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ABSTRACT
This article investigates the performance of the shrinkage estimator (SE)
of the parameters of a simple linear regression model under the LINEX
loss criterion. The risk function of the estimator under the asymmetric
LINEX loss is derived and analyzed. The moment-generating functions
and the first two moments of the estimators are also obtained. The
risks of the SE have been compared numerically with that of pre-test
and least-square estimators (LSEs) under the LINEX loss criterion. The
numerical comparison reveals that under certain conditions the LSE is
inadmissible, and the SE is the best among the three estimators.

1. Introduction

The main purpose of regression is prediction. Given the data on a response variable Y and
its predictor X , our aim is to predict the value of Y as accurately as possible. On the other
hand, the accuracy of the prediction of Y depends on the estimation of the model parame-
ters. Aiming at the improvement of sample information-basedmaximum likelihood estimator
(MLE) or the unrestricted estimator (UE), Bancroft (1944) pioneered the idea of combining
the sample information-based MLE with the restricted estimator (RE). The RE is in the form
of a known value of the parameter obtained from previous studies or expert knowledge. The
resulting pre-test estimator (PTE) dominates the UE under the squared error loss criterion.
Due to the construction of the PTE, there is no smooth transition between theUE andRE in it.

Stein (1956) and James and Stein (1961) showed that for three- or higher-dimensional
population, there is estimator that dominates the usual UE under the squared error loss cri-
terion. Their proposed estimator is widely known as the Stein-type shrinkage estimator (SE).
One of the important reasons for the Stein-type estimator being so revolutionary is that many
different aspects of something being measured are used to describe a single measurement
(cf., Gruber 1998, p. 1). For example, many batting averages of different cricketers can be
used to estimate the batting average of a single cricketer. The incidence of a disease in many
different regions can be used to estimate the incidence of the disease in a small region. One
can do this and produce a better estimator. The seminal discovery of the SE generated a flurry
of studies by many researchers in search of improved estimators. Arashi and Tabatabaey
(2010a) derived some conditions under which the Stein-type SE outperforms the UE under
the squared error loss criterion. Recently, Fuqi and Nkurunziza (2016) has investigated the
performance of the SE of the matrix of the regression coefficients in multivariate regression
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2 Z. HOQUE ET AL.

models with unknown change points under the quadratic loss. Saleh and Sen (e.g., 1985,
1986) published a series of papers on the topic both in the parametric and in the non para-
metric context. For a comprehensive review on the area, readers may see Saleh (2005) and
Saleh, Arashi, and Tabatabaey (2014).

The popularity of the symmetric squared error loss is due to its mathematical and interpre-
tational convenience. Saleh and Sen (1986, 1985) and Saleh andHan (1990) are some excellent
reviews of the use of the squared error loss. However, there was a growing criticism against
the appropriateness of this loss function, particularly where overestimation of a parameter
leads to more severe consequences than underestimation and vice versa. Due to the symmet-
ric nature of the squared error loss function, it fails to differentiate between overestimation
and underestimation of any parameter.

In a real estate study, Varian (1975) introduced an asymmetric loss function known as the
LINEX loss function which has both linear and exponential components in its mathematical
expression. This loss function can assign unequal weights to the underestimation and overes-
timation by taking an appropriate value of the shape parameter. For small values of the shape
parameter, the LINEX loss function is approximately symmetric and not too far from the
quadratic loss function (cf., Zellner 1986). Therefore, the latter can be considered as a special
case of the former.

Zellner (1986) studied properties of estimation and prediction procedures under the
LINEX loss function. He showed that some usual estimators that are admissible relative to
the squared error loss function are inadmissible relative to the LINEX loss function. For
example, Zellner (1986) proved that the MLE X̄ of the univariate normal mean is inadmissi-
ble relative to the LINEX loss function, as the risk of the estimator X̄ − aσ 2/2n is less than
that of the MLE, where a is the shape parameter of the LINEX loss function, σ 2 is the pop-
ulation variance, and n is the size of the sample. In the case of unknown σ 2, he suggested
using S2 = ∑n

i=1(Xi − X̄ )2/n. Later, Rojo (1987) generalized Zellner’s result and showed that
under the LINEX loss function any estimator of the form cX̄ + d, of θ is admissible if either
0 ≤ c < 1, or c = 1 and d = −aσ 2/2n. Otherwise, cX̄ + d is inadmissible.

More recent studies devoted to properties of estimators under the LINEX loss include,
e.g., Christoffersen and Diebold (1997), Zou (1997), Misra, Iyer, and Singh (2004), Zieliński
(2005), Hoque, Khan, and Wesolowski (2009), Arashi and Tabatabaey (2010), Ohyauchi
(2013), and Ma and Liu (2013). In particular, Hoque, Khan, and Wesolowski (2009) studied
the performance of the PTE of the slope parameter of simple linear regression model under
the LINEX loss function and reaffirmed the superiority of PTE over the least-square estimator
(LSE). Later, Hoque and Hossain (2012) compared the PTE of the intercept of simple linear
regression model with the LSE and revealed similar result.

The main purpose of this article is to investigate the properties of the SE of the parameter
of simple linear regression model under the LINEX loss function. As the first component
of the risk function under LINEX loss is the moment-generating function (MGF), the MGF
of the estimator is obtained in the derivation of the risk function. The risk of the estimator
under the squared error loss is derived from the risk under the LINEX loss which conforms
to that in the existing literature. The first two moments of the estimators are also obtained.
Moreover, we solve the issue of the optimal shrinkage constant. Similar to the form of the
LINEX loss function, the form of the risk function is also asymmetric. However, for very
small value of the shape parameter of the LINEX loss function, the form of the risk function
is almost symmetric. The comparative performance of SE, PTE, and LSE under the LINEX
loss is shown graphically and numerically. It reveals that if the non sample prior information
about the value of the parameter is not too far from its true value, both the SE and the PTE
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COMMUNICATIONS IN STATISTICS—THEORY ANDMETHODS 3

outperform the LSE. Among the three estimators, SE performs the best. The layout of the
article is as follows.

The description of the model, the estimator, and the LINEX loss function is presented in
Section 2. The derivation of the risk function of the SE along with some properties is pre-
sented in Section 3. In particular, in Subsection 3.1 we consider the issue of finding the opti-
mal shrinkage constant. The numerical comparison of the risk functions of the SE, PTE, and
LSE is laid in Section 4. Finally, some concluding remarks are presented in Section 5.

2. Preliminaries

Consider the model

Yi = βxi + σεi, i = 1, . . . , n,

where xi, i = 1, . . . , n, are given real numbers, and εi, i = 1, . . . , n, are iid standard normal
rv’s. We want to estimate β ∈ R while σ > 0 is not known.

Alternatively, we can write

Y = βx + σε, (1)

where Y = (Y1, . . . ,Yn)
T , x = (x1, . . . , xn)T , and ε = (ε1, . . . , εn)

T . The traditional LSE of
β is

β̃ = xTY
xTx

. (2)

Based on the pioneering work of Bancroft (1944), an alternative (to the LSE of β) estimator
is the PTE which is defined as

β̂PTE
1 = β̃ − (β̃ − β0) I(F < F1, ν (α)) (3)

where β0 is the value of β usually obtained from expert knowledge or previous studies,
F = β̃−β0

1
n−1

∑n
i=1 (Yi−β̃xi)2

, and F1,ν (α) is the α-level critical value of the F statistic with 1 and

ν = n − 1 degrees of freedom (d.f.) to test H0 : β = β0 against H1 : β �= β0. Under the alter-
native hypothesis, the distribution of F is a non central F with (1, ν) d.f. and non centrality
parameter �2 where � = (β−β0 )

√
xT x

σ
.

Following Khan and Saleh (2001) we define the SE of β which has the form

β̂SE
c = β̃ − c Sn(β̃ − β0)√

xTx|β̃ − β0|
, (4)

where S2n = 1
n−1

∑n
i=1 (Yi − Ȳ )2, Ȳ = 1

n

∑n
i=1 Yi and c is the shrinkage constant. The optimum

value of c is obtained by minimizing the risk of the estimator.
Our interest in Section 3 focuses on the properties of the SE under an asymmetric LINEX

loss criterion and in Section 4 we compare numerically performance of the SE, PTE and LSE
under the LINEX loss. The LINEX loss function is defined as

L(δ) = b[exp(aδ) − aδ − 1], ∀ a �= 0, b > 0 (5)

where δ = (θ∗ − θ ) is the estimation error. The two parameters a and b in L(δ) serve to deter-
mine the shape and scale, respectively, of L(δ). A positive value of a indicates that overesti-
mation is more serious than underestimation and a negative value of a represents the reverse
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4 Z. HOQUE ET AL.

situation. The magnitude of a reflects the degree of asymmetry about δ = 0. This asymmet-
ric loss function grows approximately linearly on one side of δ = 0 and grows approximately
exponentially on the other side. If a → 0, then the LINEX function reduces to the squared
error loss function. Without loss of generality, throughout the paper we assume that the scale
parameter b = 1. As a approaches 0, the growth pattern of LINEX loss becomes similar for
both positive and negative errors of estimation and approaches the quadratic loss. Hence,
the LINEX loss function is more general than the quadratic loss function. Further discussion
about the properties of this loss function is in Zellner (1986).

In the following section we show the derivation of the LINEX risk function of the SE and
study its properties. In Section 4 we recall already known form of the risk function of the
PTE and the LSE and we are interested in the comparison of the performance of the three
estimators, SE, PTE and LSE under the LINEX loss function.

3. The risk functions

The focus of this paper is in the performance of SE under LINEX loss function. Therefore, we
are interested in the LINEX risk function of the SE, which is defined as

Ra[β̂SE
c ] = E ea

(
β̂SE
c −β

)
− aE(β̂SE

c − β) − 1 (6)

where a ∈ R is the shape parameter of the LINEX loss function.
We first recall some basic properties of the random variables and functions related to the

SE and its properties.
� The random variable

U : =
√
xTx
σ

(β̃ − β), (7)

where β̃ is defined in (2), has the standard normal distribution,U ∼ N(0, 1);
� the random variable

W 2 := (n − 1)S2n
σ 2 (8)

has the chi-square distribution with n − 1 d.f.,W 2 ∼ χ 2
n−1;

� the random variables U and W are independent, where W is defined as the positive
square root of the sum of squares of independent standard normal random variables.
Therefore,W ∼ χn−1 which is known asChi distribution and itsMGF (see, e.g., Johnson,
Kotz, and Balakrishnan 1994, Ch. 18 for the formulas for the moments) has the form

E esW =
∞∑
k=0

EWk

k!
sk =

∞∑
k=0

2k/2�
(
n−1+k

2

)

�
( n−1

2

)
k!

sk,

and, consequently,

E esW =1 F1
(

n−1
2 ,

1
2
, s2

2

)
+ sM(n) 1F1

(
n
2 ,

3
2
, s2

2

)
, s ∈ R, (9)

where

M(n) = √
2

�
( n
2

)

�
( n−1

2

) ,
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COMMUNICATIONS IN STATISTICS—THEORY ANDMETHODS 5

and 1F1(a, b, x) is a confluent hypergeometric functionwhich is also known as the Kum-
mer function (see Abramovitz and Stegun 1964, Ch. 13).

� Since

1F1(a, b, x) =
∞∑
k=0

(a)k

(b)k k!
xk, x ∈ R, (10)

where (r)k = r(r + 1) . . . (r + k − 1), k ≥ 1, and (r)0 = 1 is the ascending Pochham-
mer symbol; differentiating (10) with respect to xwe immediately get (see formula 13.4.8
in Ch. 13 of Abramovitz and Stegun 1964).

d 1F1(a, b, x)
dx

= a
b 1F1(a + 1, b+ 1, x), x ∈ R. (11)

Now we are in a position to derive the risk function of the SE under the LINEX loss func-
tion.

Proposition 3.1. In the model (1) the LINEX risk of the SE (4) has the form

Ra[β̂SE
c ] = e

a2K2
2

[
1F1

(
n − 1
2

,
1
2
,

a2c2K2

2(n − 1)

)

+ acKM(n) (1 − 2� (aK + �))√
n − 1 1F1

(
n
2
,
3
2
,

a2c2K2

2(n − 1)

) ]

− acKM(n)(1 − 2�(�))√
n − 1

− 1, (12)

where K = σ√
xT x

,� = β−β0
K , and� is the cumulative distribution function of the standard nor-

mal distribution.

Proof. Due to (7), we can write

β̂SE
c − β = β̃ − β − c

Sn(β̂ − β + β − β0)√
xTx(β̂ − β + β − β0)

= σ√
xTx

U − c
Sn

(
σ√
xT x

U + β − β0

)
√
xTx

∣∣∣ σ√
xT x

U + β − β0

∣∣∣ .

Consequently,

β̂SE
c − β = KU − cKW√

n − 1
U + �

|U + �| .

Therefore,

I(a) = E ea(β̂
SE
c −β) = E eaKU exp

(
− acKW√

n − 1
U + �

|U + �|
)

. (13)

Recall (see, e.g., Hoque, Khan, and Wesolowski 2009) that if Z and S are independent,
Z ∼ N(0, 1), φ : R2 → R is a Borel function and c ∈ R then

E ecZφ(Z, S) = e
c2
2 Eφ(Z + c, S). (14)

Due to independence ofU andW , we may apply (14) to I(a) as given in (13). It yields

I(a) = e
a2K2
2 E exp

(
− acKW√

n − 1
U + aK + �

|U + aK + �|
)

.
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6 Z. HOQUE ET AL.

Again using the independence ofU andW , we see that

E exp
(

− acKW√
n − 1

U + aK + �

|U + aK + �|
)

= �(aK + �)E exp
(

− acKW√
n − 1

)
+ (1 − �(aK + �))E exp

(
acKW√
n − 1

)
. (15)

Note that the right-hand side of (15) is a convex combination of the MGF of the χn−1 distri-
bution evaluated at z and −z, where z = acK√

n−1 . Therefore, we apply (9) and get

I(a) = e
a2K2
2

[
1F1

(
n − 1
2

,
1
2
,
z2

2

)
+ M(n)(1 − 2�(aK + �))z 1F1

(
n
2
,
3
2
,
z2

2

)]
.

The derivative of I with respect to a evaluated at a = 0 gives (up to scaling by a) the second
term in the expression (6) for the LINEX risk. Remembering the fact that z depends on a, we
get (we rely here again on (11))

dI
da

= aK2I1(a) + e
a2K2
2

[
aK2c2 1F1

(
n + 1
2

,
3
2
,

a2K2c2

2(n − 1)

)
+ M(n)

×(1 − 2�(aK + �))
Kc√
n − 1 1F1

(
n
2
,
3
2
,

a2K2c2

2(n − 1)

)

+ na2K2c2

3(n − 1)
M(n)(1 − 2�(aK + �))

×1F1
(
n + 2
2

,
5
2
,

a2K2c2

2(n − 1)

)
− 2aK2cM(n)√

n − 1 1F1
(
n
2
,
3
2
,

a2K2c2

2(n − 1)

)
φ(aK + �

]
,

(16)

where φ is the probability distribution function of the standard normal distribution.
Plugging a = 0 in (16), we get

E

(
β̂SE
c − β

)
= dI

da

∣∣∣∣
a=0

= cKM(n)(1 − 2�(�))√
n − 1

,

where we used also the fact that 1F1(a, b, 0) = 1. For another proof of the above formula for
the bias of the SE, the reader may refer to Khan, Hoque, and Saleh (2002).

Combining the formula for I(a) with the above expression, we get the form of the LINEX
risk of the SE, β̂SE

c , as given in (12). �

Remark 3.1. We note that the MSE of the SE can be easily obtained from the form of the
LINEX risk by evaluating its second derivative at a = 0. Therefore, we differentiate (16), use
again (11) and plug a = 0, which finally gives

d2 I
da2

∣∣∣∣
a=0

= K2 + K2c2 − 4
K2cM(n)√

n − 1
φ(�) = σ 2

xTx

(
1 + c2 − 4

cM(n)√
n − 1

φ(�)

)
.

This form of the MSE of the SE of β has already been derived by a different method in Khan,
Hoque, and Saleh (2002).

D
ow

nl
oa

de
d 

by
 [

C
en

tr
o 

de
 I

nv
es

tig
ac

io
ne

s 
en

 M
at

em
át

ic
as

, A
.C

,]
 a

t 1
3:

58
 2

7 
N

ov
em

be
r 

20
17

 



COMMUNICATIONS IN STATISTICS—THEORY ANDMETHODS 7

Remark 3.2. Of course, it is of interest to know the approximate value of the LINEX risk for
large expert evaluation mistakes, that is for � → ±∞. Directly from (12), we get

lim
�→±∞

Ra[β̂SE
c ] = e

a2K2
2

[
1F1

(
n − 1
2

,
1
2
,

a2c2K2

2(n − 1)

)
∓ acKM(n)√

(n − 1) 1F1
(
n
2
,
3
2
,

a2c2K2

2(n − 1)

)]

±acKM(n)√
n − 1

− 1.

3.1. Optimal shrinkage constant

In this subsection, we are interested in a search of the shrinkage constant c which minimizes
the LINEX risk of SE for a given shape parameter a of the loss function.

Proposition 3.2. For a given shape parameter a of the LINEX loss function, there exists a unique
shrinkage constant c∗ = c∗(a,K, n, �) which minimizes Ra[β̂SE

c ]. It is the unique root of the
equation

M(n)(1 − 2�(�)) = e
a2K2
2

[
acK

√
n − 1 1F1

(
n
2
,
3
2
,

a2c2K2

2(n − 1)

)
+ M(n) (1 − 2� (aK + �))

×
(

1F1
(
n
2
,
3
2
,

a2c2K2

2(n − 1)

)
+ a2c2K2

n − 1 1F1
(
n + 2
2

,
5
2
,

a2c2K2

2(n − 1)

))]
.

In the case � = 0, the optimal c∗ = c∗0(a) is the unique root of the equation

acK
√
n − 1 1F1

(
n
2
,
3
2
,

a2c2K2

2(n − 1)

)
= M(n) (2� (aK) − 1)

(
1F1

(
n
2
,
3
2
,

a2c2K2

2(n − 1)

)

+ a2c2K2

n − 1 1F1
(
n + 2
2

,
5
2
,

a2c2K2

2(n − 1)

))
.

Proof. Denote

F(a,K, n, �, z) = e
a2K2
2

[
1F1

(
n − 1
2

,
1
2
,
z2

2

)
+ M(n) (1 − 2� (aK + �)) z 1F1

(
n
2
,
3
2
,
z2

2

)]

− zM(n)(1 − 2�(�)),

which is, up to a shift by −1, the risk function.
We are looking for a minimum of F as a function of z. To this aim, we differentiate F with

respect to z and use the identity (11) for derivatives of 1F1 functions. Consequently, we get

F ′(z) := ∂ F
∂ z

= −M(n)(1 − 2�(�)) + e
a2K2
2

[
z(n − 1)1F1

(
n
2
,
3
2
,
z2

2

)
(17)

+M(n) (1 − 2� (aK + �))

(
1F1

(
n
2
,
3
2
,
z2

2

)
+ z2 1F1

(
n + 2
2

,
5
2
,
z2

2

))]
.

We will now show that the function F ′ is continuous and strictly increasing from −∞
to +∞.

Consider E exp(a(Ra[β̂SE
c ] − β)) as a function of z = acK√

n−1 . Denote this function as G.
Note that the form of the risk function, as given in (12), implies that G′ and F ′ differ only by
a constant shift. Therefore, it is sufficient to show that G′ is continuous and strictly increasing
from −∞ to +∞. Due to (15), we see that this derivative equals

G′(z) = −�(aK + �)EWe−zW + (1 − �(aK + �))EWezW ,
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8 Z. HOQUE ET AL.

and hence, G′ is a continuous function. Moreover, the second derivative

G′′(z) = �(aK + �)EW 2e−zW + (1 − �(aK + �))EW 2ezW

is strictly positive. That is, G′ is strictly increasing. SinceW follows the Chi distribution, it
follows immediately from the formula for G′(z) that limz→±∞ G′(z) = ±∞.

Consequently, F ′ has a single zero which can be obtained numerically. Denote this zero by
z∗(a). Due to the relation between z and c, we see that the optimal shrinkage constant is

c∗ = c∗(a) = z∗(a)
√
n − 1

aK
. (18)

�
Remark 3.3. Consider the case of � = 0. For the unique zeroes of F ′(a, z) := F ′(z), we have
z∗(a) = −z∗(−a).

To see this fact using (17), we calculate

F ′(−a, −z∗(a)) = e
a2K2
2

[
−z∗(a)(n − 1)1F1

(
n
2
,
3
2
,
(z∗(a))2

2

)
+ M(n) (1 − 2� (−aK))

×
(

1F1
(
n
2
,
3
2
,
(z∗(a))2

2

)
+ (z∗(a))2 1F1

(
n + 2
2

,
5
2
,
(z∗(a))2

2

))]
.

Now, by the identity 1 − 2�(−aK) = −(1 − 2�(aK)), the above equality leads to

F ′(−a, −z∗(a)) = −F ′(a, z∗(a)) = 0

and thus, by the uniqueness of the root, we see that −z∗(a) = z∗(−a).
Therefore, by the formula relating c∗ and z∗, we obtain

c∗0(a) = c∗0(−a).

4. Numerical analysis of the risk functions

In this section, we pursue a comparative analysis of the LINEX risk performance of the SE
with the PTE and the LSE.

To this end, we need to recall two formulas for the LINEX loss for the PTE and LSE. Actu-
ally, they were derived in a slightly more general linear regressionmodel (with non zero inter-
cept) in Hoque, Khan, andWesolowski (2009). The modification for the model with the zero
intercept is straightforward.

Remark 4.1. The risk function of the PTE of the parameter β under the LINEX loss function
is given by

R[β̂PTE; β] = exp(−aK�)G1, ν (c; �2) + exp(a2K2/2)[1 − G1, ν (c; (� + aK)2)]

+ aK�G3, ν (c/3; �2) − 1 (19)

where c = F1, ν (α) and Gμ, ν (q; θ ) is the cumulative distribution function of the non central
F distribution with (μ, ν) d.f., non centrality parameter θ , and evaluated at q.

Remark 4.2. The risk function of the LSE of the parameter β under the LINEX loss function
is given by

R[β̂LSE; β] = exp(a2K2/2) − 1. (20)

From Equation (18), it is evident that the optimal value of the shrinkage constant c is
obtainable only through numerical calculation, and hence the analytical analysis of the risk
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Table . Maximum and minimum efficiencies of SE of β and values of � at which the minimum efficiency
occurs for a = 3 and selected α and n.

Sample size, n

α       

. †Efl1∗ . . . . . . .
‡Efl2∗ . . . . . . .
secEfl1o . . . . . . .
¶Efl2o . . . . . . .
††�1o − . − . − . − . − . − . − .
‡‡�2o − . − . − . − . − . − . − .

. Efl1∗ . . . . . . .
Efl2∗ . . . . . . .
Efl1o . . . . . . .
Efl2o . . . . . . .
�1o − . − . − . − . − . − . − .
�2o − . − . − . − . − . − . − .

. Efl1∗ . . . . . . .
Efl2∗ . . . . . . .
Efl1o . . . . . . .
Efl2o . . . . . . .
�1o − . − . − . − . − . − . − .
�2o − . − . − . − . − . − . − .

. Efl1∗ . . . . . . .
Efl2∗ . . . . . . .
Efl1o . . . . . . .
Efl2o . . . . . . .
�1o − . − . − . − . − . − . − .
�2o − . − . − . − . − . − . − .

†maximum efficiency of SE relative to PTE.
‡maximum efficiency of SE relative to LSE.
secminimum efficiency of SE relative to PTE.
¶minimum efficiency of SE relative to LSE.
††the value of� at which the minimum efficiency of SE relative to PTE occurs.
‡‡the value of� at which the minimum efficiency of SE relative to LSE occurs.

function of SE is mathematically intractable. Therefore, we proceed with numerical analysis.
We use the Newton–Raphson method to calculate the optimum value of c for different values
of n and a, and proceed with the numerical calculation of the risk of SE. The calculation has
been implemented in R programming. For simplicity, without any loss of generality through-
out the article, we assume K = 1 for calculation of c as well as the calculation of the risks.

For easy understanding, we define the efficiency of SE relative to PTE and LSE. For selected
values of α and n, the efficiencies of SE relative to PTE and LSE are calculated and presented
in Table 1 and plotted in Figure 1.

From Figure 1, it is clear that for any value of �, SE is more efficient than PTE and LSE
regardless of the values of a as long as � is not too far from 0. For a = ±2, when � = 0, SE
outperforms both PTE and LSE. As � grows from 0, the efficiency of SE starts decreasing for
both positive and negative values of�. However, the rate of decrease is higher in the negative
side of � for positive a and opposite for negative a. For large value of �, the performance
of SE is worse than that of the PTE and LSE. Nevertheless, as the value of � depends on the
accuracy of the expert knowledge and/or previous studies, any large absolute value of � is
very unlikely. Therefore, typically, the performance of SE is better than that of both PTE and
LSE.

To reconfirm the dominance of SE over PTE and LSE, we present the efficiency of SE rela-
tive to PTE (for different values of α) and LSE in Table 1 for various sample sizes.

In the table, themaximum andminimum efficiencies of SE relative to PTE and LSE are pre-
sented for a = 3. The efficiency was calculated for various sample sizes and selected values of
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Figure . The plot of the efficiency of SE and PTE relative to LSE for selected values of a.

α, the level of significance of the PTE. We also present the minimum guaranteed efficiency
of SE (relative to both PTE and LSE) for given sample sizes and the values of � at which the
minimum guaranteed efficiency occurs. For example, when α = 0.05 and n = 25, the maxi-
mum efficiencies of SE relative to PTE and LSE are 31.66 and 2.74, respectively. On the other
hand, for the same α and n, the minimum guaranteed efficiencies of SE relative to PTE and
LSE are 1.58 and 0.37, respectively. These minimum efficiencies occur at� = −1.08 and−5,
respectively. For given α and n, both the maximum and minimum efficiency of SE relative to
PTE are higher than that relative to the LSE. As the sample size becomes larger, the maximum
efficiency decreases but the minimum guaranteed efficiency increases. It is clear that in the
neighborhood of � = 0, both SE and PTE outperform LSE, but SE performs the best among
the three estimators. From Figure 1, it is also clearly evident that SE outperforms PTE in a
wider neighborhood of � = 0. The LINEX loss function and the efficiency of the estimators
under LINEX loss behave alike which is asymmetric in nature.

5. Concluding remarks

The three estimators considered in this article have been compared for their performance
under the asymmetric LINEX loss function. The foregoing analysis reaffirms the superior-
ity of SE over the PTE and LSE that was shown by the pioneering work of Stein (1956) and
Bancroft (1944) and many thereafter under the symmetric squared error loss. Therefore, the
practitioners of SE can use it without incurring higher risk of the estimator in both symmetric
and asymmetric loss criteria.
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