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ABSTRACT
In this paper, we are interested in the joint distribution of two order
statistics from overlapping samples. We give an explicit formula for
the distribution of such a pair of randomvariables under the assump-
tion that the parent distribution is absolutely continuous.We are also
interested in the question to what extent conditional expectation of
oneof suchorder statistic givenanother determines theparentdistri-
bution. In particular, weprovide anewcharacterizationby linearity of
regression of an order statistic from the extended sample given the
one from the original sample, special case of which solves a prob-
lem explicitly stated in the literature. It appears that to describe the
correct parent distribution it is convenient to use quantile density
functions. In several other cases of regressions of order statistics we
provide new results regarding uniqueness of the distribution in the
sample.
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1. Introduction

Properties of order statistics (os’s) X1:n ≤ X2:n ≤ · · · ≤ Xn:n based on the sample
{X1,X2, . . . ,Xn} of independent and identically distributed (iid) random variables with
absolutely continuous distribution are widely known, see, e.g. the monographs David and
Nagaraja [1] or Arnold et al. [2] for excellent reviews. Much less is known for os’s which
arise from different samples which have common elements. There are two special cases
which until now have been studied in the literature: (1) moving os’s, when the subsequent
samples are of the same size and have the same size of the overlap – see, e.g. Inagaki [3],
David and Rogers [4], Ishida and Kvedaras [5] or Balakrishnan and Tan [6]; (let us men-
tion that moving samples have a long history in quality control and time series analysis –
in particular, the moving median is a simple robust estimator of location and the moving
range is a current measure of dispersion complementing the moving average); (2) special
cases of os’s from the original and extended sample which except the original sample con-
tains a number of additional observations – see, e.g. Siddiqui [7], Tryfos and Blackmore
[8], Ahsanullah and Nevzorov [9] or López-Blázquez and Salamanca-Miño [10].
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In the latter paper the authors introduced a reference measure ν with respect to which
the joint distribution of (Xn−k+1:n, Xn−k+2:n+1) (which they were interested in) has a
density. This measure, ν, defined by

ν(B) = μ2(B) + μ1(π(B)), B ∈ B(R2), (1)

where π(B) = {x ∈ R : (x, x) ∈ B} andμi is the Lebesguemeasure inRi, i=1,2, will be of
special interest for us here since ν will serve as the reference measure for bivariate densities
of os’s from overlapping samples.

In this paper we consider iid random variables X1,X2, . . . with the cumulative distri-
bution function (cdf) denoted by F, its tail denoted by F̄ := 1 − F and the density with
respect to μ1 denoted by f.

Let ∅ �= A ⊂ {1, 2, . . .} be such that nA := |A| < ∞, where |A| denotes the number
of elements in A. By Xi:A denote the ith os from the sample {Xk, k ∈ A}, i = 1, . . . , nA.
In case A = {1, . . . , n} we have Xi:A = Xi:n, i = 1, . . . , n. Consider additionally ∅ �= B ⊂
{1, 2, . . .} such that nB := |B| < ∞. Our aim is to study the joint distribution of (Xi:A, Xj:B),
i = 1, . . . , nA, j = 1, . . . , nB. Of course, when A ∩ B = ∅ the samples {Xk, k ∈ A} and
{Xk, k ∈ B} are independent and the joint distribution of (Xi:A, Xj:B) is just a product of
marginal distributions of Xi:A and Xj:B. We will only consider the case when A ∩ B �= ∅.
Due to the permutation invariance of the distribution of (X1,X2, . . .) it suffices to take
A = {1, . . . ,m} andB = {r + 1, r + 2, . . . , r + n}with r < m ≤ n. Thenwe denoteX(r)

j:n :=
Xj:B. In Section 2 we will study the joint density (with respect to the reference measure ν)
of the pair (Xi:m, X

(r)
j:n ). The case r=0 is technically much simpler but the main idea of the

approach is the same as in the general case. Therefore we first derive the joint distribution
of (Xi:m, Xj:n) in Section 2.1 while the general case of an arbitrary r ≥ 0 is considered in
Section 2.2 (with some technicalities moved to Appendix).

In Section 3 we are interested in regressions E(Xi:m|X(r)
j:n ), E(X(r)

j:n |Xi:m) and related
characterizations or identifiability questions. The main tools are representations of these
regressions in terms of combinations of E(Xk:n+r|X�:n+r), k, l ∈ {1, . . . , n + r}. Since for
r>0 such representations are rather complex, our considerations in this case will be
restricted to the simplest cases of regressions of X1:2, X2:2 given X(1)

1:2 or given X(1)
2:2 . They

are studied in Section 3.1.
The case of r=0 is much more tractable, though sincem<n the analysis of each of two

dual regressions E(Xi:m|Xj:n) and E(Xj:n|Xi:m) is quite different. In particular, Dołegowski
and Wesołowski [11] (DW in the sequel) proved that

P(Xi:m = Xk:n) =
(k−1
i−1
)(n−k

m−i
)

(n
m
) I{i,...,n−m+i}(k), (2)

and, consequently, obtained the following representation

E(Xi:m|Xj:n) =
n−m+i∑
k=i

(k−1
i−1
)(n−k

m−i
)

(n
m
) E(Xk:n|Xj:n). (3)

Here and everywhere below equations involving conditional expectations are under-
stood in the P-almost sure sense.
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It was proved in DW with the help of (3) that the condition

E(Xi:m|Xj:n) = aXj:n + b, (4)

characterizes the parent distributions (exponential, Pareto and power) when j ≤ i and
j ≥ n − m + i. The case of i= j had been considered earlier in Ahsanullah and Nev-
zorov [9] even for an arbitrary shape of the regression function. The characterization
through condition (4) given in DW is a direct generalization of characterizations by
linearity of E(Xi:n|Xj:n). Analysis of such problems has a long history – see, e.g. ref-
erences in DW, in particular, Ferguson [12]. In this case the complete answer was
given in Dembińska and Wesołowski [13] through an approach based on the inte-
grated Cauchy functional equation (see also López-Blázquez and Moreno-Rebollo [14]
who used instead differential equations). Actually, the question of determination of
the parent distribution by the (nonlinear) form of regression E(Xi:n|Xj:n) for non-
adjacent i and j has not been completely resolved until now – see, e.g. Bieniek and
Maciag [15].

In Section 3.2 we investigate characterizations by linearity of regression (4) in the
remaining unsloved cases, i.e. when i< j<n−m+i. In particular, we solve the easiest non-
trivial open problem explicitly formulated in DW. The dual case of regressions of an os
from the extended sample given an os from the original sample, i.e. E(Xj:n|Xi:m) is con-
sidered in Section 3.3. The main results in this subsection identify several new situations
in which the shape of the regression function determines uniquely the parent distribution.
Finally, some conclusions are discussed in Section 4.

2. Bivariate distribution of os’s from overlapping samples

In this section we will derive joint distribution of the pair (Xi:m, X
(r)
j:n ). This will be given

through the density fXi:m,X
(r)
j:n

with respect to the measure ν introduced in Section 1.

This density will be expressed as a linear combination of densities of pairs of os’s
(Xk:n+r, X�:n+r), 1 ≤ k, � ≤ n + r. The general formula is quite complicated technically
as can be seen in Section 2.2, however the basic ideas are the same as in the simple case of
r=0 which, as a warm up, is considered first in Section 2.1.

2.1. Original sample and its extension – the case of r=0

LetRn
�= = {x ∈ Rn : xi �= xj for i �= j} andRn

↑ = {x ∈ Rn : x1 < · · · < xn}. A vector with
increasingly sorted components of x = (x1, . . . , xn) ∈ Rn

�= will be denoted by sortn(x) :=
(x1:n, . . . , xn:n) ∈ Rn

↑ and σn(x) = τ ∈ Sn (set of permutations of {1, . . . , n}) defined by
τ(i) = j if xi:n = xj. The correspondence x ∈ Rn

�= ↔ (sortn(x), σn(x)) ∈ Rn
↑ × Sn is bijec-

tive.
For x ∈ Rn

�= denote x(m) := (x1, . . . , xm) ∈ Rm
�=, m = 1, . . . , n. Then sortm(x(m)) =

(x1:m, . . . , xm:m) and σm(x(m)),m = 1, . . . , n, are sequences of increasing lengths that keep
track of the sorting up to the sequential observation of the mth component of x. For



4 F. LÓPEZ-BLÁZQUEZ ET AL.

instance, if x = (2.3, 1.7, 3.4, 2.5, 1.2) then

sort1(x(1)) = (2.3), σ1(x(1)) = (1)

sort2(x(2)) = (1.7, 2.3), σ2(x(2)) = (21)

sort3(x(3)) = (1.7, 2.3, 3.4), σ3(x(3)) = (213)

sort4(x(4)) = (1.7, 2.3, 2.5, 3.4), σ4(x(4)) = (2143)

sort5(x(5)) = (1.2, 1.7, 2.3, 2.5, 3.4), σ5(x(5)) = (52143).

Observe that form<n, σm(x(m)) is obtained from σn(x) by deletion ofm + 1, . . . , n.
Given a permutation τ ∈ Sn, let us denote by τ (m) ∈ Sm the permutation obtained from

τ by deletion of the elements m + 1, . . . , n. For (fixed) values i, k, m, n such that 1 ≤ i ≤
m, 1 ≤ k ≤ n andm ≤ n, let us define

Ai:m; k:n = {τ ∈ Sn : τ(k) = τ (m)(i)} ∈ Sn.

Note that for any x ∈ Rn
�=

σn(x) ∈ Ai:m; k:n ⇔ xi:m = xk:n. (5)

For instance, in the previous example, σ5(x) = (52143) ∈ A2:4; 3:5 because x2:4 =
x3:5 = 2.3.

Since (X1, . . . ,Xn) has absolutely continuous distribution X ∈ Rn
�= P-a.s. Therefore,

sortn(X) and σn(X) are well defined P-a.s. In particular, sortn(X) = (X1:n, . . . ,Xn:n) are
the os’s from the sample of size n.

Lemma 2.1: Random elements sortn(X) and σn(X) are independent.

The result follows immediately from the fact that the distribution of (X1, . . . ,Xn) is
invariant under permutation and that ties appear with probability zero.

For n ≥ 1, and k �= j with 1 ≤ j, k ≤ n, it is well known that (Xk:n, Xj:n) has a density
with respect toμ2. This density, denoted here by fk,j:n, see, e.g. David andNagaraja [1], p.12
for the explicit expression in terms of F, F̄ and f, satisfies

P(Xk:n ≤ x, Xj:n ≤ y) =
∫∫

(−∞,x]×(−∞,y]
fk,j:n(s, t) dμ2(s, t)

=
∫∫

(−∞,x]×(−∞,y]
fk,j:n(s, t) dν(s, t), (6)

where for the last equality to hold we chose a version of the density fk,j:n satisfying
fk,j:n(s, s) = 0, s ∈ R. We also denote the density of Xj:n by fj:n for more simplification.

If k= j, the random vector (Xk:n, Xj:n) assumes values on the diagonal of R2 so that it
does not have a density with respect toμ2, but it has a density with respect to ν of the form
fj,j:n(s, t) = fj:n(s)δs,t (with δs,t the Kronecker’s delta). Indeed, we have

P(Xj:n ≤ x, Xj:n ≤ y) = P(Xj:n ≤ min(x, y)) =
∫ min(x,y)

−∞
fj:n(s) dμ1(s)

=
∫∫

(−∞,x]×(−∞,y]
fj:n(s)δs,t dν(s, t) =

∫∫
(−∞,x]×(−∞,y]

fj,j:n(s, t) dν(s, t). (7)
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Theorem2.2: For integers 1 ≤ i ≤ m, 1 ≤ j ≤ n,m ≤ n, the random vector (Xi:m, Xj:n) has
an absolutely continuous distribution with respect to ν and the density function is of the form

fXi:m,Xj:n(x, y) =
i+m−n∑
k=i

(k−1
i−1
)(m−k

n−i
)

(m
n
) fk,j:n(x, y). (8)

Proof: A consequence of (5) and (2) is

P(σn(X) ∈ Ai:m;k:n) = P(Xi:m = Xk:n) =
(k−1
i−1
)(n−k

m−i
)

(n
m
) I{i,...,n−m+i}(k). (9)

Using Lemma 2.1, (9) and expressions (6) and (7), we get

P(Xi:m ≤ x, Xj:n ≤ y) =
i+n−m∑
k=i

P(Xi:m ≤ x, Xj:n ≤ y, Xi:m = Xk:n)

=
i+n−m∑
k=i

P(Xk:n ≤ x, Xj:n ≤ y, σn(X) ∈ Ai:m; k:n)

=
i+n−m∑
k=i

P(Xk:n ≤ x, Xj:n ≤ y)P(σn(X) ∈ Ai:m; k:n)

=
i+n−m∑
k=i

(k−1
i−1
)(m−k

n−i
)

(m
n
) P(Xk:n ≤ x, Xj:n ≤ y)

=
∫∫

(−∞,x]×(−∞,y]

i+m−n∑
k=i

(k−1
i−1
)(m−k

n−i
)

(m
n
) fk,j:n(s, t) dν(s, t),

which proves the assertion. �

Note that for j /∈ {i, . . . , i + n − m} the distribution (Xi:m, Xj:n) is absolutely continuous
with respect to the bivariate Lebesgue measure,μ2. On the contrary, for j ∈ {i, . . . , i + n −
m}, it has a singular part, so that there is no density function with respect toμ2. The advan-
tage of the measure ν introduced in Section 1 is that the joint distribution of (Xi:m, Xj:n) is
absolutely continuous with respect to ν in any case.

Formula (8) implies that conditional distribution PXi:m|Xj:n=y has the density, with
respect to the measure νy defined by νy(B) = μ1(B) + δB(y), B ∈ B(R), which reads

fXi:m|Xj:n=y(x) =
i+n−m∑
k=i

(k−1
i−1
)(n−k

m−i
)

(n
m
) fXk:n|Xj:n=y(x), (10)

where fXj:n|Xj:n=y(x) = I{y}(x). Consequently, the formula for the conditional expectation
of Xi:m given Xj:n as given in (3) follows.
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2.2. Overlapping samples – the general case of r ≥ 0

In order to derive the formula for density of (Xi:m, X
(r)
j:n ) in the general case, r ≥ 0, we

need first to do a little bit of combinatorics of permutations, which will allow us to find the
probabilities

P(Xi,m = Xk:n+r, X
(r)
j:n = X�:n+r), k, � ∈ {1, . . . , n + r}.

Consider three disjoint sets

A = {1, . . . , r}, B = {r + 1, r + 2, . . . , r + s},
C = {r + s + 1, r + s + 2, . . . , r + s + t}.

Denote r+s+t=n and consider the set Sn of permutations of {1, . . . , n}. We will be inter-
ested in the subset D of permutations from Sn for which there are exactly i elements from
the set C at the first k positions and there are exactly j elements from the setA at the first
� + k positions. That is,

D = {σ ∈ Sn : |σ({1, . . . , k}) ∩ C| = i and |σ({1, . . . , k + �}) ∩ A| = j}.

We assume i ≤ min{t, k} and j ≤ min{r, k + �}, since otherwise D = ∅.

Lemma 2.3: Let Dr,s,t,k,�,i,j = |D|, the number of elements in D. Then

Dr,s,t,k,�,i,j = n!( n
k,�
) (t

i

)(
r
j

) min{j,k−i}∑
m=max{0,j−�}

(
j
m

)(
s

k − i − m

)(
s + t + m − k

� + m − j

)
. (11)

Proof: We denote (a)b = a(a − 1) . . . (a − b + 1), where b is positive integer, and (a)0 =
1. Moreover, we follow the rule:

(a
b
) = 0 if b<0 or a<b.

To obtain σ ∈ D we perform the following four steps:

(1) Choose i positions out of {1, . . . , k} in (ki) ways and fill these positions with elements
from C in (t)i ways.

(2) For any m = 0, . . . , j choose m out of remaining k−i positions in {1, . . . , k} in (k−i
m
)

ways and fill them with elements ofA in (r)m ways. Remaining k−i−m positions out
of {1, . . . , k} fill with elements of B in (s)k−i−m ways.

(3) Choose j−m positions for elements of A from {k + 1, . . . , k + �} in ( �
j−m

)
ways and

fill them with elements ofA in (r − m)j−m ways. Remaining � − j + m positions out
of {k + 1, . . . , �} fill with elements of B ∪ C in (s − k + i + m + t − i)�−j+m = (s +
t + m − k)�−j+m ways.

(4) The remaining n − k − � positions fill with the rest of the elements of A ∪ B ∪ C in
(n − k − �)! ways.
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Combining these four steps we get

|D| =
(
k
i

)
(t)i

⎛
⎝ j∑

m=0

(
k − i
m

)
(r)m (s)k−i+m

(
�

j − m

)
(r − m)j−m (s + t + m − k)�−j+m

⎞
⎠

× (n − k − �)!.

The formula (11) follows by simple transformations involving, e.g. (r)m (r − m)j−m = (r)j.
�

Remark 2.1: Since the subset of permutations D as defined above can alternatively be
written as

D = {σ ∈ Sn : |σ({k + � + 1, . . . , n}) ∩ A| = r − j and

|σ({k + 1, . . . , n}) ∩ C| = t − i},
we have an equivalent formula for the number of elements in D:

|D| = Dt,s,r,n−k−�,�,r−j,t−i. (12)

In the next result we give explicit forms for P(Xi:m = Xk:n+r, X
(r)
j:n = X�:n+r) for all

possible configurations of parameters i,m, k, n, r, j, �.

Proposition 2.4: Let A = {1, . . . , r}, B = {r + 1, . . . ,m} and C = {m + 1, . . . , n + r}.
Probabilities

pr,(i,m,k),(j,n,�) := P(Xi:m = Xk:n+r, X
(r)
j:n = X�:n+r).

are non-zero only if i ≤ k ≤ i + n + r − m and j ≤ � ≤ j + r. Then

(i) for k < �

pr,(i,m,k),(j,n,�) =
(n − j + 1)(|A|D|A|−1,|B|,|C|,k−1,�−k−1,k−i,�−j−1

+|B|D|A|,|B|−1,|C|,k−1,�−k−1,k−i,�−j)

(r + n − � + 1)(r + n)!
;

(ii) for k = �

pr,(i,m,k),(j,n,k) = |B|D|A|,|B|−1,|C|,k−1,0,k−i,k−j

(r + n)!
;

(iii) for k > �

pr,(i,m,k),(j,n,�) =
(m − i + 1)(|C|D|C|−1,|B|,|A|,�−1,k−�−1,�−j,k−i−1

+|B|D|C|,|B|−1,|A|,�−1,k−�−1,�−j,k−i)

(r + n − k + 1)(r + n)!
.

Proof of Proposition 2.4, due to its computational complexity, is given in Appendix.
Now we are ready to derive the formula for the density of fXi:m,X

(r)
j:n
.
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The independence property given in Lemma 2.1 allows to write the density of
(Xi:m,X

(r)
j:n ) as a linear combination of densities of bivariate os’s from the sample

(X1, . . . ,Xn+r).

Theorem 2.5:

fXi:m,X
(r)
j:n

(x, y) =
n+r∑
k,�=1

pr,(i,m,k),(j,n,�) fk,�:n+r(x, y) (13)

with coefficients pr,(i,m,k),(j,n,�) as given in Proposition 2.4.

Proof: Note that

P(Xi:m ≤ x, ,X(r)
j:n ≤ y) =

n+r∑
k,�=1

P(Xi:m = Xk:n+r, X
(r)
j:n = X�:n+r, Xk:n+r ≤ x, X�:n+r ≤ y).

From the proof of Proposition 2.4 (see Appendix) it follows that the event {Xi:m =
Xk:n+r, X

(r)
j:n = X�:n+r} is a union of events of the form {Xσ(1) ≤ . . . ≤ Xσ(n+r)}, where

the union is with respect to permutations from special subsets of Sn+r (these subsets are
different in each of three cases: k < �, k = � and k > �). By Lemma 2.1 it follows that

P(Xi:m = Xk:n+r, X
(r)
j:n = X�:n+r, Xk:n+r ≤ x, X�:n+r ≤ y)

= P(Xi:m = Xk:n+r, X
(r)
j:n = X�:n+r) P(Xk:n+r ≤ x, X�:n+r ≤ y).

Therefore the density fXi:m,X
(r)
j:n

of (Xi:m,X
(r)
j:n ) with respect to the measure ν (introduced in

Section 1) assumes the form

fXi:m,X
(r)
j:n

=
n+r∑
k,�=1

P(Xi:m = Xk:n+r, X
(r)
j:n = X�:n+r) fk,�:n+r.

Now the result follows by inserting in the above expression correct forms of probabilities
P(Xi:m = Xk:n+r, X

(r)
j:n = X�:n+r) which are given in Proposition 2.4 �

Below we derive joint densities (with respect to ν) of (Xi:m,X
(r)
j:n ) in several cases of

special interest.
(i) Order statistics from the original and extended samples. Without any loss of

generality we can assume thatm ≤ n. Since

P(Xi:m = Xk:n) = P(Xi:m = Xk:n, X
(0)
j:n = Xj:n). (14)

Proposition 2.4 with r=0, j = �, |A| = 0, |B| = m, |C| = n − m applies and since the
left-hand side of (14) does not depend on � we can choose the case k = �. Therefore,

P(Xi:m = Xk:n) = mD0,m−1,n−m,k−1,0,k−i,0

n!
= m(n − k)!(k − 1)!

n!

(
n − m
k − i

)(
m − 1
i − 1

)

=
(k−1
i−1
)(n−k

m−i
)

(n
m
) ,

and thus the formula for the density of (Xi:m, Xj:n) agrees with (8).
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(ii)Moving maxima.We consider (Xn:n,X
(r)
n:n). From Proposition 2.4 we get

P(Xn:n = Xk:n+r, X(r)
n:n = Xn+r:n+r) =

(k−1
n−1
)

(n+r
r
) , k = n, n + 1, . . . , n + r − 1,

P(Xn:n = Xn+r:n+r, X(r)
n:n = Xn+r:n+r) = n − r

n + r
,

P(Xn:n = Xn+r:n+r, X(r)
n:n = X�:n+r) =

(
�−1
n−1
)

(n+r
r
) , � = n, n + 1, . . . , n + r − 1.

Consequently, Theorem 2.5 gives

fXn:n,X
(r)
n:n

(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

n+r−1∑
k=n

(k−1
n−1
)

(n+r
r
) fk,n+r:n+r(x, y), x < y,

n − r
n + r

fn+r:n+r(x), x = y,
n+r−1∑
k=n

(k−1
n−1
)

(n+r
r
) fk,n+r:n+r(y, x), x > y.

(iii)Moving minima.We consider (X1:n,X
(r)
1:n). Then from Proposition 2.4 we get

P(X1:n = X1:n+r, X(r)
1:n = X�:n+r) =

(n+r−�
n−1

)
(n+r

r
) , � = 2, 3, . . . , r + 1,

P(X1:n = X1:n+r, X(r)
1:n = X1:n+r) = n − r

n + r
,

P(X1:n = Xk:n+r, X(r)
1:n = X1:n+r) =

(n+r−k
n−1

)
(n+r

r
) , k = 2, 3, . . . , r + 1.

Consequently, Theorem 2.5 gives

fX1:n,X
(r)
1:n

(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

r+1∑
k=2

(n+r−k
n−1

)
(n+r

r
) f1,k:n+r(x, y), x < y,

n − r
n + r

f1:n+r(x), x = y,
r+1∑
k=2

(n+r−k
n−1

)
(n+r

r
) f1,k:n+r(y, x), x > y.
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(iv)Moving ith os’s.We consider (Xi:m, X
(1)
i:m). Then from Proposition 2.4 we get

P(Xi:m = Xi:m+1, X(1)
i:m = Xi:m+1) = (m − i + 1)(m − i)

(m + 1)m
,

P(Xi:m = Xi:m+1, X(1)
i:m = Xi+1:m+1) = i(m − i + 1)

(m + 1)m
,

P(Xi:m = Xi+1:m+1, X(1)
i:m = Xi:m+1) = i(m − i + 1)

(m + 1)m
,

P(Xi:m = Xi+1:m+1, X(1)
i:m = Xi+1:m+1) = i(i − 1)

(m + 1)m
.

Consequently, Theorem 2.5 gives

fXi:m,X
(1)
i:m

(x, y) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

i(m − i + 1)
(m + 1)m

fi,i+1:m+1(x, y), x < y,
(m − i + 1)(m − i)

(m + 1)m
fi:m+1(x) + i(i − 1)

(m + 1)m
fi+1:m+1(x), x = y,

i(m − i + 1)
(m + 1)m

fi,i+1:m+1(y, x), x > y.

3. Regression of overlapping os’s

From Proposition 2.4 we know that pr,(i,m,k),(j,n,l) are non-zero only if i ≤ k ≤ i + n + r −
m and j ≤ l ≤ j + r. This together with (13) implies

fXi:m,X
(r)
j:n

(x, y) =
n+r−m+i∑

k=i

j+r∑
�=j

pr,(i,m,k),(j,n,l) fk,�:n+r(x, y).

Consequently, the conditional distribution PXi:m|X(r)
j:n =y has a density with respect to

νy(dx) = μ1(dx) + δy(dx) of the form

fXi:m|X(r)
j:n =y(x) =

n+r−m+i∑
k=i

j+r∑
�=j

pr,(i,m,k),(j,n,l) fXk:n+r|X�:n+r=y(x)
f�:n+r(y)
fj:n(y)

=
n+r−m+i∑

k=i

j+r∑
�=j

pr,(i,m,k),(j,n,l)
�
(n+r

�

)
j
(n
j
) F�−j(y)F̄j+r−�(y) fXk:n+r|X�:n+r=y(x).

and the conditional distribution PX(r)
j:n |Xi:m=x has a density with respect to νx(dy) =

μ1(dy) + δx(dy) of the form

fX(r)
j:n |Xi:m=x(y) =

n+r−m+i∑
k=i

j+r∑
�=j

pr,(i,m,k),(j,n,l) fX�:n+r|Xk:n+r=x(y)
fk:n+r(x)
fi:m(x)

=
n+r−m+i∑

k=i

j+r∑
�=j

pr,(i,m,k),(j,n,l)
k
(n+r

k
)

i
(m
i
) Fk−i(x)F̄n+r−m−k+i(x) fX�:n+r|Xk:n+r=x(y).
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Therefore,

E(Xi:m|X(r)
j:n = y) =

n+r−m+i∑
k=i

j+r∑
�=j

pr,(i,m,k),(j,n,l)

× �
(n+r

�

)
j
(n
j
) F�−j(y)F̄j+r−�(y) E(Xk:n+r|X�:n+r = y) (15)

and

E(X(r)
j:n |Xi:m = x) =

n+r−m+i∑
k=i

j+r∑
�=j

pr,(i,m,k),(j,n,l)

× k
(n+r

k
)

i
(m
i
) Fk−i(x)F̄n+r−m−k+i(x) E(X�:n+r|Xk:n+r = x). (16)

That is, both regressionswe are interested in are represented through rather complicated
expressions (15) and (16). Thus characterizations or identifiability questions for parent
distributions through the form of E(Xi:m|X(r)

j:n ) or E(X(r)
j:n |Xi:m) seems to be a difficult task

in such a general framework. Therefore we will concentrate rather on the special cases
of r=0 (when m<n) distinguishing two quite different subcases: in Section 3.2 we will
consider characterizations by linearity of E(Xi:m|Xj:n) while in Section 3.3 we will study
identification through E(Xj:n|Xi:m). For r>0 we will consider only the simplest case of
r=1 andm=n=2 in Section 3.1.

3.1. Identifiability through regression functions when r=1 andm=n=2

Here we only consider the simplest case of os’s from overlapping samples (X1,X2) and
(X2,X3), that is the case of r=1,m=n=2. Then (15) gives

(i) E(X2:2|X(1)
2:2 = y) = y

2F(y) + ∫∞
y xf (x) dx + 1

F(y)
∫ y
−∞ xF(x)f (x) dx,

(ii) E(X1:2|X(1)
1:2 = y) = y

2 F̄(y) + ∫ y
−∞ xf (x) dx + 1

F̄(y)

∫∞
y xF̄(x)f (x) dx,

(iii) E(X1:2|X(1)
2:2 = y) = y

2 F̄(y) + 1
2F(y)

∫ y
−∞ xf (x) dx + ∫ y

−∞ xf (x) dx − 1
F(y)∫ y

−∞ xF(x)f (x) dx,
(iv) E(X2:2|X(1)

1:2 = y) = y
2F(y) + 1

2F̄(y)

∫∞
y xf (x) dx + ∫∞

y xf (x) dx − 1
F̄(y)∫∞

y xF̄(x)f (x) dx.

We will show that each of these four regressions determines uniquely the parent distri-
bution. Note that for Yi = −Xi and u=−y we have E(X1:2|X(1)

1:2 = y) = −E(Y2:2|Y(1)
2:2 =

u) and E(X1:2|X(1)
2:2 = y) = −E(Y2:2|Y(1)

1:2 = u). Consequently, (i) and (ii) as well as (iii)
and (iv) above are equivalent.

Theorem 3.1: Let the parent distribution be absolutely continuous distribution with
the interval support (a, b). Then regression function E(X2:2|X(1)

2:2 = y) (alternatively,
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E(X1:2|X(1)
1:2 = y)), y ∈ (a, b), determines uniquely the distribution of X if (a, b) � R. If

(a, b) = R it determines the distribution up to a shift.

Proof: It suffices to consider only the case of E(X2:2|X(1)
2:2 ).

Let us denote K(y) = E(X2:2|X(1)
2:2 = y), y ∈ (a, b). Performing integration by parts in

(i) we get

K(y) = y +
∫ b

y
F̄(x) dx − 1

2F(y)

∫ y

a
F2(x) dx.

Consequently, ifK(y) is the same for two distribution functions F andG, which are strictly
increasing on (a, b) and thus have differentiable quantile functions QF and QG, then

2t
∫ 1

t
(1 − w) dQF(w) −

∫ t

0
w2 dQF(w) = 2t

∫ 1

t
(1 − w) dQG(w) −

∫ t

0
w2 dQG(w).

For H := (QF − QG)′ we obtain

L := 2t
∫ 1

t
(1 − w)H(w) dw =

∫ t

0
w2H(w) dw =: R, t ∈ (0, 1). (17)

Differentiating (17) with respect to t twice we obtain

4(1 − t)H(t) + t(2 − t)H′(t) = 0, t ∈ (0, 1).

Consequently, there exists a constant c such that

H(t) = c
(2 − t)2t2

, t ∈ (0, 1).

Now, assuming that c �= 0 we plugH back into (17). After cancelling c at the left-hand side
we get

L = 2t
∫ 1

t

1 − w
w2(2 − w)2

dw < 2t
∫ 1

t
w−2 dw = 2(1 − t),

while at the right-hand side we have

R =
∫ t

0
(2 − w)−2 dw >

t
4
.

Therefore, for any t ∈ (0, 1) we have t < 8(1 − t), which is impossible for t sufficiently
close to 1. Consequently, c=0, and thusQF − QG = B for some constant B. It implies that
either B = 0 or a = −∞ and b = ∞. In the latter case for any y ∈ R there exists unique
x ∈ R such that y = QG(F(x)). Therefore

G(y) = F(x) = F(QF(F(x))) = F(QG(F(x)) + B) = F(y + B).

This completes the proof. �

Theorem 3.2: Let X has absolutely continuous distribution with the interval support (a, b).
Then the regression function E(X1:2|X(1)

2:2 = y) (alternatively, E(X2:2|X(1)
1:2 = y), y ∈ (a, b),
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determines uniquely the distribution of X if (a, b) � R. If (a, b) = R it determines the
distribution up to a shift.

Proof: Again we consider only the case of E(X1:2|X(1)
2:2 ).

Let us denote K(y) = E(X1:2|X(1)
2:2 = y), y ∈ (a, b). Performing integration by parts in

(iii) we get

K(y) = y −
(

1
2F(y)

+ 1
) ∫ y

a
F(x) dx + 1

2F(y)

∫ y

a
F2(x) dx.

Consequently, if K(y) is the same for two distribution functions F and G, which are
strictly increasing on (a, b) and thus have differentiable inversesQF andQG, then from the
above formula we get

(1 + 2t)
∫ t

0
w dQF(w) −

∫ t

0
w2 dQF(w) = (1 + 2t)

∫ t

0
w dQG(w) −

∫ t

0
w2 dQG(w).

As in the proof above we denote H = (QF − QG)′. Then we have

L := (1 + 2t)
∫ t

0
wH(w) dw =

∫ t

0
w2H(w) dw =: R, t ∈ (0, 1). (18)

Differentiating (18) twice with respect to t we obtain

(1 + 4t)H(t) + t(1 + t)H′(t) = 0, t ∈ (0, 1).

Consequently, there exists a constant c such that

H(t) = c
t(1 + t)3

, t ∈ (0, 1).

Now, assuming that c �= 0 we plugH back into (18). After cancelling c at the left-hand side
we have

L = (1 + 2t)
∫ t

0
(1 + w)−3 dw = 1 + 2t

2

(
1 − 1

(1 + t)2

)
= (1 + 2t)((1 + t)2 − 1)

2(1 + t)2

while at the right-hand side we have

R =
∫ t

0

w
(1 + w)3

dw = t2

2(1 + t)2
.

Obviously, L �= R. Consequently, c=0, and thus QF − QG = B for some constant B. To
complete the proof we proceed as in the end of the proof of the previous theorem. �

3.2. Linearity of regression of Xi:m given Xj:n, m<n

In this subsection we consider linearity of regression as given in (4) when i< j<n−m+i
since, as mentioned before, the cases j ≤ i and j ≥ n − m + i have already been discussed
in DW.
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It seems that the only results available in the literature are form= i=1, i.e. with Xi:m =
X1. In particular, the case n=2k+1, j= k+1was considered inWesołowski andGupta [16]
(referred to byWG in the sequel), see alsoNagaraja andNevzorov [17]. InWG itwas shown
that if EX1 = 0 the relation

E(X1:1|Xk+1:2k+1) = aXk+1:2k+1, (19)

implies a ≥ (k + 1/2k + 1) and up to a scaling factor uniquely determines the parent
distribution. Examples of such distributions (up to scale factors) are:

• The uniform distribution on [−1, 1] when a = (k + 1/2k + 1).
• The Student t2 distribution when a=1. In fact, the same characterization of the Stu-

dent t2 distribution, sometimes with a different phrasing, e.g. writing (1/n)
∑n

j=1 Xj
instead of X1:1 = X1, under the conditional expectation in (19) with a=1 is given in
Nevzorov [18] and Nevzorov et al. [19]. (These references apparently missed the result
of WG.)

• The distribution with the cdf F(x) = 1
2

(
1 + (

√
2x)/(

√√
4 + x4 + x2)

)
, x ∈ R, when

a = (4k + 3/3(2k + 1)).

Related regression characterizations can be found also, e.g. in Balakrishnan andAkhun-
dov [20], Akhundov et al. [21] (referred to by ABN in the sequel), Nevzorova et al. [22],
Marudova and Nevzorov [23], Akhundov and Nevzorov [24], Yanev and Ahsanullah [25].

For describing our results in the sequel (as well as results from the literature) it is
convenient to introduce the family of complementary beta distributions defined in Jones
[26] for a restricted range of parameters α,β and then extended to any α,β ∈ R in
Jones [27]. Slightly changing the original Jones’ formulation we say that an absolutely con-
tinuous distribution with distribution function F and density f belongs to the family of
complementary beta distributions CB(α,β), α,β ∈ R, if

Fα(x) F̄β(x) ∝ f (x), x ∈ R.

Kamps [28] introduced CB(−p, 1 + p − q) for integer p and q in the context of character-
ization of distributions by recurrence relations between moments of os’s from the original
and extended samples. Nevzorov et al. [19] observed that CB(α,α) includes several inter-
esting special cases: Student t2 distribution for α = 3/2, logistic distribution for α = 1,
squared sine distribution with F(x) = sin2(x)I[0,π/2](x) for α = 1/2. Extensive discussion
of properties of CB(α,β) family is given in Jones [27]. In particular, it is observed there
that if α = 0 then β = 1 gives the exponential distribution, β > 1 gives the Pareto laws
and β < 1 are power distributions on a bounded interval.

The family CB(α,β) is a subclass of the family GS(α,β , γ ), the latter being defined
through the equation

Fα(x)(1 − Fγ (x))β ∝ f (x),

was introduced in Muiño et al. [29], i.e. CB(α,β) = GS(α,β , 1). Another subclass of GS
distributions was characterized by linearity of regression of sum of Xk−j:k−j and Xk+r:k+r
given Xk:k in Marudova and Nevzorov [23]. Basic properties of os’s from a sample with the
parent distribution belonging to the GS family were studied in Mohie El-Din et al. [30]. In
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a recent paper Hu and Lin [31] considered an extension of GS(1, 2, γ ) class defined by the
equation

F(x)(1 − Fγ (x)) ∝ xaf (x),

for γ > 0 and a ∈ [0, 1] in the context of characterization by random exponential shifts of
os’s. All these equations can be treated as generalized versions of the logistic growth model
or even as a more flexible growth model introduced in Richards [32].

To describe results in this section it will be also convenient to use the quantile func-
tion Q and quantile density function q. If f is a strictly positive density on some (possibly
unbounded) interval (a, b) then the respective distribution function F is invertible on (a, b)
and thus its inverse, quantile functionQ, is well defined on (0, 1). Moreover it is absolutely
continuous with respect to the Lebesgue measure on (0, 1), that is Q(y) = ∫ y

y0 q(u) du for
some y0 ∈ [0, 1]. The function q is called the quantile density function. Note that

f = T(F) ⇔ q = 1/T, (20)

and thus q together with y0 uniquely determine F. In particular, the quantile density q for
a distribution in CB(α,β) has the form

q(u) ∝ u−α(1 − u)−β , u ∈ (0, 1).

Remark 3.1: Note that the regression condition

E(X1:1|Xj:n) = aXj:n, (21)

has been reduced in WG to the conditionMλ(x) = Ax where A = (na − 1/n − 1) and

Mλ(x) := λE(X|X < x) + (1 − λ)E(X|X > x)

with λ = (j − 1/n − 1). In particular, formula (4) in WG says that for a positive A
(necessarily, A ≥ 1/2) condition (21) holds if and only if the quantile function Q satisfies

Q(y) = cy
λ
A−1 (1 − y)

1−λ
A −1 (λ − y), y ∈ (0, 1). (22)

Differentiating (22) we get the following expression for the quantile density

q(y) ∝ y
λ
A−2(x)(1 − y)

1−λ
A −2((λ − A)λ − 2λ(1 − A)y + (1 − A)y2).

Therefore, for A=1

q(y) ∝ y−1− n−j
n−1 (1 − y)−1− j−1

n−1 , y ∈ (0, 1).

SinceA=1 implies a=1 we conclude thatE(X1:1|Xj:n) = Xj:n characterizes theCB(1 +
(n − j/n − 1), 1 + (j − 1/n − 1)) family. This result was independently proved in Balakr-
ishnan and Akhundov [20], see also Corollary 2.1 in ABN and Nevzorov [33].

ABN characterized also the family CB(1 + (1 − λ)i, 1 + λi) for positive integer i and
λ ∈ (0, 1) through the condition

E(λXi:2i+1 + (1 − λ)Xi+2:2i+1|Xi+1:2i+1) = Xi+1:2i+1.

This result, stated as Theorem 3.1 in ABN, includes the result of Nevzorov [18] who
characterized the family CB(1 + (i/2), 1 + (i/2)) by the above condition with λ = 1/2.
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Remark 3.2: Before we proceed further with a new related characterization let us add here
a small complement to Theorem 3.1 of ABN (also valid for Theorem. 2 of Nevzorov [18]).
The proof as given in ABN (similarly as that of the main result from Balakrishnan and
Akhundov [20]), exploits the ideas originating from the proof of Theorem. 1 in Nev-
zorov [18]. In particular, an important part of the proof of Theorem 3.1 in ABN is
integration by parts in which the following two identities

lim
u→−∞ uFi(u) = 0 and lim

u→∞ uF̄i(u) = 0 (23)

are necessary. Therefore either these conditions or suitable moments conditions, see
Lemma 3.3, have to strengthen the assumptions of Theorem 3.1 of ABN. It is of some inter-
est to note that distributions from CB(1 + (1 − λ)i, 1 + λi) appearing in the statement of
Theorem 3.4 given below do not possess finite expectations.

The result below shows that natural integrability assumptions are responsible for speed
of convergence to zero of suitable powers of the left and right tails of the cdf F. In particular,
it follows that integrability of both Xi:2i+1 and Xi+2:2i+1 imply (23).

Lemma 3.3: If E|Xk:n| < ∞ then

lim
x→−∞ xFk(x) = 0 and lim

x→∞ xF̄n−k+1(x) = 0. (24)

Proof: Note that, for x<0,

∫ x

−∞
|t| Fk−1(t)F̄n−k(t) f (t)dt ≥ |x|F̄n−k(x)

∫ x

−∞
Fk−1(t)f (t) dt = 1

k
|z|F̄n−k(x)Fk(x).

Integrability of Xk:n implies that the left-hand side above converges to 0 as x → −∞. The
first limit in (24) follows since limx→−∞ F̄n−k(x) = 1.

Similarly, for x>0,

∫ ∞

x
|t| Fk−1(t)F̄n−k(t) f (t)dt

≥ |x|F(x)k−1
∫ ∞

x
F̄n−k(t)f (t) dt = 1

n − k + 1
|x|Fk−1(x)F̄n−k+1(x).

Since E|Xk:n| < ∞ the left-hand side above converges to 0 as x → ∞. Since
limx→∞ Fk−1(x) = 1 the second limit in (24) follows. �

Basically, we have described the state of art of the characterizations by linearity of regres-
sion of an os from the original sample given an os from the extended sample. In the next
result we present a new contribution whose proof borrows some ideas fromNevzorov [18].
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Theorem 3.4: Let 2 ≤ j ≤ n − 1. Assume that E|Xj−1:n−2| < ∞ and that f>0 on some
interval (a, b) (possibly unbounded). If

E(Xj−1:n−2|Xj:n) = Xj:n, (25)

then the parent distribution has the quantile density q of the form

q(u) ∝ j − 1 + (n − 2j + 1)u
u1+(j−1)λ (1 − u)1+(n−j)(1−λ)

, u ∈ (0, 1), (26)

where λ = j(j − 1)/(n − j + 1)(n − j) + j(j − 1).

Proof: Due to (3) we can write

E(Xj−1:n−2|Xj:n) = (n − j + 1)(n − j)
n(n − 1)

E(Xj−1:n|Xj:n) + 2(n − j)(j − 1)
n(n − 1)

Xj:n

+ j(j − 1)
n(n − 1)

E(Xj+1:n|Xj:n).

Combining the above equation with (25) we obtain

(1 − λ)E(Xj−1:n|Xj:n) + λE(Xj+1:n|Xj:n) = Xj:n. (27)

Note that

E(Xj−1:n|Xj:n = x) =
∫ x

−∞
t
dFj−1(t)
Fj−1(x)

.

Now, Lemma 3.3 implies limx→−∞ xFj−1(x) = 0 and thus integration by parts gives

E(Xj−1:n|Xj:n = x) = x −
∫ x
−∞ Fj−1(t) dt

Fj−1(x)
.

On the other hand,

E(Xj+1:n|Xj:n = x) = −
∫ ∞

x
t
dF̄n−j(t)
F̄n−j(x)

.

Lemma 3.3 implies limx→∞ xF̄n−j(x) = 0 and thus integration by parts gives

E(Xj+1:n|Xj:n = x) = x +
∫∞
x F̄n−j(t) dt
F̄n−j(x)

.

Consequently, (27) assumes the form∫ x
−∞ Fj−1(t) dt

Fj−1(x)
= λ

1 − λ

∫∞
x F̄n−j(t) dt
F̄n−j(x)

.

Let us introduce two functions G and H defined as follows: G(x) = ∫ x
−∞ Fj−1(t) dt and

H(x) = ∫∞
x F̄n−j(t) dt. Consequently, the above equation can be written as

G′

G
= −1 − λ

λ

H′

H
. (28)
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Upon integration we get GH
1−λ
λ = K for some constant K. Then after multiplication

of (28) by GH1/λ we get

H1/λ = −1 − λ

λ

(
GH

1−λ
λ

) H′

G′ = K
1 − λ

λ

Fn−j

Fj−1

and thus

H ∝ F−(j−1)λF̄(n−j)λ.

Now we differentiate the above equation and obtain

f ∝ F1+(j−1)λ F̄1+(n−j)(1−λ)

j − 1 + (n − 2j + 1)F
.

Thus the final result follows from (20). �

Now we will present two corollaries of the above result which are closely connected to
regression characterizations considered in literature.

Corollary 3.5: Assume that E|Xi:2i−1| < ∞. If

E(Xi:2i−1|Xi+1:2i+1) = Xi+1:2i+1, (29)

then the parent distribution is CB(1 + (i/2), 1 + (i/2)).

Proof: It follows directly from Theorem 3.4 by taking there j= i+1 and n=2i+1. Note
that then λ = 1

2 . �

The above corollary is also a consequence of a characterization of CB(1 + (1 − λ)i, 1 +
λi) distribution for positive integer i and λ ∈ (0, 1) through the condition

E(λXi:2i+1 + (1 − λ)Xi+2:2i+1|Xi+1:2i+1) = Xi+1:2i+1, (30)

which is stated as Theorem 3.1 in ABN (it also includes the result of Nevzorov [18] who
characterized the family CB(1 + (i/2), 1 + (i/2)) by the above condition with λ = 1/2).
Note that (29) combined with (3) gives (30) with λ = 1/2.

The second corollary is related to an open problem stated in DW. In the concluding
remarks of that paper, the authors suggested that possibly the easiest open questions in
characterizations by linearity of regression of an os from a restricted sample with respect
to an os from an extended sample are the following two cases:

E(X1:2|X2:4) = aX2:4 + b, and E(X2:2|X3:4) = aX3:4 + b.

Actually each of these two conditions was written in DW in the expanded integral form.
Unfortunately there are misprints in those formulas: “y” is missing under all integrals and
in the second equation the coefficients of two integrals should be: 1/3 instead of 1/6 for the
first integral and 1/2 instead of 1/3 for the second.

We are able to solve these problems only when a=1 and b=0.
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Corollary 3.6:

(1) If E|X1:2| < ∞ and E(X1:2|X2:4) = X2:4, then q(u) ∝ 1+u
u5/4(1−u)5/2 , u ∈ (0, 1).

(2) If E|X2:2| < ∞ and E(X2:2|X3:4) = X3:4, then q(u) ∝ 2−u
u5/2(1−u)5/4 , u ∈ (0, 1).

Proof: These results follow directly from Theorem 3.4 by taking: in the first case j=2 and
n=4 and thus λ = 1/4; in the second case j=3 and n=4 and thus λ = 3/4. �

From the proof of Theorem 3.4 it follows that if E|Xj−1:n| < ∞ and E|Xj+1:n| < ∞
and (27) holds for an arbitrary (but fixed) λ ∈ (0, 1) then the quantile density of X1 has
the form given in (26). This is a direct extension of Theorem 3.1 of ABN (and Theorem 2
of Nevzorov [18]) which follows by taking n=2i+1 and j= i+1. Note that this is the only
case among possible forms of q in (26) when the distribution ofX1 is of the complementary
beta form.

3.3. OS from the extended sample given os from the original sample

In this subsection we still keep the assumption that m<n but the conditioning now will
be with respect to Xi:m.

From (8), we derive the conditional density of Xj:n|Xi:m = x with respect to νx as

fXj:n|Xi:m=x(y) =
i+n−m∑
k=i

(k−1
i−1
)(n−k

m−i
)

(n
m
) fk:n(x)

fi:m(x)
fXj:n|Xk:n=x(y)

=
i+n−m∑
k=i

(
n − m
k − i

)
Fk−i(x)F̄n−m−(k−i)(x)fXj:n|Xk:n=x(y),

and consequently we have the representation

E(Xj:n|Xi:m = x) =
n−m∑
�=0

(
n − m

�

)
F�(x)F̄n−m−�(x) E(Xj:n|Xi+�:n = x). (31)

It is known that if j > i + �, then the conditional distribution ofPXj:n|Xi+�:n=x is the same
as the distribution of the (j − i − �)th os obtained from an i.i.d. sample of size (n − i − �)

from a parent distribution function (F(t) − F(x))/((1 − F(x)), x < t < ∞; if j < i + �, it
is the same as the distribution of the jth os in a sample of size i + � − 1 from the parent
distribution function (F(t))/((F(x)), −∞ < t < x. Using these facts, after some algebraic
manipulation, E(Xj:n|Xi:m = x) can be expressed in a more explicit form. In general, char-
acterizations (or identifiability question) through the form ofE(Xj:n|Xi:m) seem to be diffi-
cult and in some cases linearity of such conditional expectation is plainly non-admissible.
Consequently, while discussing characterizations we will restrict our considerations only
to several tractable cases.

In the following lemma we derive relatively simple representations of E(Xj:n|Xi:m) in
special cases which will be used in characterizations later on in this subsection. For these
special cases we provide straightforward proofs which is an alternative to derivations based
on the general formula (31).
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Lemma 3.7: For m < n, 1 ≤ i ≤ m and 1 ≤ j ≤ n, we have

(i) E(X1:n|X1:m = x) = xF̄n−m(x) + (n − m)
∫ x
−∞ tF̄n−m−1(t)f (t)dt,

(ii) E(Xn:n|Xm:m = x) = xFn−m(x) + (n − m)
∫∞
x tFn−m−1(t)f (t)dt,

(iii) E(Xi:m+1|Xi:m = x) = xF̄(x) + i
Fi−1(x)

∫ x
−∞ tFi−1(t)f (t)dt,

(iv) E(Xj:n|X1:1 = x) = ∫ x
−∞ tfj:n−1(t)dt + x

(n−1
j−1
)
Fj−1(x)F̄n−j(x) + ∫∞

x tfj−1:n−1(t)dt.

Proof: First we have

E(X1:n|X1:m = x) = xP(min{Xm+1, . . . ,Xn} > x|X1:m = x)

+ E(min{Xm+1, . . . ,Xn}I{min{Xm+1,...,Xn}<x}|X1:m = x)

and

E(Xn:n|Xm:m = x) = xP(max{Xm+1, . . . ,Xn} < x|Xm:m = x)

+ E(max{Xm+1, . . . ,Xn}I{max{Xm+1...,Xn}>x}|Xm:m = x)

and the assertions (i) and (ii) follow immediately.
Next, note that

Xi:m+1 = Xi:mI{Xm+1>Xi:m} + Xm+1I{Xi−1:m<Xm+1<Xi:m} + Xi−1:mI{Xm+1<Xi−1:m}.

Consequently,

E(Xi:m+1|Xi:m = x) = xF̄(x) +
∫ x

−∞
tP(Xi−1:m < t|Xi:m = x) f (t)dt

+ E(Xi−1:mF(Xi−1:m)|Xi:m = x)

= xF̄(x) +
∫ x

−∞
t
(
F(t)
F(x)

)i−1
f (t)dt

+
∫ x

−∞
yF(y) (i − 1)

Fi−2(y)
Fi−1(x)

f (y) dy

and this yields the assertion (iii).
Finally, the assertion (iv) follows from

E(Xj:n|X1:1 = x) = E(Xj:n|Xn = x)

and

Xj:n = Xj:n−1I{Xn>Xj:n−1} + XnI{Xj−1:n−1<Xn<Xj:n−1} + Xj−1:n−1I{Xn<Xj−1:n−1}.

The proof is completed. �

Our main objective in this subsection is to show that the shape of the regresion curves
studied in Lemma 3.7 determine the parent distribution F.

In the remaining part of this subsection we assume that the density f = F′ is strictly
positive on (a, b) := {x ∈ R : 0 < F(x) < 1} with −∞ ≤ a < b ≤ ∞.
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First we will consider the cases (i) and (ii) of Lemma 3.7. It appears that under mild
conditions E(X1:n|X1:m) and E(Xn:n|Xm:m) determine the parent cdf F.

Theorem 3.8: Suppose that g is a differentiable function on (a, b).

(A) If E|X1:n| < ∞ and

E(X1:n|X1:m) = g(X1:m), (32)

then
(A.1) limx→a+ g(x) = a;
(A.2) g′ is a decreasing function with limx→a+ g′(x) = 1 and limx→b− g′(x) = 0;
(A.3) F(x) = 1 − n−m

√
g′(x), for x ∈ (a, b).

(B) If E|Xn:n| < ∞ and

E(Xn:n|Xm:m) = g(Xm:m), (33)

then
(B.1) limx→b− g(x) = b;
(B.2) g′ is an increasing function with limx→a+ g′(x) = 0 and limx→b− g′(x) = 1;
(B.3) F(x) = n−m

√
g′(x), for x ∈ (a, b).

Proof: Since there is an obvious duality between the two cases (it suffices to consider neg-
ative of the original observations to move between (A) and (B)) we provide only the proof
of (A).

From (i) of Lemma 3.7 and (32) we obtain the equation

xF̄n−m(x) + (n − m)

∫ x

a
tF̄n−m−1(t)f (t)dt = g(x), x ∈ (a, b), (34)

then (A.1) follows easily by taking limits x → a+ in both sides of (34). Differentiating (34),
after elementary algebra, we get

F̄n−m(x) = g′(x), x ∈ (a, b),

then (A.2) follows from the well-known properties of a cdf and (A.3) is immediate. �

Note that linearity of regression in (32) (or (33)) is impossible since it would lead to F
being constant.

As an illustration of Theorem 3.8 we provide two examples:

• if either

E(X1:n|X1:m = x) = 1 − (1 − x)n−m+1

n − m + 1
, 0 ≤ x ≤ 1,

or

E(Xn:n|Xm:m = x) = xn−m+1 + n − m
n − m + 1

, 0 ≤ x ≤ 1.

then the parent distribution is uniform on (0, 1);
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• if

E(X1:n | X1:m = x) = 1 − exp(−(n − m)x)
n − m

, x ≥ 0,

then the parent distribution is standard (i.e. with mean 1) exponential.

Now we will consider case (iii) of Lemma 3.7.

Theorem 3.9: Suppose E|Xi:m+1| < ∞ for certain integers 2 ≤ i ≤ m and let h be a
differentiable function on (a, b). If

E(Xi:m+1|Xi:m) = Xi:m − h(Xi:m).

Then

F(x) = h− 1
i−1 (x)

h− 1
i−1 (b−) + 1

i − 1

∫ b

x
h− i

i−1 (t) dt
, x ∈ (a, b). (35)

Proof: Using Lemma 3.7(iii) we have

xF(x) + i
Fi−1(x)

∫ x

a
tFi−1(t)f (t) dt = x − h(x), x ∈ (a, b)

and, after simple algebra,

Fi−1(x)h(x) = xFi(x) − i
∫ x

a
tFi−1(t)f (t) dt, x ∈ (a, b).

Integrating by parts (observe that if a = −∞ then limx→a+ xFi(x) = 0 due to the
hypothesis E|Xi:m+1| < ∞ and Lem. 3.3),

Fi−1(x)h(x) =
∫ x

a
Fi(t) dt, x ∈ (a, b), (36)

from which we conclude that h(x) > 0 for x ∈ (a, b).
Let G(x) = ∫ x

a Fi(t) dt, x ∈ (a, b], so

F(x) = G′(x)
1
i , x ∈ (a, b), (37)

and, after some algebra, (36) yields

G− i
i−1 (x)G′(x) = h− i

i−1 (x), x ∈ (a, b).

Therefore, ∫ b

x
G− i

i−1 (t)G′(t) dt =
∫ b

x
h− i

i−1 (t) dt, x ∈ (a, b)

or equivalently

G− 1
i−1 (x) − G− 1

i−1 (b) = 1
i − 1

∫ b

x
h− i

i−1 (t) dt, x ∈ (a, b).
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From (36) it follows that h(b−) = G(b), and thus

G(x) =
(
h− 1

i−1 (b−) + 1
i − 1

∫ b

x
h− i

i−1 (t) dt

)−(i−1)

, x ∈ (a, b) (38)

(if h(b−) = ∞, which is possible, we take h(b−)−
1

i−1 = 0). The result follows now easily
by (37). �

As an illustration of Theorem 3.9 we provide some examples:

• if for α > 0

E (Xi:m+1 | Xi:m = x) = x − xα+1

iα + 1
, 0 ≤ x ≤ 1,

then the parent distribution is power with the cdf F(x) = xα , x ∈ [0, 1].
• if for A>0 and r>0 such that ri>1

E (Xi:m+1 | Xi:m = x) = x − (1 + A(b − x))−r+1

A(ri − 1)
, x ≤ b,

then the parent distribution is (negative) Type IV Pareto distribution with the cdf
F(x) = (1 + A(b − x))−r, x ∈ (−∞, b];

• if we specialize the above example by fixiing r=1 we obtain characterization of cdf
F(x) = 1/(1 + A(b − x)), x ≤ b, by the linearity of regression

E(Xi:m+1|Xi:m = x) = x − 1
A(i − 1)

, x ≤ b;

• if for λ > 0

E (Xi:m+1 | Xi:m = x) = x − exp(λx)
iλ

, x ≤ 0.

then the parent distribution is negative exponential with the cdf F(x) = exp(λx), x ∈
(−∞, 0].

Characterization by E(X1:1|Xj:n) (of course, X1:1 = X1) was studied in WG and Balakr-
ishnan and Akhundov [20] in the linear case. In case (iv) of Lemma 3.7 we will consider
the dual conditional expectation E(Xj:n|X1:1). We are not able to express the parent dis-
tribution in terms of this regression function in this case. Instead we solve a more modest
question of identifiability of the distribution of X1.

Theorem 3.10: Suppose E|Xj:n| < ∞ for certain integers 1 ≤ j ≤ n. Then the conditional
expectation E(Xj:n|X1:1) uniquely determines the parent cdf F.
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Proof: Denote h(x) = E(Xj:n|X1:1 = x), x ∈ (a, b). From (iv) of Lemma 3.7,

h(x) =
∫ x

−∞
tfj:n−1(t)dt + x

(
n − 1
j − 1

)
Fj−1(x)F̄n−j(x) +

∫ ∞

x
tfj−1:n−1(t)dt, x ∈ (a, b).

Then differentiating the above equation with respect to x we get

h′(x) =
(
n − 1
j − 1

)
Fj−1(x)F̄n−j(x), x ∈ (a, b). (39)

Let us assume that the H is not unique, that is there exist two different distribution
functions F and G with the same support such that H is the same for F and G. Hence

F
j−1
n−j (x)F̄(x) = G

j−1
n−j (x)Ḡ(x), x ∈ (a, b),

which can be rewritten as∫ F(x)

G(x)

(
(j − 1)t

j−1
n−j−1 − (n − 1)t

j−1
n−j

)
dt = 0, x ∈ (a, b). (40)

Note that, for 0 < t < (j − 1/n − 1), the integrand in (40) is strictly positive. Therefore
F(x) = G(x) in a right neighbourhood of the left end of the support. Consequently, we
have x0 = sup{x ≥ a : F(x) = G(x)} > a and by continuity, F(x0) = G(x0).

Let us prove that F(x0) = G(x0) ≥ (j − 1/n − 1). Assume the opposite, F(x0) =
G(x0) < (j − 1/n − 1). Then, by continuity of F andG, there exists ε > 0 such that F(x0 +
ε) < (j − 1/n − 1) and G(x0 + ε) < (j − 1/n − 1). Hence again the integrand in (40) is
strictly positive and we get F(x0 + ε) = G(x0 + ε) which contradicts the definition of
x0. Therefore, F(x0) = G(x0) ≥ (j − 1/n − 1). Consider now an arbitrary x > x0. Since
F and G are strictly increasing on (a, b) we see that F(x) > (j − 1/n − 1) and G(x) >

(j − 1/n − 1). But for t > (j − 1/n − 1)) the integrand in (40) is strictly negative. Con-
sequently F(x) = G(x). �

Note that due to (39) the derivative of the regression function can be useful for deter-
mining the parent cdf. In particular, it follows from (39) that (a) ifE(X1:n|X1:1 = x) = g(x)
is differentiable then F(x) = 1 − n−1

√
g′(x); (b) if E(Xn:n|X1:1 = x) = g(x) is differentiable

then F(x) = n−1
√
g′(x). Actually, these results are also covered by Theorem 3.8 form=1.

Finally, we use (39) to derive two new characterizations of the logistic distribution.

Corollary 3.11: Assume that either

E(X2:3|X1:1 = x) = 2ex

1 + ex
, x ∈ R,

or with unknown parent cdf F

E(X2:3|X1:1 = x) ∝ F(x), x ∈ R,

or

E(X2:3|X1:1 = x) ∝ F̄(x), x ∈ R.

Then X1, X2 and X3 have the logistic distribution.



STATISTICS 25

Proof: In the first case (39) implies

F(x)F̄(x) = ex

(1 + ex)2
.

There are two solutions of the above quadratic equation in the unknown F(x). Only one of
them, F(x) = (ex/1 + ex), x ∈ R, gives the valid (logistic) distribution function.

In the remaining two cases (39) yields f ∝ FF̄, i.e. we obtain a distribution fromCB(1, 1)
family, which is the family of logistic laws – see, e.g. Galambos [34]. �

The last two cases in the above corollary can be easily generalized:

• ifE(Xj:n|X1:1 = x) ∝ Fs(x), s ∈ R, then the parent distribution belongs toCB(j − s, n −
j);

• if E(Xj:n|X1:1 = x) ∝ F̄s(x), s ∈ R, then the parent distribution belongs to CB(j −
1, n − j − s + 1).

4. Conclusion

The aim of this paper is two-fold: (1) derivation of bivariate distribution of os’s from
overlapping samples in the general overlapping scheme; (2) investigations of regression
properties of os’s from overlapping samples, in particular, extension of characterizations
by linearity of regression of os’s or identifiability results to the overlapping situation.
Throughout the paper we assumed that the original observations are iid and their com-
mon distribution is absolutely continuous with respect to the Lebesque measure. The first
task was fully resolved. Though the general formula is quite complicated, in several impor-
tant special cases it gives quite transparent formulas and can be useful, e.g. in studying
moving order statistics or analysing conditional structure of os’s from overlapping samples.
Regarding the second task we identified new settings in which linearity of regression or the
general form of the regression function characterizes the parent distributions, in several
other cases uniqueness results were obtained instead. However, the issue of characterizing
of the parent cdf F by using a general relation

E
(
Xi:m|X(r)

j:n

)
= h(X(r)

j:n ),

where h : R → R is a Borel function, remains open and seems to be rather difficult to
settle.

Finally let us mention that in the special case ofE(Xi:m|Xj:n), due to (3), the problemwe
studied embeds naturally in the question of characterization of the parent distribution by
regression of L-statistics of the form

∑n
i=1 aiXi:n on a single os Xj:n.
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Appendix

Proof of Proposition 2.4: (i) k < l. Note that

{Xi:m = Xk:n+r , X
(r)
j:n = Xl:n+r} =

⋃
α∈A∪B
β∈B∪C
α �=β

{Xi:m = Xk:n+r = Xα , X
(r)
j:n = Xl:n+r = Xβ} (A1)

and the sets under
⋃

at the right-hand side are pair-wise disjoint. Moreover, for any distinct α ∈
A ∪ B and β ∈ B ∪ C

{Xi:m = Xk:n+r = Xα , X
(r)
j:n = Xl:n+r = Xβ} =

⋃
σ∈S(α,β)

{Xσ(1) ≤ . . . ≤ Xσ(r+n)}, (A2)

where

S(α,β) = {
σ ∈ Sn+r : σ(k) = α, σ(l) = β , |σ({1, . . . , k − 1}) ∩ (Aα ∪ Bα,β)| = i − 1,∣∣σ({1, . . . , l − 1} \ {k}) ∩ (Bα,β ∪ Cβ)

∣∣ = j − 1 − IB(α)
}
.

Here and in the sequel we denote Ux1,...,xK := U \ {x1, . . . , xK} for any set U. Since the sets Aα ,
Bα,β and Cβ are disjoint and

Aα ∪ Bα,β ∪ Cβ = (A ∪ B ∪ C)α,β

it follows that

S(α,β) = {
σ ∈ Sn+r : σ(k) = α, σ(l) = β , |σ({1, . . . , k − 1}) ∩ Cβ | = k − i,

|σ({1, . . . , l − 1} \ {k}) ∩ Aα| = l − j − 1 + IB(α)
}
.
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Therefore, by Lemma 2.3

|S(α,β)| = D|A|−IA(α), |B|−IB(α)−IB(β), |C|−IC(β), k−1, l−k−1, k−i, l−j−IA(α).

Note that the sets under the
⋃

sign in (A2) are pair-wise disjoint P-a.s. and each of them has
probability 1/(n + r)! Therefore

P(α,β) := P
(
{Xi:m = Xk:n+r = Xα , X

(r)
j:n = Xl:n+r = Xβ}

)
= |S(α,β)|

(n + r)!
.

There are four possible cases for the triplet (Aα ,Bα,β ,Cβ):

(Aα ,Bα,β ,Cβ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(Aα ,Bβ ,C), if α ∈ A, β ∈ B,
(Aα ,B,Cβ), if α ∈ A, β ∈ C,
(A,Bα,β ,C), if α,β ∈ B,
(A,Bα ,Cβ), if α ∈ B, β ∈ C.

That is, following (A1) we obtain

P
(
{Xi:m = Xk:n+r , X

(r)
j:n = Xl:n+r

)
=
∑
α∈A,
β∈B

P(α,β) +
∑
α∈A,
β∈C

P(α,β) +
∑

α,β∈B
P(α,β) +

∑
α∈B,
β∈C

P(α,β)

= |A||B||S(r,m)| + |A||C||S(r, n + r)| + |B|(|B| − 1)|S(m − 1,m)| + |B||C||S(m, n + r)|
(r + n)!

= |A||B|D|A|−1, |B|−1, |C|, k−1, l−k−1, k−i, l−j−1

(r + n)!
+ |A||C|D|A|−1, |B|, |C|−1, k−1, l−k−1, k−i, l−j−1

(r + n)!

+ |B|(|B| − 1)D|A|, |B|−2, |C|, k−1, l−k−1, k−i, l−j

(r + n)!
+ |B||C|D|A|, |B|−1, |C|−1, k−1, l−k−1, k−i, l−j

(r + n)!
.

Denote numerators in subsequent four fractions above by I1, I2, I3 and I4, respectively. Note that

I1 + I2 = |A|[|B|D|A|−1, |B|−1, |C|, k−1, l−k−1, k−i, l−j−1 + |C|D|A|−1, |B|, |C|−1, k−1, l−k−1, k−i, l−j−1]

= |A| (|A| + |B| + |C| − 2)!(|A|+|B|+|C|−2
k−1,l−k−1

) ( |A| − 1
l − j − 1

) ⎡⎣( |C|
k − i

) l−j−1∑
m=1

(
l − j − 1

m

)
|B|

×
( |B| − 1
i − m − 1

)(|B| + |C| + m − k
j + m − k

)

+|C|
(|C| − 1

k − i

) l−j−1∑
m=1

(
l − j − 1

m

)( |B|
i − m − 1

)(|B| + |C| + m − k
j + m − k

)⎤⎦ .

We will use several times the following elementary identity

s
(
s − 1
r

)
= (s − r)

(
s
r

)
. (A3)

Applying (A3) at the right-hand side above we get

I1 + I2 = |A| (|A| + |B| + |C| − 2)!(|A|+|B|+|C|−2
k−1,l−k−1

) ( |A| − 1
l − j − 1

)( |C|
k − i

)

×
l−j−1∑
m=0

(
l − j − 1

m

)( |B|
i − m − 1

)(|B| + |C| + m − k
j + m − k

)
(|B| + 1 + m + |C| − k)
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= |A|(|B| + |C| − j + 1)
(|A| + |B| + |C| − 2)!(|A|+|B|+|C|−2

k−1,l−k−1
) ( |A| − 1

l − j − 1

)( |C|
k − i

)

×
l−j−1∑
m=0

(
l − j − 1

m

)( |B|
i − m − 1

)(|B| + |C| + m − k + 1
j + m − k

)

= |A|(|B| + |C| − j + 1)
|A| + |B| + |C| − l + 1

D|A|−1,|B|,|C|,k−1,l−k−1,k−i,l−j−1.

Similarly to I1 + I2, we can also obtain a explicit form of I3 + I4. Then combining the expressions
for I1 + I2 and I3 + I4 we get the final formula in this case.

(ii) k = l. Then

{Xi:m = Xk:n+r = X(r)
j:n } =

⋃
α∈B

{Xi:m = Xk:n+r = X(r)
j:n = Xα} =

⋃
α∈B

⋃
σ∈S(α)

{Xσ(1) ≤ . . . ≤ Xσ(n+r)},

(A4)
where

S(α) = {σ ∈ S(n + r) : σ(k) = α, |σ({1, . . . , k − 1}) ∩ (A ∪ Bα)| = i − 1,

|σ({1, . . . , k − 1}) ∩ (Bα ∪ C)| = j − 1}
= {σ ∈ S(n + r) : σ(k) = α, |σ({1, . . . , k − 1}) ∩ C| = k − i,

|σ({1, . . . , k − 1}) ∩ A| = k − j}.

By Lemma 2.3 it follows that

|S(α)| = D|A|,|B|−1,|C|,k−1,0,k−i,k−j.

Since the right-hand side of (A4) is the union of pair-wise disjoint sets having the sameprobability
1/(n + r)! we get immediately the final formula in this case.

(iii) k > l. Note that in this case (A1) and (A2) remain formally valid however this time the set
S(α,β) is different:

S(α,β) = {σ ∈ Sn+r : σ(k) = α, σ(l) = β , |σ({1, . . . , l − 1}) ∩ (Bα,β ∪ Cβ)| = j − 1,∣∣σ({1, . . . , k − 1} \ {l}) ∩ (Aα ∪ Bα,β)
∣∣ = i − 1 − IB(β)}.

Consequently,

S(α,β) = {σ ∈ Sn+r : σ(k) = α, σ(l) = β , |σ({1, . . . , l − 1}) ∩ Aα| = l − j,∣∣σ({1, . . . , k − 1} \ {l}) ∩ Cβ)
∣∣ = k − i − 1 + IB(β)}.

Therefore, according to Lem. 2.3

|S(α,β)| = D|Cβ |, |Bα,β |,|Aα |,l−1,k−l−1,l−j,k−i−IC(β).

Thus, analogously as in Case (i) we obtain

P
(
Xi:m = Xk:n+r , X

(r)
j:n = Xl:n+r

)

= |B||C| |S(m, n + r)|
(r + n)!

+ |A||C| |S(r, n + r)|
(n + r)!

+ |B|(|B| − 1)
|S(m − 1,m)|

(n + r)!
+ |A||B| |S(r,m)|

(n + r)!
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= |B||C|D|C|−1, |B|−1, |A|, l−1, k−l−1, l−j, k−i−1

(r + n)!
+ |A||C|D|C|−1, |B|, |A|−1, j−1, k−l−1, l−j, k−i−1

(r + n)!

+ |B|(|B| − 1)D|C|, |B|−2, |A|, l−1, k−l−1, l−j, k−i

(r + n)!
+ |A||B|D|C|, |B|−1, |A|−1, l−1, k−l−1, l−j, k−i

(r + n)!
.

This formula is the analogue of the respective one from Case (i) with the roles of |A| vs. |C|, k vs.
l and i vs. j being exchanged. The final result follows again by combining first two and second two
numerators above with the use of (A3), similarly as it was done in Case (i). �
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