎝γ j,h +
∑
i∈W j,h

G j,h,i∑
g=1

β j,h,i,g

n j,h,i,g

⎞⎠− c j = T, j = 1, . . . , J, (32)

where

γ j,h = 1
T 2
j

⎛⎝Mj,hD2
j,h −

∑
i∈W j,h

G j,h,i∑
g=1

Nj,h,i,g S2j,h,i,g

⎞⎠ ,

β j,h,i,g = 1
T 2
j
N2

j,h,i,g S
2
j,h,i,g and c j = 1

T 2
j

Hj∑
h=1

Mj,h D2
j,h,

for Tj = ∑Hj
h=1

∑
i∈W j,h

ti, j = 1, . . . , J.
Now we use Theorem 3.1 with V j,h = ⋃

i∈W j,h
W̃j,h,i, where W̃j,h,i = {W j,h,i,g, g =

1, . . . ,Gj,h,i} is the set of strata of SSUs in the ith PSU ofW j,h, and with

Aj,h = Mj,h γ j,h, Bj,h,(i,g) = Mj,h β j,h,i,g, α j,h,(i,g) = M−1
j,h, x = m, z = n.

In the above formulas, we identified i from Theorem 3.1 with the pair (i, g) in the special
setting considered here. Directly from Theorem 3.1 we obtain the following result:

Theorem 3.3. Assume that the matrix D defined by (20) has the unique positive eigenvalue λ.
Assume that the overall PSUs sample size is m and the expected overall SSUs sample size is n.
Assume that γ j,h > 0, h = 1, . . . ,Hj, j = 1, . . . , J.

Then the optimal equal-precision allocation in strata is

mj,h = m
v j
√
Mj,h γ j,h∑J

k=1 vk
∑Hk

r=1
√
Mk,h γk,h

,

h = 1, . . . ,Hj, j = 1, . . . , J, and

nj,h,i,g = n
v j Mj,h

√
β j,h,i,g

mj,h
∑J

k=1 vk
∑Hk

r=1
∑

l∈Wk,r

∑Gk,r,l
s=1

√
βk,r,l,s

,

g = 1, . . . ,Gj,h,i, i ∈ W j,h, h = 1, . . . ,Hj, j = 1, . . . , J,where v = (v1, . . . , vJ )
T is the

unique eigenvector with all coordinates of the same sign of the matrix D.
Moreover, the common optimal value of the square of precisions (CVs) T = λ, the unique

positive eigenvalue of D.
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Remark 3.2. In the case of unequal predesigned precisions in subpopulations described in
terms of priority weights κ j assigned to each subpopulation, as pointed out in Remark 3.1, we
need to change γ j,h into γ j,h/κ j and β j,h,i,g into β j,h,i,g/κ j in Theorem 3.3. Similarly, c j changes
into c j/κ j and thematrixD, see (20), and its eigenvectors and eigenvalueswill be automatically
updated. The same applies to Theorems 3.4–3.6.

... Fixed SSU sample size within PSUs
To avoid the situation when SSUs sample size is random one can postulate that within PSUs
in a given stratumW j,h it is constant, i.e., there are numbers (to be found) nj,h denoting SSUs
sample size for any i ∈ W j,h, j = 1, . . . , J, h = 1, . . . ,Hj. Here we assume SRSWOR with no
stratification at the second stage. Therefore, while constraint (30) remains untouched con-
straint (31) changes into

J∑
j=1

Hj∑
h=1

mj,hn j,h = n. (33)

The requirement of the common precision yields

T = 1
T 2
j

Hj∑
h=1

Mj,h

mj,h

⎡⎣⎛⎝Mj,hD2
j,h −

∑
i∈W j,h

Nj,h,iS2j,h,i

⎞⎠+ 1
nj,h

∑
i∈W j,h

N2
j,h,iS

2
j,h,i

⎤⎦− 1
T 2
j

Hj∑
h=1

Mj,hD2
j,h.

Referring again to Theorem 3.1 we take #V j,h = 1,

Aj,h = Mj,hγ j,h, where γ j,h = 1
T 2
j

⎛⎝Mj,hD2
j,h −

∑
i∈W j,h

Nj,h,iS2j,h,i

⎞⎠ ,

Bj,h,1 = Mj,hβ j,h, where β j,h = 1
T 2
j

∑
i∈W j,h

N2
j,h,iS

2
j,h,i,

c j = 1
T 2
j

Hj∑
h=1

Mj,hD2
j,h, α j,h,1 = 1, x = m, z = n.

Consequently, directly from Theorem 3.1 we have the following result:

Theorem 3.4. Assume that the matrix D defined by (20) has the unique positive eigenvalue λ.
Assume that the overall PSUs sample size is m and the expected overall SSUs sample size is n.

Assume that γ j,h > 0, h = 1, . . . ,Hj, j = 1, . . . , J.
Then the optimal equal-precision allocation is

mj,h = m
v j
√
Mj,h γ j,h∑J

k=1 vk
∑Hk

g=1
√
Mk,g γk,g

,

and

nj,h = n
v j
√
Mj,hβ j,h

mj,h
∑J

k=1 vk
∑Hk

r=1

√
Mk,rβk,r

,

h = 1, . . . ,Hj, j = 1, . . . , J,where v = (v1, . . . , vJ )
T is the unique eigenvector with all coor-

dinates of the same sign of the matrix D.
Moreover, the common optimal value of precision T = λ.
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... Hartley–Rao scheme at the first stage
The sample is chosen as follows: at the first stage a sample S of PSUs is selected according to a
πps sampling introduced by Hartley and Rao (1962), known also as πps systematic sampling
from randomly ordered list. This sampling procedure is applied in each of the strata of the
PSUs. That is an additional auxiliary variableZ is given in the population of PSUs. Each stra-
tumW j,h is randomly ordered and thenmj,h PSUs are chosen by systematic sampling through
mj,h − 1 jumps of the size one starting at the random point from the interval [0, 1]. Such a
procedure gives a random selection of points x1, . . . , xmj,h ∈ [0,mj,h]. We have

π
(I)
j,h,i = mj,hz̃ j,h,i, where z̃ j,h,i := zi

z j,h
and z j,h =

∑
i∈W j,h

zi

for any PSU i from hth stratum from jth subpopulation. The sample of PSUs inW j,h consists
of such PSU i’s that

z j,h
mj,h

xk ∈
(

i−1∑
l=1

zl,
i∑

l=1

zl

)
, k = 1, . . . ,mj,h

for some i = 1, . . . ,Mj,h. At the second stage a sample S of SSUs is selected according to
SRSWOR(nj,h,i,g) fromW j,h,i,g, g = 1, . . . ,Gj,h,i, only for PSUs i ∈ S .

The approximate variance of π-estimator of the total of Y over subpopulationUj has the
form, see Hartley and Rao (1962) (their formula (5.17) for the simplified variance of the π-
estimator for the systematic πps sampling and Särndal et al., 1992, Ch. 4.3, for the variance
in two-stage sampling)

Hj∑
h=1

1
mj,h

∑
i∈W j,h

ω j,h,i(1 + z̃ j,h,i) −
Hj∑
h=1

∑
i∈W j,h

z̃ j,h,i ω j,h,i

+
Hj∑
h=1

1
mj,h

∑
i∈W j,h

1
z̃ j,h,i

G j,h,i∑
g=1

(
1

nj,h,i,g
− 1

Nj,h,i,g

)
N2

j,h,i,gS
2
j,h,i,g

where

ω j,h,i = z̃ j,h,i
(
y j,h,i

z̃ j,h,i
− y j,h

)2

and y j,h =
∑
i∈W j,h

yi

and

S2j,h,i,g = 1
Nj,h,i,g − 1

∑
k∈W j,h,i,g

(
yk − t̄ j,h,i,g

)2
with

t̄ j,h,i,g = 1
Nj,h,i,g

∑
k∈W j,h,i,g

yk.

We assume that the size of the PSU sample S satisfies the constraint (30) while formula
(31) for expected size of the SSU sample assumes the form

J∑
j=1

Hj∑
h=1

mj,h

∑
i∈W j,h

z̃ j,h,i

G j,h,i∑
g=1

nj,h,i,g = n. (34)
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Denote

D2
j,h =

∑
i∈W j,h

ω j,h,i(1 + z̃ j,h,i).

Additionally, we assume that the precision of π-estimator in every subpopulation is con-
stant (actually, since we use an approximate formula for the variances, it is not precision but
rather approximate precision), i.e.,

Hj∑
h=1

1
mj,h

⎛⎝γ j,h +
∑
i∈W j,h

1
z̃ j,h,i

G j,h,i∑
g=1

β j,h,i,g

n j,h,i,g

⎞⎠− c j = T, j = 1, . . . , J, (35)

where

γ j,h = 1
T 2
j

⎛⎝D2
j,h −

∑
i∈W j,h

1
z̃ j,h,i

G j,h,i∑
g=1

Nj,h,i,g S2j,h,i,g

⎞⎠ , (36)

β j,h,i,g = 1
T 2
j
N2

j,h,i,g S
2
j,h,i,g and c j = 1

T 2
j

Hj∑
h=1

∑
i∈W j,h

z̃ j,h,iω j,h,i,

for Tj = ∑Hj
h=1

∑
i∈W j,h

ti, j = 1, . . . , J.
At this stage, we again refer to Theorem 3.1, once again using the identification i = (i, g).

Thus, we define

Aj,h = γ j,h, Bj,h,(i,g) = β j,h,i,g

z̃ j,h,i
, α j,h,(i,g) = z̃ j,h,i, x = m, z = n.

As a conclusion fromTheorem 3.1we have the result describing (approximate) optimal equal-
precision allocation in the scheme considered in this subsection:

Theorem 3.5. Assume that the matrix D defined in (20) has a unique positive eigenvalue λ.
Assume that the overall PSU sample size is m and the expected overall SSU sample size is n.
Assume that γ j,h > 0, h = 1, . . . ,Hj, j = 1, . . . , J.

Then the (approximate) optimal equal-precision allocation in strata is

mj,h = m
v j

√
γ j,h∑J

k=1 vk
∑Hk

g=1
√

γk,g
,

h = 1, . . . ,Hj, j = 1, . . . , J and

nj,h,i,g = n
v j
√

β j,h,i,g/z̃ j,h,i

m j,h
∑J

k=1 vk
∑Hk

r=1
∑

l∈Wk,r

∑Gk,r,l
s=1

√
βk,r,l,s

,

g = 1, . . . ,Gj,h,i, i ∈ W j,h, h = 1, . . . ,Hj, j = 1, . . . , J,where v = (v1, . . . , vJ )
T is the

unique eigenvector with all coordinates of the same sign of thematrixD = aaT + bbT − diag(c).
Moreover, the common optimal value of precision T = λ, the unique positive eigenvalue

of D.

... Fixed SSU sample size within PSU
Similarly as in the previous section we consider now the situation when samples sizes of SSUs
are fixed for PSUs belonging to the same strata within subpopulation. Then the constraint for
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common (approximate) precision for all subpopulation reads
Hj∑
h=1

1
mj,h

⎛⎝γ j,h + 1
nj,h

∑
i∈W j,h

β j,h,i

z̃ j,h,i

⎞⎠− c j = T, j = 1, . . . , J,

where

γ j,h = 1
T 2
j

⎛⎝D2
j,h −

∑
i∈W j,h

1
z̃ j,h,i

G j,h,i∑
g=1

Nj,h,i,g S2j,h,i,g

⎞⎠
β j,h,i = 1

T 2
j
N2

j,h,i S
2
j,h,i and c j = 1

T 2
j

Hj∑
h=1

∑
i∈W j,h

z̃ j,h,iω j,h,i.

The constraints regarding sizes of samples assume the form

J∑
j=1

Hj∑
h=1

mj,h = m and
J∑

j=1

Hj∑
h=1

mj,hn j,h = n.

In Theorem 3.1 we take #V j,h = 1,

Aj,h = γ j,h, Bj,h = Bj,h,1 =
∑
i∈W j,h

β j,h,i

z̃ j,h,i
,

c j as above andα j,h,1 = 1, x = m, z = n. Consequently, Theorem3.1 gives the following result:

Theorem 3.6. Assume that the matrix D defined in (20) has a unique positive eigenvalue λ.
Assume that the overall PSU sample size is m and the overall SSU sample size is n and the sample
SSU sizes n j,h are fixed (but unknown) within strata in subpopulations. Assume that γ j,h > 0,
h = 1, . . . ,Hj, j = 1, . . . , J.

Then the (approximate) optimal equal-precision allocation in strata is

mj,h = m
v j

√
γ j,h∑J

k=1 vk
∑Hk

g=1
√

γk,g
,

h = 1, . . . ,Hj, j = 1, . . . , J and

nj,h = n
v j
√
Bj,h

mj,h
∑J

k=1 vk
∑Hk

r=1
√
Bk,r

,

h = 1, . . . ,Hj, j = 1, . . . , J, where v = (v1, . . . , vJ )
T is the unique eigenvector with all coor-

dinates of the same sign of the matrix D = aaT + bbT − diag(c).
Moreover, the common optimal value of precision T = λ, the unique positive eigenvalue

of D.

4. Numerical experiments

In the experiments, described below, we used the method developed in Section 3.2.3, to ana-
lyze optimal equal-precision allocation in the Polish LFS.

An artificial population has been created on the basis of results of a sample survey which
accompanied the last virtual census in Poland. The sample for this survey was drawn through
stratified sampling with strata at an NUTS5 level (we follow the Eurostat standard NUTS
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nomenclature of territorial units for statistics in EU; in Poland it refers to the level of munici-
palities). This sample covered 20%dwellings in the country. To create the population for simu-
lation purposes the records of the sample where cloned together with data related to surveyed
persons in each dwelling with the cloning multiplicity equal to rounded corrected weights for
dwellings. As a result an artificial population of 13,243,000 households was constructed.

The sampling scheme in the experiment was exactly the same as in the LFS survey, that is;
two-stage with stratification at the primary units level. In each such strata of primary units the
sample was drawn according to the standard Hartley–Rao method, with first order inclusion
probabilities proportional to the number of dwellings in PSUs. The definition of PSU was
based on the one adapted in the LFS as well. That is, in urban regions PSUs were identified
with so called census clusters and in non urban areas they were identified with enumeration
census areas. The SSUs were just households. The strata definition for PSUs were adapted
from the LFS, which resulted in the total of 61 strata of PSUs. Taking into account one of the
four subsamples for the quarter of year used in the LFS (one of the two which are new in the
survey) the total number of PSUs and SSUs was designed to be m = 1872 and n = 13, 676,
respectively.

On the basis of such pseudo-population (with the variable ”number of unemployed in
the household” transferred from the 20% survey, which accompanied the last virtual cen-
sus) suitable initial parameters for the procedure described in Section 3.2.3 were prepared.
The variables: number of dwellings in PSUs and number of unemployed in a household
(SSU) were essential in constructing matrices a aT , bbT and diag(c). As subpopulations
the NUTS2 level (in Poland it refers to voivodships) was used. The standard R function
eigen for numerical computation of eigenvalues and eigenvectors was used - see R Core
Team (2013). Examples of R-codes we used for optimal equal-precision allocation are avail-
able at https://github.com/rwieczor/eigenproblem_sample_allocation. Theoretical value of
CV defined through the maximal eigenvalue was numerically found to be about 9.7%, which
is almost exact value of the square root of the largest eigenvalue, as it should be according to
the theoretical results obtained in previous sections. The optimal equal-precision allocation,
based on the eigenvector related to the largest eigenvalue, was a base for drawing samples
of PSUs and then of SSUs. The experiment was repeated independently 100 times with the

Table . Comparison of allocations and precision between standard and optimal procedures in the LFS on
the basis of numerical experiments for a census-based pseudo-population.

Standard Standard Optimal Optimal Standard Optimal
NUTS SSU allocation PSU allocation SSU allocation PSU allocation CV CV

PL     . .
PL     . .
PL     . .
PL     . .
PL     . .
PL     . .
PL     . .
PL     . .
PL     . .
PL     . .
PL     . .
PL     . .
PL     . .
PL     . .
PL     . .
PL     . .
Sum ,  , 

https://github.com/rwieczor/eigenproblem_sample_allocation


2230 J. WESOŁOWSKI AND R. WIECZORKOWSKI

average PSUs sample size equal to 1872 and the average SSU sample size equal to 13,669. In
each experiment, like in the original LFS survey, the precision of estimates of the variable
“number of unemployed at NUTS2 levels” was evaluated through a bootstrapmethod. One of
the variations of the bootstrapmethod was used, where in each stratum amultiple resampling
(in this case 500 times) takes place with replacement of nh − 1 subsamples out of nh PSUs
selected for the survey in the hth stratum – see McCarthy and Snowden (1985) (described
also in the monograph Shao and Tu, 1995, Ch. 6.2.4). After resampling the original weights
for sampling units are properly rescaled and bootstrap variance estimate of the corresponding
indicator is obtained by the usualMonteCarlo approximation based on the independent boot-
strap replicates. These results were compared to other 100 independent experiments in which
the sample was drawn from the pseudo-population according to the standard LFS procedure,
which is thoroughly described in Popiński (2006). Actually, we used a simplified version of the
standard procedure used in the LFS, because we did not take into account the fact that the real
sample consists of four elementary subsamples together with a rotation scheme. Instead, we
considered only one of such four elementary subsamples. The same variable was estimated
and the precision was evaluated again through the bootstrap procedure. The means of the
result over 100 independent experiments are gathered in Table 1. One can easily observe that
the proposed new procedure gives an average about 14% gain in CV, when compared to the
standard LFS procedure.

5. Conclusions

The method of eigenvalue and eigenvectors was applied to optimal equal-precision allo-
cation in two-stage sampling for the first time in Niemiro and Wesolowski (2001). In the
present paper, we emphasize its versatility by considering more abstract setting covering
also single-stage sampling (in Section 2) and wider family of two-stage sampling schemes
(with stratification at the second stage). In particular, Hartley-Rao sampling at the first stage
is taken care of. Additionally the case of constant SSU sample sizes within PSUs from the
same strata is covered by the proposed general methodology. In general the approach is
based on looking for a unique positive eigenvalue of a matrix, which is properly defined
in terms of population quantities. This matrix appears to be a low-rank (≤ 2) perturba-
tion of a diagonal matrix. It is proved that the eigenvector associated with the unique pos-
itive eigenvalue of this matrix has all components of the same sign. Both the eigenvalue
and the eigenvector can be calculated using standard procedures, see, e.g., the R-code we
posted at https://github.com/rwieczor/eigenproblem_sample_allocation. After the eigenvec-
tor is known the optimal equal-precision allocation is then derived easily. The numerical
example shows that application of the proposed method to Polish LFS improves CV of esti-
mates for subpopulations by 14% on average, when compared to the standard allocation used
at present in this survey.

The allocation procedures and formulas developed above, similarly as the classical ones,
depend on population quantities as S2j,h,i,g which, by rule are unknown, andmaybe difficult to
estimate, e.g., fromprevious surveys. Then a possible approachwould be to adopt somemodel
assumptions and replace S2j,h,i,g’s by their model expectations (as done, e.g., in Clark, 2009 in
a somewhat different setting of the problem, when subpopulations may cut across PSUs). An
alternative approach would be to refer to auxiliary variable X , which is correlated with the
variable of study and available for all PSUs and/or SSUs in the population from administrative
registers and using S2j,h,i,g(X )’s instead of S2j,h,i,g’s.

https://github.com/rwieczor/eigenproblem_sample_allocation
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Finally, we mention that the method, we developed in this paper allows us to incorpo-
rate different predesigned subpopulations levels of precision priority κ j > 0, j = 1, . . . , J, as
described in Section 3.
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