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Approximation of sets defined by polynomials with
holomorphic coefficients

Marcin Bilski 1 2

Abstract

Let X be an analytic set defined by polynomials whose coefficients
a1, . . . , as are holomorphic functions. We formulate conditions such
that for all sequences {a1,ν}, . . . , {as,ν} of holomorphic functions con-
verging locally uniformly to a1, . . . , as respectively the following holds
true. If a1,ν , . . . , as,ν satisfy the conditions then the sequence of the
sets {Xν} obtained by replacing aj ’s by aj,ν ’s in the polynomials, con-
verge to X.

Keywords: Analytic set, Nash set, approximation
MSC (2000): 32C25

1 Introduction and main results
The problem of approximating analytic objects by simpler algebraic ones
with similar properties appears in many contexts of complex geometry and
hasattracted the attention of several mathematicians (see [2], [3], [10], [11],
[14], [15], [16], [17], [19], [24], [25], [26]). In the present paper we concern the
problem in the case where the approximated objects are complex analytic
sets whereas the approximating ones are complex Nash sets (see Section 2.1).
The approximation is expressed by means of the convergence of holomorphic
chains (for the definition see Section 2.2).

For sets with proper projection the existence of such approximation was
discussed in [5], [6]. In a subsequent paper [7] it was proved that the order
of tangency of a limit set and the approximating sets can be arbitrarily high.
The first results on approximation of analytic sets by higher order tangent

1Institute of Mathematics, Jagiellonian University, Łojasiewicza 6, 30-348 Kraków,
Poland. e-mail: Marcin.Bilski@im.uj.edu.pl

2Research partially supported by the grant NN201 3352 33 of the Polish Ministry of
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algebraic varieties are due to R. W. Braun, R. Meise and B. A. Taylor [11]
with applications in [12].

Both in [6] and in [7] analytic sets are represented as mappings defined on
an open subset of Cn with values in an appropriate symmetric power of Cm.
However, in many cases such sets are defined by systems of equations which
in general carry more information than the sets themselves. Therefore it is
natural to look for approximations of the functions appearing in the equa-
tions. Throughout this paper we restrict our attention to the case where the
description is given by a system of polynomials with holomorphic coefficients
whereas the approximated set is with proper projection onto an appropriate
affine space. Our aim is to show how to approximate the coefficients of the
polynomials to obtain Nash approximations of the set.

If the number of the functions describing the analytic set X is equal to
the codimension of X then it is sufficient to take generic approximations
of the coefficients in order to get local uniform approximation of X. Such
approach clearly does not work in the case of a non-complete intersection
as it leads to sets of dimensions strictly smaller than the dimension of X.
Yet, it is natural to expect that there are algebraic relations satisfied by
the coefficients such that if the approximating coefficients also satisfy the
relations then the original polynomials with these new coefficients define
appropriate approximations.

Before stating the main result let us recall that for any analytic set Y by
Y(n) we denote the union of all n-dimensional irreducible components of Y.

Let U ⊂ Cn be a domain. Abbreviate v = (v1, . . . , vp), z = (z1, . . . , zm).
Assuming the notation of Section 2 and treating analytic sets as holomorphic
chains with components of multiplicity one we prove

Theorem 1.1. Let q1, . . . , qs ∈ C[v, z], for some s ∈ N, and let H : U → Cp

be a holomorphic mapping. Assume that

X = {(x, z) ∈ U ×Cm : qi(H(x), z) = 0, i = 1, . . . , s}

is an analytic set of pure dimension n with proper projection onto U. Then
there is an algebraic subvariety F of Cp with H(U) ⊂ F such that for ev-
ery sequence {Hν : U → F} of holomorphic mappings converging locally
uniformly to H the following holds. The sequence {Xν}, where

Xν = {(x, z) ∈ U ×Cm : qi(Hν(x), z) = 0, i = 1, . . . , s},

2
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converges to X locally uniformly and the sequence {(Xν)(n)} converges to X
in the sense of holomorphic chains.

The following example shows that the sets from {Xν} are in general not
purely dimensional:

Example 1.2. Define X = {(x, z) ∈ C2 : zxex = 0, z2 − zx = 0}. Then
X = {(x, z) ∈ C2 : z = 0}, therefore it is purely 1-dimensional. On the
other hand, C2 × {1} is the smallest algebraic set in C3 containing the
image of the mapping x 7→ (−x, xex, 1). By approximating this mapping by
x 7→ (−x, (x − 1

ν
)ex, 1) one obtains Xν = {(x, z) ∈ C2 : z(x − 1

ν
)ex =

0, z2 − zx = 0} containing an isolated point ( 1
ν
, 1
ν
).

Let U be a connected Runge domain in Cn, let X be a purely n-dimen-
sional analytic subset of U × Cm with proper projection onto U and let
Q1, . . . , Qs ∈ O(U)[z], for some s ∈ N, satisfy

X = {(x, z) ∈ U ×Cm : Q1(x, z) = . . . = Qs(x, z) = 0}.

(An example of such Q1, . . . , Qs are the canonical defining functions for X
(see [29], [13]).)

We check that combining Theorem 1.1 with one of results of L. Lempert
(Theorem 3.2 from [19], see Theorem 2.3 below) one obtains Nash approx-
imations of X by approximating its holomorphic description by a Nash de-
scription. (Let us mention that the proof of Theorem 2.3 is based on the
affirmative solution to the Artin’s conjecture first presented in [21], [22], see
also [1], [20], [23].)

Let H = (H1, . . . , Hs) denote the holomorphic mapping defined on U
where, for every j ∈ {1, . . . , s}, Hj is the mapping whose components are
all the non-zero coefficients of the polynomial Qj; by nj denote the number
of these coefficients. More precisely, the components of Hj are indexed by
m-tuples from some finite set Sj ⊂ Nm in such a way that the component
indexed by a fixed (α1, . . . , αm) is the coefficient standing at the monomial
zα1
1 · . . . · zαm

m in Qj.
Let F be the intersection of all algebraic subvarieties of C(

∑
j nj) con-

taining H(U) and let Ũ be any open relatively compact subset of U. Then
Ũ is contained in a polynomially convex compact subset of U hence by
Theorem 2.3 there exists a sequence {Hν : Ũ → F} of Nash mappings,

3
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Hν = (H1,ν , . . . , Hs,ν), such that {Hj,ν} converges uniformly to Hj|Ũ , for
every j = 1, . . . , s. Now let

Xν = {(x, z) ∈ Ũ ×Cm : Q1,ν(x, z) = . . . = Qs,ν(x, z) = 0},

where Qj,ν ∈ O(Ũ)[z], for j = 1, . . . , s, is defined as follows. The coefficient
of Qj,ν standing at the monomial zα1

1 · . . . · zαm
m is the component of Hj,ν

indexed by (α1, . . . , αm) (if (α1, . . . , αm) /∈ Sj then the coefficient equals
zero).

Finally, let q1, . . . , qs be the polynomials obtained from Q1, . . . , Qs by
replacing the holomorphic coefficients of the latter polynomials by inde-
pendent new variables. It is easy to see that q1, . . . , qs together with the
mapping H satisfy the hypotheses of Theorem 1.1. Hence the sequence of
Nash sets {(Xν)(n)}, where Xν defined in the previous paragraph, converges
to X ∩ (Ũ ×Cm) in the sense of holomorphic chains. Thus we recover the
main result of [6]:

Corollary 1.3. Let X be a purely n-dimensional analytic subset of U ×Cm

with proper projection onto U. Then for every open set Ũ ⊂⊂ U there is a
sequence {Xν} of purely n-dimensional Nash subsets of Ũ ×Cm converging
to X ∩ (Ũ ×Cm) in the sense of chains.

Every purely n-dimensional analytic set is locally with proper projection
onto an open subset of an n-dimensional affine space. Hence, by Corollary
1.3 every analytic set can be locally approximated by Nash ones. Let us
mention that to obtain this result, one does not need to use the advanced
methods of commutative algebra; see [8] for a purely geometrical approach
to the problem. As for the local version of Theorem 2.3, it can be derived
by combining the ideas of [2] and [15] or [8] (see [9]).

Note that the convergence of positive chains appearing in this paper is
equivalent to the convergence of currents of integration over the considered
sets (see [18], [13]). The organization of this paper is as follows. In Section 2
preliminary material is presented whereas Section 3 contains the proof of
Theorem 1.1.

4
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2 Preliminaries

2.1 Nash sets

Let Ω be an open subset of Cn and let f be a holomorphic function on Ω. We
say that f is a Nash function at x0 ∈ Ω if there exist an open neighborhood U
of x0 and a polynomial P : Cn×C → C, P ̸= 0, such that P (x, f(x)) = 0 for
x ∈ U. A holomorphic function defined on Ω is said to be a Nash function if
it is a Nash function at every point of Ω. A holomorphic mapping defined on
Ω with values in CN is said to be a Nash mapping if each of its components
is a Nash function.

A subset Y of an open set Ω ⊂ Cn is said to be a Nash subset of Ω if
and only if for every y0 ∈ Ω there exists a neighborhood U of y0 in Ω and
there exist Nash functions f1, . . . , fs on U such that

Y ∩ U = {x ∈ U : f1(x) = . . . = fs(x) = 0}.

The fact from [27] stated below explains the relation between Nash and
algebraic sets.

Theorem 2.1. Let X be an irreducible Nash subset of an open set Ω ⊂ Cn.
Then there exists an algebraic subset Y of Cn such that X is an analytic
irreducible component of Y ∩Ω. Conversely, every analytic irreducible com-
ponent of Y ∩ Ω is an irreducible Nash subset of Ω.

2.2 Convergence of closed sets and holomorphic
chains

Let U be an open subset in Cm. By a holomorphic chain in U we mean the
formal sum A =

∑
j∈J αjCj, where αj ̸= 0 for j ∈ J are integers and {Cj}j∈J

is a locally finite family of pairwise distinct irreducible analytic subsets of U
(see [28], cf. also [4], [13]). The set

∪
j∈J Cj is called the support of A and

is denoted by |A| whereas the sets Cj are called the components of A with
multiplicities αj. The chain A is called positive if αj > 0 for all j ∈ J. If all
the components of A have the same dimension n then A will be called an
n−chain.

Below we introduce the convergence of holomorphic chains in U . To do
this we first need the notion of the local uniform convergence of closed sets.

5
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Let Y, Yν be closed subsets of U for ν ∈ N. We say that {Yν} converges to
Y locally uniformly if:

(1l) for every a ∈ Y there exists a sequence {aν} such that aν ∈ Yν and
aν → a in the standard topology of Cm,

(2l) for every compact subset K of U such that K∩Y = ∅, K∩Yν = ∅ holds
for almost all ν.
Then we write Yν → Y. For details concerning the topology of local uniform
convergence see [28].

We say that a sequence {Zν} of positive n-chains converges to a positive
n-chain Z if:

(1c) |Zν | → |Z|,
(2c) for each regular point a of |Z| and each submanifold T of U of dimension
m− n transversal to |Z| at a such that T is compact and |Z| ∩ T = {a}, we
have deg(Zν · T ) = deg(Z · T ) for almost all ν.

Then we write Zν 7→ Z. (By Z · T we denote the intersection product of Z
and T (cf. [28]). Observe that the chains Zν · T and Z · T for sufficiently
large ν have finite supports and the degrees are well defined. Recall that for
a chain A =

∑d
j=1 αj{aj}, deg(A) =

∑d
j=1 αj).

The following lemma from [28] will be useful to us.

Lemma 2.2. Let n ∈ N and Z,Zν , for ν ∈ N, be positive n-chains. If
|Zν | → |Z| then the following conditions are equivalent:
(1) Zν 7→ Z,
(2) for each point a from a given dense subset of Reg(|Z|) there exists a
submanifold T of U of dimension m− n transversal to |Z| at a such that T
is compact, |Z| ∩ T = {a} and deg(Zν · T ) = deg(Z · T ) for almost all ν.

2.3 Approximation of holomorphic mappings

In the proof of Corollary 1.3 we use the following theorem which is due to
L. Lempert (see [19], Theorem 3.2).

Theorem 2.3. Let K be a holomorphically convex compact subset of Cn

and f : K → Ck a holomorphic mapping that satisfies a system of equations
Q(z, f(z)) = 0 for z ∈ K. Here Q is a Nash mapping from a neighborhood

6
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U ⊂ Cn × Ck of the graph of f into some Cq. Then f can be uniformly
approximated by a Nash mapping F : K → Ck satisfying Q(z, F (z)) = 0.

3 Proof of Theorem 1.1
Denote Bm(r) = {z ∈ Cm : ||z||Cm < r} and recall v = (v1, . . . , vp). Let U
be a domain in Cn. We prove the following

Proposition 3.1. Let q1, . . . , qs ∈ C[v, z], for some s ∈ N, and let H : U →
Cp be a holomorphic mapping. Assume that

X = {(x, z) ∈ U ×Cm : qi(H(x), z) = 0, i = 1, . . . , s}

is an analytic set of pure dimension n with proper projection onto U. Then
there is an algebraic subvariety F of Cp with H(U) ⊂ F such that for every
domain Ũ ⊂⊂ U and every sequence {Hν : Ũ → F} of holomorphic map-
pings converging uniformly to H on Ũ the following holds. There is r0 > 0
such that for every r > r0 the sequence {Xν}, where

Xν = {(x, z) ∈ Ũ ×Bm(r) : qi(Hν(x), z) = 0, i = 1, . . . , s},

satisfies:

(1) Xν is n-dimensional with proper projection onto Ũ for almost all ν,
(2) max{♯(X ∩ ({x} ×Cm)) : x ∈ U} =

max{♯((Xν)(n) ∩ ({x} ×Cm)) : x ∈ Ũ} for almost all ν,
(3) {Xν}, {(Xν)(n)} converge to X ∩ (Ũ ×Cm) locally uniformly.

Proof of Proposition 3.1. Define the algebraic set

V = {(v, z) ∈ Cp ×Cm : qi(v, z) = 0, i = 1, . . . , s}.

Next, by F denote the intersection of all algebraic subsets of Cp contain-
ing the image of H. Clearly, F is irreducible (because U is connected) hence
of pure dimension, say n̄. Fix an open connected subset Ũ ⊂⊂ U. In the
following lemma F is endowed with the topology induced by the standard
topology of Cp.

7
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Lemma 3.2. Let r > 0 be such that (Ũ×Bm(r))∩X ̸= ∅ and (Ũ×∂Bm(r))∩
X = ∅. Then there is an open neighborhood C of H(Ũ) in F such that
(C ×Bm(r))∩ V is n̄-dimensional with proper projection onto C. Moreover,
for every (a, z) ∈ (H(Ũ)×Bm(r))∩V it holds dim(a,z)((C×Bm(r))∩V ) = n̄.

Proof of Lemma 3.2. First we check that there is an open neighborhood C

of H(Ũ) in F such that (C×∂Bm(r))∩V = ∅, which implies the properness
of the projection of (C ×Bm(r)) ∩ V onto C.

It is sufficient to show that for every a ∈ H(Ũ) there is an open neigh-
borhood Ca in F such that (Ca × ∂Bm(r)) ∩ V = ∅. Fix a ∈ H(Ũ). Now, if
for every open neighborhood Ca of a we had (Ca × ∂Bm(r)) ∩ V ̸= ∅ then
there would be ({a}× ∂Bm(r))∩V ̸= ∅. But then (Ũ × ∂Bm(r))∩X ̸= ∅ as
a ∈ H(Ũ) ⊂ H(Ũ), a contradiction.

Let us show that dim(a,z)((C × Bm(r)) ∩ V ) = n̄ for every (a, z) ∈
(H(Ũ) × Bm(r)) ∩ V. First observe that dim((C × Bm(r)) ∩ V ) cannot
exceed the dimension of C because (C × Bm(r)) ∩ V is with proper pro-
jection onto C. Next suppose that there is (a, z) ∈ (H(Ũ) × Bm(r)) ∩ V
such that dim(a,z)((C × Bm(r)) ∩ V ) < n̄. Let V1 be the union of the ir-
reducible analytic components of (C × Bm(r)) ∩ V containing (a, z) and
let π : Cp × Cm → Cp denote the natural projection. It is easy to see
that H−1(π(V1)) is a non-empty nowhere dense analytic subset of H−1(C)
(nowhere-density because otherwise H(U) would be contained in an alge-
braic set of dimension smaller than n̄). Let P be a neighborhood of (a, z) in
C ×Bm(r) such that P ∩ V = P ∩ V1 ̸= ∅. Now consider the set

E = {(w, y) ∈ (U ×Bm(r)) ∩X : (H(w), y) ∈ P ∩ V }.

One observes that E ̸= ∅, because H−1({a}) × {z} ⊂ E, and that E has
a non-empty interior in X, and moreover, the projection of E onto U is
contained in H−1(π(V1)). This contradicts the fact that X is purely n-
dimensional.

Since (Ũ × Bm(r)) ∩ X ̸= ∅ then (H(Ũ) × Bm(r)) ∩ V ̸= ∅ so by what
we have proved so far (C ×Bm(r)) ∩ V is n̄-dimensional.

Proof of Proposition 3.1 (continuation). Let r0 > 0 be such that (Ũ ×
Bm(r0)) ∩X = (Ũ ×Cm) ∩X and let r > r0. Then (Ũ × ∂Bm(r)) ∩X = ∅

8
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and by Lemma 3.2, there is a neighborhood C of H(Ũ) in F such that
(C ×Bm(r))∩V is n̄-dimensional with proper projection onto C. Moreover,
for every (a, z) ∈ (H(Ũ)×Bm(r))∩V it holds dim(a,z)((C×Bm(r))∩V ) = n̄.

Let {Hν : Ũ → F} be a sequence of holomorphic mappings converging
uniformly to H on Ũ . Define the sequence {Xν} as in the statement of
Proposition 3.1.

First we show (1): Xν is n-dimensional and with proper projection onto
Ũ for almost all ν. To do this observe that for sufficiently large ν it holds
Hν(Ũ) ⊂ C and then

Xν = {(x, z) ∈ Ũ ×Bm(r) : (Hν(x), z) ∈ (C ×Bm(r)) ∩ V }.

Thus the properness of the projection of Xν onto Ũ is obvious by the choice
of C in Lemma 3.2.

Now we check the following claim: for sufficiently large ν every fiber in Xν

over Ũ is not empty. Indeed, let C0 denote the irreducible Nash component
of C containing H(Ũ). Then the projection of (C0 × Bm(r)) ∩ V onto C0 is
surjective which follows by Lemma 3.2. On the other hand, for sufficiently
large ν, Hν(Ũ) ⊂ C0 which clearly implies the claim. Consequently, Xν is
n-dimensional for almost all ν.

Let us turn to (2). Since C0 is an irreducible Nash set then Reg(C0) is
connected. There is a nowhere dense Nash subset C ′ of C0 such that the
function ρ : Reg(C0) \ C ′ → N given by

ρ(v) = ♯(({v} ×Bm(r)) ∩ V )

is constant. By m̃ we denote the only value of ρ.
Neither H(Ũ) nor Hν(Ũ) (for large ν) can be contained in Sing(C0)∪C ′

so (H−1(Sing(C0)∪C ′)∪H−1
ν (Sing(C0)∪C ′))∩Ũ is a nowhere dense analytic

subset of Ũ . This means that for the generic x ∈ Ũ the fibers in X and in
Xν over x have m̃ elements which completes the proof of (2).

Finally, let us prove (3). To check the condition (2l) of the definition of
local uniform convergence it is sufficient to show that for every (x0, z0) ∈
(Ũ × Cm) \ X there is a neighborhood D of (x0, z0) in Ũ × Cm such that
D ∩Xν = ∅ for almost all ν. This is obvious as there is i ∈ {1, . . . , s} such
that qi(H(x0), z0) ̸= 0. Then qi(Hν(x0), z0) ̸= 0 for almost all ν in some
neighborhood of (x0, z0).

9
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As for the condition (1l), it suffices to show that for a fixed x0 ∈ Ũ \
H−1(Sing(C)) the sequence {({x0} ×Cm) ∩ (Xν)(n)} converges to ({x0} ×
Cm)∩X locally uniformly. Take (x0, z0) ∈ X∩(Ũ×Cm) = X∩(Ũ×Bm(r)).
Then by Lemma 3.2 it holds dim(H(x0),z0)(C × Bm(r)) ∩ V = dim(C). Con-
sequently, (since H(x0) ∈ Reg(C) and (C × Bm(r)) ∩ V is with proper
projection onto C) there is a sequence {zν} converging to z0 such that
dim(Hν(x0),zν)(C × Bm(r)) ∩ V = dim(C) for almost all ν. This implies that
for sufficiently large ν, the image of the projection of every open neighbor-
hood of (x0, zν) in Xν onto Ũ contains a neighborhood of x0 in Ũ . Thus
(x0, zν) ∈ (Xν)(n) for almost all ν and the proof is complete.

Proof of Theorem 1.1 (end). Let F denote the intersection of all algebraic
subvarieties of Cp containing H(U) and let {Hν : U → F} be a sequence of
holomorphic mappings converging locally uniformly to H. Define Xν as in
the statement of Theorem 1.1.

It is sufficient to show that for every relatively compact subset Ũ of U the
sequences {Xν∩(Ũ×Cm)} and {(Xν)(n)∩(Ũ×Cm)} converge to X∩(Ũ×Cm)
locally uniformly and in the sense of holomorphic chains respectively. Fix
Ũ ⊂⊂ U. Then by Proposition 3.1 there is r0 such that for every r > r0 the
following hold. {Xν∩(Ũ×Bm(r))} and {(Xν)(n)∩(Ũ×Bm(r))} converge to
X∩(Ũ×Cm) locally uniformly. Moreover, for almost all ν, Xν∩(Ũ×Bm(r))
is n-dimensional with proper projection onto Ũ and max{♯(X∩({x}×Cm)) :
x ∈ Ũ} = max{♯((Xν)(n) ∩ ({x} × Bm(r))) : x ∈ Ũ}. Thus by Lemma 2.2
we have: {(Xν)(n) ∩ (Ũ × Bm(r))} converges to X ∩ (Ũ ×Cm) in the sense
of holomorphic chains. Since r can be taken arbitrarily large we get our
claim.
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On smooth real-compactness of countably generated
differential spaces

Michał Cukrowski, Zbigniew Pasternak-Winiarski,Wiesław Sasin 1

Abstract

We will show that if a differential structure of a differential space
in the Sikorski [3, 4] sense has countable number of generators then
all its real homomorphisms are evaluations.

1 Introduction
When all the real homomorphisms defined on an algebra of functions of some
kind of space are evaluations then we say that such a space is smoothly
real-compact. There are many articles stating about this property of some
spaces. In the articles [6],[7] it is shown that the spaces of real continuous
functions on R and Rn are smoothly real-compact. In [10] this property
has been shown for the spaces of the functions of class Ck (k = 1, . . . ,∞)
on separable Banach spaces. Many discussions on this topic can be found
in [9]. The most important from the point of view of Sikorski spaces is
the article [1] since it discusses smooth real-compactness of smooth spaces,
which are a wider category than the Sikorski spaces. Many conditions for this
spaces to be smoothly real-compact are given there. In our article we give
other conditions using techniques proper for Sikorski spaces. The concept
of generators of the structure is crucial. Some results were already obtained
before but we have given other proofs because of usage of this concept. We
have obtained that if there exists at most countable set of generators then
the differential space is smoothly real-compact.

1Faculty of Mathematics and Information Science, Warsaw University of
Technology, Pl. Politechniki 1, 00-661 Warszawa, Poland
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2 Basic concepts and definitions
Let M be a nonempty set and C a set of real functions on M . We introduce
on M topology τC - the weakest topology in which the functions from C are
continuous. We say that the set C is closed with respect to superposition if all
functions of the form ω◦(f1, . . . , fn) where f1, . . . , fn ∈ C, ω ∈ C∞(Rn) are
in C. Adding to C all the functions of this form we obtain its superposition
closure; we denote it scC. For any A ⊆ M the symbol CA will denote the
set of all functions f on A such that for any p ∈ A there exists an open
neighbourhood U ∈ τC of p and a function g ∈ C such that f |U∩A = g|U∩A.
If C = CM then we say that C is closed with respect to localization. We call
the set of real functions C on a nonempty set M a differential structure if it
is:
1) Closed with respect to superposition C = scC.
2) Closed with respect to localization C = CM .
A differential structure is always an algebra with unity and with all constant
functions.

Definition 2.1. A pair (M, C) is a differential space if M is a nonempty
set and C a differential structure on it.

We call a differential subspace of the differential space (M, C) any pair
(A, CA) where A ⊆M .

Definition 2.2. The differential structure (M, C) is generated by the set of
functions C0 if C is the smallest differential structure that contains C0. Then
we write C = GenC0.

If C = genC0 then C = (scC0)M , and for any f ∈ C and any point p ∈M
there exists an open neighbourhood U ∈ τC of p and there exist functions
f1, . . . , fn ∈ C0, ω ∈ C∞(Rn) such that f |U = ω ◦ (f1, . . . , fn)|U . We
say that the differential space (M, C) is finitely generated if there exists a
finite set of real functions on M that generates the differential structure C.
A differential space is countably generated if there exists a countable set
of real functions on M that generates the differential structure C and the
structure C is not finitely generated.

By (RI , εI) we denote the differential space with the structure εI gener-
ated by the set of projections C0 = {πi : i ∈ I}, where
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πi : R
I → R is defined by: πi(x) = xi for x = {(xi) : i ∈ I}. This is a

generalization of the Euclidean space (Rn, εn) where εn = C∞(Rn).
The spectrum of an algebra C is the set

SpecC = {χ : C → R : χ is homomorphism that preserves unity}.
Let (M, C) be a differential space. Evaluation of the algebra C at the point
p ∈M is the homomorphism χ ∈ SpecC of the following form:

χ(f) = f(p) ∀f ∈ C; (1)

we will denote this homomorphism by evp. We will define the mapping
ev :M → SpecC by the formula:

ev(p) = evp (2)

Definition 2.3. We say that a differential space (M, C) is smoothly real-
compact iff any χ ∈ SpecC is an evaluation at some point p ∈M .

From this definition it follows that the space (M, C) is smoothly real-
compact when the mapping ev is onto. For any f ∈ C we define the function
f̂ : SpecC → R by the formula:

f̂(χ) = χ(f) ∀χ ∈ SpecC (3)

The set of all functions of the form f̂ will be denoted by Ĉ. By τ : C → Ĉ
we will denote the mapping defined as follows:

τ(f) = f̂ ∀f ∈ C (4)

The mapping τ is an isomorphism between the algebra C and the algebra Ĉ.

3 Main results
Lemma 3.1. The differential space (Rn, εn) is smoothly real-compact.

Proof. Let χ ∈ SpecεI . We define a point p ∈ Rn by the equations
pi := χ(πi) for i = 1, . . . , n. We will show that χ = evp. We know from [4]
that any f ∈ εn can be presented in the form:

f = f(p) +
n∑
i=1

gi(πi − pi), for g1, . . . , gn ∈ εn. (5)
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Then χ(f) = χ(f(p)) +
∑n

i=1 χ(gi)(χ(πi)− χ(pi)) = f(p)+∑n
i=1 χ(gi)(pi − pi) = f(p). Therefore χ(f) = f(p) for all f ∈ εn. �

Lemma 3.2. A differential subspace of the differential space (Rn, εn) is
smoothly real-compact.

Proof. Let (M, C) be a differential subspace of (Rn, εn). The inclusion
mapping ιM :M → Rn is smooth and therefore
ι∗M : εn →M is a homomorphism. From the definition we know that ιM(f) =
f |M ∀f ∈ εn. For any χ ∈ SpecC the mapping
χ ◦ ι∗M ∈ Specεn. From Lemma 3.1 we know that ∃p ∈ Rn such that
χ ◦ ι∗M(f) = χ(ι∗M(f)) = χ(f |M) = f(p) ∀f ∈ εn. Let us suppose that
p /∈M . There exists the function ω ∈ εn defined by the formula:

ω(x1, . . . , xn) = (x1 − p1)
2 + · · ·+ (xn − pn)

2 (6)

The function ω|M > 0 so 1
ω|M

∈ C. We also know that χ((ω|M)( 1
ω|M

)) =

χ(1) = 1, and (χ ◦ ι∗M)(ω) = χ(ω|M) = ω(p) = 0. So it is a contradiction.
We will show that χ = evp. Let f ∈ C. There exists an open neighbour-

hood U ∈ τεn of the point p and a function κ ∈ εn such that f |U∩M = κ|U∩M .
From [4] we know that there exists a bump function ϕ ∈ εn and ϕ(p) = 1,
ϕ|M∩U > 0 such that ϕ|(Rn−(M∩U)) = 0. From these properties it follows that
(f − κ|M)ϕ|M = 0. Then χ((f − κ|M)ϕ|M) = (χ(f) − χ(κ|M))χ(ϕ|M) = 0.
But
χ(ϕ|M) = (ιM ◦χ)(ϕ) = ϕ(p) = 1 so χ(f) = χ(κ|M) = κ(p) = f(p). We have
shown that χ(f) = f(p) ∀f ∈ C.

When the differential structure C of the differential space (M, C) is gener-
ated by the set of functions C0 then we can define the mapping ϕ :M → RC0

by the following formula:

ϕ(p)(f) = f(p) f ∈ C0 (7)

We will call this mapping generatory embedding. We can prove the following
lemma:

Lemma 3.3. A differential space (M, C) with C = GenC0 is smoothly real-
compact iff the differential space (ϕ(M), (εI)ϕ(M)) for I = |C0| is smoothly
real-compact.
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Proof. If C0 separates points of M then ϕ is a diffeomorphism on its
image and all is clear. So let us assume that C0 does not separate points.
Then ϕ̄ : M → ϕ(M) where ϕ̄(p) = ϕ(p) is surjective but not injective. Let
us denote F := ϕ̄. We know that F ∗ : (εI)ϕ(M) → C is an isomorphism of
algebras. If (M, C) has the spectral property then for any ν ∈ Spec(εI)ϕ(M)

there exists µ ∈ SpecC such that µ = ν ◦ (F ∗)−1. Then for any g ∈ (εI)ϕ(M)

ν(g) = µ(F ∗(g)) = µ(g ◦ F ) = g(F (p)). So if µ = evp then ν = evF (p).
If (ϕ(M), (εI)ϕ(M)) is smoothly real-compact then for any µ ∈ SpecC

there exists ν ∈ Spec(εI)ϕ(M) defined by ν = µ ◦ F ∗; then µ = ν ◦ (F ∗)−1.
Therefore for any f ∈ C we have µ(f) = (ν ◦ (ϕ∗)−1)(f) = ν((ϕ∗)−1(f)) =
((ϕ∗)−1(f))(q) = f(p) for any p ∈ F−1(q). So if ν = evq then µ = evp ∀p ∈
F−1(q). �

From last lemma we know that it is sufficient to work on subspaces of
Euclidean spaces.

Corollary 3.4. Let (M, C) be a differential space with C = GenC0 for some
finite C0. Then (M, C) is smoothly real-compact.

Proof. By using the generators C0 we can embed (M, C) into
(RC0 , (εC0)ϕ(M)) and then from Lemmas 3.2,3.3 we derive that (M, C) is
smoothly real-compact. �

Lemma 3.5. Let (M, C) be a differential space. Any χ ∈ SpecC satisfies the
following condition:

χ(ω ◦ (f1, . . . , fn)) = ω(χ(f1), . . . , χ(fn)) (8)

for all ω ∈ εn and f1, . . . , fn ∈ C.

Proof. Let β1, . . . , βn ∈ C be arbitrary functions. We can define the
mapping F : (M, C) → (Rn, εn) by the formula:

F (p) = (β1(p), . . . , βn(p)) p ∈M

This mapping is smooth and it is onto its image. Therefore the mapping
F ∗ : (εn)F (M) → C is a homomorphism. For any χ ∈ SpecC the composition
χ ◦ F ∗ ∈ Spec((εn)F (M)). From Corollary 3.4 we know that ∃q ∈ F (M) s.t.
χ ◦ F ∗ = evq for some q ∈ F (M). Also ∃p ∈M s.t.

(χ ◦ F ∗)(ω|F (M)) = evF (p)(ω|F (M)) ∀ω ∈ εn
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We can rewrite it in the form:

χ(ω ◦ F ) = ω(F (p)) = ω(β1(p), . . . , βn(p)) ∀ω ∈ εn

By setting ω = πi, i = 1, . . . , n we obtain: χ(βi) = χ(πi ◦ F ) = πi(F (p)) =
βi(p) and finally: χ(ω ◦ (β1, . . . , βn)) = ω(χ(β1), . . . , χ(βn))
∀ω ∈ εn. �

Lemma 3.6. Let (M, C) be a differential space such that C = GenC0. If
some χ ∈ SpecC satisfies the condition χ|C0 = evp|C0 then χ = evp.

Proof. First we will show that if f ∈ scC0 then χ(f) = f(p) . From
Lemma 3.5 we know that χ(ω◦(β1, . . . , βn)) = ω(χ(β1), . . . , χ(βn)) for ω ∈ εn
and β1, . . . , βn ∈ C0. We also know that χ(βi) = evp(βi) = βi(p). We
can write χ(ω ◦ (β1, . . . , βn) = ω(β1(p), . . . , βn(p)) = ω ◦ (β1, . . . , βn)(p) =
evp(ω ◦ (β1, . . . , βn)). So we see that χ|scC0 = evp|scC0 .

Now let f ∈ C be an arbitrary function. We know that ∀p ∈ M there
exists an open neighbourhood U ∈ τC, functions β1, . . . , βn ∈ C0 and a
function ω ∈ εn s.t. f |U = ω ◦ (β1, . . . , βn)|U . There also exists a bump
function ψ which separates the point p in the set U . This function is con-
structed from composition of some function from εn with some generators
from C0. We know that the homomorphism χ is the evaluation at the point
p on this function, so χ(ϕ) = ϕ(p) = 1. Now the following equality holds:
ϕ · (f −ω ◦ (β1, . . . , βn)) = 0. By applying homomorphism χ to this equality
we will obtain: χ(ϕ) ·χ(f −ω ◦ (β1, . . . , βn)) = χ(f)−χ(ω ◦ (β1, . . . , βn)) = 0
so χ(f) = χ(ω ◦ (β1, . . . , βn)) = evp(ω ◦ (β1, . . . , βn)) = f(p) = evp(f). We
see that χ(f) = f(p) ∀f ∈ C. �

As an obvious corollary from this lemma we get:

Corollary 3.7. The differential space (RI , εI) is smoothly real-compact.

Proof. Let χ ∈ SpecεI be any homomorphism. We can define the
point p ∈ RI by the equations πi = χ(πi) for i ∈ I. Then χ(πi) = πi(p) so
χ(πi) = evp(πi). Since the structure εI is generated by the set {πi : i ∈ I}
we see that χ is the evaluation at the point p on the generators. From the
last lemma we derive that χ is an evaluation on whole εI . �

By using whole C as the set of generators we can embed M in RC .
We denote this embedding by ι, so ι : M → RC, ι(p)f = f(p). This is
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a special case of generatory embedding. We can also map SpecC into RC

using the mapping κ : SpecC → RC defined by: κ(χ)f = f̂(χ) = χ(f). It is
obvious that ι = κ◦ev. In [1] Kriegl, Michor and Schachermayer have shown
that ι(M) is dense in κ(SpecC) in the Tichonov topology in RC. Since the
mapping κ is a homeomorphism we derive that:

Corollary 3.8. ev(M) is dense in SpecC in the topology τĈ.

This property will allow us to prove an interesting fact about the space
(SpecC, Ĉ).

Lemma 3.9. If (M, C) is a differential space then (SpecC, Ĉ) is a differential
space.

Proof. To prove that (SpecC, Ĉ) is a differential space we will have
to show that the set Ĉ is closed with respect to superposition with smooth
functions from εn and closed with respect to localization.

Let us define the function g = ω ◦ (f̂1, . . . , f̂n) for some ω ∈ εn and
f̂1, . . . , f̂n ∈ Ĉ. From Lemma 3.5 we know that g(χ) = ω ◦ (f̂1, . . . , f̂n)(χ) =
τ(ω ◦ (f1, . . . , fn))(χ) ∀χ ∈ SpecC. We have shown that g ∈ Ĉ, so Ĉ is
closed with respect to superposition.

Let a function f : SpecC → R satisfy the localization condition in the
space (SpecC, Ĉ). For any open subset Û ∈ SpecC ∃ĝ ∈ Ĉ s. t. f |Û = ĝ|Û .
We can uniquely define the function h : M → R satisfying the condition
h(p) = f(evp) ∀p ∈ M . For any open set Û ∈ SpecC there exists the open
set U ∈ M defined by U = {p ∈ M : evp ∈ Û}. From the definitions of
the function h and the set U we know that h|U = g|U . Because g ∈ C it
follows that h ∈ C. We also know that ĥ|evM = f |evM . From Corollary 3.8
we derive that f = ĥ. This means that f ∈ Ĉ, so Ĉ is closed with respect to
localization. �

Lemma 3.10. If (M, C) is a differential space with the structure C generated
by C0 then the differential structure Ĉ of the differential space (SpecC, Ĉ) is
generated by Ĉ0.

Proof. Let us assume that C0 = {fi : i ∈ I}. We know that for any
f ∈ C there exists such an open covering of M that on each set U of this
covering the function f can be expressed in the form ω ◦ (f1, . . . , fn) where
f1, . . . , fn ∈ C and ω ∈ εn. For each open set U of this covering we can
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define the set Û = {evp ∈ SpecC : p ∈ U}. On the set Û the function
f̂ = τ(ω ◦ (f1, . . . , fn)). The sets of form Û might not be a covering of SpecC
but the sum of them is dense in SpecC. Therefore we can prolong uniquely
this representation of f̂ on whole SpecC. We have shown that Ĉ = genĈ0. �

Lemma 3.11. For any differential space (M, C) the differential space
(SpecC, Ĉ) is smoothly real-compact.

Proof. We need to show that for every homomorphism χ̂ ∈ SpecĈ
there exists a homomorphism ψ ∈ SpecC s.t. χ̂ = evψ. Since the algebras
C and Ĉ are isomorphic we can define uniquely χ ∈ SpecC by the formula
χ(f) = χ̂(f̂). We will show that χ̂ = evχ. Let us compute evχ(f̂) = f̂(χ) =

χ(f) = χ̂(f̂), so by setting ψ = χ we obtain that χ̂ = evψ. �

Lemma 3.12. Let (M, C) be a differential space and C = GenC0. If χ1, χ2 ∈
SpecC are equal on the generators χ1|C0 = χ2|C0 then they are equal χ1 = χ2.

Proof. Let us assume that χ1|C0 = χ2|C0 and χ1 ̸= χ2. From the last
lemma we know that the differential structure Ĉ of the differential space
(SpecC, Ĉ) is generated by Ĉ0. From the condition χ1|C0 = χ2|C0 we de-
rive that ∀f̂ ∈ Ĉ f̂(χ1) = f̂(χ2). But we know that if the generators
do not separate points then all the functions do not separate points, so
∀f̂ ∈ Ĉf̂(χ1) = f̂(χ2) and it follows that ∀f ∈ C χ1(f) = χ2(f). This
means that χ1 = χ2. �

Lemma 3.13. If (M, C) is a differential subspace of the space (RI , εI) then
any function f ∈ C is uniquely continuously prolongable to
f̃ : M̃ → R, where
M̃ = {p ∈ RI : ∃χ ∈ SpecC s.t. pi = χ(πi|M) ∀i ∈ I}.

Proof. We will define the function f̃ by the formula f̃(p) = f̂(χ), where
χ ∈ SpecC is s.t. χ(πi) = pi ∀i ∈ I. Since a homomorphism is uniquely
defined by its values on the generators (Lemma 3.12) this definition works
well. We see that if p ∈ M then χ = evp and f̃(p) = f̂(evp) = f(p) so this
is indeed a prolongation. This prolongation is continuous since the function
f̃ is the realization of the function f̂ in the set M̃ which is the image of the
set SpecC by the generatory embedding using the generators τ(πi|M) : i ∈ I.
Uniqueness follows from the fact that the set M is dense in the set M̃ in the
topology of RI . �

21



i
i

“zesz_cuk-b5” — 2010/12/8 — 23:28 — page 22 — #9 i
i

i
i

i
i

Corollary 3.14. When (M, C) is a differential subspace of (RI , εI) generated
by C0 = {πi|M : i ∈ I} then the mapping χ : C0 → R defined on generators
as χ(πi|M) = pi for some p ∈ M̃ −M can be prolonged to homomorphism
on whole C iff all the functions from C are prolongable to p.

Let M = RN − {0}, where by 0 we denote the zero sequence and CM =
(εN)M . Then (M, CM) is a differential subspace of the differential space
(RN, εN). We will show that this space is smoothly real-compact.

Lemma 3.15. There exists a function ξ ∈ CM which is non-prolongable to
any continuous function on RN.

Proof. We know that there exists a function ϕ ∈ C∞(R) satisfying the
following properties:
1. ∀x ∈ R ϕ(x) ∈< 0, 1 >
2. supp(ϕ) ⊆ (−∞, 1 >
3. ϕ|<0, 1

2
> = 1

For any k ∈ N we will define the function ρ̃k : RN → R by the formula:

ρ̃k((xn)) =
k∑
i=1

x2i ,

for (xn) ∈ RN. The function ρ̃k ∈ C∞(RN), and the function ρk = ρ̃k|M is
in CM . We will define the function ξ :M → R by the following formula:

ξ((xn)) =
∞∑
k=1

ϕ(k2ρk(xn)). (9)

We will show that this function belongs to the structure CM . For any k ∈ N
we can define the closed subset Ak = {(xn) ∈ M : k2ρk((xn)) ≤ 1} =
{(xn) ∈ M : ρk(xn) ≤ 1

k2
}. We see that supp(ϕ ◦ (k2ρk)) ⊆ Ak. For any

(xn) ∈ M the sequence ρk((xn)) is non-decreasing with respect to k and
there exists k0 ∈ N for which 1

k2
< ρk0(xn). This means that (xn) /∈ Ak.

Therefore
∩
k∈NAk = ∅. We also know that Ak+1 ⊆ Ak. Let us define the

family of open subsets Uk =M −Ak. Of course
∪
k∈N Uk =M . If (xn) ∈ Uk

then ϕ(k2ρk((xn)) = 0. Then ∀m > k xn ∈ Um so ϕ(m2ρm(xn)) = 0. This
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means that only a finite number of elements are non-zero in the sum (9) and
therefore:

ξ(xn) =
k−1∑
j=1

ϕ(j2ρj(xn)),

∀k ∈ N the function ξ|Uk
∈ CUk

= (CM)Uk
. From the localization closeness

of the differential structure we derive that ξ ∈ CM . Now we will define a
sequence in M convergent to 0 on which the function ξ will diverge. Let us
define zk = (xn,k) where

xn,k =

{ 1
k
√
2

for n = k

0 for n ̸= k

We can see that limk→∞ zk = 0 ∈ RN and

ρj(zk) =

{
1

2k2
for j ≥ k

0 for j < k

For j ≤ k we obtain ϕ(j2ρj(xk)) = 1 and therefore

ξ(xk) =
∞∑
j=1

ϕ(j2ρj(xk)) ≥
k∑
j=1

1 = k

This means that limk→∞ ξ(xk) = +∞. The function ξ is non-prolongable to
any continuous function in RN. �

Lemma 3.16. The differential space (M, CM) is smoothly real-compact.

Proof. From Lemma 3.12 we know that the set SpecCM may contain
only one homomorphism χ0 which is not an evaluation. This homomorphism
would be defined on the generators by the formula χ0(πi|M) = 0 ∀i ∈ I. So
there would be only one point 0 ∈ M̃ −M . But it cannot be so since from
Corollary 3.14 we know that all the functions from CM should be prolongable
to the point 0. From the last lemma we know that there exists a function
ξ ∈ CM which is not prolongable. �

Corollary 3.17. Differential space (RN − {p}, (εN)RN−{p}) where
p ∈ RN is arbitrary is smoothly real-compact.
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Proof. This space is diffeomorphic to the space (M, CM) so it must be
smoothly real-compact. �

Definition 3.18. The disjoint union of differential spaces (M, C) and (N,D)
where M ∩ N = ∅ is the differential space (M ∪ N, C ⊕ D). The structure
C ⊕ D is defined by the property f ∈ C ⊕ D ⇐⇒ f |M ∈ C and f |N ∈ D.

Lemma 3.19. If the differential spaces (M, C) and (N,D) are smoothly real-
compact then the differential space (M ∪N, C⊕D) is smoothly real-compact.

Proof. Elements of the algebra C ⊕ D are pairs (f, g) where f ∈ C
and g ∈ D. Let χ ∈ Spec(C ⊕ D). We shall show that it is an evaluation
at some point p ∈ M ∪ N . From the equations (0, 1) + (1, 0) = (1, 1) and
(0, 1)(1, 0) = (0, 0) we get that we have two cases:
1) χ((1, 0)) = 1 and χ((0, 1)) = 0
2) χ((1, 0)) = 0 and χ((0, 1)) = 1.
Since every function from C ⊕ D can be uniquely decomposed as (f, g) =
(f, 0)(1, 0) + (0, g)(0, 1) the homomorphism χ acts as follows:
χ((f, g)) = χ((f, 0))χ((1, 0)) + χ((0, g))χ((0, 1)). In the case 1) we will get:
χ((f, g)) = χ((f, 0)) and in the case 2) χ((f, g)) = χ((0, f)).
The algebra of functions of the form ((f, 0)) ∈ C ⊕ D is isomorphic to C.
Therefore homomorphisms from ψ ∈ SpecC can be extended to homomor-
phisms from C ⊕ D by the formula ψ̄((f, g)) = ψ(f). All the homomor-
phisms in case 1) are of this form. Therefore in case 1) the homomorphism
χ((f, g)) = ψ(f) where ψ ∈ SpecC is such that ψ̄ = χ. But since the space
(M, C) is smoothly real-compact there exists a point p ∈ M s.t. ψ = evp.
Then we can write χ((f, g)) = evp((f, g)) = (f, g)(p) = f(p) + g(p) for
p ∈ M ∪ N . We have shown that in the case 1) homomorphism χ is an
evaluation. For the case 2) the proof is analogous. �

Definition 3.20. By ε̃ we denote the differential structure on RN generated
by the set C0 = {πi : i ∈ N} ∪ {θp}, where θp is the characteristic function
of the point p ∈M .

Lemma 3.21. The differential space (RN, ε̃) is smoothly real-compact.

Proof. We can decompose the space (RN, ε̃) into the direct sum of the
spaces (RN −{p}, (εN)RN−{p}) and ({p}, F (p)) where F (p) is the algebra of
all possible functions on one point. From the definition of the space (RN, ε̃)
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it is obvious that RN = {p}∪ (RN−{p}) and ε̃ = (εN)RN−{p}⊕F (p). Both
the spaces in the direct sum are smoothly real-compact, so the space (RN, ε̃)
is smoothly real-compact. �

Theorem 3.22. Any differential subspace of the differential space
(RN, εN) is smoothly real-compact.

Proof. Let ιM : (M, C) → (RN, εN) be the inclusion mapping. For
any χ ∈ SpecC the composition χ ◦ ι∗M ∈ Spec(εN). The space (RN, εN) is
smoothly real-compact so ∃p ∈ RN such that χ ◦ ι∗M = evp|εN .

We need to show that p ∈ M . Let us assume that p /∈ M . We can
treat the space (M, C) as a differential subspace of (RN, ε̃). Let us denote
this inclusion by νM : (M, C) → (RN, ε̃). The composition χ ◦ ν∗M ∈ Specε̃.
Because the space (RN, ε̃) is smoothly real-compact there exists a point
q ∈ RN such that χ ◦ ν∗M = evq|ε̃. We know that on common generators
πi the equalities χ(πi|M) = evp(πi) = pi and χ(πi|M) = evq(πi) = qi hold
∀i ∈ N. This specifies all the coordinates, so p = q. Therefore we can write
χ◦ν∗M = evp|ε̃. So (χ◦ν∗M)(θp) = evp(θp) = 1. We have a contradiction with
the fact that (χ ◦ ν∗M)(θp) = χ(θp|M) = χ(0) = 0. We see that p ∈ M and
χ ◦ ι∗M = evp|εN . So χ(πi|M) = evp(πi|M) ∀i ∈ N. The set {πi : i ∈ N} is
the set of generators of the differential space (M, C). We derive that χ = evp.
�

Corollary 3.23. Any countably generated differential space is smoothly real-
compact.

Proof. A countably generated differential space can be treated as a sub-
space of the space (RN, εN). From Theorem 3.22 we know that all subspaces
of this space are smoothly real-compact. �
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Abstract

We study the local symplectic algebra of curves. We use the
method of algebraic restrictions to classify symplectic T7 singularities.
We define discrete symplectic invariants - the Lagrangian tangency or-
ders. We use these invariants to distinguish symplectic singularities
of classical A − D − E singularities of planar curves, S5 singularity
and T7 singularity. We also give the geometric description of these
symplectic singularities.

1 Introduction
In this paper we study the symplectic classification of singular curves under
the following equivalence:

Definition 1.1. Let N1, N2 be germs of subsets of symplectic space (R2n, ω).
N1, N2 are symplectically equivalent if there exists a symplectomorphism-
germ Φ : (R2n, ω) → (R2n, ω) such that Φ(N1) = N2.

We recall that ω is a symlectic form if ω is a smooth nondegenerate closed
2-form, and Φ : R2n → R2n is a symplectomorphism if Φ is diffeomorphism
and Φ∗ω = ω.

Symplectic classification of curves were first studied by V. I. Arnold. In
[A1] V. I. Arnold discovered new symplectic invariants of singular curves.
He proved that the A2k singularity of a planar curve (the orbit with respect
to standard A-equivalence of parameterized curves) split into exactly 2k+1
symplectic singularities (orbits with respect to symplectic equivalence of pa-
rameterized curves). He distinguished different symplectic singularities by

1Warsaw University of Technology, Faculty of Mathematics and Information Science,
Plac Politechniki 1, 00-661 Warsaw, Poland. e-mail: domitrz@mini.pw.edu.pl, e-mail:
ztrebska@mini.pw.edu.pl

2The work of W. Domitrz was supported by Polish MNiSW grant no. N N201 397237
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different orders of tangency of the parameterized curve to the nearest smooth
Lagrangian submanifold. Arnold posed a problem of expressing these invari-
ants in terms of the local algebra’s interaction with the symplectic structure
and he proposed to call this interaction the local symplectic algebra.

In [IJ1] G. Ishikawa and S. Janeczko classified symplectic singularities
of curves in the 2-dimensional symplectic space. All simple curves in this
classification are quasi-homogeneous. A symplectic form on a 2-dimensional
manifold is a special case of a volume form on a smooth manifold. The gen-
eralization of results in [IJ1] to volume-preserving classification of singular
varieties and maps in arbitrary dimensions was obtained in [DR]. The orbit
of action of all diffeomorphism-germs agrees with volume-preserving orbit
or splits into two volume-preserving orbits (in the case K = R) for germs
which satisfy a special weak form of quasi-homogeneity e.g. the weak quasi-
homogeneity of varieties is a quasi-homogeneity with non-negative weights
wi ≥ 0 and

∑
i wi > 0.

Symplectic singularity is stably simple if it is simple and remains simple
if the ambient symplectic space is symplectically embedded (i.e. as a sym-
plectic submanifold) into a larger symplectic space. In [K] P. A. Kolgushkin
classified the stably simple symplectic singularities of parameterized curves
(in the C-analytic category). All stably simple symplectic singularities of
curves are quasi-homogeneous too.

In [DJZ2] new symplectic invariants of singular quasi-homogeneous sub-
sets of a symplectic space were explained by the algebraic restrictions of the
symplectic form to these subsets.

The algebraic restriction is an equivalence class of the following relation
on the space of differential k-forms:

Differential k-forms ω1 and ω2 have the same algebraic restriction to
a subset N if ω1 − ω2 = α + dβ, where α is a k-form vanishing on N and β
is a (k − 1)-form vanishing on N .

In [DJZ2] the generalization of Darboux-Givental theorem ([AG]) to
germs of arbitrary subsets of the symplectic space was obtained. This result
reduces the problem of symplectic classification of germs of quasi-homoge-
neous subsets to the problem of classification of algebraic restrictions of sym-
plectic forms to these subsets. For non-quasi-homogeneous subsets there is
one more cohomological invariant except the algebraic restriction ([DJZ2],
[DJZ1]). The dimension of the space of algebraic restrictions of closed 2-
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forms to a 1-dimensional quasi-homogeneous isolated complete intersection
singularity C is equal to the multiplicity of C ([DJZ2]). In [D] it was proved
that the space of algebraic restrictions of closed 2-forms to a 1-dimensional
(singular) analytic variety is finite-dimensional. In [DJZ2] the method of
algebraic restrictions was applied to various classification problems in a sym-
plectic space. In particular the complete symplectic classification of classical
A −D − E singularities of planar curves and S5 singularity were obtained.
Most of different symplectic singularity classes were distinguished by new
discrete symplectic invariants: the index of isotropy and the symplectic mul-
tiplicity.

In this paper following ideas from [A1] and [D] we define new discrete
symplectic invariants - the Lagrangian tangency orders (section 3.1). These
invariants let us distinguish all symplectic A − D − E singularities of pla-
nar curves including E3

6 , E
4
6 and E5

8 , E
6
8 singularities which were not distin-

guished by the index of isotropy and the symplectic multiplicity (Tables 4
and 6). Using Lagrangian tangency orders we are able to give more detailed
classification of S5 singularity (Theorem 5.5) and to present an alternative
geometric description of its symplectic orbits (Theorem 5.3).

We also obtain the complete symplectic classification of the classical iso-
lated complete intersection singularity T7 using the method of algebraic re-
strictions (Theorem 6.1). We calculate discrete symplectic invariants for this
classification (Theorems 6.7 and 6.4) and we present geometric descriptions
of symplectic orbits (Theorem 6.10).

The paper is organized as follows. In section 2 we recall the method
of algebraic restrictions. In section 3 we present known discrete symplectic
invariants and introduce Lagrangian tangency orders. Lagrangian tangency
orders of symplectic A−D−E singularities of planar curves are studied in
section 4. In section 5 we obtain more detailed symplectic classification of S5

using Lagrangian tangency orders and an alternative geometric description of
symplectic singularities. Symplectic classification of T7 singularity is studied
in section 6.

2 The method of algebraic restrictions
In this section we present basic facts on the method of algebraic restrictions,
which is a very powerful tool for the symplectic classification. The proofs of
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all results of this section can be found in [DJZ2].
Given a germ of a non-singular manifold M denote by Λp(M) the space

of all germs at 0 of differential p-forms on M . Given a subset N ⊂ M
introduce the following subspaces of Λp(M):

Λp
N(M) = {ω ∈ Λp(M) : ω(x) = 0 for any x ∈ N};

Ap
0(N,M) = {α+ dβ : α ∈ Λp

N(M), β ∈ Λp−1
N (M).}

The relation ω(x) = 0 means that the p-form ω annihilates any p-tuple
of vectors in TxM , i.e. all coefficients of ω in some (and then any) local
coordinate system vanish at the point x.

Definition 2.1. Let N be the germ of a subset of M and let ω ∈ Λp(M).
The algebraic restriction of ω to N is the equivalence class of ω in Λp(M),
where the equivalence is as follows: ω is equivalent to ω̃ if ω−ω̃ ∈ Ap

0(N,M).

Notation. The algebraic restriction of the germ of a p-form ω on M to the
germ of a subset N ⊂ M will be denoted by [ω]N . Writing [ω]N = 0 (or
saying that ω has zero algebraic restriction to N) we mean that [ω]N = [0]N ,
i.e. ω ∈ Ap

0(N,M).
Let M and M̃ be non-singular equal-dimensional manifolds and let Φ :

M̃ → M be a local diffeomorphism. Let N be a subset of M . It is clear
that Φ∗Ap

0(N,M) = Ap
0(Φ

−1(N), M̃). Therefore the action of the group of
diffeomorphisms can be defined as follows: Φ∗([ω]N) = [Φ∗ω]Φ−1(N), where ω
is an arbitrary p-form on M .

Definition 2.2. Two algebraic restrictions [ω]N and [ω̃]Ñ are called diffeo-
morphic if there exists the germ of a diffeomorphism Φ : M̃ → M such that
Φ(Ñ) = N and Φ∗([ω]N) = [ω̃]Ñ .

Remark 2.3. The above definition does not depend on the choice of ω and ω̃
since a local diffeomorphism maps forms with zero algebraic restriction to N
to forms with zero algebraic restrictions to Ñ . If M = M̃ and N = Ñ then
the definition of diffeomorphic algebraic restrictions reduces to the following
one: two algebraic restrictions [ω]N and [ω̃]N are diffeomorphic if there exists
a local symmetry Φ of N (i.e. a local diffeomorphism preserving N) such
that [Φ∗ω]N = [ω̃]N .
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Definition 2.4. A subset N of Rm is quasi-homogeneous if there exists a
coordinate system (x1, · · · , xm) on Rm and positive numbers λ1, · · · , λn such
that for any point (y1, · · · , ym) ∈ Rm and any t ∈ R if (y1, · · · , ym) belongs
to N then a point (tλ1y1, · · · , tλmym) belongs to N .

The method of algebraic restrictions applied to singular quasi-homogeneous
subsets is based on the following theorem.

Theorem 2.5 (Theorem A in [DJZ2]). Let N be the germ of a quasi-
homogeneous subset of R2n. Let ω0, ω1 be germs of symplectic forms on R2n

with the same algebraic restriction to N . There exists a local diffeomorphism
Φ such that Φ(x) = x for any x ∈ N and Φ∗ω1 = ω0.

Two germs of quasi-homogeneous subsets N1, N2 of a fixed symplectic
space (R2n, ω) are symplectically equivalent if and only if the algebraic re-
strictions of the symplectic form ω to N1 and N2 are diffeomorphic.

Theorem 2.5 reduces the problem of symplectic classification of germs of
singular quasi-homogeneous subsets to the problem of diffeomorphic classi-
fication of algebraic restrictions of the germ of the symplectic form to the
germs of singular quasi-homogeneous subsets.

The geometric meaning of zero algebraic restriction is explained by the
following theorem.

Theorem 2.6 (Theorem B in [DJZ2]). The germ of a quasi-homogeneous
set N of a symplectic space (R2n, ω) is contained in a non-singular Lagran-
gian submanifold if and only if the symplectic form ω has zero algebraic
restriction to N .

Proposition 2.7 (Lemma 2.20 in [DJZ2]). Let N ⊂ Rm. Let W ⊆ T0R
m

be the tangent space to some (and then any) non-singular submanifold con-
taining N of minimal dimension within such submanifolds. If ω is the germ
of a p-form with zero algebraic restriction to N then ω|W = 0.

The following result shows that the method of algebraic restrictions is
very powerful tool in symplectic classification of singular curves.

Theorem 2.8 (Theorem 2 in [D]). Let C be the germ of a K-analytic curve
(for K = R or K = C). Then the space of algebraic restrictions of germs of
closed 2-forms to C is a finite dimensional vector space.
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By a K-analytic curve we understand a subset of Km which is locally
diffeomorphic to a 1-dimensional (possibly singular) K-analytic subvariety
of Km. Germs of C-analytic parameterized curves can be identified with
germs of irreducible C-analytic curves.

We now recall basic properties of algebraic restrictions which are useful
for a description of this subset ([DJZ2]).

First we can reduce the dimension of the manifold we consider due to
the following propositions.

If the germ of a set N ⊂ Rm is contained in a non-singular submanifold
M ⊂ Rm then the classification of algebraic restrictions to N of p-forms on
Rm reduces to the classification of algebraic restrictions to N of p-forms on
M . At first note that the algebraic restrictions [ω]N and [ω|TM ]

N
can be

identified:

Proposition 2.9. Let N be the germ at 0 of a subset of Rm contained in a
non-singular submanifold M ⊂ Rm and let ω1, ω2 be p-forms on Rm. Then
[ω1]N = [ω2]N if and only if

[
ω1|TM

]
N
=

[
ω2|TM

]
N
.

The following, less obvious statement, means that the orbits of the alge-
braic restrictions [ω]N and [ω|TM ]

N
also can be identified.

Proposition 2.10. Let N1, N2 be germs of subsets of Rm contained in equal-
dimensional non-singular submanifolds M1,M2 respectively. Let ω1, ω2 be
two germs of p-forms. The algebraic restrictions [ω1]N1 and [ω2]N2 are diffeo-
morphic if and only if the algebraic restrictions

[
ω1|TM1

]
N1

and
[
ω2|TM2

]
N2

are diffeomorphic.

To calculate the space of algebraic restrictions of 2-forms we will use the
following obvious properties.

Proposition 2.11. If ω ∈ Ak
0(N,R2n) then dω ∈ Ak+1

0 (N,R2n) and ω∧α ∈
Ak+p

0 (N,R2n) for any p-form α on R2n.

The next step of our calculation is the description of the subspace of
algebraic restriction of closed 2-forms. The following proposition is very
useful for this step.

Proposition 2.12. Let a1, . . . , ak be a basis of the space of algebraic restric-
tions of 2-forms to N satisfying the following conditions
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1. da1 = · · · = daj = 0,

2. the algebraic restrictions daj+1, . . . , dak are linearly independent.

Then a1, . . . , aj is a basis of the space of algebraic restriction of closed 2-
forms to N .

Then we need to determine which algebraic restrictions of closed 2-forms
are realizable by symplectic forms. This is possible due to the following fact.

Proposition 2.13. Let N ⊂ R2n. Let r be the minimal dimension of
non-singular submanifolds of R2n containing N . Let M be one of such
r-dimensional submanifolds. The algebraic restriction [θ]N of the germ of
closed 2-form θ is realizable by the germ of a symplectic form on R2n if and
only if rank(θ|T0M) ≥ 2r − 2n.

Let us fix the following notations:
•
[
Λ2(R2n)

]
N

: the vector space consisting of algebraic restrictions of germs
of all 2-forms on R2n to the germ of a subset N ⊂ R2n;
•
[
Z2(R2n)

]
N

: the subspace of
[
Λ2(R2n)

]
N

consisting of algebraic restric-
tions of germs of all closed 2-forms on R2n to N ;
• [ Symp (R2n)]N : the open set in

[
Z2(R2n)

]
N

consisting of algebraic re-
strictions of germs of all symplectic 2-forms on R2n to N .

3 Discrete symplectic invariants.
We can use some discrete symplectic invariants to characterize symplectic
singularity classes. The first one is a symplectic multiplicity ([DJZ2]) intro-
duced in [IJ1] as a symplectic defect of a curve.

Let N be a germ of a subset of (R2n, ω).

Definition 3.1. The symplectic multiplicity µsympl(N) of N is the codi-
mension of a symplectic orbit of N in an orbit of N with respect to the action
of the group of local diffeomorphisms.

The second one is the index of isotropy [DJZ2].
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Definition 3.2. The index of isotropy ι(N) of N is the maximal order of
vanishing of the 2-forms ω|TM over all smooth submanifolds M containing
N .

They can be described in terms of algebraic restrictions.

Proposition 3.3 ([DJZ2]). The symplectic multiplicity of the germ of a
quasi-homogeneous subset N in a symplectic space is equal to the codimen-
sion of the orbit of the algebraic restriction [ω]N with respect to the group of
local diffeomorphisms preserving N in the space of algebraic restrictions of
closed 2-forms to N .

Proposition 3.4 ([DJZ2]). The index of isotropy of the germ of a quasi-
homogeneous subset N in a symplectic space (R2n, ω) is equal to the maximal
order of vanishing of closed 2-forms representing the algebraic restriction
[ω]N .

3.1 Lagrangian tangency order

There is one more discrete symplectic invariant introduced in [D] following
ideas from [A1] which is defined specifically for a parameterized curve. This
is the maximal tangency order of a curve f : R → M to a smooth Lagran-
gian submanifold. If H1 = ... = Hn = 0 define a smooth submanifold L in
the symplectic space then the tangency order of a curve f : R → M to L is
the minimum of the orders of vanishing at 0 of functions H1 ◦ f, · · · , Hn ◦ f .
We denote the tangency order of f to L by t(f, L).

Definition 3.5. The Lagrangian tangency order Lt(f) of a curve f
is the maximum of t(f, L) over all smooth Lagrangian submanifolds L of the
symplectic space.

The Lagrangian tangency order of a quasi-homogeneous curve in a sym-
plectic space can also be expressed in terms of algebraic restrictions.

Proposition 3.6 ([D]). Let f be the germ of a quasi-homogeneous curve
such that the algebraic restriction of a symplectic form to it can be repre-
sented by a closed 2-form vanishing at 0. Then the Lagrangian tangency
order of the germ of a quasi-homogeneous curve f is the maximum of the
order of vanishing on f over all 1-forms α such that [ω]f = [dα]f
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We can generalize this invariant for curves which may be parameterized
analytically. Lagrangian tangency order is the same for every ’good’ analytic
parametrization of a curve [W]. Considering only such parameterizations we
can choose one and calculate the invariant for it. It is easy to show that this
invariant doesn’t depend on chosen parametrization.

Proposition 3.7. Let f : R → M and g : R → M be good analytic
parametrizations of the same curve. Then Lt(f) = Lt(g).

Proof. There exists a diffeomorphism θ : R → R such that g(s) =
f(θ(s)) and dθ

ds
|0 ̸= 0. Let H1 = . . . = Hn = 0 define a smooth submanifold

L in the symplectic space. If dl(Hi◦f)
dtl

|0 = 0 for l = 1, ..., k then

dk+1(Hi ◦ g)
dsk+1

|0 =
dk+1(Hi ◦ f ◦ θ)

dsk+1
|0 =

dk+1(Hi ◦ f)
dtk+1

|0 · (
dθ

ds
)k+1|0

so the orders of vanishing at 0 of functions Hi ◦ f and Hi ◦ g are equal and
hence t(f, L) = t(g, L) what implies that Lt(f) = Lt(g). �

We can generalize Lagrangian tangency order for sets containing para-
metric curves. Let N be a subset of a symplectic space (R2n, ω).

Definition 3.8. The tangency order of the germ of a subset N to
the germ of a submanifold L t[N,L] is equal to the minimum of t(f, L)
over all parameterized curve-germs f such that Imf ⊆ N .

Definition 3.9. The Lagrangian tangency order of N Lt(N) is equal
to the maximum of t[N,L] over all smooth Lagrangian submanifold-germs L
of the symplectic space.

In this paper we consider N which are singular analytic curves. They may
be identified with a multi-germ of parametric curves. We define invariants
which are special cases of the above definition.
Consider a multi-germ (fi)i∈{1,··· ,r} of analytically parameterized curves fi.
For any smooth submanifold L in the symplectic space we have r-tuples
(t(f1, L), · · · , t(fr, L)).

Definition 3.10. For any I ⊆ {1, · · · , r} we define the tangency order
of the multi-germ (fi)i∈I to L:

t[(fi)i∈ I , L] = min
i∈ I

t(fi, L).
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Definition 3.11. The Lagrangian tangency order Lt((fi)i∈ I) of a multi-
germ (fi)i∈I is the maximum of t[(fi)i∈ I , L] over all smooth Lagrangian
submanifolds L of the symplectic space.

For multi-germs we can also define relative invariants according to se-
lected branches or collections of branches.

Definition 3.12. Let S ⊆ I ⊆ {1, · · · , r}. For i ∈ S let us fix num-
bers ti ≤ Lt(fi). The relative Lagrangian tangency order Lt[(fi)i∈I :
(S, (ti)i∈S)] of a multi-germ (fi)i∈I related to S and (ti)i∈S is the maximum
of t[(fi)i∈I\S, L] over all smooth Lagrangian submanifolds L of the symplectic
space for which t(fi, L) = ti, if such submanifolds exist, or −∞ if there are
no such submanifolds.

We can also define special relative invariants according to selected branches
of multi-germ.

Definition 3.13. For fixed j ∈ I the Lagrangian tangency order re-
lated to fj of a multi-germ (fi)i∈I denoted by Lt[(fi)i∈I : fj] is the max-
imum of t[(fi)i∈I\{j}, L] over all smooth Lagrangian submanifolds L of the
symplectic space for which t(fj, L) = Lt(fj),

These invariants have geometric interpretations. If Lt(fi) = ∞ then a
branch fi is included in a smooth Lagrangian submanifold. If Lt((fi)i∈ I) =
∞ then exists a Lagrangian submanifold containing all curves fi for i ∈ I.

We may use these invariants for distinguishing symplectic singularities.

4 Symplectic A − D − E classification by La-
grangian tangency orders

A complete symplectic classification of classical A −D − E singularities of
planar curves was obtained using a method of algebraic restriction in [DJZ2].

Let N = {H(x1, x2) = x≥3 = 0} where H(x1, x2) is a function rep-
resenting one of the classical singularities Ak, Dk, E6, E7, E8, see Table 1.
Classification of these singularities is equivalent to classification of algebraic
restrictions of the space

[
Λ2(R2)

]
{H=0} with respect to the group of symme-

tries of the curve {H = 0} ⊂ R2. This classification involves functions and
families of functions given in the second column of Table 1.
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Let us transfer the normal forms Fi = [Fidx1 ∧ dx2]{H=0} to symplectic
normal forms. Fix any symplectic form, for example,

ω0 = dp1 ∧ dq1 + · · ·+ dpn ∧ dqn.

If n ≥ 2 then the algebraic restriction [Fi(x1, x2)dx1 ∧ dx2]N can be realized
by the symplectic form ωi = Fidx1∧dx2+dx1∧dx3+dx2∧dx4+dx5∧dx6+
· · ·+ dx2n−1∧ dx2n which can be brought to ω0 by the change of coordinates

x1 = p1, x2 = p2, x3 = q1 −
∫ p2
0

Fi(p1, t)dt, x4 = q2,

x5 = p3, x6 = q3, . . . , x2n−1 = pn, x2n = qn.

The given change of coordinates brings N to the form

N i =
{
H(p1, p2) = q1−

∫ p2

0

Fi(p1, t)dt = q≥2 = p≥3 = 0
}
⊂

(
R2n, ω0

)
. (1)

The complete symplectic classification of the Ak, Dk, E6, E7, E8 singular-
ities is given by the following theorem.

Theorem 4.1 ([DJZ2]). Fix a function H = H(x1, x2) in Table 1. Any
curve in the symplectic space (R2n, ω0), n ≥ 2, which is diffeomorphic to
the curve N : H(x1, x2) = x≥3 = 0 is symplectically equivalent to one and
only one of the normal forms N i, i = 0, ..., µ, given by (1), where Fi are the
functions in Table 1 and µ is the multiplicity of H. The parameters b, b1, b2
are symplectic moduli. The codimension of the symplectic singularity class
defined by the normal form N i in the class of all curves diffeomorphic to N
is equal to i.

4.1 Distinguishing normal forms by Lagrangian tan-
gency invariants

A curve N may be described as a parameterized curve or as a union of
parameterized components Ci preserved by local diffeomorphisms in sym-
plectic space (R2n, ω0), n ≥ 2. Lagrangian tangency orders Lt(N) and
Lt(Ci) are preserved by local symplectomorphisms. For calculating Lagrange
tangency orders we give their parametrization in the coordinate system
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H(x1, x2) Fi(x1, x2), i = 0, 1, . . . , µ

Ak : xk+1
1 − x22

k ≥ 1
F0 = 1, Fi = xi1, i = 1, . . . , k − 1
Fk = 0

Dk : x21x2− xk−1
2

k ≥ 4
F0 = 1, Fi = bx1 + xi2, i = 1, . . . , k − 4
Fk−3 = (±1)kx1 + bxk−3

2 ,
Fk−2 = xk−3

2 , Fk−1 = xk−2
2 , Fk = 0

E6 : x
3
1 − x42 F0 = 1, F1 = ±x2 + bx1, F2 = x1 + bx22,

F3 = x22 + bx1x2, F4 = ±x1x2,
F5 = x1x

2
2, F6 = 0

E7 : x
3
1 − x1x

3
2 F0 = 1, F1 = x2 + bx1, F2 = ±x1 + bx22,

F3 = x22 + bx1x2, F4 = ±x1x2 + bx32,
F5 = x32, F6 = x42, F7 = 0

E8 : x
3
1 − x52 F0 = ±1, F1 = x2 + bx1, F2 = x1 + b1x

2
2 + b2x

3
2

F3 = ±x22 + bx1x2, F4 = ±x1x2 + bx32,
F5 = x32 + bx1x

2
2, F6 = x1x

2
2, F7 = ±x1x

3
2, F8 = 0

Table 1: Classification of the algebraic restrictions to Ak, Dk, E6, E7, E8.

(p1, q1, p2, q2, · · · , pn, qn). Singularity description and comparison of sym-
plectic invariants (Lagrangian tangency orders, the index of isotropy - ind,
the symplectic multiplicity - µsymp) is contained in Tables 2 - 6. As we see
in Tables 2 - 6, the index of isotropy and the symplectic multiplicity distin-
guishes all normal forms except for the following two couples: (α) E3

6 and
E4

6 ; (β) E5
8 and E6

8 . Using new invariants - Lagrangian tangency orders we
can distinguish them completely.

Normal form f(t) Lt(N) ind µsymp

Ai
k, 0 ≤ i ≤ k − 1 t(k+1+2i)λk (k+1+2i)λk i i

Ak
k 0 ∞ ∞ k

Table 2: Symplectic invariants of Ak singularity. If k is even then λk = 1 and
N may be described as a parameterized singular curve C : (t2, f(t), tk+1, 0,· · ·, 0).
If k is odd then λk = 1

2 and N is a pair of two smooth parameterized branches:
B± : (t,±f(t),±t

k+1
2 , 0, · · ·, 0). By Lt(N) we denote Lt(C) or Lt(B+, B−).
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Normal
form

f(t) Lt(N) Lt(C2) ind µsymp

D0
k t2λk 2λk (k − 2)λk 0 0

D1
k btkλk + 1

2 t
4λk kλk kλk 1 2

D1<i<k−3
k

1
i+1 t

2(i+1)λk+

+btkλk , b ̸=0

kλk (k−2+2i)λk 1 i+ 1

1
i+1 t

2(i+1)λk (k−2+2i)λk (k−2+2i)λk i i+ 1

Dk−3
k (±1)ktkλk+

+ b
k−2 t

2(k−2)λk

kλk ∞ 1 k − 2

Dk−2
k

1
k−2 t

2(k−2)λk (3k − 8)λk ∞ k − 3 k − 2

Dk−1
k

1
k−1 t

2(k−1)λk (3k − 6)λk ∞ k − 2 k − 1

Dk
k 0 ∞ ∞ ∞ k

Table 3: Symplectic invariants of Dk singularity. The curve N consists of 2 invariant
components: C1 - smooth and C2 - singular. The branch C1 has a form (t, 0, 0, 0, · · · , 0).
If k is odd then C2 has a form (tk−2, f(t), t2, 0, · · · , 0) and λk = 1. If k is even then C2

consists of two branches: B± : (±t(k−2)/2, f(t), t, 0, · · · , 0) and λk = 1
2 .

Normal form f(t) Lt(N) ind. µsymp

E0
6 t3 4 0 0

E1
6 ±1

2 t
6 + bt7 7 1 2

E2
6 t7 + b

3 t
9 8 1 3

E3
6

1
3 t

9 + b
2 t

10 10 2 4

E4
6 ±1

2 t
10 11 2 4

E5
6

1
3 t

13 14 3 5

E6
6 0 ∞ ∞ 6

Table 4: Symplectic invariants of E6 singularity. The curve N has a parametrization
(t4, f(t), t3, 0, · · · , 0).

5 Symplectic S5-singularities
Denote by (S5) the class of varieties in a fixed symplectic space (R2n, ω)
which are diffeomorphic to

S5 = {x ∈ R2n≥4 : x2
1 − x2

2 − x2
3 = x2x3 = x≥4 = 0.} (2)

This is the classical 1-dimensional isolated complete intersection singu-
larity S5 ([G], [AVG]). A complete classification of symplectic singularities
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Normal form f1(t) f2(t) Lt(N) Lt(C2) ind. µsymp

E0
7 t t2 3 3 0 0

E1
7

1
2 t

2 1
2 t

4 + bt5 5 5 1 2

E2
7

b
3 t

3 ±t5 + b
3 t

6 6 ∞ 1 3

E3
7

1
3 t

3 1
3 t

6 + b
2 t

7 7 ∞ 2 4

E4
7

b
4 t

4 ±1
2 t

7 + b
4 t

8 8 ∞ 2 5

E5
7

1
4 t

4 1
4 t

8 9 ∞ 3 5

E6
7

1
5 t

5 1
5 t

10 11 ∞ 4 6

E7
7 0 0 ∞ ∞ ∞ 7

Table 5: Symplectic invariants of E7 singularity. The curve N consists of two compo-
nents: the smooth branch - C1 and the singular branch - C2. They have the parametriza-
tion: C1 : (0, f1(t), t, 0, · · · , 0) and C2 : (t3, f2(t), t

2, 0, · · · , 0).

in (S5) was obtained in [DJZ2]. In the section 5.1 we quote these results.
In section 5.2 we use alternative geometric conditions to describe symplectic
classes and to distinguish them . In section 5.3 we use Lagrangian tangency
orders to confirm this classification.

5.1 Algebraic restrictions and their classification

The following description of the space [Z2(R2n)]S5 was obtained in [DJZ2].

Proposition 5.1. The space [Z2(R2n)]S5 has dimension 5. It is spanned by
the algebraic restrictions to S5 of the 2-forms

θ1 = dx1 ∧ dx2, θ2 = dx2 ∧ dx3, θ3 = dx3 ∧ dx1, θ4 = x2dx1 ∧ dx2,

θ5 = x3dx1 ∧ dx2 − x1dx2 ∧ dx3.
consisting of algebraic restrictions of the form [c1θ1 + · · · + c5θ5]S5 such

that (c1, c2, c3) ̸= (0, 0, 0).

The main results were described in the following theorem.

Theorem 5.2.
(i) Any algebraic restriction in [Z2(R2n)]S5 can be brought by a symmetry
of S5 to one of the normal forms [S5]

i given in the second column of Table
7;
(ii) The codimension in [Z2(R2n)]S5 of the singularity class corresponding
to the normal form [S5]

i is equal to i;
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Normal form f(t) Lt(N) ind. µsymp

E0
8 ±t3 5 0 0

E1
8

1
2 t

6 + bt8 8 1 2

E2
8 t8+ b1

3 t
9+ b2

4 t
12 10 1 4

E3
8 ±1

3 t
9 + b

2 t
11 11 2 4

E4
8 ±1

2 t
11 + b

4 t
12 13 2 5

E5
8

1
4 t

12 + b
3 t

14 14 3 6

E6
8

1
3 t

14 16 3 6

E7
8 ±1

4 t
17 19 4 7

E8
8 0 ∞ ∞ 8

Table 6: Symplectic invariants of E8 singularity. The curve N has a parametrization
(t5, f(t), t3, 0, · · · , 0).

(iii) The singularity classes corresponding to the normal forms are disjoint;
(iv) The parameters c, c1, c2 of the normal forms [S5]

0, [S5]
2, [S5]

3 are moduli.

Symplectic class
Normal forms for

algebraic restrictions
cod µsym ind

(S5)
0 2n ≥ 4

[S5]
0 : [θ2 + c1θ1 + c2θ3]S5

(c1, c2) ̸= (0, 0)
0 2 0

(S5)
2 2n ≥ 4 [S5]

2 : [θ2 + cθ4]S5 2 3 0

(S5)
3 2n ≥ 6 [S5]

3 : [θ4 + cθ5]S5 3 4 1

(S5)
5 2n ≥ 6 [S5]

5 : [0]S5 5 5 ∞

Table 7: Classification of symplectic S5 singularities. cod – codimension of the
classes; µsym– symplectic multiplicity; ind – the index of isotropy.

In the first column of Table 7 by (S5)
i we denote a subclass of (S5) con-

sisting of N ∈ (S5) such that the algebraic restriction [ω]N is diffeomorphic
to some algebraic restriction of the normal form [S5]

i. The classes (S5)
i are

symplectic singularity classes, i.e. they are closed with respect to the action
of the group of symplectomorphisms. The class (S5) is the disjoint union
of the classes (S5)

0, (S5)
2, (S5)

3, (S5)
5. The classes (S5)

0 and (S5)
2 are non-

empty for any dimension 2n ≥ 4 of the symplectic space; the classes (S5)
3

and (S5)
5 are empty if n = 2 and not empty if n ≥ 3.
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Any stratified submanifold of the symplectic space (R2n, ω), n ≥ 3 (resp.
n = 2) which is diffeomorphic to S5 is symplectically equivalent to one
and only one of the normal forms Si

5, i = 0, 2, 3, 5 (resp. i = 0, 2). The
parameters of the normal forms are moduli. If ω is expressed in Darboux
coordinates, ω = dp1∧dq1+· · ·+dpn∧dqn then one may obtain the following
normal forms:
S0
5 : p21 − p22 − q22= 0, p2q2= 0, q1= c1p2 + c2q2, p≥3= q≥3= 0, (c1, c2) ̸=(0, 0);

S2
5 : p21 − p22 − q22 = 0, p2q2 = 0, q1 = cp22, p≥3 = q≥3 = 0;

S3
5 : p21 − p22 − p23 = 0, p2p3 = 0, q1 = p22/2, q2 = cp1p3, q≥3 = p≥4 = 0;

S5
5 : p21 − p22 − p23 = 0, p2p3 = 0, q≥1 = p≥4 = 0.

5.2 Canonical definition of the classes (S5)
i

The classes (S5)
i were distinguished geometrically (in [DJZ2]), without using

any local coordinate system. In this section we propose another geometric
description of these singularities which distinguish more cases.

Let N ∈ (S5). Then N is the union of 4 non-singular 1-dimensional
submanifolds (strata). Denote by ℓ1, ..., ℓ4 the tangent lines at 0 to the strata.
These lines span a 3-space W = W (N). Equivalently W is the tangent space
at 0 to some (and then any) non-singular 3-manifold containing N . The
classes (S5)

i can be distinguished in terms of the restriction ω|W , where ω is
the symplectic form and vectors vi tangent to branches Bi. For N = S5 =(2)
it is easy to calculate

ℓ1,2 = span (∂/∂x1 ± ∂/∂x2), ℓ3,4 = span (∂/∂x1 ± ∂/∂x3). (3)

Theorem 5.3. A stratified submanifold N ∈ (S5) of a symplectic space
(R2n, ω) belongs to the class (S5)

i if and only if the couple (N,ω) satisfies
the condition in the last column of Table 8, the row of (S5)

i.

Remark 5.4. For any i ̸= j the set Bi∪Bj is A1 singularity. The condition
ω|ℓi+ℓj = 0 implies that ω has zero algebraic restriction to Bi∪Bj (see Table
2). Since any triple of branches is a regular union of 3 one-dimensional
submanifold then the condition ω|ℓi+ℓj = 0 ∀i, j ∈ {1, 2, 3, 4} implies that
any triple of branches Bi, Bj, Bk is contained in a smooth Lagrangian sub-
manifold (see Section 7.2, Table 8 in [DJZ2]).
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Class Normal form cod Geometric conditions
(S5)

0 [S5]
0
0 : [θ2+ c1θ1+ c2θ3]S5

c1 · c2 ̸= 0, (c1 ± c2)
2 ̸=1

0 ω|ℓi+ℓj ̸= 0 ∀i ̸=j ∈ {1, 2, 3, 4}

[S5]
0
1 : [θ2 + c1θ1]S5

|c1| ̸= 1
1 ω|ℓi+ℓj = 0 for exactly one pair of

branches Bi, Bj (this pair is con-
tained in a Lagrangian submanifold)

[S5]
0
2 : [θ1 + θ2]S5

2 ω|ℓi+ℓj = 0 for exactly three pairs of
branches Bi, Bj (these pairs are con-
tained in Lagrangian submanifolds)

(S5)
2 [S5]

2 : [θ2 + cθ4]S5
2 ω|ℓi+ℓj = 0 for exactly two pairs of

branches Bi, Bj (these pairs are con-
tained in Lagrangian submanifolds)

(S5)
3 [S5]

3 : [θ4 + cθ5]S5 3 ω|ℓi+ℓj = 0 ∀i, j ∈ {1, 2, 3, 4}, all
triples of branches are contained in
Lagrangian submanifolds

(S5)
5 [S5]

5 : [0]S5 5 N is contained in a Lagrangian sub-
manifold

Table 8: Geometric interpretation of singularity classes of S5; W - the tangent space
to a non-singular 3-dimensional manifold containing N ∈ (S5); ℓi - a line tangent to the
stratum Bi.

5.3 Distinguishing symplectic classes of S5 by Lagran-
gian tangency orders

Lagrangian tangency orders will be used to confirm a more detailed classi-
fication of (S5). A curve N ∈ (S5) consists of 4 non-singular 1-dimensional
submanifolds (strata) which may be described as parametrical curves B1,
B2, B3, B4. Their parametrization is given in the second column of Table 9.
To distinguish the classes of this singularity completely we need following
Lagrangian tangency orders:

Lt(N) = Lt(B1, B2, B3, B4) =
= max

L
(min{t(B1, L), t(B2, L), t(B3, L), t(B4, L)});

Lt(N{i,j,k}) = Lt(Bi, Bj , Bk) = max
L

(min{t(Bi, L), t(Bj , L), t(Bk, L)});
Lt(N{i,j}) = Lt(Bi, Bj) = max

L
(min{t(Bi, L), t(Bj , L)}),

where L is a smooth Lagrangian submanifold of a symplectic space.
All branches Bi are smooth so Lt(Bi) = ∞ for any i ∈ {1, 2, 3, 4} and these
numbers are not useful in the classification. We use Lagrangian tangency
orders for pairs and triples of branches. Comparing respective numbers we
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obtain more detailed classification of symplectic singularities of S5. The
obtained subclasses have a natural geometric interpretation (compare Table
8).

Theorem 5.5. A stratified submanifold N ∈ (S5) of a symplectic space
(R2n, ω) with the canonical coordinates (p1, q1, · · · , pn, qn) is symplectically
equivalent to one and only one of the curves presented in the second column
of Table 9. The parameters c, c1, c2 are moduli. The Lagrangian tangency
orders of the set are characterized in the fourth column of Table 9.

Class Parametrization
of branches

Conditions
for subclasses

Lagrangian tangency orders

(S5)
0
0 (t,∓c2t, 0,±t, 0, · · ·) c1 · c2 ̸= 0, Lt(N) = 1, Lt(N{i,j}) = 1

2n≥4 (t,±c1t,±t, 0, · · · ) (c1 ± c2)
2 ̸=1 for all pairs of branches

(S5)
0
1

2n≥4
(t, 0, 0,±t, 0, · · ·)
(t,±c1t,±t, 0, · · · )

|c1| ̸= 1 Lt(N) = 1, Lt(N{i,j}) = ∞
for exactly one pair of
branches

(S5)
0
2

2n≥4
(t, 0, 0,±t, 0, · · ·)
(t,±t,±t, 0, · · · )

Lt(N) = 1, Lt(N{i,j}) =∞
for exactly three pairs of
branches

(S5)
2 (t, 0, 0,±t, 0, · · · ) Lt(N) = 1, Lt(N{i,j}) = ∞

2n≥4 (t, c
2 t

2,±t, 0, 0, · · · ) for exactly two pairs of
branches

(S5)
3

2n≥6
(t,0, 0,∓ct2,±t, 0,· · ·)
(t, 1

2 t
2,±t, 0, 0, 0,· · ·)

Lt(N) = 2, Lt(N{i,j,k}) = ∞
for all triples of branches

(S5)
5

2n≥6
(t, 0, 0, 0,±t, 0, · · · )
(t, 0,±t, 0, 0, 0, · · · )

Lt(N) = ∞

Table 9: Lagrangian tangency orders for symplectic classes of S5 singularity.

6 Symplectic T7-singularities
Denote by (T7) the class of varieties in a fixed symplectic space (R2n, ω)
which are diffeomorphic to

T7 = {x ∈ R2n≥4 : x2
1 + x3

2 + x3
3 = x2x3 = x≥4 = 0}. (4)
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This is the classical 1-dimensional isolated complete intersection singu-
larity T7 ([G], [AVG]). Let N ∈ (T7). Then N is quasi-homogeneous with
weights w(x1) = 3, w(x2) = w(x3) = 2.

We use the method of algebraic restrictions to obtain a complete classifi-
cation of symplectic singularities of (T7) presented in the following theorem.

Theorem 6.1. Any stratified submanifold of the symplectic space
(R2n,

∑n
i=1 dpi ∧ dqi), where n ≥ 3 (resp. n = 2) which is diffeomorphic

to T7 is symplectically equivalent to one and only one of the normal forms
T i
7, i = 0, 1, · · · , 7 (resp. i = 0, 1, 2, 4). The parameters c, c1, c2 of the normal

forms are moduli.
T 0
7 : p21 + p32 + q32 = 0, p2q2 = 0, q1 = c1q2 + c2p2, p≥3 = q≥3 = 0, c1 · c2 ̸= 0;

T 1
7 : p21 + p32 + q31 = 0, p2q1 = 0, q2 = c1q1 − c2p1p2, p≥3 = q≥3 = 0;

T 2
7 : p21 + p32 + q32 = 0, p2q2 = 0, q1 =

c1
2 q

2
2 +

c2
2 p

2
2, p≥3= q≥3= 0, (c1, c2) ̸= (0, 0);

T 4
7 : p21 + p32 + q32 = 0, p2q2 = 0, q1 =

c
3q

3
2, p≥3 = q≥3 = 0;

T 3
7 : p21 + p32 + p33 = 0, p2p3 = 0, q1 =

c1
2 p

2
2 +

1
2p

2
3,

q2 = −c2p1p3, p≥4 = q≥3 = 0;

T 5
7 : p21 + p32 + p33 = 0, p2p3 = 0, q1 =

c
3p

3
3, q2 = −p1p3, p≥4 = q≥3 = 0;

T 6
7 : p21 + p32 + p33 = 0, p2p3 = 0, q1 =

1
3p

3
3, p≥4 = q≥2 = 0;

T 7
7 : p21 + p32 + p33 = 0, p2p3 = 0, q≥1 = p≥4 = 0.

In section 6.1 we calculate the set [Symp(R2n)]T7 and classify it by the
action of diffeomorphisms preserving T7. This allows us to decompose (T7)
onto symplectic singularity classes. In section 6.2 we transfer the normal
forms of algebraic restrictions to symplectic normal forms to obtain the
proof of Theorem 6.1. In section 6.3 we use Lagrangian tangency orders to
distinguish more symplectic singularity classes. In section 6.4 we propose a
geometric description of these singularities which confirms this more detailed
classification. Some of the proofs are presented in section 6.5.

6.1 Algebraic restrictions and their classification

One has the following relations for (T7)-singularities

[d(x2x3)]T7 = [x2dx3 + x3dx2]T7 = 0 (5)

[d(x2
1 + x3

2 + x3
3)]T7 = [2x1dx1 + 3x2

2dx2 + 3x2
3dx3]T7 = 0 (6)
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relations proof
1. [x2dx2 ∧ dx3]N = 0 (5)∧ dx2

2. [x3dx2 ∧ dx3]N = 0 (5)∧ dx3

3. [x3dx1 ∧ dx2]N = [x2dx3 ∧ dx1]N (5)∧ dx1

4. [x1dx1 ∧ dx2]N = 0 (6)∧ dx2 and row 2.
5. [x1dx1 ∧ dx3]N = 0 (6)∧ dx3 and row 1.
6. [x22dx1 ∧ dx2]N = [x23dx3 ∧ dx1]N (6)∧ dx1

7. [x21dx2 ∧ dx3]N = 0
rows 1. and 2.

and [x21]N = [−x32 − x33]N

8. [x23dx1 ∧ dx2]N = 0 (5)∧x3dx1 and [x2x3]N = 0

Table 10: Relations towards calculating [Λ2(R2n)]N for N = T7

Multiplying these relations by suitable 1-forms we obtain the relations in
Table 10.

Table 10 and Proposition 2.11 easily imply the following proposition:

Proposition 6.2. [Λ2(R2n)]T7 is a 8-dimensional vector space spanned by
the algebraic restrictions to T7 of the 2-forms
θ1 = dx2 ∧ dx3, θ2 = dx1 ∧ dx3, θ3 = dx1 ∧ dx2, θ4 = x3dx1 ∧ dx3,

θ5 = x2dx1 ∧ dx2, σ1 = x3dx1 ∧ dx2, σ2 = x1dx2 ∧ dx3, θ7 = x2
3dx1 ∧ dx3.

Proposition 6.2 and results of section 2 imply the following description
of the space [Z2(R2n)]T7 and the manifold [Symp(R2n)]T7 .

Theorem 6.3. [Z2(R2n)]T7 is a 7-dimensional vector space spanned by the
algebraic restrictions to T7 of the quasi-homogeneous 2-forms θi

θ1, θ2, θ3, θ4, θ5, θ6 = σ1 − σ2, θ7.

If n ≥ 3 then [Symp(R2n)]T7 = [Z2(R2n)]T7. The manifold [Symp(R4)]T7 is
an open part of the 7-space [Z2(R4)]T7 consisting of algebraic restrictions of
the form [c1θ1 + · · ·+ c7θ7]T7 such that (c1, c2, c3) ̸= (0, 0, 0).
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Theorem 6.4.
(i) Any algebraic restriction in [Z2(R2n)]T7 can be brought by a symmetry
of T7 to one of the normal forms [T7]

i given in the second column of Table
11;
(ii) The codimension in [Z2(R2n)]T7 of the singularity class corresponding
to the normal form [T7]

i is equal to i;
(iii) The singularity classes corresponding to the normal forms are disjoint;
(iv) The parameters c, c1, c2 of the normal forms [T7]

i are moduli.

Symplectic
class

Normal forms
for algebraic restrictions

cod µsym ind

(T7)
0 (2n ≥ 4) [T7]

0 : [θ1 + c1θ2 + c2θ3]T7 ,
c1 · c2 ̸= 0

0 2 0

(T7)
1 (2n ≥ 4) [T7]

1 : [c1θ1 + θ2 + c2θ5]T7 1 3 0

(T7)
2 (2n ≥ 4) [T7]

2 : [θ1 + c1θ4 + c2θ5]T7 ,
(c1, c2) ̸= (0, 0)

2 4 0

(T7)
3 (2n ≥ 6) [T7]

3 : [θ4 + c1θ5 + c2θ6]T7 3 5 1

(T7)
4 (2n ≥ 4) [T7]

4 : [θ1 + cθ7]T7 4 5 0

(T7)
5 (2n ≥ 6) [T7]

5 : [θ6 + cθ7]T7 5 6 1

(T7)
6 (2n ≥ 6) [T7]

6 : [θ7]T7 6 6 2

(T7)
7 (2n ≥ 6) [T7]

7 : [0]T7 7 7 ∞

Table 11: Classification of symplectic T7 singularities. cod – codimension of the
classes; µsym– symplectic multiplicity; ind – the index of isotropy.

The proof of Theorem 6.4 is presented in section 6.5. In the first column
of Table 11 by (T7)

i we denote a subclass of (T7) consisting of N ∈ (T7) such
that the algebraic restriction [ω]N is diffeomorphic to some algebraic restric-
tion of the normal form [T7]

i. Theorem 2.5, Theorem 6.4 and Proposition
6.3 imply the following statement.

Proposition 6.5. The classes (T7)
i are symplectic singularity classes, i.e.

they are closed with respect to the action of the group of symplectomorphisms.
The class (T7) is the disjoint union of the classes (T7)

i, i ∈ {0, 1, · · · , 7}. The
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classes (T7)
0, (T7)

1, (T7)
2, (T7)

4 are non-empty for any dimension 2n ≥ 4 of
the symplectic space; the classes (T7)

3, (T7)
5, (T7)

6, (T7)
7 are empty if n = 2

and not empty if n ≥ 3.

The following theorem explains why the given stratification of (T7) is
natural.

Theorem 6.6. Fix i ∈ {0, 1, · · · , 7}. All stratified submanifolds N ∈ (T7)
i

have the same (a) symplectic multiplicity and (b) index of isotropy given in
Table 11.

Proof. Part (a) follows from Theorems 3.3 and 6.4 and the fact that the
codimension in [Z2(R2n)]T7 of the orbit of an algebraic restriction a ∈ [T7]

i

is equal to the sum of the number of moduli in the normal form [T7]
i and

the codimension in [Z2(R2n)]T7 of the class of algebraic restrictions defined
by this normal form.

Part (b) follows from Theorem 2.6 and Propositions 3.4 and 2.7. �

6.2 Symplectic normal forms. Proof of Theorem 6.1

Let us transfer the normal forms [T7]
i to symplectic normal forms using

Theorem 2.12, i.e. realizing the algorithm in section 2. Fix a family ωi of
symplectic forms on R2n realizing the family [T7]

i of algebraic restrictions.
We can fix, for example
ω0 = θ1 + c1θ2 + c2θ3 + dx1 ∧ dx4 + dx5 ∧ dx6 + · · ·+ dx2n−1 ∧ dx2n, c1 · c2 ̸= 0;

ω1 = c1θ1 + θ2 + c2θ5 + dx2 ∧ dx4 + dx5 ∧ dx6 + · · ·+ dx2n−1 ∧ dx2n;

ω2 = θ1+c1θ4+c2θ5+dx1∧dx4+dx5∧dx6+ · · ·+dx2n−1∧dx2n, (c1, c2) ̸= (0, 0);

ω3 = θ4 + c1θ5 + c2θ6 +
∑3

i=1 dx1 ∧ dxi+3 + dx7 ∧ dx8 + · · ·+ dx2n−1 ∧ dx2n;

ω4 = θ1 + cθ7 + dx1 ∧ dx4 + dx5 ∧ dx6 + · · ·+ dx2n−1 ∧ dx2n;

ω5 = θ6 + cθ7 +
∑3

i=1 dx1 ∧ dxi+3 + dx7 ∧ dx8 + · · ·+ dx2n−1 ∧ dx2n;

ω6 = θ7 +
∑3

i=1 dx1 ∧ dxi+3 + dx7 ∧ dx8 + · · ·+ dx2n−1 ∧ dx2n;

ω7 =
∑3

i=1 dx1 ∧ dxi+3 + dx7 ∧ dx8 + · · ·+ dx2n−1 ∧ dx2n.

Let ω =
∑m

i=1 dpi∧dqi, where (p1, q1, · · · , pn, qn) is the coordinate system
on R2n, n ≥ 3 (resp. n = 2). Fix, for i = 0, 1, · · · , 7 (resp. for i = 0, 1, 2, 4)
a family Φi of local diffeomorphisms which bring the family of symplectic
forms ωi to the symplectic form ω: (Φi)∗ωi = ω. Consider the families
T i
7 = (Φi)−1(T7). Any stratified submanifold of the symplectic space (R2n, ω)
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which is diffeomorphic to T7 is symplectically equivalent to one and only
one of the normal forms T i

7, i = 0, 1, · · · , 7 (resp. i = 0, 1, 2, 4) presented
in Theorem 6.1. By Theorem 6.4we obtain that parameters c, c1, c2 of the
normal forms are moduli.

6.3 Distinguishing symplectic classes of T7 by Lagran-
gian tangency orders

Lagrangian tangency orders will be used to obtain a more detailed classi-
fication of (T7). A curve N ∈ (T7) may be described as a union of two
parametrical branches B1 and B2. Their parameterization is given in the
second column of Table 12. To distinguish the classes of this singularity
completely we need following three invariants:

Lt(N) = Lt(B1, B2) = max
L

(min{t(B1, L), t(B2, L)}),
Ln = max{Lt(B1), Lt(B2)} = max{max

L
t(B1, L),max

L
t(B2, L)},

Lf = min{Lt(B1), Lt(B2)} = min{max
L

t(B1, L),max
L

t(B2, L)},
where L is a smooth Lagrangian submanifold of the symplectic space.
Branches B1 and B2 are diffeomorphic and are not preserved by all sym-

metries of T7 so neither Lt(B1) nor Lt(B2) can be used as invariants. The
new invariants are defined instead: Ln describing the Lagrangian tangency
order of the nearest branch and Lf representing the Lagrangian tangency
order of the farthest branch. Considering the triples (Lt(N), Ln, Lf ) we
obtain more detailed classification of symplectic singularities of T7 than the
classification given in Table 11. Some subclasses appear (see Table 12) hav-
ing a natural geometric interpretation (Tables 13 and 14).

Theorem 6.7. A stratified submanifold N ∈ (T7) of a symplectic space
(R2n, ω) with the canonical coordinates (p1, q1, · · · , pn, qn) is symplectically
equivalent to one and only one of the curves presented in the second column
of Table 12. The parameters c, c1, c2 are moduli. The Lagrangian tangency
orders of the curve are presented in the fifth, the sixth and the seventh column
of Table 12 and the codimension of the classes is given in the fourth column.

Remark 6.8. The numbers Ln and Lf can be easily calculated by using
Proposition 3.6 to branches B1 and B2 or by direct applying the definition of
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Class Parametrization
of branches

Conditions
for subclasses

cod Lt(N) Ln Lf

(T7)
0

2n ≥ 4
(t3,−c1t

2, 0,−t2, 0, · · · )
(t3,−c2t

2,−t2, 0, 0, · · · )
c1 · c2 ̸= 0 0 2 3 3

c1 · c2 ̸= 0 1 2 5 3

(T7)
1 (t3,−t2, 0,−c1t

2, 0, · · · ) c1 = 0, c2 ̸= 0 2 3 5 3

2n ≥ 4 (t3, 0,−t2, c2t
5, 0, · · · ) c1 ̸= 0, c2 = 0 2 2 ∞ 3

c1 = 0, c2 = 0 3 3 ∞ 3

(T7)
2 (t3,

c21
2 t

4, 0,−t2, 0, · · · ) c1 · c2 ̸= 0 2 2 5 5

2n ≥ 4 (t3,
c22
2 t

4,−t2, 0, 0, · · · ) c1 ·c2 =0,
c1+c2 ̸=0

3 2 ∞ 5

(T7)
3 (t3, 1

2 t
4, 0, c2t

5,−t2, 0, · · · ) c1 ̸= 0 3 5 5 5

2n ≥ 6 (t3, c1
2 t

4,−t2, 0, 0, 0, · · · ) c1 = 0 4 5 ∞ 5

(T7)
4

2n ≥ 4
(t3, c

3 t
6, 0,−t2, 0, · · · )

(t3, 0,−t2, 0, 0, · · · )
4 2 ∞ ∞

(T7)
5

2n ≥ 6
(t3,− c

3 t
6, 0, t5,−t2, 0, · · · )

(t3, 0,−t2, 0, 0, 0, · · · )
5 5 ∞ ∞

(T7)
6

2n ≥ 6
(t3,− 1

3 t
6, 0, 0,−t2, 0, · · · )

(t3, 0,−t2, 0, 0, 0, · · · )
6 7 ∞ ∞

(T7)
7

2n ≥ 6
(t3, 0, 0, 0,−t2, 0, · · · )
(t3, 0,−t2, 0, 0, 0, · · · )

7 ∞ ∞ ∞

Table 12: Lagrangian tangency orders for symplectic classes of T7 singularity.

the Lagrangian tangency order and finding the nearest Lagrangian subman-
ifold to these branches. Next we calculate Lt(N) by definition knowing that
it can not be greater than Lf .

We can compute Lt(B1) using the algebraic restrictions [ωi]B1 where the
space [Z2(R2n)]B1 is spanned only by the algebraic restrictions to B1 of the
2-forms θ2, θ4. For example for the class (T7)

1 we have [c1θ1+θ2+c2θ5]B1 =
[θ2]B1 and thus Lt(B1) ≤ 3. Applying the definition of Lt(B1) we find the
smooth Lagrangian submanifolds L described by the conditions: pi = 0, i ∈
{1, . . . , n} and we get Lt(B1) = t(B1, L) = 3.

We can compute LT (B2) using the algebraic restrictions [ωi]B2 where the
space [Z2(R2n)]B2 is spanned only by the algebraic restrictions to B2 of the
2-forms θ3, θ5. For example for the class (T7)

1 we have [c1θ1+θ2+c2θ5]B2 =
[c2θ5]B2 and thus Lt(B2) = 5 if c2 ̸= 0 and Lt(B2) = ∞ if c2 = 0.
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Finally for the class (T7)
1 we have Ln = 5 if c2 ̸= 0 and Ln = ∞ if c2 = 0

and Lf = 3 so Lt(N) ≤ 3.
For the smooth Lagrangian submanifolds L described by the conditions:
p1 = 0, q2 = 0 and pi = 0 for i > 2 we get t[N,L] = 3 if c1 = 0 thus

Lt(N) = 3 in this case. But if c1 ̸= 0 then t[N,L] = 2 and it can not be
greater for any other smooth Lagrangian submanifold so Lt(N) = 2 in this
case.

6.4 Geometric conditions for the classes (T7)
i

The classes (T7)
i can be distinguished geometrically, without using any local

coordinate system.
Let N ∈ (T7). Then N is the union of two branches – singular 1-

dimensional irreducible components diffeomorphic to the cusp singularities.
In local coordinates they have the form

B1 = {x2
1 + x3

3 = 0, x2 = x≥4 = 0},

B2 = {x2
1 + x3

2 = 0, x≥3 = 0}.

Denote by ℓ1, ℓ2 the tangent lines at 0 to the branches B1 and B2 respectively.
These lines span a 2-space P1. Let P2 be 2-space tangent at 0 to the branch
B1 and P3 be 2-space tangent at 0 to the branch B2. Define the line ℓ3 =
P2 ∩ P3. The lines ℓ1, ℓ2, ℓ3 span a 3-space W = W (N). Equivalently W
is the tangent space at 0 to some (and then any) non-singular 3-manifold
containing N . The classes (T7)

i satisfy special conditions in terms of the
restriction ω|W , where ω is the symplectic form. For N = T7 =(4) it is easy
to calculate

ℓ1 = span (∂/∂x3), ℓ2 = span (∂/∂x2), ℓ3 = span (∂/∂x1). (7)

6.4.1 Geometric conditions for the class [0]T7

The geometric distinguishing of the class (T7)
7 follows from Theorem 2.6:

N ∈ (T7)
7 if and only if N it is contained in a non-singular Lagrangian

submanifold. The following theorem gives a simple way to check the latter
condition without using algebraic restrictions. Given a 2-form σ on a non-
singular submanifold M of R2n such that σ(0) = 0 and a vector v ∈ T0M
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we denote by Lvσ the value at 0 of the Lie derivative of σ along a vector
field V on M such that v = V (0). The assumption σ(0) = 0 implies that
the choice of V is irrelevant.

Proposition 6.9. Let N ∈ (T7) be a stratified submanifold of a symplectic
space (R2n, ω). Let M3 be any non-singular submanifold containing N and
let σ be the restriction of ω to TM3. Let vi ∈ ℓi be non-zero vectors. If
the symplectic form ω has zero algebraic restriction to N then the following
conditions are satisfied:
I. σ(0) = 0,
II. Lv3σ(vi, vj) = 0 for i, j ∈ {1, 2},
III. Lviσ(v3, vi) = 0 for i ∈ {1, 2},
IV. Lviσ(v3, vj) = Lvjσ(v3, vi) for i ̸= j ∈ {1, 2},

Proof. Any 2-form σ which has zero algebraic restriction to T7 can
be expressed in the following form σ = H1α + H2β + dH1 ∧ γ + dH2 ∧ δ,
where H1 = x2

1 + x3
2 + x3

3, H2 = x2x3 and α, β are 2-forms on TM3 and
γ = γ1dx1 + γ2dx2 + γ3dx3 and δ = δ1dx1 + δ2dx2 + δ3dx3 are 1-forms on
TM3. Since

H1(0) = H2(0) = 0, dH1|0 = dH2|0 = 0 (8)

we obtain the following equality

Lvσ = d(V ⌋σ)|0 + (V ⌋dσ)|0 = d(V ⌋σ)|0.

(8) also implies that

d(V ⌋σ)|0 = d(V ⌋dH1)|0 ∧ γ|0 + d(V ⌋dH2)|0 ∧ δ|0.

By simply calculation we get

Lv1σ = dx2 ∧ δ|0 = δ3|0 dx2 ∧ dx3 − δ1|0 dx1 ∧ dx2,

Lv2σ = dx3 ∧ δ|0 = δ1|0 dx3 ∧ dx1 − δ2|0 dx2 ∧ dx3,

Lv3σ = 2dx1 ∧ γ|0 = 2γ2|0 dx1 ∧ dx2 − 2γ3|0 dx3 ∧ dx1.

Finally we obtain

Lv1σ(v3, v1) = 0, Lv2σ(v3, v2) = 0, Lv3σ(v1, v2) = 0,

Lv1σ(v3, v2) = −δ1|0 = Lv2σ(v3, v1).

�
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Theorem 6.10. A stratified submanifold N ∈ (T7) of a symplectic space
(R2n, ω) belongs to the class (T7)

i if and only if the couple (N,ω) satisfies
corresponding conditions in the last column of Table 13 or 14.

Class Normal form Geometric conditions
(T7)

0 [T7]
0 : [θ1+c1θ2+c2θ3]T7

c1 · c2 ̸= 0
ω|ℓi+ℓj ̸= 0 ∀i, j ∈ {1, 2, 3}, so 2-spaces
tangent to branches are not isotropic

(T7)
1 ∃i ̸=j ∈{1, 2} ω|ℓi+ℓ3 = 0 and ω|ℓj+ℓ3 ̸= 0

(exactly one branch has tangent 2-space
isotropic)

[T7]
1
a : [c1θ1+θ2+c2θ5]T7

c1 · c2 ̸= 0
ω|ℓ1+ℓ2 ̸= 0 and no branch is contained in
a Lagrangian submanifold

[T7]
1
b : [θ2 + c2θ5]T7 ,

c2 ̸= 0
ω|ℓ1+ℓ2 = 0 and no branch is contained in
a Lagrangian submanifold

[T7]
1
c : [c1θ1 + θ2]T7 ,

c1 ̸= 0
ω|ℓ1+ℓ2 ̸= 0 exactly one branch is con-
tained in a Lagrangian submanifold

[T7]
1
d : [θ2]T7 ω|ℓ1+ℓ2 = 0 and exactly one branch is con-

tained in a Lagrangian submanifold
(T7)

2 ω|ℓ1+ℓ2 ̸= 0, ω|ℓi+ℓ3 = 0 ∀i ∈ {1, 2}
[T7]

2
a : [θ1+c1θ4+c2θ5]T7

c1 · c2 ̸= 0
no branch is contained in a Lagrangian
submanifold

[T7]
2
b : [θ1+c1θ4+c2θ5]T7

c1 · c2 = 0, c1 + c2 ̸= 0
exactly one branch is contained in a La-
grangian submanifold

(T7)
4 [T7]

4 : [θ1 + cθ7]T7 ω|ℓ1+ℓ2 ̸= 0, ω|ℓi+ℓ3 = 0 ∀i ∈ {1, 2},
and branches are contained in different La-
grangian submanifolds

Table 13: Geometric interpretation of singularity classes of T7 when ω|W ̸= 0; W - the
tangent space to a non-singular 3-dimensional manifold in (R2n≥4, ω) containing N ∈ (T7).

Proof of Theorem 6.10. The conditions on the pair (ω,N) in the
last column of Table 13 and Table 14 are disjoint. It suffices to prove that
these conditions the row of (T7)

i, are satisfied for any N ∈ (T7)
i. This is a

corollary of the following claims:
1. Each of the conditions in the last column of Tables 13, 14 is invariant
with respect to the action of the group of diffeomorphisms in the space of
pairs (ω,N);
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Class Normal form Geometric conditions
(T7)

3 [T7]
3
a : [θ4+c1θ5+c2θ6]T7

c1 ̸= 0
III is not satisfied and no branch is contained
in a Lagrangian submanifold

[T7]
3
b : [θ4 + c2θ6]T7 III is not satisfied and exactly one branch is

contained in a Lagrangian submanifold
(T7)

5 [T7]
5 : [θ6 + cθ7]T7 III is satisfied but II is not and branches are

contained in different Lagrangian submani-
folds.

(T7)
6 [T7]

6 : [θ7]T7 I - IV are satisfied and branches are con-
tained in different Lagrangian submanifolds.

(T7)
7 [T7]

7 : [0]T7 I - IV are satisfied and N is contained in a
Lagrangian submanifold

Table 14: Geometric interpretation of singularity classes of T7 when ω|W = 0; W -
the tangent space to a non-singular 3-dimensional manifold in (R2n≥6, ω) containing N ∈
(T7); I−IV – conditions of Proposition 6.9.

2. Each of these conditions depends only on the algebraic restriction [ω]N ;
3. Take the simplest 2-forms ωi representing the normal forms [T7]

i for
algebraic restrictions: ω0, ω1, ω2, ω3, ω4, ω5, ω6, ω7. The pair (ω = ωi, T7)
satisfies the condition in the last column of Table 13 or Table 14, the row of
(T7)

i.
The first statement is obvious, the second one follows from Lemma 2.7.

To prove the third statement we note that in the case N = T7 = (4)
one has W = span (∂/∂x1, ∂/∂x2, ∂/∂x3) and v1 ∈ ℓ1 = span (∂/∂x3),
v2 ∈ ℓ2 = span (∂/∂x2), v3 ∈ ℓ3 = span (∂/∂x1). By simply calculation
and observation of Lagrangian tangency orders we obtain that following
statements are true:
(T 0) ω0|ℓ1+ℓ2 ̸= 0 and ω0|ℓ1+ℓ3 ̸= 0 and also ω0|ℓ2+ℓ3 ̸= 0, and Ln < ∞ and
Lf < ∞ hence no branch is contained in a smooth Lagrangian submanifold.
(T 1) For any c1, c2 ω1|ℓ1+ℓ3 = 0 and ω1|ℓ2+ℓ3 ̸= 0 or ω1|ℓ1+ℓ3 ̸= 0 and
ω1|ℓ2+ℓ3 = 0. If c2 = 0 then and Ln = ∞ and Lf < ∞ hence exactly one
branch is contained in some smooth Lagrangian submanifold. For c2 ̸= 0
Ln < ∞ and Lf < ∞ so no branch is contained in a smooth Lagrangian
submanifold. ω1|ℓ1+ℓ2 = 0 if and only if c1 = 0.
(T 2) For any c1, c2 ω2|ℓ1+ℓ2 ̸= 0 and ω2|ℓ1+ℓ3 = 0 and also ω2|ℓ2+ℓ3 = 0. If
c1 · c2 ̸= 0 then Ln < ∞ and Lf < ∞ so no branch is contained in a La-
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grangian submanifold. If c1 = 0 and c2 ̸= 0 or c1 ̸= 0 and c2 = 0 then and
Ln = ∞ and Lf < ∞ hence exactly one branch is contained in some smooth
Lagrangian submanifold.
(T 3) The Lie derivative of ω3 = θ4+c1θ5+c2θ6 along a vector field V = ∂/∂x3

is not equal to 0, so condition III of Proposition 6.9 is not satisfied. If c1 ̸= 0
then Ln < ∞ and Lf < ∞ hence no branch is contained in a Lagrangian
submanifold. If c1 = 0 then Ln = ∞ and Lf < ∞ hence only one branch is
contained in some Lagrangian submanifold.
(T 4) For any c ω4|ℓ1+ℓ2 ̸= 0 and ω4|ℓ1+ℓ3 = 0 and also ω4|ℓ2+ℓ3 = 0. Both
branches are contained in different Lagrangian submanifolds since Ln =
Lf = ∞ and Lt(N) < ∞.
(T 5) We can calculate the Lie derivatives of ω5 = θ6 + cθ7 along a vector
fields V1 = ∂/∂x3 and V2 = ∂/∂x2 and V3 = ∂/∂x3: LV1ω

5(V3, V1) = 0 and
LV2ω

5(V3, V2) = 0, so condition III of Proposition 6.9 is satisfied, but the Lie
derivative LV3ω

5(V1, V2) is not equal to 0, so condition II of Proposition 6.9
is not satisfied. We have Lt(N) < ∞ and Ln = Lf = ∞ hence branches are
contained in different Lagrangian submanifolds.
(T 6) The Lie derivatives of ω6 = θ7, LVi

ω6(Vj, Vk) = 0 for i, j, k ∈ {1, 2, 3}, so
conditions II, III and IV of Proposition 6.9 are satisfied. We have Lt(N) < ∞
and Ln = Lf = ∞ hence branches are contained in different Lagrangian
submanifolds.
(T 7) For ω7 = 0 we have LVi

ω7(Vj, Vk) = 0 for i, j, k ∈ {1, 2, 3}, so conditions
II, III and IV of Proposition 6.9 are satisfied. The condition Lt(N) = ∞
implies the curve N is contained in a smooth Lagrangian submanifold. �

6.5 Proof of Theorem 6.4

In our proof we use vector fields tangent to N ∈ (T7). A Hamiltonian vector
field is an example of such a vector field. We recall by [AGLV] a suitable
definition and facts.

Definition 6.11. Let H = {H1 = · · · = Hp = 0} ⊂ Rn be a complete in-
tersection. Consider a set of p + 1 integers 1 ≤ i1 < · · · < ip+1 ≤ n. A
Hamiltonian vector field XH(i1, . . . , ip+1) on a complete intersection H is
the determinant obtained by expansion with respect to the first row of the
symbolic (p+ 1)× (p+ 1) matrix
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XH(i1, . . . , ip+1) = det


∂/∂xi1 · · · ∂/∂xip+1

∂H1/∂xi1 · · · ∂H1/∂xip+1

... . . .
...

∂Hp/∂xi1 · · · ∂Hp/∂xip+1

 (9)

Theorem 6.12 ([Wa]). Let H = {H1 = · · · = Hp = 0} ⊂ Rn be a positive
dimensional complete intersection with an isolated singularity. If H1, . . . , Hp

are quasi-homogeneous with positive weights λ1, . . . , λn than the module of
vector fields tangent to H is generated by the Euler field E =

∑n
i=1 λixi

∂
∂xi

and the Hamiltonian vector fields XH(i1, . . . , ip+1) where the numbers i1 , . . .
, ip+1 run through all possible sets 1 ≤ i1 < · · · < ip+1 ≤ n.

Proposition 6.13. Let H = {H1 = · · · = Hn−1 = 0} ⊂ Rn be a 1-dimensional
complete intersection. If XH is the Hamiltonian vector field on H then
[LXH

(α)]H = [0]H for any closed 2-form α.

Proof. Note that XH⌋dx1 ∧ . . . ∧ dxn = dH1 ∧ . . . ∧ dHp. This implies
for i < j

XH⌋dxi ∧ dxj = (−1)i+j+1(
∂

∂xi1

∧ · · · ∧ ∂

∂xin−2

)⌋(dH1 ∧ · · · ∧ dHn−1) =

=
n−1∑
k=1

(−1)k+i+j(
∂

∂xi1

∧ · · · ∧ ∂

∂xin−2

)⌋(dHl1,k ∧ · · · ∧ dHln−2,k
)dHk =

=
n−1∑
k=1

fkdHk

where (i1, · · · , in−2) = (1, · · · , i − 1, i + 1, · · · , j − 1, j + 1, · · · , n) and for
k ∈ {1, · · · , n− 1} we take a sequence (l1,k, · · · , ln−2,k) = (1, · · · , k − 1, k +
1, · · · , n− 1).
Thus [XH⌋dxi ∧ dxj]H = [

∑n−1
k=1 fkdHk]H = [0]H . If α =

∑
i<j gi,jdxi ∧ dxj is

a closed 2-form then [LXH
α]H = [d(XH⌋α)]H . It implies that

[LXH
α]H =

∑
i<j

gi,j[d(XH⌋dxi ∧ dxj)]H + [dgi,j ∧ (XH⌋dxi ∧ dxj)]H = [0]H .
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�
As a corollary of the above facts we obtain that the germ of a vector

field tangent to T7 of non trivial action on algebraic restriction of closed 2-
forms to T7 may be described as a linear combination germs of vector fields:
X1 = E, X2 = x3E, X3 = x2E, X4 = x1E, X5 = x2

2E, X6 = x2
3E where E

is the Euler vector field E = 3x1∂/∂x1 + 2x2∂/∂x2 + 2x3∂/∂x3.

Proposition 6.14. The infinitesimal action of germs of quasi-homogeneous
vector fields tangent to N on the basis of the vector space of algebraic re-
strictions of closed 2-forms to N is presented in Table 15.

LXi [θj ] [θ1] [θ2] [θ3] [θ4] [θ5] [θ6] [θ7]

X1 = E 4[θ1] 5[θ2] 5[θ3] 7[θ4] 7[θ5] 7[θ6] 9[θ7]

X2 = x3E [0] 7[θ4] 3[θ6] 9[θ7] [0] [0] [0]

X3 = x2E [0] −3[θ6] 7[θ5] [0] −9[θ7] [0] [0]

X4 = x1E −4[θ6] [0] [0] [0] [0] [0] [0]

X5 = x22E [0] [0] −9[θ7] [0] [0] [0] [0]

X6 = x23E [0] 9[θ7] [0] [0] [0] [0] [0]

Table 15: Infinitesimal actions on algebraic restrictions of closed 2-forms to T7.
E = 3x1∂/∂x1 + 2x2∂/∂x2 + 2x3∂/∂x3

Let A = [c1θ1 + c2θ2 + c3θ3 + c4θ4 + c5θ5 + c6θ6 + c7θ7]T7 be the algebraic
restriction of a symplectic form ω.

The first statement of Theorem 6.4 follows from the following lemmas.

Lemma 6.15. If c1 · c2 · c3 ̸= 0 then the algebraic restriction
A = [c1θ1 + c2θ2 + c3θ3 + c4θ4 + c5θ5 + c6θ6 + c7θ7]T7 can be reduced by a
symmetry of T7 to an algebraic restriction [θ1 + c̃2θ2 + c̃3θ3]T7.

Proof of Lemma 6.15.
We use the homotopy method to prove that A is diffeomorphic to [θ1 +

c̃2θ2 + c̃3θ3]T7 .
Let Bt = [c1θ1+ c2θ2+ c3θ3+(1− t)c4θ4+(1− t)c5θ5+(1− t)c6θ6+(1−

t)c7θ7]T7 for t ∈ [0; 1]. Then B0 = A and B1 = [c1θ1 + c2θ2 + c3θ3]T7 . We
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prove that there exists a family Φt ∈ Symm(T7), t ∈ [0; 1] such that

Φ∗
tBt = B0, Φ0 = id. (10)

Let Vt be a vector field defined by dΦt

dt
= Vt(Φt). Then differentiating (10)

we obtain
LVtBt = c4θ4 + c5θ5 + c6θ6 + c7θ7. (11)

We are looking for Vt in the form Vt = (b1x2 + b2x3 + b3x
2
2 + b4x

2
3 + b5x1)E

where b1, b2, b3, b4, b5 ∈ R. Then by Proposition 6.14 equation (11) has a
form


0 4c2 0 0 0

7c3 0 0 0 0

−3c2 3c3 0 0 −4c1

−9c5 9c4 −9c3 9c2 0




b1

b2

b3

b4

b5

 =


c4

c5

c6

c7

 (12)

If c1 · c2 · c3 ̸= 0 we can solve (12) and Φt may be obtained as a flow of
vector field Vt. The family Φt preserves T7, because Vt is tangent to T7

and Φ∗
tBt = A. Using the homotopy arguments we have A diffeomorphic to

B1 = [c1θ1+c2θ2+c3θ3]T7 . By the condition c1 ̸= 0 we have a diffeomorphism
Ψ ∈ Symm(T7) of the form

Ψ : (x1, x2, x3) 7→ (|c1|−
3
4x1, |c1|−

1
2x2, |c1|−

1
2x3) (13)

and we obtain

Ψ∗(B1) = [
c1
|c1|

θ1 + c2|c1|−
5
4 θ2 + c3|c1|−

5
4 θ3]T7 = [±θ1 + c̃2θ2 + c̃3θ3]T7 .

By the following symmetry of T7: (x1, x2, x3) 7→ (x1, x3, x2), we have that
[θ1 + c̃2θ2 + c̃3θ3]T7 and [−θ1 + c̃3θ2 + c̃2θ3]T7 are diffeomorphic. �

Lemma 6.16. If c2 · c3 = 0 and c2 + c3 ̸= 0 then the algebraic restriction
of the form [c1θ1 + c2θ2 + c3θ3 + c4θ4 + c5θ5 + c6θ6 + c7θ7]T7 can be reduced
by a symmetry of T7 to an algebraic restriction [c̃1θ1 + θ2 + c̃5θ5]T7.
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Proof of Lemma 6.16. We use similar methods as above to prove that
if c2 · c3 = 0 and c2 + c3 ̸= 0 then A is diffeomorphic to [c̃1θ1 + θ2 + c̃5θ5]T7 .
If c3 = 0 then c2 ̸= 0 and A = [c1θ1 + c2θ2 + c4θ4 + c5θ5 + c6θ6 + c7θ7]T7 Let
Bt = [c1θ1+c2θ2+(1− t)c4θ4+c5θ5+(1− t)c6θ6+(1− t)c7θ7]T7 for t ∈ [0; 1].
Then B0 = A and B1 = [c1θ1 + c2θ2 + c5θ5]T7 . We prove that there exists a
family Φt ∈ Symm(T7), t ∈ [0; 1] such that

Φ∗
tBt = B0, Φ0 = id. (14)

Let Vt be a vector field defined by dΦt

dt
= Vt(Φt). Then differentiating (14)

we obtain
LVtBt = c4θ4 + c6θ6 + c7θ7. (15)

We are looking for Vt in the form Vt = (b1x2 + b2x3 + b4x
2
3 + b5x1)E where

b1, b2, b4, b5 ∈ R. Then by Proposition 6.14 equation (15) has a form

 0 4c2 0 0

−3c2 0 0 −4c1

−9c5 9c4 9c2 0




b1

b2

b4

b5

 =

 c4

c6

c7

 (16)

If c2 ̸= 0 we can solve (16) and Φt may be obtained as a flow of vector field
Vt. The family Φt preserves T7, because Vt is tangent to T7 and Φ∗

tBt = A.
Using the homotopy arguments we have that A is diffeomorphic to B1 =
[c1θ1 + c2θ2 + c5θ5]T7 . By the condition c2 ̸= 0 we have a diffeomorphism
Ψ ∈ Symm(T7) of the form

Ψ : (x1, x2, x3) 7→ (c
− 3

5
2 x1, c

− 2
5

2 x2, c
− 2

5
2 x3) (17)

and we obtain

Ψ∗(B1) = [c1c
− 4

5
2 θ1 + θ2 + c5c

− 7
5

2 θ5]T7 = [c̃1θ1 + θ2 + c̃5θ5]T7 .

If c2 = 0 then c3 ̸= 0 and by the diffeomorphism Θ ∈ Symm(T7) of the form:
(x1, x2, x3) 7→ (x1, x3, x2), we obtain Θ∗[c1θ1 + c3θ3 + c4θ4 + c5θ5 + c6θ6 +
c7θ7]T7 = [−c1θ1 + c3θ2 + c4θ5 + c5θ4 − c6θ6 − c7θ7]T7 and we may use the
homotopy method now. �
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Lemma 6.17. If c1 ̸= 0 and (c4, c5) ̸= (0, 0) then the algebraic restriction
of the form [c1θ1 + c4θ4 + c5θ5 + c6θ6 + c7θ7]T7 can be reduced by a symmetry
of T7 to an algebraic restriction [θ1 + c̃4θ4 + c̃5θ5]T7.

Proof of Lemma 6.17.
We prove that if (c2, c3) = (0, 0), c1 ̸= 0 and (c4, c5) ̸= (0, 0) then

A = [c1θ1+ c4θ4+ c5θ5+ c6θ6+ c7θ7]T7 is diffeomorphic to [θ1+ c̃4θ4+ c̃5θ5]T7 .
Let Bt = [c1θ1 + c4θ4 + c5θ5 + (1− t)c6θ6 + (1− t)c7θ7]T7 for t ∈ [0; 1]. Then
B0 = A and B1 = [c1θ1 + c4θ4 + c5θ5]T7 . We must find a vector field Vt

satisfying equation
LVtBt = c6θ6 + c7θ7. (18)

This vector field Vt has the form Vt = (b1x2+b2x3+b5x1)E where b1, b2, b5 ∈
R. Then by Proposition 6.14 equation (18) has a form

[
0 0 −4c1

−9c5 9c4 0

] b1

b2

b5

 =

[
c6

c7

]
(19)

If c1 ̸= 0 and c4 or c5 is not equal 0 we can solve (19). Then for family Φt

obtained as a flow of vector field Vt we have Φ∗
tBt = A. Using the homotopy

arguments we have that A is diffeomorphic to B1 = [c1θ1+c2θ2+c5θ5]T7 . By
the condition c1 ̸= 0 we have a diffeomorphism Ψ ∈ Symm(T7) of the form

Ψ : (x1, x2, x3) 7→ (|c1|−
3
4x1, |c1|−

1
2x2, |c1|−

1
2x3) (20)

and we obtain

Ψ∗(B1) = [
c1
|c1|

θ1 + c4|c1|−
7
4 θ4 + c5|c1|−

7
4 θ3]T7 = [±θ1 + c̃4θ4 + c̃5θ5]T7 .

By the following symmetry of T7: (x1, x2, x3) 7→ (x1, x3, x2), we have that
[θ1 + c̃4θ4 + c̃5θ5]T7 is diffeomorphic to [−θ1 + c̃4θ5 + c̃5θ4]T7 . �

Lemma 6.18. If c1 ̸= 0 then the algebraic restriction of the form [c1θ1 +
c6θ6 + c7θ7]T7 can be reduced by a symmetry of T7 to an algebraic restriction
[θ1 + c̃7θ7]T7.

60



i
i

“zesz_dom-b5” — 2010/12/8 — 23:18 — page 61 — #35 i
i

i
i

i
i

Proof of Lemma 6.18.
We prove now that if (c2, c3, c4, c5) = (0, 0, 0, 0), c1 ̸= 0 then A =

[c1θ1 + c6θ6 + c7θ7]T7 is diffeomorphic to [θ1 + c̃7θ7]T7 .
Let Bt = [c1θ1 + (1 − t)c6θ6 + c7θ7]T7 for t ∈ [0; 1]. Then B0 = A and
B1 = [c1θ1 + c7θ7]T7 . We must find a vector field Vt satisfying equation

LVtBt = c6θ6. (21)

By Proposition 6.14 we have Lx1EBt = −4c1θ6 so we can use Vt =
−c6
4c1

x1E
and for family Φt obtained as a flow of vector field Vt we have Φ∗

tBt = A. So
A is diffeomorphic to B1 = [c1θ1 + c7θ7]T7 . By the condition c1 ̸= 0 we have
a diffeomorphism Ψ ∈ Symm(T7) of the form

Ψ : (x1, x2, x3) 7→ (|c1|−
3
4x1, |c1|−

1
2x2, |c1|−

1
2x3) (22)

and we obtain

Ψ∗(B1) = [
c1
|c1|

θ1 + c7|c1|−
9
4 θ7]T7 = [±θ1 + c̃7θ7]T7 .

By the following symmetry of T7: (x1, x2, x3) 7→ (x1, x3, x2), we have that
[θ1 + c̃7θ7]T7 is diffeomorphic to [−θ1 − c̃7θ7]T7 . �
Lemma 6.19. If (c4, c5) ̸= (0, 0) then the algebraic restriction of the form
[c4θ4+c5θ5+c6θ6+c7θ7]T7 can be reduced by a symmetry of T7 to an algebraic
restriction [θ4 + c̃5θ5 + c̃6θ6]T7.

Proof of Lemma 6.19.
We prove that if c1 = c2 = c3 = 0 and (c4, c5) ̸= (0, 0) then A =

[c4θ4 + c5θ5 + c6θ6 + c7θ7]T7 is diffeomorphic to [θ4 + c̃5θ5 + c̃6θ6]T7 .
By Proposition 6.14 Lx3E[θ4] = 9[θ7]. If c4 ̸= 0 we may use Vt =

c6
9c4

x3E
and reduce A to B1 = [c4θ4+ c5θ5+ c6θ6]T7 . By the condition c4 ̸= 0 we have
a diffeomorphism Ψ ∈ Symm(T7) of the form

Ψ : (x1, x2, x3) 7→ (c
− 3

7
4 x1, c

− 2
7

4 x2, c
− 2

7
4 x3) (23)

and we obtain

Ψ∗(B1) = [θ4 +
c5
c4
θ5 +

c6
c4
θ6]T7 = [θ4 + c̃5θ5 + c̃6θ6]T7 .

If c4 = 0 then c5 ̸= 0 and using the diffeomorphism Θ ∈ Symm(T7) of the
form: (x1, x2, x3) 7→ (x1, x3, x2), we obtain Θ∗[c4θ4 + c5θ5 + c6θ6 + c7θ7]T7 =
[c5θ4 + c4θ5 − c6θ6 − c7θ7]T7 and we may use previous method. �
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Lemma 6.20. If c6 ̸= 0 then the algebraic restriction A = [c6θ6 + c7θ7]T7

can be reduced by a symmetry of T7 to an algebraic restriction [θ6 + c̃7θ7]T7.

Proof of Lemma 6.20. Because c6 ̸= 0 we may use a diffeomorphism
Ψ ∈ Symm(T7) of the form

Ψ : (x1, x2, x3) 7→ (c
− 3

7
6 x1, c

− 2
7

6 x2, c
− 2

7
6 x3) (24)

and we obtain

Ψ∗(A) = [θ6 + c7c
− 9

7
6 θ7]T7 = [θ6 + c̃7θ7]T7 .

�

Lemma 6.21. If c7 ̸= 0 then the algebraic restriction [c7θ7]T7 can be
reduced by a symmetry of T7 to an algebraic restriction [θ7]T7.

Proof of Lemma 6.21. Because c6 ̸= 0 we may use a diffeomorphism
Ψ ∈ Symm(T7) of the form

Ψ : (x1, x2, x3) 7→ (c
− 3

9
7 x1, c

− 2
9

7 x2, c
− 2

9
7 x3) (25)

and we obtain
Ψ∗([c7θ7]T7) = [θ7]T7 .

�
Statement (ii) of Theorem 6.4 follows from conditions in the proof of

part (i) and (iii) follows from Theorem 6.10 which was proved in section
6.4.

Now we prove that the parameters c, c1, c2 are moduli in the normal
forms. The proofs are very similar in all cases. We consider as an example the
normal form with two parameters [c1θ1 + θ2 + c2θ3]T7 . From Table 15 we see
that the tangent space to the orbit of [c1θ1+θ2+c2θ3]T7 at [c1θ1+θ2+c2θ3]T7

is spanned by the linearly independent algebraic restrictions [4c1θ1 + 5θ2 +
5c2θ3]T7 , [θ4]T7 , [θ5]T7 , [θ6]T7 , [θ7]T7 . Hence the algebraic restrictions [θ1]T7 and
[θ3]T7 do not belong to it. Therefore the parameters c1 and c2 are independent
moduli in the normal form [c1θ1 + θ2 + c2θ3]T7 . �
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Differential structures on natural bundles connected
with a differential space

Diana Dziewa-Dawidczyk, Zbigniew Pasternak-Winiarski 1

Abstract

For a given differential space differential structures on tangent and
cotangent space are described and investigated. It is proved that: (i)
for any point the tangent space to a differential subspace is closed in
the whole tangent space; (ii) any co-vector is a differential of a smooth
function.

Key words and phrases: differential space, differential structure.
2000 AMS Subject Classification: 58A40.

1 Introduction
This article is the first of a series of papers concerning integration of dif-
ferential forms and densities on differential spaces. We describe natural
differential structures defined on tangent and cotangent spaces by a given
differential structure on the basic space. We also investigate properties of so
obtained differential spaces.

Section 2 of the paper contains basic definitions and the description of
preliminary facts concerning the theory of differential spaces. In Section 3
we describe the standard differential structure on the space tangent to a
given differential space and show new results about topological properties
of this structure (Theorems 3.1, 3.2 and 3.3). Section 4 is devoted to the
investigation of the space cotangent to a given differential space. We prove
that any co-vector is a differential of some smooth function (Proposition
4.4 and Theorem 4.3). We also propose the quite new definition of the

1Faculty of Mathematics and Information Science, Warsaw University of Technology,
Pl. Politechniki 1, 00-661 Warszawa, Poland
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differential structure on the cotangent space (remarks after Theorem 4.3)
and give some basic properties of this differential structure (Proposition 4.5
and 4.6). Without any other explanation we use the following symbols:
N-the set of natural numbers; R-the set of reals.

2 Differential spaces
Let M be a nonempty set and let C be a family of real valued functions
on M . Denote by τC the weakest topology on M with respect to which all
functions of C are continuous.

A basis of the topology τC consists of sets:

(α1, . . . , αn)
−1(P ) =

n∩
i=1

{m ∈ M : ai < αi(m) < bi},

where n ∈ N, a1, . . . , an, b1, . . . , bn ∈ R, ai < bi, α1, . . . , αn ∈ C, P =
{(x1, . . . , xn) ∈ Rn; ai < xi < bi, i = 1, . . . , n}.

Definition 2.1 A function f : M → R is called a local C-function on M
if for every m ∈ M there is a neighbourhood V of m and α ∈ C such that
f|V = α|V . The set of all local C-functions on M is denoted by CM .

Note that any function f ∈ CM is continuous with respect to the topology
τC. In fact, if {Vi}i∈I is such an open (with respect to τC) covering of M
that for any i ∈ I there exists αi ∈ C satisfying f|Vi

= αi|Vi
and U is an open

subset of R then
f−1(U) =

∪
i∈I

(αi|Vi
)−1(U).

Since (αi|Vi
)−1(U) is open in Vi and Vi ∈ τC we obtain (αi|Vi

)−1(U) ∈ τC for
any i ∈ I. Hence f−1(U) ∈ τC. Bearing in mind that U is an arbitrary open
set in R we obtain that f is continuous with respect to τC.

We have C ⊂ CM which implies τC ⊂ τCM . On the other hand any ele-
ment of CM is a function continuous with respect to τC. Then τCM ⊂ τC and
consequently τCM = τC.

66



i
i

“zesz_dzie-b5” — 2010/12/10 — 8:46 — page 67 — #3 i
i

i
i

i
i

Definition 2.2 A function f : M → R is called a C-smooth function on
M if there exist n ∈ N, ω ∈ C∞(Rn) and α1, . . . , αn ∈ C such that

f = ω ◦ (α1, . . . , αn).

The set of all C-smooth functions on M is denoted by scC.

We have C ⊂ scC, which implies τC ⊂ τscC. On the other hand any
superposition ω ◦ (α1, . . . , αn) is continuous with respect to τC, which gives
τscC ⊂ τC. Consequently τscC = τC.

Definition 2.3 A set C of real functions on M is said to be a (Siko-
rski’s) differential structure if: (i) C is closed with respect to localization i.e.
C = CM ; (ii) C is closed with respect to superposition with smooth functions
i.e. C = scC.

In this case the pair (M, C) is said to be a (Sikorski’s) differential space
(see [2]). Any element of C is called a smooth function on M (with respect
to C).

Proposition 2.1 The intersection of differential structures defined on a
set M ̸= ∅ is a differential structure on M .

Proof. Let {Ci}i∈I be a family of differential structures defined on a
set M and let C :=

∩
i∈I Ci. Then C is a nonempty family of real-valued

functions on M (it contains all constant functions). If n ∈ N, ω ∈ C∞(Rn)
and α1, . . . , αn ∈ C then for any i ∈ I α1, . . . , αn ∈ Ci and consequently
ω ◦ (α1, . . . , αn) ∈ Ci. Hence ω ◦ (α1, . . . , αn) ∈ C, which means that scC = C.

Since C ⊂ Ci for any i ∈ I we have τC ⊂ τCi . It means that any subset of
M open with respect to τC is open with respect to τCi for i ∈ I.

Let β ∈ CM . Choose for any m ∈ M a set Um ∈ τC and a function αm ∈ C
such that m ∈ Um and β|Um = αm|Um . Since αm ∈ Ci and Um ∈ τCi we obtain
β ∈ (Ci)M = Ci for any i ∈ I. Then β ∈ C and consequently CM = C.

Equalities CM = C = scC mean that C is a differential structure on M .�

Let F be a set of real functions on M . Then, by Proposition 2.1, the
intersection C of all differential structures on M containing F is a differential
structure on M . It is the smallest differential structure on M containing F .
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One can easily prove that C = (scF)M (see [3]). This structure is called the
differential structure generated by F . Functions of F are called generators of
the differential structure C. We also have τ(scF)M = τscF = τF (see remarks
after Definitions 2.1 and 2.2).

Let (M, C) and (N,D) be differential spaces. A map F : M → N is said
to be smooth if for any β ∈ D the superposition β ◦ F ∈ C. We will denote
the fact that F is smooth writing

F : (M, C) → (N,D).

If F : (M, C) → (N,D) is a bijection and F−1 : (N,D) → (M, C) then F is
called a diffeomorphism

If A is a nonempty subset of M and C is a differential structure on M
then CA denotes the differential structure on A generated by the family of
restrictions {α|A : α ∈ C}. The differential space (A, CA) is called a differ-
ential subspace of (M, C). One can easily prove the following

Proposition 2.2 Let (M, C) and (N,D) be differential spaces and let
F : M → N . Then F : (M, C) → (N,D) iff F : (M, C) → (F (M), F (M)D).

If the map F : (M, C) → (F (M), F (M)D) is a diffeomorphism then we
say that F : M → N is a diffeomorphism onto its range (in (N,D)). In par-
ticular the natural embedding A ∋ m 7→ i(m) := m ∈ M is a diffeomorphism
of (A, CA) onto its range in (M, C).

If {(Mi, Ci)}i∈I is an arbitrary family of differential spaces then we con-
sider the Cartesian product

∏
i∈I

Mi as a differential space with the differential

structure
⊗̂
i∈I

Ci generated by the family of functions F := {αi ◦ pri : i ∈

I, αi ∈ Ci}, where
∏
i∈I

Mi ∋ (mi) 7→ prj((mi)) =: mj ∈ Mj for any j ∈ I.

The topology τ⊗̂
i∈I

Ci coincides with the standard product topology on
∏
i∈I

Mi.

We will denote the differential structure
⊗̂
i∈I

C∞(R) on RI by C∞(RI). In

the case when I is an n-element finite set the differential structure C∞(RI)
coincides with the ordinary differential structure C∞(Rn) of all real-valued
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functions on Rn which possess partial derivatives of any order (see [3]).
In any case a function α : RI → R is an element of C∞(RI) iff for any
a = (ai) ∈ RI there are n ∈ N, elements i1, i2, . . . , in ∈ I, a set U open in
Rn and a function ω ∈ C∞(Rn) such that a ∈ U [i1, i2, . . . , in] := {(xi) ∈
RI : (xi1 , xi2 , . . . , xin) ∈ U} and for any x = (xi) ∈ U [i1, i2, . . . , in] we have

α(x) = ω(xi1 , xi2 , . . . , xin).

Let M be a group (a ring, a field, a vector space over the field K).
A differential structure C on M is said to be a group (ring, field, vector
space) differential structure if the suitable group (ring, field, vector space)
operations are smooth with respect to C, C⊗̂C and CK, where CK is a field
differential structure on K. In this case the pair (M, C) is called a differential
group (ring field, vector space). If K = R or K = C we take CK = C∞(K)
as a standard field differential structure (see [1]).

Proposition 2.3 Let V be a vector space over R and let F be a family of
constant functions and linear functionals defined on V . Then the differential
structure C generated by F on V is a vector space differential structure.

Proof. It is enough to show that for any α ∈ F there exist functions
β ∈ F , γ ∈ C∞(R) and ω1, ω2 ∈ C∞(R2) such that for any v, w ∈ V and
t ∈ R

α(v + w) = ω1(β(v), β(w)), α(tv) = ω2(γ(t), β(v)).

If α = a = const then

α(v + w) = α(v) = a, α(tv) = α(v) = a

and we can take β = α, γ = 1 = const,

ω1(x, y) = x, ω2(x, y) = y, (x, y) ∈ R2.

If α is a linear functional on V we have

α(v + w) = α(v) + α(w), α(tv) = tα(v).

Then we put β = α, γ = idR, ω1(x, y) = x+ y, ω2(x, y) = xy, (x, y) ∈ R2.
�
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Note that if C is a vector space differential structure on a vector space V
then V endowed with the topology τC is a topological vector space.

Let F be a family of generators of a differential structure C on a set M .
The generator embedding of the differential space (M, C) into the Cartesian
space defined by F is a mapping ϕF : (M, C) → (RF , C∞(RF)) given by the
formula

ϕF(m) = (α(m))α∈F

(for example if F = {α1, α2, α3} then ϕF(m) = (α1(m), α2(m), α3(m)) ∈
R3 ∼= RF). If F separates points of M, the generator embedding is a dif-
feomorphism onto its image. On that image we consider the differential
structure of a subspace of (RF , C∞(RF)).

3 The differential structure on the tangent space
Definition 3.1 By a tangent vector to a differential space (M, C) at a point
m ∈ M we mean an R-linear mapping v : C → R satisfying the Leibnitz
condition: v(α ·β)(m) = α(m)v(β)+β(m)v(α) for any α, β ∈ C. We denote
by TmM the set of all vectors tangent to (M, C) at the point m ∈ M and call
it the tangent space to (M, C) at the point m. The union TM :=

∪
m∈M

TmM

is called the tangent space to (M, C).
The set TM can be endowed with a differential structure in the following

standard way. We define the projection π : TM → M such that for any
m ∈ M and any v ∈ TmM

π(v) = m.

For any α ∈ C we define the differential (or the exterior derivative) of α as
the map dα : TM → R given by the following formula

dα(v) := v(α), v ∈ TM.

Then we define T C as the differential structure on TM generated by the
family of functions T C0 := {α ◦ π : α ∈ C} ∪ {dα : α ∈ C}. From now on we
will consider TM as a differential space with the differential structure T C.
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For any m ∈ M we will denote by dαm the restriction dα|TmM . It is clear
that dαm is a linear functional on TmM .

We also have that π : (TM, T C) → (M, C). Then π is continuous and for
any U ∈ τC the set TU :=

∪
m∈U

TmM = π−1(U) is open in TM (TU ∈ τT C).

It can be proved that TU is a tangent space to the differential space (U, CU).

Theorem 3.1 If (M, C) is a differential space then for any m ∈ M the
pair (TmM, T CTmM) is a differential vector space and TmM is a Hausdorff
space (with respect to the topology induced by T CTmM).

Proof. The differential structure T CTmM is generated by the family of
functions T C0|TmM := {β|TmM : β ∈ T C0}. If β = α ◦ π, where α ∈ C,
then β|TmM = α(m) = const. In the opposite case β|TmM(v) = dαm(v) is
a linear functional on TmM . Hence by Proposition 2.3 T CTmM is a vector
space differential structure.

If v1, v2 ∈ TmM and for any α ∈ C equalities v1(α) = dαm(v1) =
dαm(v2) = v2(α) hold then v1 = v2 (v1 and v2 are linear functionals on C).
It means that the family T C0|TmM separates points in TmM . Consequently
the topology defined by this family is a Hausdorff topology. �

Let us consider the differential space (RI , C∞(RI)). The differential
structure C∞(RI) is generated by the family of projections F := {πi}i∈I ,
where

πj((xi)) := xj (xi) ∈ RI , j ∈ I.

For any x = (xi), v = (vi) ∈ RI the functional v⃗ : C∞(RI) → R given by
the formula

v⃗(α) :=
∑
i∈I

vi
∂α

∂xi

(x)

is well defined (in some neighbourhood of x the function α depends on a
finite number of variables xi) and is a vector tangent to RI at x. On the
other hand, if u ∈ TxR

I and for any i ∈ I we denote vi := u(πi), then for
any α ∈ C∞(RI) we have v⃗(α) = u(α). Then we identify the set TxR

I with
{x}×RI . Consequently we identify the set TRI with RI ×RI . In this case
the differential structure T C∞(RI) is generated by the family of functions
T F := {πi ◦ π}i∈I ∪ {dπi}i∈I , where

π(x, v) = x, (x, v) ∈ RI ×RI .
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Hence for any j ∈ I

πj ◦ π((xi), (vi)) = xj and dπj((xi), (vi)) = vj.

It means that T C∞(RI) = C∞(RI × RI) and consequently for any x ∈
RI the differential structure T C∞(RI)TxRI is generated by the family of
projections {π′

i : {x} ×RI → R}I , where

π′
j(x, (vi)) = vj.

Then we can identify T C∞(RI)TxRI with C∞(RI).

Let ϕF : (M, C) → (RF , C∞(RF)) be the generator embedding of the
differential Hausdorff space (M, C) defined by some family of generators F .
Then we can identify differential spaces (M, C) and (ϕF(M), C∞(RF)ϕF (M))
(ϕF is a diffeomorphism). We also identify the tangent spaces TmM and
TϕF (m)ϕF(M) using the tangent map TϕF (for any α ∈ C∞(RF)ϕF (M)).

Theorem 3.2 Let I be an arbitrary nonempty set and let X be a nonempty
subset of the Cartesian space RI . Then for any x = (xi) ∈ X the space TxX
tangent to the differential space (X,C∞(RI)X) at the point x is a closed
subspace of the space TxR

I tangent to the differential space (RI , C∞(RI))
at x.

Proof. Let x = (xi) ∈ X and let (v(n)) = ((v
(n)
i )) be a sequence of

elements of TxX convergent in TxR
I to a vector v(0) = (v

(0)
i ). Then for any

i ∈ I we have
lim
n→∞

v
(n)
i = v

(0)
i .

Suppose that α ∈ C∞(RI)X . Then there exist: a number n ∈ N, elements
i1, i2, . . . , in ∈ I, a nonempty set U open in Rn and a function ω ∈ C∞(Rn)
such that for any y ∈ U [i1, i2, . . . , in] ∩X we have α(y) = ω(yi1 , yi2 , . . . , yin)
(see remarks after Proposition 2.2). Moreover

v(n)(α) =
n∑

j=1

v
(n)
ij

∂α

∂xij

(xi1 , xi2 , . . . , xin). (1)

This implies that

lim
n→∞

v(n)(α) =
n∑

j=1

v
(0)
ij

∂α

∂xij

(xi1 , xi2 , . . . , xin).
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Then the left hand side of this equality does not depend on the choice of ω
whereas the right hand side is a functional which can be identified with v(0).

�

Remark 3.1 Using similar arguments as in the proof of Theorem 3.2
(formula (1) and the limit in RI×RI) one can show that if X is a nonempty
closed subset of the Cartesian space RI then the space TX tangent to the
differential space (X,C∞(RI)X) is a closed subspace of the space TRI .

Theorem 3.3 Let (M, C) be a differential Hausdorff space and let A be
a nonempty subset of M . Then for any m ∈ A the space TmA tangent to
the differential space (A, CA) at the point m is a closed subspace of the space
TmM tangent (M, C) at m.

Proof. Let ϕC : (M, C) → (RC, C∞(RC)) be the generator embedding
of (M, C) defined by the family of generators C and let ϕC|A : (A, CA) →
(RC, C∞(RC)) be the generator embedding of (A, CA) defined by the family
of generators {α|A}α∈C. Then ϕC|A = (ϕC)|A and we can identify: (i) (M, C)
and (ϕC(M), C∞(RC)ϕC(M)); (ii) (A, CA) and (ϕC(A), C

∞(RC)ϕC(A)). For any
m ∈ A we also identify: (i) tangent spaces TmM and TϕC(m)ϕC(M); (ii)
tangent spaces TmA and TϕC(m)ϕC(A). Since by Theorem 2.2 TϕC(m)ϕC(A) is
a closed subspace of TϕC(m)R

C and TϕC(m)ϕC(A) ⊂ TϕC(m)ϕC(M) ⊂ TϕC(m)R
C

we obtain that TϕC(m)ϕC(A) is a closed subspace of TϕC(m)ϕC(M). It means
that TmA is a closed subspace of TmM . �

Remark 3.2 Using Remark 2.1 and similar arguments as in the proof of
Theorem 2.3 one can prove that if (M, C) is a differential space and A is a
nonempty closed subset of M then the space TA tangent to A (in the sense
of differential space (A, CA)) is a closed subset of the space TM tangent to
M .

Definition 3.2 A map X : M → TM such that for any m ∈ M the
value X(m) ∈ TmM is called a vector field on M . A vector field X on M is
smooth if X : (M, C) → (TM, T C).
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4 The differential structure on the cotangent
space

For a map f : M → N we denote by f ∗ : RN → RM the map given by the
formula: f∗(β) = β ◦ f .

Theorem 4.1 If {(Mi, Ci)}i∈I is a family of differential spaces, then
for any family of mappings F = {fi}i∈I , where fi : Mi → N , the pair
(N,

∩
i∈I(f

∗
i )

−1(Ci)) is a differential space and the set
∩

i∈I(f
∗
i )

−1(Ci) is the
greatest of differential structures D such that for any i ∈ I the map fi :
(Mi, Ci) → (N,D).

Proof. It is proved in [3] that for any i ∈ I the family of functions
(f∗

i )
−1(Ci) is the greatest differential structure on N for which fi is a smooth

map. Then by Proposition 2.1 the family
∩

i∈I(f
∗
i )

−1(Ci) is a differential
structure on N .

Let β ∈
∩

i∈I(f
∗
i )

−1(Ci). Then for any i ∈ I we have β ∈ (f ∗
i )

−1(Ci),
which means that f ∗

i (β) = β ◦ fi ∈ Ci. Hence fi : (Mi, Ci) →
∩

i∈I(f
∗
i )

−1(Ci).
Let D be such a differential structure on N that for any i ∈ I the map

fi : Mi → N is smooth with respect to Ci and D. Let γ ∈ D. Then for
any i ∈ I we have f ∗

i (γ) = γ ◦ fi ∈ Ci so γ ∈ (f ∗
i )

−1(Ci). It means that
γ ∈

∩
i∈I(f

∗
i )

−1(Ci). Since γ is an arbitrary element of D we obtain that
D ⊂

∩
i∈I(f

∗
i )

−1(Ci). �

Definition 4.1 The differential structure
∩

i∈I(f
∗
i )

−1(Ci) on the set N
described in Theorem 2.2 is said to be co-induced by the family F and the
family {Ci}i∈I .

Theorem 4.2 Let D be a differential structure on a set N co-induced by
the family of mappings F = {fi : Mi → N}i∈I and the family of differential
structures {Ci}i∈I . Let (P,G) be a differential space. Then the map g : N →
P is smooth with respect to D and G iff for any i ∈ I the map g◦fi is smooth
with respect to Ci and G.

Proof. (⇒) It follows from the fact that for any i ∈ I the map fi is
smooth and the superposition of smooth maps is a smooth map.
(⇐) It was proved in [3] that if g ◦fi is a smooth map with respect to Ci and
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G then fi is smooth with respect to (f∗
i )

−1(Ci) and G, where i ∈ I. Hence
for any i ∈ I and any α ∈ G we have α ◦ g ∈ (f ∗

i )
−1(Ci). Consequently

α ◦ g ∈
∩

i∈I(f
∗
i )

−1(Ci) = D, which means that g is smooth. �

Definition 4.2 The cotangent space T ∗
mM to (M, C) at a point m ∈ M

is the dual space to the tangent space TmM (it is the space of all continuous
linear functionals defined on TmM). The union T ∗M :=

∪
m∈M

T ∗
mM is called

the cotangent space to (M, C).

Proposition 4.1 If α is a smooth function on a differential space (M, C)
and m ∈ M then the differential dαm is an element of the cotangent space
T ∗
mM .

Proof. Since the linear functional dαm is an element of the set T C0|TmM

of generators of differential structure T CTmM on TmM we obtain that dαm

is continuous (see Theorem 2.1). �
If I is a nonempty set and x = (xi) = (xi)i∈I is an element of RI then

we identify the tangent space TxR
I with {x} × RI ∼= RI endowed with

the standard product topology. Then the cotangent space T ∗
xR

I should be
identified with the dual space (RI)∗. For any j ∈ I we denote by ej the
element (x, (vi)) of TxR

I such that vi = 0 for i ̸= j and vi = 1 for i = j.
Any functional p ∈ T ∗

xR
I defines the element (pi) ∈ RI by the following

formula
pi = p(ei), i ∈ I. (2)

Proposition 4.2 For any x ∈ RI and any p ∈ T ∗
xR

I there exists n ∈ N
and elements i1, i2, . . . , in ∈ I such that pi = 0 for i ∈ I \ {i1, i2, . . . , in},
where numbers pi are given by the formula (2).

Proof. Suppose that the statement is not true. Then there exists an
infinite sequence (i1, i2, . . .) of different elements of I such that for any n ∈ N
we have pin ̸= 0. Let the element (x, (vi)) ∈ TxR

I be such that for any n ∈ N

vin =
1

pin

and vi = 0 for i ∈ I\{in : n ∈ N}. Let (x, (v(n)i )) be the sequence of elements
of TxR

I such that v(n)ik
= vik for k ≤ n and v

(n)
i = 0 for i ∈ I \{i1, i2, . . . , in}.
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Then the sequence converges to (x, (vi)) in TxR
I . On the other hand we

have

(x, (v
(n)
i )) =

n∑
k=1

vikeik ,

which implies that

p(x, (v
(n)
i )) =

n∑
k=1

vikp(eik) =
n∑

k=1

1

pik
pik = n.

Hence
p((x, (v

(n)
i ))) = lim

n→∞
p(x, (v

(n)
i )) = ∞,

which is a contradiction. �
Proposition 4.3 For any x ∈ RI and any p ∈ T ∗

xR
I there exists n ∈ N

and elements i1, i2, . . . , in ∈ I such that for any v = (x, (vi)) ∈ TxR
I

p(v) =
n∑

k=1

pikvik , (3)

where numbers pi are given by the formula (2).
Proof. Let n ∈ N and i1, i2, . . . , in ∈ I be such as in Proposition 4.2. For

any nonempty set J ⊂ I denote by VJ the vector space consisting of such
v = (x, (vi)) ∈ TxR

I that

vi = 0 for i ∈ I \ J. (4)

If J is finite, say J = {j1, j2, . . . , jm} for some m ∈ N, and v = (x, (vi)) ∈ VJ

then (x, (vi)) =
m∑
k=1

vjkejk . Hence

p(x, (vi)) =
m∑
k=1

vjkp(ejk) =
m∑
k=1

vjkpjk =
n∑

k=1

pikvik ,

which means that the equality (3) holds.
Let us consider the family 2I of all subsets of the set I as a set which is

ordered by the ordinary inclusion. If J is such a linearly ordered subfamily
of 2I (for any J1, J2 ∈ J we have J1 ⊂ J2 or J2 ⊂ J1 and consequently
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VJ1 ⊂ VJ2 or VJ2 ⊂ VJ1) that for any J ∈ J and any v = (x, (vi)) ∈ VJ the
equality (3) holds then this equality holds for any v ∈ span(

∪
J∈J

VJ). Since

any element u of V∪
J is a limit of some (generalized) sequence of elements

of span(
∪

J∈J
VJ) and p is a continuous functional we obtain that (3) holds

for v = u. Hence, by Kuratowski-Zorn lemma, in the family P of all subsets
J of I for which all elements v of VJ fulfil (3) there exists some maximal
element J0.

Suppose that J0 ̸= I and that i0 ∈ I \ J0. Then J1 = J0 ∪ {i0} ̸= J0 and
any element v ∈ J1 is of the form v = v0+ vi0ei0 , where v0 ∈ J0 and vi0 ∈ R.
Since p(v) = p(v0) + p(vi0ei0) = p(v0) + vi0pi0 and both v0 and vi0ei0 fulfil
(3) then v also fulfils (3). This leads to the contradiction. �

Proposition 4.4 For any x ∈ RI and any p ∈ T ∗
xR

I there exists a
function α ∈ C∞(RI) such that p = dαx.

Proof. For x ∈ RI and p ∈ T ∗
xR

I choose n ∈ N and i1, i2, . . . , in ∈ I
such as in Proposition 4.3. Then it is enough to take

α((yi)i∈I) :=
n∑

k=1

pikyik , (yi)i∈I ∈ RI .

�

Theorem 4.3 Let (M, C) be a differential Hausdorff space. Then for any
m ∈ M and any p ∈ T ∗

mM there exists a function ω ∈ C such that p = dωm.
Proof. Let ϕF : (M, C) → (RF , C∞(RF)) be the generator embedding of

(M, C) defined by the family of generators F (we can take F = C). Then
we can identify (M, C) and (ϕF(M), C∞(RF)ϕF (M)). Hence we assume that
M ⊂ RF and for any m ∈ M the tangent space TmM is a closed subspace of
the topological vector space TmR

F = {m} ×RF ∼= RF (see Theorem 3.2).
The topology of α ∈ F is defined by a family {ρα}α∈F of semi-norms such
that

ρα((xβ)β∈F) := |xα|, α ∈ F .

Hence the topology of TmM is defined by restriction of semi-norms ρα to
TmM .

Let p ∈ T ∗
mM . Then there exists β ∈ F and C > 0 such that for any

v = (m, (vα)) ∈ TmM
|p(v)| ≤ Cρβ(v) = |vβ|.
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(see [4], I.6, Theorem 1). By the famous Hahn-Banach extension theorem
the functional p can be extended to such a continuous linear functional p0
on TmR

F that
|p0(v)| ≤ Cρβ(v), v ∈ TmR

F .

(see [4], IV.5, Theorem 1). Using now Proposition 3.4 we obtain that p0 =
dγ, where γ ∈ C∞(RF). Then p = p0|TmM = dγ|TmM = dω, where ω := γ|M .

�

We endow the cotangent space T ∗M with the differential structure T ∗C
co-induced by the family of maps {fα : R×M → T ∗M}α∈C, where

fα(t,m) := tdαm, (t,m) ∈ R×M

and R×M is considered as a differential space with the differential structure
C∞(R)⊗̂C.

Let π̃ : T ∗M → M be a map such that for any m ∈ M and any p ∈ T ∗
mM

π̃(p) := m.

We call π̃ the natural projection of the cotangent space T ∗M onto its base
M .

Proposition 4.5 The natural projection π̃ : T ∗M → M is a smooth
map.

Proof. For any α ∈ C we have

π̃ ◦ fα(t,m) = π̃(tdαm) = m, (t,m) ∈ R×M.

Hence π̃ ◦ fα is a natural projection of R × M onto M which is a smooth
map. It now follows from Theorem 4.2 that π̃ is a smooth map. �

Proposition 4.6 For any smooth vector field X on M the function
T ∗M ∋ p 7→ βX(p) := p(X(p)) ∈ R is smooth on T ∗M .

Proof. It is enough to show that for any α ∈ C the superposition βX◦fα ∈
C∞(R)⊗̂C (see Theorem 4.2). We have

βX ◦ fα(t, x) = βX(tdαx) = tdα(X(x)) = tX(x)α, (t, x) ∈ R×M.
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Since X is smooth we obtain that the function M ∋ x 7→ X(x)α ∈ R is
smooth on M . Then

βX ◦ fα(t, x) = ω(t,X(x)α), (t, x) ∈ R×M

for
ω(t, s) = ts, (t, s) ∈ R2,

which means that βX ◦ fα is smooth on R×M . �
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Integrability of Hamiltonian systems on varieties
Takuo Fukuda 1, Stanislaw Janeczko 2

1 Introduction
Let (R2n, ω) be a symplectic manifold. Then the tangent bundle TR2n is
isomorphic to the cotangent bundle T ∗R2n. The isomorphism is established
by vector bundle morphism β : TR2n ∋ u 7→ ω(u, ·) ∈ T ∗R2n. Thus the
tangent bundle TR2n is endowed with the canonical symplectic structure
ω̇ = β∗dθ where θ is a Liouville form on T ∗R2n. Let C be a submanifold
of R2n and H : C → R a smooth function on C. The usual notion of
Hamiltonian system (generalized after P.A.M. Dirac [1]) is defined as a sub-
bundle of TR2n over C, being a Lagrangian submanifold of (TR2n, ω̇),(cf.
[7])

LH = {v ∈ TR2n : ω(v, u) = −dH(u) ∀u∈TC}. (1)

If C is an open domain of R2n then LH is a smooth section of π : TR2n →
R2n and its local integrability is a characteristic property, i.e. at each point
v ∈ LH there is a smooth curve α : (−ϵ, ϵ) → R2n such that (α(0), α̇(0)) = v
and (α(t), α̇(t)) ∈ LH for every t ∈ (−ϵ, ϵ). The curve α is called an integral
curve of LH with initial value v and v is called an integrable point of LH .
Since LH is introduced to describe dynamics (of mechanical, biological, etc.
systems) the existence of such α for LH should not be an exceptional property
and that for each v ∈ LH there should exist a neighborhood U of v in LH

and ϵ > 0 such that the mapping U × (−ϵ, ϵ) ∋ (v̄, t) 7→ αv̄(t), αv̄(o) = v
is defined and at least continuous. The general Hamiltonian system (1) is
called integrable if it consists only of integrable points (cf. [1, 3, 4, 6, 9]). It
is called smoothly integrable if moreover it consists of smoothly integrable

1Department of Mathematics, College of Humanities and Sciences Sakurajousui 3-25-
40, Setagaya-ku, Tokyo, Japan

2Institute of Mathematics, Polish Academy of Sciences, ul. Sniadeckich 8, Warszawa,
Poland and Faculty of Mathematics and Information Science, Plac Politechniki 1, 00-661
Warszawa, Poland
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points, i.e. around each v ∈ LH there exists a smooth family α : U×(−ϵ, ϵ) ∋
(v̄, t) 7→ R2n of solutions of LH such that (αv̄(0), α̇v̄(0)) = v.

In local Darboux coordinates ω =
∑n

i=1 dyi ∧ dxi and

ω̇ =
n∑

i=1

(dẏi ∧ dxi − dẋi ∧ dyi).

The generalized Hamiltonian system (1) can be written by a generalized
Hamiltonian function F : R2n ×Rk → R,

ẋi =
∂F

∂yi
(x, y, λ), i = 1, . . . , n (2)

ẏi = −∂F

∂xi

(x, y, λ), i = 1, . . . , n (3)

0 = aℓ(x, y), ℓ = 1, . . . , k, λ ∈ Rk, (4)

where F (x, y, λ) = b(x, y) +
∑k

l=1 λℓaℓ(x, y), C is defined as a zero-level set
of the mapping (x, y) → (a1(x, y), . . . , ak(x, y)) and b(x, y) is an arbitrary
smooth extension of the function H : C → R.

The aim of this paper is to investigate integrability of Hamiltonian sys-
tems on varieties. We find conditions that LF is smoothly integrable for
various properties of C and a general function on C.

2 Formulation of results
Throughout this paper, unless otherwise stated, we consider only implicit
Hamiltonian systems LF ⊂ TR2n generated by Morse families F : R2n ×
Rk → R of the form

F (x, y, λ) =
k∑

ℓ=1

aℓ(x, y)λℓ + b(x, y),

where F satisfies the rank condition:

rank

(
∂2F

∂λ∂x
(x, y, λ),

∂2F

∂λ∂y
(x, y, λ)

)
= k
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at every point (x, y, λ) of the critical manifold

CF = {(x, y, λ) ∈ R2n ×Rk | ∂F
∂λ

(x, y, λ) = 0}.

of F .

2.1 The problem

Concerning the integrability of the implicit Hamiltonian system LF , we al-
ready have the following result proved in [3].

Theorem 1. ([3]) An implicit Hamiltonian system LF ⊂ TR2n generated
by a Morse family

F : R2n ×Rk → R, F (x, y, λ) =
k∑

ℓ=1

aℓ(x, y)λℓ + b(x, y)

is smoothly integrable if and only if

{ai, aℓ} = 0 and {b, aℓ} = 0, 1 ≤ i, ℓ ≤ k,

on C = {(x, y) ∈ R2n | ai(x, y) = 0, 1 ≤ i ≤ k}.
where {f, g} denotes the Poisson bracket of f and g.

In what follows we investigate the following problem:

Problem 1. In the case if LF is not smoothly integrable, which part of
LF is integrable?

2.2 Results

Let π : TR2n → R2n and π̃ : R2n × Rk → R2n denote the canonical
projections respectively,

π(x, y, ẋ, ẏ) = (x, y), π̃(x, y, λ) = (x, y).

Let ϕ : CF → LF denote the map defined by

ϕ(x, y, λ) = (x, y,
∂F

∂y
(x, y, λ),−∂F

∂x
(x, y, λ)), (x, y, λ) ∈ CF .
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Since
∂F

∂λℓ

(x, y, λ) = aℓ(x, y),

setting
C = {(x, y) ∈ R2n | a1(x, y) = · · · = ak(x, y) = 0},

we have
CF = C ×Rk.

Then the implicit Hamiltonian system LF ⊂ TR2n generated by F is given
by

LF = ϕ(CF )

= {(x, y, ∂F
∂y

(x, y, λ),−∂F

∂x
(x, y, λ) ∈ TR2n | (x, y, λ) ∈ CF = C ×Rk}

= {(x, y, ∂F
∂y

(x, y, λ),−∂F

∂x
(x, y, λ) ∈ TR2n |

a1(x, y) = · · · = ak(x, y) = 0, λ ∈ Rk}.

In this paper we find conditions for a submanifold of LF to be smoothly
integrable in the case where the Morse family does not satisfy the condition
in Theorem 1, i.e. {ai, aℓ} = 0 and {b, aℓ} = 0 on C, 1 ≤ i, ℓ ≤ k.

Consider the k×k skew-symmetric matrix ({aℓ, am}(x, y)) and the linear
equation

A(x, y)

 λ1
...
λk

 = ({aℓ, am}(x, y))

 λ1
...
λk

 =

 {b, a1}(x, y)
...

{b, ak}(x, y)

 .

Set

S̃F =

(x, y, λ) ∈ CF | ({aℓ, am}(x, y))

 λ1
...
λk

 =

 {b, a1}(x, y)
...

{b, ak}(x, y)


 ,

SF = ϕ(S̃F ) ⊂ LF .

First we have the following basic result.
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Theorem 2. 1) If a submanifold M of LF is an integrable submanifold
of the implicit Hamiltonian system LF , then it is an integrable submanifold
of the tangent bundle TC of C.

2) If the linear equation

({aℓ, am}(x, y))

 λ1
...
λk

 =

 {b, a1}(x, y)
...

{b, ak}(x, y)


has a smooth solution (λ1(x, y), · · · , λk(x, y)) defined on C, then the image

Gλ = ϕ(G̃λ)

by ϕ of the graph of the solution

G̃λ = {(x, y, λ1(x, y), . . . , λk(x, y)) | (x, y) ∈ C}

is a smoothly integrable submanifold of LF .

Remark 1. From Theorem 2. 1), in order to check that M is smoothly
integrable, it is enough to check that

1) M is a submanifold of TC
and that

2) M is smoothly integrable as an implicit differential system,
to which we can apply the results in [3].

Theorem 2. 1) is a direct consequence of Lemmas 2 and 3 given in the
next section.

A situation diametrically opposite to the Theorem 1 is in the case if

det ({aℓ, am}(x, y)) ̸= 0.

Under this condition we have

Theorem 3. Let LF ⊂ TR2n be an implicit Hamiltonian system generated
by a Morse family

F : R2n ×Rk → R, F (x, y, λ) =
k∑

ℓ=1

aℓ(x, y)λℓ + b(x, y)
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Suppose that

k is even and det ({aℓ, am}(x, y)) ̸= 0.

Then SF is a smoothly integrable submanifold of LF and it is the maximal
integrable submanifold of LF in the sense that any other smoothly integrable
submanifold of LF is a submanifold of SF . Moreover, the projection π|SF

:
SF → C is a diffeomorphism and has no singular points. Consequently, SF

is a unique smoothly integrable submanifold of LF such that π(SF ) = C.

When k is odd we have detA(x, y) = 0 everywhere. As a result corre-
sponding to Theorem 3, we have

Theorem 4. Let LF ⊂ TR2n be an implicit Hamiltonian system generated
by a Morse family

F : R2n ×Rk → R, F (x, y, λ) =
k∑

ℓ=1

aℓ(x, y)λℓ + b(x, y).

Suppose that k is odd and the rank of ({aℓ, am}(x, y)) is constant and equal
to k − 1.

Suppose also that the linear equation

A(x, y)

 λ1
...
λk

 = ({aℓ, am}(x, y))

 λ1
...
λk

 =

 {b, a1}(x, y)
...

{b, ak}(x, y)


has a smooth solution λ(x, y) = (λ1(x, y), . . . , λ1(x, y)) on C. Then

1) SF is a smoothly integrable submanifold of LF and it is the maxi-
mal integrable submanifold in the sense that any other smoothly integrable
submanifold of LF is a submanifold of SF .

2) Moreover, SF is a line bundle over C with the projection map π|SF
:

SF → C and the projection map π|SF
: SF → C has no singular points.

The maximality of SF , both in Theorems 3 and 4, follows from Lemma
3 given in the next section.

Theorem 4. 1) is a direct consequence of Theorem 4. 2), Lemma 3 and
the following more general theorem.
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Theorem 5. Let LF ⊂ TR2n be an implicit Hamiltonian system generated
by a Morse family

F : R2n ×Rk → R, F (x, y, λ) =
k∑

i=1

ai(x, y)λi + b(x, y).

Let M be a submanifold of LF such that the projection π|M : M → C is a
submersion.

Then M is smoothly integrable if and only if M ⊂ SF .

As a direct corollary of Theorem 5, we have the following theorem which
is a generalization of Theorem 4.

Theorem 6. Let LF ⊂ TR2n be an implicit Hamiltonian system generated
by a Morse family

F : R2n ×Rk → R, F (x, y, λ) =
k∑

i=1

ai(x, y)λi + b(x, y)

Suppose that the linear equation

({ai, aj}(x, y))

 λ1
...
λk

 =

 {b, a1}(x, y)
...

{b, ak}(x, y)


has a smooth solution λ(x, y) = (λ1(x, y), . . . , λk(x, y)) on C. Suppose also
that the kernel set

K̃F = ker ({ai, aj}) = {(x, y, λ) ∈ C ×Rk | ({ai, aj}(x, y))λ = 0}

contains an m dimensional smooth vector subbundle K̃ of the vector bundle
C ×Rk over C. Then

S = {(x, y, ∂F
∂y

(x, y, λ(x, y) + λ),−∂F

∂x
(x, y, λ(x, y) + λ)) | (x, y, λ) ∈ K̃}

is a (2n− k +m) dimensional smoothly integrable submanifold of LF .

86



i
i

“zesz_fuk-b5” — 2010/12/8 — 19:49 — page 87 — #8 i
i

i
i

i
i

The condition in Theorem 6 that the kernel set K̃F contains an m dimen-
sional smooth vector subbundle is not a generic condition if m > 0 for k even,
and if m > 1 for k odd. Because in general if k is even, det ({aℓ, am}(x, y)) ̸=
0 almost everywhere, and if k is odd, rank ({aℓ, am}(x, y)) = k − 1 almost
everywhere. For k even we define

Creg = {(x, y) ∈ R2n | det ({aℓ, am}(x, y)) ̸= 0},

for k odd we have

Ck−1 = {(x, y) ∈ R2n | rank ({aℓ, am}(x, y)) = k − 1}.

In the generic situation, we have

Theorem 7. Suppose that k is even. Suppose also that

det ({aℓ, am}(x, y)) ̸= 0

almost everywhere but

det ({aℓ, am}(0, 0)) = 0.

Then LF ∩ π−1(Creg) is smoothly integrable implicit differential system of
TCreg. Moreover there exists a smoothly integrable differential system M
such that π(M) = C if and only if the linear equation

({aℓ, am}(x, y))

 λ1
...
λk

 =

 {b, a1}(x, y)
...

{b, ak}(x, y)


has a smooth solution. Such a smoothly integrable differential system M is
unique and it has the properties that M ∩ π−1(Creg) = LF ∩ π−1(Creg) and
that πM : M → C is a diffeomorphism.

Remark 2. A necessary and sufficient condition for the linear equation

({aℓ, am}(x, y))

 λ1
...
λk

 =

 {b, a1}(x, y)
...

{b, ak}(x, y)


to have a smooth solution is already investigated in [3]. For k even we can
apply this condition to the linear equation and we can have a corollary of
Theorem 7 translating the condition in terms of ai(x, y)’s and b(x, y).
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Remark 3. In the case where k is odd we can have a similar result.
However, when k is odd the rank of the matrix ({ai, aj}(0, 0)) is less than
k − 1,

1) There is a question, in a generic situation, whether the kernel set

K̃F = ker ({ai, aj}) = {(x, y, λ) ∈ C ×Rk | ({ai, aj}(x, y))λ = 0}

contains or not a smooth line bundle over C appeared in Theorem 6.
2) Moreover when k is odd, we can not apply our condition for the

linear equation to have a smooth solution. Since det({ai, aj}(x, y)) = 0, the
product of the matrix ({ai, aj}(x, y)) and its cofactor matrix is always the
zero matrix. Thus we can not apply our method.

Theorems 3, 4, 5 and 6 are obtained by reducing the fibers of the bundle
π : LF → C. Reducing the base space C, we obtain

Theorem 8. Suppose that LF is not smoothly integrable. Let

g1, . . . , gs : R
2n → R

be smooth functions such that the Jacobian matrix of the map (a, g) =
(a1, . . . , ak, g1, . . . , gs) : R

2n → Rk+s has the maximal rank k+s. Let Cg ⊂ C
be a submanifold defined by

Cg = {(x, y) ∈ C | g1(x, y) = · · · = gs(x, y) = 0}.

Then ϕ(Cg ×Rk)(⊂ LF ) is smoothly integrable if and only if

{aℓ, am} = {b, am} = 0, {aℓ, gt} = {b, gt} = 0 on Cg,

1 ≤ ℓ,m ≤ k, 1 ≤ t ≤ s.

3 Basic lemmas
The implicit Hamiltonian system LF we consider in this paper, generated
by a Morse family of the form

F (x, y, λ) =
k∑

ℓ=1

aℓ(x, y)λℓ + b(x, y),
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is of a special kind in the sense that the projection map π | LF : LF → R2n

has no regular points, while the regular points are dense in generic implicit
Hamiltonian system.

We can easu to see that the following three properties still hold in the
present irregular case.

Lemma 1. 1) LF is a Lagrangian submanifold of TR2n.
2) ϕ : CF → LF is a diffeomorphism.
3) A submanifold M of LF is integrable if and only if there exists a

smooth vector field ξ tangent to M such that

dπ(ξ(x, y, ẋ, ẏ)) = ẋ
∂

∂x
+ ẏ

∂

∂y
,

equivalently if and only there exists a smooth vector field ξ̃ tangent to M̃ =
ϕ−1(M) such that

dπ̃(ξ̃(x, y, λ)) =
∂F

∂y
(x, y, λ)

∂

∂x
− ∂F

∂x
(x, y, λ)

∂

∂y
.

Consider the k×k skew-symmetric matrix ({aℓ, am}(x, y)) and the linear
equation

A(x, y)

 λ1
...
λk

 = ({aℓ, am}(x, y))

 λ1
...
λk

 =

 {b, a1}(x, y)
...

{b, ak}(x, y)

 .

Set

S̃F =

(x, y, λ) ∈ CF | ({aℓ, am}(x, y))

 λ1
...
λk

 =

 {b, a1}(x, y)
...

{b, ak}(x, y)


 ,

SF = ϕ(S̃F ) ⊂ LF .

Lemma 2. 1) For a point (x, y, λ) ∈ CF , the vector

dπ̃(
∂F

∂y
(x, y, λ)

∂

∂x
− ∂F

∂x
(x, y, λ)

∂

∂y
)
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is tangent to C if and only if

({aℓ, am}(x, y))

 λ1
...
λk

 =

 {b, a1}(x, y)
...

{b, ak}(x, y)

 .

2) Equivalently, for a point (x, y, ẋ, ẏ) ∈ LF , the vector ẋ ∂
∂x

+ ẏ ∂
∂y

is
tangent to C at (x, y) if and only if (x, y, ẋ, ẏ) ∈ SF .

3) Consequently SF is contained in TC: SF = TC ∩ LF .

Lemma 3. Let (x0, y0, ẋ0, ẏ0) ∈ LF and let

(x0, y0, λ0) = ϕ−1(x0, y0, ẋ0, ẏ0) ∈ CF .

If (x0, y0, ẋ0, ẏ0) is an integrable point of LF , then λ0 = (λ01, . . . , λ0k) is a
solution of the linear equation

({ai, aj}(x0, y0))

 λ1
...
λk

 =

 {b, a1}(x0, y0)
...

{b, ak}(x0, y0)

 ,

which means that

(x0, y0, λ0) ∈ S̃F and (x0, y0, ẋ0, ẏ0) ∈ SF .

Consequently any integrable submanifold of LF is a subset of SF = TC∩LF .

3.1 Proof of Lemma 2

Since C is defined by the equations a1(x, y) = a2(x, y) = · · · = ak(x, y) = 0,

dπ̃(
∂F

∂y
(x, y, λ)

∂

∂x
− ∂F

∂x
(x, y, λ)

∂

∂y
)

is tangent to C if and only if

dπ̃(
∂F

∂y
(x, y, λ)

∂

∂x
− ∂F

∂x
(x, y, λ)

∂

∂y
)(ai(x, y)) = 0, i = 1, . . . , k,
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which holds if and only if

(
∂F

∂y
(x, y, λ)

∂

∂x
− ∂F

∂x
(x, y, λ)

∂

∂y
)(aj(x, y)) = 0, j = 1, . . . , k,

which holds if and only if

{F, aj}(x, y, λ) = 0 j = 1, . . . , k, .

Since

F (x, y, λ) =
k∑

i=1

ai(x, y)λi + b(x, y),

the last equality holds if and only if

k∑
i=1

{ai, aj}(x, y)λi + {b, aj}(x, y) = 0, j = 1, . . . , k.

which holds if and only if

t ({ai, aj}(x, y))

 λ1
...
λk

+

 {b, a1}(x, y)
...

{b, ak}(x, y)

 =

 0
...
0

 ,

which holds if and only if

({ai, aj}(x, y))

 λ1
...
λk

 =

 {b, a1}(x, y)
...

{b, ak}(x, y)

 .

Here recall that the matrix ({ai, aj}(x, y)) is skewsymmetric. This completes
the proof of Lemma 2. �

3.2 Proof of Lemma 3

Since (x0, y0, ẋ0, ẏ0) ∈ LF is an integrable point of LF , there exists a smooth
curve

γ(t) = (x(t), y(t)) ∈ R2n, −ϵ < t < ϵ
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such that
(x(t), y(t),

dx

dt
(t),

dy

dt
(t)) ∈ LF , −ϵ < t < ϵ

and
(x(0), y(0),

dx

dt
(0),

dy

dt
(0)) = (x0, y0, ẋ0, ẏ0).

Let γ̃ : (ϵ, ϵ) → CF be the curve defined by

γ̃(t) = ϕ(x(t), y(t),
dx

dt
(t),

dy

dt
(t)).

Denote γ̃(t) = (x(t), y(t), λ(t)). Since (x0, y0, λ0) = ϕ−1(x0, y0, ẋ0, ẏ0), we
see that λ(0) = λ0.

Since γ̃(t) ∈ CF , −ϵ < t < ϵ, we see that

dγ̃

dt
(0) = ẋ0

∂

∂x
+ ẏ0

∂

∂y
+

dλ

dt
(0)

∂

∂λ

is tangent to LF . Since LF is defined by a1(x, y) = 0, . . . , ak(x, y) = 0, we
have

(ẋ0
∂

∂x
+ ẏ0

∂

∂y
+

dλ

dt
(0)

∂

∂λ
)(aj) = 0, j = 1, . . . , k.

Thus
0 = ẋ0

∂aj
∂x

(0) + ẏ0
∂aj
∂y

(0) =

=
∂F

∂y
(x0, y0, λ0)

∂aj
∂x

(0)− ∂F

∂x
(x0, y0, λ0)

∂aj
∂y

(0) = {F, aj}(x0, y0, λ0).

Since

F (x, y, λ) =
k∑

i=1

ai(x, y)λi + b(x, y),

we have
k∑

i=1

{ai, aj}(x0, y0)λ0i + {b, aj}(x0, y0) = 0, j = 1, . . . , k.

Hence

t ({ai, aj}(x0, y0))

 λ1
...
λk

+

 {b, a1}(x0, y0)
...

{b, ak}(x0, y0)

 =

 0
...
0
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Thus λ0 = (λ01, . . . , λ0k) is a solution of the linear equation

({ai, aj}(x0, y0))

 λ1
...
λk

 =

 {b, a1}(x0, y0)
...

{b, ak}(x0, y0)

 .

Here recall that the matrix ({ai, aj}(x0, y0)) is skewsymmetric. This com-
pletes the proof of Lemma 3. �

4 Proofs of Theorems

4.1 Proof of Theorem 2

Theorem 2. 1) is immediate from Lemma 3.
Proof of Theorem 2. 2) Suppose that the linear equation

({aℓ, am}(x, y))

 λ1
...
λk

 =

 {b, a1}(x, y)
...

{b, ak}(x, y)


has a smooth solution λ(x, y) = (λ1(x, y), . . . , λk(x, y)) defined on C. Con-
sider the image

Gλ = ϕ(G̃λ)

by ϕ of the graph

G̃λ = {(x, y, λ1(x, y), . . . , λk(x, y)) | (x, y) ∈ C}

of the solution (λ1(x, y), . . . , λk(x, y)).
Since λ(x, y) is a solution of the linear equation, from Lemma 2, we see

that the vector

dπ̃(
∂F

∂y
(x, y, λ(x, y))

∂

∂x
− ∂F

∂x
(x, y, λ(x, y))

∂

∂y
)

is tangent to C. Since λ(x, y) is smooth, the vector

dπ̃(
∂F

∂y
(x, y, λ(x, y))

∂

∂x
− ∂F

∂x
(x, y, λ(x, y))

∂

∂y
)
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depends smoothly on (x, y). Since π̃ |G̃λ
: G̃λ → C is a diffeomorphism then

there exists a smooth vector field ξ̃ tangent to G̃λ such that

dπ̃(ξ̃(x, y, λ(x, y))) =
∂F

∂y
(x, y, λ(x, y))

∂

∂x
− ∂F

∂x
(x, y, λ(x, y))

∂

∂y
.

Then, from Lemma 1. 3), the image Gλ = ϕ(G̃λ) is a smoothly integrable
submanifold of LF . This completes the proof of Theorem 2. �

4.2 Proof of Theorem 3

Consider the k × k matrix ({aℓ, am}(x, y)) and the linear equation

({aℓ, am}(x, y))

 λ1
...
λk

 =

 {b, a1}(x, y)
...

{b, ak}(x, y)


and set

S̃F =

{(x, y, λ) ∈ R2n ×Rk | ({aℓ, am}(x, y))

 λ1
...
λk

 =

 {b, a1}(x, y)
...

{b, ak}(x, y)

}.

Since det ({aℓ, am}(x, y)) ̸= 0 on C, the linear equation

({aℓ, am}(x, y))

 λ1
...
λk

 =

 {b, a1}(x, y)
...

{b, ak}(x, y)


has a unique smooth solution λ(x, y) = (λ1(x, y), . . . , λk(x, y)) on C. Then
we have

S̃F = {(x, y, λ) ∈ R2n ×Rk | λ = λ(x, y), (x, y) ∈ C}.

Thus S̃F is the graph of the map λ : C → Rk. Therefore the projection
map π̃ |S̃F

: S̃F → C is a submersion and so is π|SF
: SF → C. Moreover,

from Lemma 2, SF is an implicit differential system as a submanifold of TC.
Thus SF is an smoothly integrable implicit differential system and it is a
smoothly i integrable submanifold of LF .

Now the maximality of S follows from Lemma 4. This completes the
proof of Theorem 3. �
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4.3 Proof of Theorem 4 by using Theorem 5

Let LF ⊂ TR2n be an implicit Hamiltonian system generated by a Morse
family

F : R2n ×Rk → R, F (x, y, λ) =
k∑

ℓ=1

aℓ(x, y)λℓ + b(x, y)

Suppose that

k is odd and the rank of ({ai, aj}(x, y)) is constantly k − 1.

Suppose also that the linear equation

A(x, y)

 λ1
...
λk

 = ({ai, aj}(x, y))

 λ1
...
λk

 =

 {b, a1}(x, y)
...

{b, ak}(x, y)

 .

has a smooth solution λ(x, y) = (λ1(x, y), . . . , λ1(x, y)) on C.
Since the matrix ({ai, aj}(x, y)) depends smoothly on (x, y) ∈ C and has

a constant rank k − 1, the kernel set

K̃F = {(x, y, λ) ∈ CF | ({ai, aj}(x, y))λ = 0}

is a smooth line bundle over C and we see that

S̃F = {(x, y, λ(x, y) + λ) | (x, y) ∈ C, (x, y, λ) ∈ K̃F}.

Therefore S̃F is also a line bundle over C and so is SF = ϕ(S̃F ). Thus,
SF is a smooth manifold and the projection π : SF → C is a submersion.
From Theorem 5, SF = ϕ(S̃F ) is a smoothly integrable submanifold of LF .
The maximality of SF follows from Lemma 3. This completes the proof of
Theorem 3. �

4.4 Proof of Theorem 5 and Theorem 6

Let LF ⊂ TR2n be an implicit Hamiltonian system generated by a Morse
family

F : R2n ×Rk → R, F (x, y, λ) =
k∑

i=1

ai(x, y)λi + b(x, y).
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Suppose that M is a submanifold of LF such that the projection π |M : M →
C is a submersion.

If M is smoothly integrable, then, from Lemma 3, we have M ⊂ SF .
Conversely, suppose that M ⊂ SF . Let

(x0, y0, ẋ0, ẏ0) ∈ M and (x0, y0, λ0) = ϕ−1(x0, y0, ẋ0, ẏ0).

Since
(x0, y0, ẋ0, ẏ0) ∈ SF and (x0, y0, λ0) ∈ S̃F ,

from the definition of SF and from Lemma 2, the vector

ẋ0
∂

∂x
+ ẏ0

∂

∂y
=

∂F

∂y
(x0, y0, λ0)

∂

∂x
− ∂F

∂x
(x0, y0, λ0)

∂

∂y

is tangent to C at (x0, y0) and smoothly depends on (x0, y0, ẋ0, ẏ0) ∈ M .
Since π |M : M → C is a submersion, there exists a smooth vector field ξ
tangent to M such that

dπ(ξ(x0, y0, ẋ0, ẏ0)) = ẋ0
∂

∂x
+ ẏ0

∂

∂y
, ∀(x0, y0, ẋ0, ẏ0) ∈ M.

Thus, from Lemma 1, M is smoothly integrable. This completes the proof
of Theorem 5. �

Now Theorem 6 is a direct corollary of Theorem 5.

4.5 Proof of Theorem 7

The fact that LF ∩ π−1(Creg) is a smoothly integrable implicit differential
system of TCreg is a direct corollary of Theorem 3.

Now suppose that the linear equation

({aℓ, am}(x, y))

 λ1
...
λk

 =

 {b, a1}(x, y)
...

{b, ak}(x, y)


has a smooth solution (λ1(x, y), . . . , λk(x, y)). Then, by Theorem 2. 2), the
image Gλ = ϕ(G̃λ) of the graph G̃λ of the solution

(λ1(x, y), . . . , λk(x, y))
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is a smoothly integrable submanifold of LF . Take Gλ as M we seek. Then,
by Theorem 3, M∩TCreg = Gλ∩TCreg and SF ∩TCreg must coincide. Since
Creg is dense in C, the uniqueness of such M follows.

Conversely suppose that there exists a smoothly integrable differentiable
system M such that π(M) = C. Then, again by Theorem 3, M ∩ TCreg

must coincide with SF ∩ TCreg. Consider the inverse image M̃ = ϕ−1(M) ⊂
CF ⊂ C × Rk. Since, by Theorem 3, S̃F ∩ (Creg × Rk) is the graph of a
smooth solution λ : Creg → Rk of the linear equation

({aℓ, am}(x, y))

 λ1
...
λk

 =

 {b, a1}(x, y)
...

{b, ak}(x, y)

 , (x, y) ∈ Creg,

M̃∩(Creg×Rk) must coincide with the graph of this smooth solution λ(x, y),
(x, y) ∈ Creg. Since Creg is dense in C and M̃ is a smooth submanifold such
that π̃(M̃) = C, λ(x, y) can be extended to a smooth solution of the linear
equation. Thus the linear equation has a smooth solution. This completes
the proof of Theorem 7. �

4.6 Proof of Theorem 8

Theorem 8 can be proved in the same way as Theorem 1. We repeat it
below.

Let

F (x, y, λ) =
k∑

ℓ=1

aℓ(x, y)λℓ + b(x, y)

be a Morse family. Then we have

∂F

∂λℓ

(x, y, λ) = aℓ(x, y).

Set
C = {(x, y) ∈ R2n | a1(x, y) = . . . = ak(x, y) = 0},
Cg = {(x, y) ∈ C | g1(x, y) = · · · = gs(x, y) = 0},

CF = {(x, y, λ) ∈ R2n ×Rk | ∂F

∂λ1

(x, y, λ) = · · · = ∂F

∂λk

(x, y, λ) = 0} =
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= {(x, y, λ) ∈ R2n ×Rk | a1(x, y) = · · · = ak(x, y) = 0} = C ×Rk,

CF,g = {(x, y, λ) ∈ CF | g1(x, y) = · · · = gs(x, y) = 0} = Cg ×Rk,

LF,g = ϕ(CF,g).

Now LF,g = ϕ(CF,g) is smoothly integrable if and only if there exists a
smooth tangent vector filed ξ on LF,g = ϕ(CF,g) such that

dπ(ξ(x, y, ẋ, ẏ)) =
n∑

i=1

ẋi
∂

∂xi

+ ẏi
∂

∂yi

where π : TR2n → R2n is the projection of the tangent bundle
⇐⇒ there exist smooth functions µℓ(x, y, λ), ℓ = 1, . . . , k, such that

the vector field ξ̃(x, y, λ) =
n∑

i=1

∂F

∂yi
(x, y, λ)

∂

∂xi

− ∂F

∂xi

(x, y, λ)
∂

∂yi
+

+
k∑

ℓ=1

µℓ(x, y, λ)
∂

∂λℓ

is tangent to CF,g = Cg ×Rk

⇐⇒
n∑

i=1

∂F

∂yi
(x, y, λ)

∂

∂x
− ∂F

∂xi

(x, y, λ)
∂

∂y
is tangent to CF,g

⇐⇒

(
n∑

i=1

∂F

∂yi

∂

∂xi

− ∂F

∂xi

∂

∂yi
)aℓ = 0 on CF,g, 1 ≤ ℓ ≤ k,

(
n∑

i=1

∂F

∂yi

∂

∂xi

− ∂F

∂xi

∂

∂yi
)gt = 0 on CF,g, 1 ≤ t ≤ s

⇐⇒

{F, aℓ} =
k∑

i=1

{ai, aℓ}λi + {b, aℓ} = 0 on CF , 1 ≤ ℓ ≤ k.

{F, gt} =
k∑

i=1

{ai, gt}λi + {b, gt} = 0 on CF,g, 1 ≤ t ≤ s.
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Differentiating the equalities with respect to λi, we have

{ai, aℓ} = {ai, gt} = 0, and then {b, aℓ} = {b, gt} = 0,

on CF,g, 1 ≤ ℓ ≤ k, 1 ≤ t ≤ s.

Conversely, if

{ai, aℓ} = {ai, gt} = 0, and then {b, aℓ} = {b, gt} = 0,

on CF,g, 1 ≤ ℓ ≤ k, 1 ≤ t ≤ s,

ten trivially we have

{F, aℓ} =
k∑

i=1

{ai, aℓ}λi + {b, aℓ} = 0 on CF,g, 1 ≤ ℓ ≤ k.

{F, gt} =
k∑

i=1

{ai, gt}λi + {b, gt} = 0 on CF,g 1 ≤ t ≤ s,

and LF,g = ϕ(CF,g) is smoothly integrable. This completes the proof of
Theorem 8. �

4.7 Example for Theorem 8

Example 1. Consider the following function.

F (x, y, λ) =
k∑

i=1

ai(x, y)λi + b(x, y)

=
k∑

i=1

xiλi + b1(y1, . . . , yk)b2(xk+1, . . . , xm),

k + 1 ≤ m ≤ n, b1(0) = b2(0) = 0, b1, b2 are not constantly 0.

Then
{aℓ, am} = {xℓ, xm} = 0, 1 ≤ ℓ,m ≤ k.

However
{aℓ, b} = {xℓ, b} = −∂b1

∂yℓ
· b2 ̸= 0
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on C = {a1 = · · · = ak = 0} = {x1 = · · · = xk = 0}.

Thus LF itself is not smoothly integrable.
Now consider the functions

g1(x, y) = xk+1, . . . , gs(x, y) = xk+s = xm, where s = m− k,

and set
S =

{
(x, y) ∈ R2n |

a1(x, y) = · · · = ak(x, y) = g1(x, y) = · · · = gs(x, y) = 0} .

Then
{aℓ, b} = −∂b1

∂yℓ
b2(xx+1, . . . , xm) = 0,

{aℓ, gt} = {xℓ, xk+t} = 0, {b, gt} = {b, xk+t} = 0,

1 ≤ ℓ ≤ k, 1 ≤ t ≤ s = m− k,

on S = {a1 = · · · = ak = g1 = · · · = gs = 0}.

Then, by Theorem 8, LF ∩ (S ×R2n) is smoothly integrable.
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Properties of reachable sets
in sub-Lorentzian geometry

Marek Grochowski 1 2

Abstract

The aim of this paper is to present basic facts concerning future
timelike, nonspacelike and null reachable sets from a given point q0 in
the sub-Lorentzian geometry. In particular we prove that the three
sets have identical interiors and boundaries. Further, among other
things, we show that for Lorentzian metrics on contact distributions
on R2n+1, n ≥ 1, the boundary of reachable sets from q0 is made
up of null future directed curves starting from q0. Every such curve
has only a finite number of non-smooth points; smooth pieces of ev-
ery such curve are Hamiltonian geodesics. For general sub-Lorentzian
structures, contrary to the Lorentzian case, timelike curves may ap-
pear on the boundary. It turns out that such curves are always Goh
curves. We also generalize the classical result on null geodesics: every
null future directed Hamiltonian geodesic initiating at q0 is contained
in the boundary of the reachable set from q0. At the end, in the ap-
pendix, reachable sets for the sub-Lorentzian Martinet flat structure
are computed.
Keywords: sub-Lorentzian manifolds, geodesics, reachable sets, ge-
ometric optimality

1 Introduction

1.1 Motivation

Suppose that (M, g) is a time-oriented Lorentzian manifold (all definitions
may be found in Section 2). Take a point q0 ∈M and fix its neighbourhood

1Faculty of Mathematics and Natural Sciences, Cardinal Stefan Wyszyński University,
ul. Dewajtis 5, 01-815 Waszawa, Poland and Institute of Mathematics, Polish Academy
of Sciences, ul. Śniadeckich 8, 00-950 Warszawa, Poland, email: mgrochow@impan.gov.pl
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U . Denote by I+(q0, U) (resp. J+(q0, U)) the chronological (resp. causal)
future of a point q0. In the sequel I+(q0, U) (resp. J+(q0, U)) will be called
the future timelike (resp. nonspacelike) reachable set from q0. It can be
proved (see [11], [2]) that if U is a normal neighbourhood of q0, then

I+(q0, U) = expq0 ({v ∈ Tq0M : g(v, v) < 0, g(v,X(q0)) < 0}) ∩ U , (1)

J+(q0, U) = expq0 ({v ∈ Tq0M : g(v, v) ≤ 0, g(v,X(q0)) < 0}) ∩ U , (2)

where expq0 is the (Lorentzian) exponential mapping with the pole at q0, and
X is a time orientation of (M, g) defined on U . In particular, I+(q0, U) is
open, J+(q0, U) is closed relative to U , and both sets have identical interiors
and boundaries. Moreover,

∂J+(q0, U)\∂U =

= expq0 ({v ∈ Tq0M : g(v, v) = 0, g(v,X(q0)) < 0}) ∩ U , (3)

from which it is seen that the boundary ∂J+(q0, U)\∂U is formed by max-
imizing null future directed geodesics starting from q0. More precisely, if
x0, x1, ..., xn are exponential coordinates on U centered at q0 with a time
orientation ∂

∂x0
, then

I+(q0, U) =
{
−(x0)2 + (x1)2 + ...+ (xn)2 < 0, x0 > 0

}
,

J+(q0, U) =
{
−(x0)2 + (x1)2 + ...+ (xn)2 ≤ 0, x0 ≥ 0

}
,

and

∂J+(q0, U)\∂U =
{
−(x0)2 + (x1)2 + ...+ (xn)2 = 0, x0 ≥ 0

}
.

Let Φ(x0, ..., xn) = −(x0)2 + (x1)2 + ...+ (xn)2; the gradient ∇Φ, computed
with respect to g, is a null vector field when restricted to ∂J+(q0, U)\(∂U ∪
{q0}). It follows that the latter set is smooth and each tangent space to it
contains a single nonspacelike direction, namely the one of ∇Φ - cf. Lemma
5.1.

The aim of this paper is to establish some partial results of above-men-
tioned type for reachable sets in the sub-Lorentzian geometry.
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1.2 Organization of the paper

Section 2 contains a review of basic notions and facts on the sub-Lorentzian
geometry. The reader familiar with these notions can omit this section.
Proposition 2.1 is new; it gives necessary and sufficient conditions for exis-
tence of Lorentzian metrics on distributions.

In Section 3 we summarize all what we know about reachable sets from
a point for general sub-Lorentzian structures. In particular we prove that
null, timelike and nonspacelike reachable sets have identical interiors and
boundaries - Theorems 3.1, 3.2. At the end of Section 3 some examples of
reachable sets are given.

In Section 4 we present a notion of geometric optimality and recall the
Pontryagin maximum principle in the geometric version.

Section 5 presents a generalization of a classical result concerning local
optimality of null Lorentzian geodesics. Namely we prove that sub-Loren-
tzian null future directed Hamiltonian geodesics are geometrically optimal.
Moreover, they are also locally optimal with respect to a given sub-Loren-
tzian metric - Theorem 5.1.

In Section 6 we study the boundary of reachable sets. Among other things
we prove that timelike curves contained in ∂J+(q0, U)\∂U , q0 being a point
and U its normal neighbourhood, are so-called Goh curves (Lemma 6.1) so,
for instance, they do not exist for sub-Lorentzian metrics (H, g), where rank
H ≥ 3 and H is generic. In such cases timelike reachable sets I+(q0, U) are
open. Moreover, if we strengthen assumptions imposed on H, we can ensure
that the boundary ∂J+(q0, U)\∂U is made up of null future directed curves,
and that the sub-Lorentzian distance, f [U ], from q0 is continuous at every
point q ∈ ∂J+(q0, U)\∂U . Further, we also prove that if (H, g) is a sub-
Lorentzian structure on R2n+1 such that H is contact, then ∂J+(q0, U)\∂U
consists of piecewise smooth null future directed curves starting from q0;
smooth pieces of each such curve are Hamiltonian geodesics - Theorem 6.2.
We also give some partial results in rank-two case: Propositions 6.2, 6.3,
6.4.

Finally, in Section 7 we compute reachable sets in the Martinet flat case.
Note that, as is explained in Section 6, all above results concerning reach-

able sets can be applied to control affine systems with controls taking values
in the unit closed ball centered at zero.
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2 Review of Basic Notions in the sub-Loren-
tzian Geometry

All proofs of the results presented in this section may be found in [6], [9].

2.1 Horizontal curves

LetM be a smooth (i.e. of class C∞) connected (n+1)-dimensional manifold.
Let H be a smooth distribution on M of constant rank k + 1. For a point
q ∈ M and a positive integer i let us define H i

q to be the vector space
generated by all vectors of the form

[X1, [X2, ... [Xk−1, Xk] ...]] (q), (4)

where X1, ..., Xk are local sections of H defined near q and 1 ≤ k ≤ i. H is
said to be bracket generating, if for every q ∈ M there is an i = i(q) ∈ N

such that H i(q)
q = TqM . H is said to be 2-generating if H2

q = TqM for each
q in M . In the sequel we suppose H to be bracket generating.

The geometry of the couple (M,H) is determined by horizontal or ad-
missible curves, that is such curves γ : [a, b] −→ M that (i) γ is absolutely
continuous, (ii) γ̇(t) ∈ Hγ(t) a.e. on [a, b], (iii) the derivative γ̇ is square
integrable relative to some Riemannian metric on M . Denote by ΩT

q the set
of all horizontal curves γ : [0, T ] −→M starting from γ(0) = q and consider
the endpoint mapping

endTq : ΩT
q −→M , γ −→ γ(T ).

It turns out that ΩT
q is a Hilbert manifold and endTq is smooth (see for

instance [3]). Notice that, since H is bracket generating, endTq (ΩT
q ) =M for

every q ∈M - it is the classical Chow-Rashevski theorem.
A curve γ ∈ ΩT

q is said to be abnormal (or singular) if the differential
dγend

T
q : TγΩ

T
q −→ Tγ(T )M is not surjective. In case H = TM the differen-

tial dγendTq is surjective for every γ ∈ ΩT
q , so abnormal curves do not exist.

In case of a contact distribution dγendTq degenerates only for constant curves
γ(t) ≡ q, so in this case non-trivial abnormal curves do not exist. Let us note
here that the formula for the differential of endTq yields: γ ∈ ΩT

q is abnormal
if and only if there exists an absolutely continuous curve λ : [0, T ] −→ T ∗M
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such that λ(t) ∈ T ∗
γ(t)M\{0} annihilates Hγ(t) for every t. It follows that

any sub-arc of an abnormal curve is abnormal.
At the end let us state one more definition: a horizontal curve γ :

[0, T ] −→ M will be called a Goh curve if it is abnormal and has an ab-
solutely continuous lift λ : [0, T ] −→ T ∗M\{0} such that for every t ∈ [0, T ]

⟨λ(t), [X,Y ] (γ(t))⟩ = 0,

where X, Y are arbitrary horizontal vector fields defined around γ([0, T ]).
For simplicity we adopt the following convention:

all curves, vectors and vector fields are supposed to be horizontal.

2.2 Sub-Lorentzian metrics

Let g be a Lorentzian metric on H, i.e. g is a global section of the vector
bundle H∗ ⊗ H∗ −→ M such that gq : Hq × Hq −→ R is a nondegenerate
symmetric bilinear form of index one for every q ∈M . For v, w ∈ Hq we shall
write g(v, w) instead of gq(v, w). The couple (H, g) is called a sub-Lorentzian
metric on M , and the triple (M,H, g) - a sub-Lorentzian manifold.

As in the Lorentzian geometry we say that a vector v ∈ Hq is timelike,
if g(v, v) < 0, is nonspacelike, if g(v, v) ≤ 0 and v ̸= 0, is null if g(v, v) = 0
and v ̸= 0, and finally is spacelike if g(v, v) > 0 or v = 0.

Define a time orientation of (M,H, g) to be a continuous timelike vector
field X on M . We say that a sub-Lorentzian metric (H, g) is time-orientable
if (M,H, g) admits a time orientation. Using similar arguments as in [19]
and [18] one can prove the following

Proposition 2.1. Let M be a smooth manifold and H a smooth distribution
on M of constant rank. Then H admits a metric of signature l, if and only
if H possesses an l-dimensional subdistribution. In particular, for l = 1, the
following conditions are equivalent:
(i) H admits a Lorentzian metric;
(ii) H admits a Lorentzian metric which is time-oriented;
(iii) H possesses a 1-dimensional subdistribution.

As an example consider S5, a 5-dimensional sphere. Let X be a non-
vanishing vector field on S5, and take ω to be a 1-form satisfying ⟨ω,X⟩ = 1
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everywhere on S5. Now if we define H = kerω, then H is a distribution
of rank 4 on S5. We will show that H does not admit Lorentzian metrics.
Indeed, suppose the converse. Then by Proposition 2.1 there exists a non-
vanishing vector field Y with ⟨ω, Y ⟩ = 0 everywhere. Thus Span{X, Y } is
a distribution of rank 2 on S5 which is impossible (cf. [19]).

From now on we suppose our (M,H, g) to be time-oriented by a vector
field X. A nonspacelike v ∈ Hq is said to be future-directed (resp. past-
directed) if g(v,X(q)) < 0 (resp. g(v,X(q)) > 0). Now a curve γ : [a, b] −→
M is timelike (resp. timelike future directed, nonspacelike, nonspacelike
future directed, null, null future directed) if so is γ̇(t) a.e. on [a, b].

We will use the following abbreviations: ”t.” for ”timelike”, ”nspc.” for
”nonspacelike”, and ”f.d.” for ”future directed”. So for instance a t.f.d. curve
is a (horizontal) curve which is timelike future directed.

2.3 Normal neighbourhoods. Convergence of sequences
of curves

Up to the end of this section (M,H, g) is a fixed sub-Lorentzian time-oriented
manifold.

We will introduce a concept of so-called normal neighbourhoods. Take
a point q0 ∈ M and let U be its arbitrary neighbourhood. Replacing U
with possibly smaller open set containing q0 we can assume that the clo-
sure U is compact and that there exists an orthonormal frame X0, ..., Xk of
H defined on U ; hereX0 is a time orientation. Extend this frame to the
basis X0, ..., Xk, ..., Xn of TM again defined on U . Now we can define a
time-oriented Lorentzian metric h on U by assuming the basis X0, ..., Xn

to be orthonormal relative to h with a time orientation X0. Next, possibly
shrinking U again, we suppose that U is a normal convex neighbourhood
relative to h and its closure U is contained in some bigger normal convex
(relative to h) set. Such a U just obtained is called a normal neighbour-
hood of q0. Obviously, each point of M possesses arbitrarily small normal
neighbourhoods.

Normal neighbourhoods are very useful, particularly because they have
good properties according to convergence of sequences of nspc. curves. To
be more precise, let γ, γν : [a, b] −→M , ν = 1, 2, ..., be curves in M . We say
that {γν} is convergent to γ in the C0 topology on curves, if γν(a) −→ γ(a),
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γν(b) −→ γ(b) as ν −→ ∞, and for every open set V containing γ ([a, b])
there is an integer Λ such that γν ([a, b]) ⊂ V for all ν > Λ. Suppose now
that U is a normal neighbourhood of a point q0; let γν : [0, T ] −→ U be
a nspc.f.d. curve starting from γν(0) = q0, ν = 1, 2, ... If γν(T ) −→ q for
a q ∈ U , then one can prove that, after passing to a subsequence, {γν}
converges in the C0 topology on curves to a nspc.f.d. γ : [0, T ] −→ U ; of
course γ(0) = q0, γ(T ) = q.

2.4 Sub-Lorentzian geodesics, reachable sets and local
distance functions

Let γ : [a, b] −→ M be a nspc. curve; we define its length in the usual
manner to be

L(γ) =

∫ b

a

|g(γ̇(t), γ̇(t))|1/2dt.

The operation L is upper semicontinuous in the following sense: if {γν} is a
sequence of nspc.f.d. curves which converges in the C0 topology on curves
to a (nspc.f.d.) curve γ then lim supν−→∞ L(γν) ≤ L(γ).

If U is an open subset of M and γ : [a, b] −→ M is a nspc.f.d. curve
contained in U , then γ is called a U-maximizer if it is longest curve among
all nspc.f.d. curves contained in U and joining γ(a) to γ(b). Curves in U
which are locally U -maximizers are called U-geodesics.

For a given point q0 and its neighbourhood U we defined the future
timelike reachable set from q0 to be the set I+(q0, U) of all points in U that
can be reached from q0 by a t.f.d. curve contained in U . Analogously we
define the future nonspacelike reachable set from q0 to be the set J+(q0, U)
of all points in U that can be reached from q0 by a nspc.f.d. curve contained
in U .

For q0, q ∈ U let Ωnspc
q0,q

(U) be the set of all nspc.f.d. curves in U joining
q0 to q. We define

f [U ] : U −→ R,

the(local) sub-Lorentzian distance from q0 relative to the set U , by formula

f [U ](q) =

{
sup

{
L(γ) : γ ∈ Ωnspc

q0,q
(U)

}
: q ∈ J+(q0, U)

0 : q /∈ J+(q0, U)
.
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Now suppose that U is a normal neighbourhood of q0. It turns out that
if q ∈ J+(q0, U), then U -maximizers connecting q0 to q exist. As a corollary
one can prove that f [U ] is upper semicontinuous, and that it is continuous
along smooth timelike U -maximizers contained in int I+(q0, U).

2.5 Horizontal gradient

Let U ⊂M be an open subset and let φ : U −→ R be a smooth function. By
the horizontal gradient of φ we mean the vector field ∇Hφ which is defined
by condition (∂vφ)(q) = g(∇Hφ(q), v) for every q ∈ U and v ∈ Hq. It can
be proved that if ∇Hφ is a timelike past directed vector field on U such
that g(∇Hφ,∇Hφ) ≡ const on U , then trajectories of −∇Hφ are unique
U -maximizers.

2.6 Hamiltonian geodesics and the exponential
mapping

To every sub-Lorentzian metric (H, g) on M we can canonically associate
the vector bundle morphism G : T ∗M −→ H covering identity, such that
Im G = H and g(v, w) = ⟨ξ,Gη⟩ = ⟨η,Gξ⟩ for every ξ ∈ G−1(v) and
η ∈ G−1(w). This permits us to define the so-called geodesic Hamiltonian
H : T ∗M −→ R,

H(λ) =
1

2
⟨λ,Gλ⟩ .

If X0, X1, ..., Xk is an orthonormal basis of H defined on an open set U with
X0 timelike, then on T ∗M|U we have

H(q, p) = −1

2
⟨p,X0(q)⟩2 +

1

2

k∑
j=1

⟨p,Xj(q)⟩2 .

By
−→
H we denote the Hamiltonian vector field corresponding to it and by Φt

its (local) flow on T ∗M . Now a curve γ : [a, b] −→M is called a Hamiltonian
geodesic if there is a Γ : [a, b] −→ T ∗M such that Γ̇(t) =

−→
H(Γ(t)) and

γ(t) = π ◦ γ(t), on [a, b], π : T ∗M −→ M being the canonical projection.
Note that Hamiltonian geodesics preserve their causal character.
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To state our last definition, for a q ∈ M , denote by Dq the set of all
λ ∈ T ∗

qM such that the curve t −→ Φt(λ) is defined on [0, 1]. The mapping

expq : Dq −→M , expq(λ) = π ◦ Φ1(λ)

is called exponential mapping (with the pole at q). Of course Dq is open
and expq is smooth. Contrary to the Lorentzian geometry expq is not a
diffeomorphism at 0; moreover, at least for rank 2 distributions, it is not
’onto’ a neighbourhood of q.

3 Reachable Sets in the sub-Lorentzian Geom-
etry

3.1 Basic properties

This section is devoted to the study of reachable sets for general sub-Lo-
rentzian structures. Lemma 3.1 was already obtained in [9]. However, for
completeness of the exposition, we recall all the proofs.

Let (M,H, g) be a fixed sub-Lorentzian time-oriented manifold. We start
with the remark concerning smooth t.f.d. approximations to nspc.f.d. curves
(the existence of such approximations to t.f.d. curves is clear). So let γ :
[a, b] −→M be a nspc.f.d. curve, i.e. γ̇(t) = Z(t, γ(t)), where

Z(t, q) =
k∑

α=0

uα(t)Xα(q), −u0(t)2 +
k∑
i=1

ui(t)
2 ≤ 0, u0(t) > 0,

a.e. on [a, b], (u0, ..., uk) ∈ L2([a, b],Rk+1), and X0, ..., Xk is a smooth or-
thonormal basis ofH defined in a neighbourhood of γ with a time orientation
X0 (if such a basis do not exist, we divide γ into a finite number of smaller
pieces). Now take a sequence aν such that 0 < aν ↗ 1 and write

Zν(t, q) = u0(t)X0(q) + aν

k∑
i=1

ui(t)Xi(γ(t)).

Let γν be a solution to the following Cauchy problem

γ̇ν(t) = Zν(t, γν(t)), γν(a) = γ(a),
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which is defined on the whole [a, b], provided ν is sufficiently large. Of course
each γν is timelike and, since

(u0, aνu1, ..., aνuk) −→ (u0, u1, ..., uk)

in L2([a, b],Rk+1) as ν −→ ∞, γν −→ γ uniformly on [a, b] (cf. [6]). At the
end it suffices to notice that each γν can be approximated by a smooth t.f.d.
curve.

Now let us fix a point q0 ∈ M and its normal neighbourhood U . Recall
that in Section 2.4 we defined two sets I+(q0, U) and J+(q0, U). Introduce
two other sets, namely let I+0 (q0, U) (resp. J+

0 (q0, U)) be the reachable set
from q0 for a family of all smooth t.f.d. (resp. nspc.f.d.) vector fields on U .
Properties of reachable sets of this type are summarized for instance in [13].

Let X0, X1, ..., Xk be an orthonormal frame for H defined on U . Consider
the control system

q̇(t) =
k∑

α=0

uα(t)Xα(q(t)), t ∈ [0, T ]. (5)

Moreover let us define two sets:

C0 =

{
(u0, ..., uk) ∈ Rk+1 : −u20 +

k∑
i=1

u2i < 0, u0 > 0

}

and

C =

{
(u0, ..., uk) ∈ Rk+1 : −u20 +

k∑
i=1

u2i ≤ 0, u0 > 0

}
. (6)

Then the set I+(q0, U) (resp. J+(q0, U)) corresponds to enpoints of trajecto-
ries of (5) starting from q0, where the set of admissible controls is the set of
square integrable mappings u : [0, T (u)] −→ C0 (resp. u : [0, T (u)] −→ C),
where final time T (u) > 0 depends on a control, while I+0 (q0, U) (resp.
J+
0 (q0, U)) is generated by piecewise smooth controls u : [0, T (u)] −→ C0

(resp. u : [0, T (u)] −→ C); here T (u) > 0 again depends on a control.
First of all let us note the following

Lemma 3.1. J+(q0, U) is closed with respect to U .
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Proof. Let qν ∈ J+(q0, U) be such that qν −→ q with q ∈ U . Let γν be
a nspc.f.d. curve connecting q0 to qν . From Section 2.3 we know that, after
passing to a subsequence, γν −→ γ in the C0 topology on curves, where γ
is nspc.f.d. and joins q0 with q. Thus q ∈ J+(q0, U). �

As a corollary
clU(I

+
0 (q0, U)) ⊂ J+(q0, U),

where clU stands for the closure with respect to U . Moreover from the
remark at the beginning of this section,

J+(q0, U) ⊂ clU(I
+
0 (q0, U)),

from which it follows that

J+(q0, U) = clU(I
+
0 (q0, U)) = clU(I

+(q0, U)).

Next, Krener’s theorem [14] yields

I+0 (q0, U) ⊂ clU(intI
+
0 (q0, U)),

which in turn gives

J+(q0, U) = clU(int I
+
0 (q0, U)) = clU(int I

+(q0, U)). (7)

As the next step we will prove

Lemma 3.2. int J+(q0, U) = int I+(q0, U).

Proof. Obviously int I+(q0, U) ⊂ int J+(q0, U). Take a point q ∈
intJ+(q0, U) and fix an open V such that q ∈ V ⊂ int J+(q0, U). Con-
sider the family F of all smooth timelike past directed vector fields on V .
Clearly F is bracket generating, so its reachable set AF(q) from q has a
non-empty interior. Now, because of (7), there is a point q1 ∈ int AF(q)∩int
I+(q0, U)∩ V . In this way we have established the existence of t.f.d. curves
σ1, σ2 in U , such that σ1 joins q0 to q1, and σ2 joins q1 to q. The curve σ1∪
σ2 joins q0 to q and is contained in int I+(q0, U). This last statement follows
from a standard fact from control theory: any curve starting from q0 which
enters the interior of the reachable set from q0 cannot leave this interior. �

We sum up our considerations as follows.
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Theorem 3.1. For every q0 and every normal neighbourhood U of q0
(a) clU(intI+(q0, U)) = J+(q0, U);
(b) int I+(q0, U) = int J+(q0, U);
(c) ∂̃I+(q0, U) = ∂̃J+(q0, U),
where ∂̃A is a boundary of a set A relative to U .

Next we will investigate some properties of the set N+(q0, U) which is
defined to be the set of all points that can be reached from q0 by a null f.d.
curve contained in U . N+(q0, U) is called a (future) null reachable set from
q0. Our aim is to prove

Theorem 3.2. For every q0 and every normal neighbourhood U of q0
(a) clU(intN+(q0, U)) = J+(q0, U);
(b) intN+(q0, U) = intJ+(q0, U);
(c) ∂̃N+(q0, U) = ∂̃J+(q0, U).

Proof. Let γ : [0, T ] −→ U be a smooth t.f.d. curve, γ(0) = q0. Assuming
that γ is parameterized by arc length we can find an orthonormal frame
Z0, ..., Zk for H defined on U such that γ̇ = Z0. Using for instance [1]
or [12] we know that γ can be approximated by a sequence of null curves
γν : [0, T ] −→ U such that γν(0) = q0 and γ̇ν(t) = Yt,ν(γν(t)), where Yt,ν is
a non-autonomous vector field satisfying Yt,ν ∈ {Z0 +Z1, Z0 −Z1} for every
t and ν. One can assume that every γν is piecewise smooth. If we denote
by N+

0 (q0, U) the reachable set from q0 for the family of all smooth null f.d.
vector fields on U , then in view of the presented argument and the remark
from the begining of this section

clU(N
+
0 (q0, U)) = J+(q0, U).

Next let us notice that if X0, ..., Xk is any orthonormal basis for H|U which
is bracket generating, then so is the family

{X0 ±Xi : i = 1, ..., k}

(resp. {−X0 ±Xi : i = 1, ..., k}) of smooth null future (resp. past) directed
vector fields on U . Thus int N+(q0, U) ̸= ∅ by Krener’s theorem, and the
rest of the proof is similar to the proof of Theorem 3.1. �

At the end let us notice that, unlike the classical Lorentzian geometry,
in general N+(q0, U) ̸= J+(q0, U) - see 3.2.3.
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3.2 Examples of reachable sets

3.2.1 The Heisenberg case

Suppose that M = R3 and let

X =
∂

∂x
+

1

2
y
∂

∂z
, Y =

∂

∂y
− 1

2
x
∂

∂z
.

We define a rank-two distribution H = Span{X, Y } and a Lorentzian metric
g on it by declaring the basis X,Y to be orthonormal with a time orientation
X. It can be computed (see [9]) that

I+(0,R3) =
{
(x, y, z) : − x2 + y2 + 4|z| < 0, x > 0

}
and J+(0,R3) is the closure of I+(0,R3). Next, if U is any normal neigh-
bourhood of 0 then

I+(0, U) = I+(0,R3) ∩ U , J+(0, U) = J+(0,R3) ∩ U .

Note that the set ∂̃J+(0, U) ∩ {z ̸= 0} is smooth, and if q is its arbitrary
point, then

Tq(∂̃J
+(0, U) ∩ {z ̸= 0}) ∩Hq (8)

is a 1-dimensional subspace generated by a null direction.

3.2.2 Generalization

The above example can be generalized as follows. Let φ = φ(x, y, z), ψ =
ψ(z) be smooth functions defined near 0 in R3, ψ(0) = 0. Let us define

X = ∂
∂x

+ yφ(x, y, z)(y ∂
∂x

+ x ∂
∂y
) + 1

2
y(1 + ψ(z)) ∂

∂z

Y = ∂
∂y

− xφ(x, y, z)(y ∂
∂x

+ x ∂
∂y
)− 1

2
x(1 + ψ(z)) ∂

∂z

(cf. [7]). Suppose that H = Span{X, Y } and that g is the Lorentzian metric
on H determined by the condition that X,Y is an orthonormal frame and
X is a time orientation. In [10] reachable sets for such a structure (H, g)
were computed:

I+(0, U) =

{
−x2 + y2 + 4

∣∣∣∣∫ z

0

dζ

1 + ψ(ζ)

∣∣∣∣ < 0, x > 0

}
∩ U (9)
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and J+(0, U) = clUI
+(0, U), where U is a sufficiently small normal neigh-

bourhood of 0. Again all spaces of the form (8) are 1-dimensional and are
generated by a null direction. Moreover N+(0, U) = J+(0, U) as it can be
seen from [10].

3.2.3 The Martinet case

Again M = R3; let us set

X =
∂

∂x
+

1

2
y2
∂

∂z
, Y =

∂

∂y
− 1

2
xy

∂

∂z
.

We define H = Span{X, Y }. Obviously H is not contact. As above we
define a Lorentzian metric g on H by supposing the family X, Y to be
orthonormal with respect to g with a time orientation X. There occurs a
new phenomenon here, as compared to the previous cases, namely there is
a timelike curve on the boundary ∂̃J+(q, U) for certain q’s. To see this let
γ(t) = (t, 0, 0), t1 ≤ t ≤ t2. Suppose that η : [α, β] −→ R3 is a nspc.f.d.
curve such that η(α) = γ(t1), η(β) = γ(t2). Notice that H = kerω with

ω = dz − 1

2
y(ydx− xdy). (10)

Now, if η = (η1, η2, η3), then

0 = η3(β) = η3(α) +
1

2

∫
η

y(ydx− xdy).

Using η3(α) = 0 and d(y2dx − xydy) = −3
2
ydx ∧ dy one can see that η3(β)

is strictly positive unless η2(t) ≡ 0. But then (10) implies that η3(t) ≡ 0
so η is a reparameterization of γ. It means that the set of all nspc.f.d.
curves joining (t1, 0, 0) to (t2, 0, 0) is made up of a single, up to a change of
parameter, curve γ. In view of Theorem 3.2, γ([t1, t2]) ⊂ ∂̃J+(γ(t1), U) for
every t1 < t2 and every normal neighbourhood U of γ(t1). Remark moreover
that γ is a Goh curve - cf. Lemma 6.1 below.

The explicit formulas for reachable sets in the Martinet case are com-
puted in the appendix, at the end of this paper.

Let us notice that in all above examples, unlike classical Lorentzian ge-
ometry, J+(0, U) is not the image under exponential mapping exp0.
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4 Geometric optimality
Notions and facts presented in this section may be found for instance in [1].

Let M be a smooth manifold and let X(·, u) be a family of vector fields
X(·, u) : M −→ TM on M , where u ∈ B, B being an arbitrary subset of
Rm. We assume X to be smooth with respect to (q, u) on M ×B. Consider
a control system

q̇(t) = X(q(t), u(t)), (11)

where controls are supposed to be measurable and bounded with values in
B. The set of all such controls is denoted by B.

Fix a point q0. If u(·) ∈ B, u : [0, t1] −→ B (final time is not fixed),
then by qu : [0, t1] −→ B we denote the trajectory of the system (11) corre-
sponding to the control u(·) and starting from q0. The set of endpoints of all
trajectories of the system (11) corresponding to controls from B and starting
from q0 will be denoted by A(q0). A(q0) is called reachable (or accessible)
set from q0.

A control u : [0, t1] −→ B from B (resp. the trajectory qu : [0, t1] −→
M corresponding to it) is called geometrically optimal if qu(t1) ∈ ∂A(q0).
Clearly, if qu(t1) ∈ ∂A(q0) then qu(t) ∈ ∂A(q0) for any t ∈ [0, t1] (this last
remark follows from the known fact saying that if qu(t0) ∈ intA(q0) for a
certain t0 then qu(t) ∈ intA(q0) for any t > t0 belonging to the domain of
qu).

Necessary conditions for a control to be geometrically optimal are given
by the well-known Pontryagin maximum principle (PMP for short) which we
are going to formulate now. To this end we need to introduce a parameter-
dependent Hamiltonian

hu : T
∗M −→M , hu(q, p) = ⟨p,X(q, u)⟩ , q ∈M , p ∈ T ∗

qM .

As usual
−→
hu stands for the Hamiltonian vector field on T ∗M determined by

hu.

Theorem 4.1 (PMP). Consider the control system (11) and let u : [0, t1] −→
B be a control. The necessary condition for u(·) to be geometrically optimal
(i.e. a necessary condition for qu(t1) ∈ ∂A(q0)) is the existence of an abso-
lutely continuous curve λ : [0, t1] −→ T ∗M such that the following conditions
are satisfied:
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(i) λ(t) ∈ T ∗
qu(t)

M and λ(t) ̸= 0 on [0, t1];

(ii) λ̇(t) =
−−→
hu(t)(λ(t)) a.e. on [0, t1];

(iii) hu(t)(λ(t)) = max
v∈B

hv(λ(t)) a.e. on [0, t1];

(iv) max
v∈B

hv(λ(t)) = 0 everywhere on [0, t1].

A curve λ : [0, t1] −→ T ∗M described by PMP will be called a biextremal
covering qu. Remark at the and of this section that geometric optimality
of a curve is invariant under changes of parameterization. The analogous
statement for optimal problems with costs is in general not true.

5 Geometrical optimality of null Hamiltonian
geodesics

In this section we mearly prove that null f.d. Hamiltonian geodesics starting
from a point q0 are geometrically optimal, and are unique U -maximizers,
provided U is a sufficiently small neighbourhood of q0.

If V is a vector space with a scalar product α, then for a subspace W by
W α we denote the orthogonal complement of W with respect to α:

Wα = {v ∈ V : α(v, w) = 0 for every w ∈ W} .

Lemma 5.1. Let φ be a smooth function defined on a sub-Lorentzian ma-
nif̄old (M,H, g). Let N = {φ = 0} be nonempty and suppose that ∇Hφ ̸= 0
on N . Then the following conditions are equivalent:
(a) ∇Hφ is a null field on N ;
(b) TqN ∩ (Hq ∩ TqN)g ̸= {0} for every q ∈ N (i.e. g is degenerate on
TqN ∩ (Hq ∩ TqN)g, and hence the dimension of the latter space is 1).

Proof. (a)=⇒(b) Clearly ∇Hφ(q) ∈ (Hq ∩ TqN)g for any q ∈ N , and
since ∇Hφ(q) is null, we also have ∇Hφ(q) ∈ Hq ∩ TqN .

(b)=⇒(a) Take a point q ∈ N . By assumption there exists a v ∈ (Hq ∩
TqN) ∩ (Hq ∩ TqN)g, v ̸= 0. Of course g(v, v) = 0 for such a v. Let
γ : (−ε, ε) −→ N be such that γ(0) = q, γ̇(0) = v. Differentiating the
equality φ(γ(t)) = 0 we get g(v,∇Hφ(q)) = 0. Using elementary linear
Lorentzian geometry we deduce that ∇Hφ(q) is either null or spacelike.
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Suppose ∇Hφ(q) is spacelike. Assume that following formula

Hq ∩ TqN = (Span{∇Hφ(q)})g (12)

true. Then (Hq ∩ TqN)g = ∇Hφ(q), and since ∇Hφ(q) is spacelike, TqN ∩
(Hq ∩ TqN)g = {0} which is a contradiction with (b).

Thus, to end the proof, it is enough to check (12) under assumption
that ∇Hφ(q) is spacelike. Let X0, ..., Xn be a frame for TM|U such that
X0, ..., Xk is an orthonormal basis of H|U with a time orientation X0, where
U is a suitably small neighbourhood of q0. Let g̃ be a Lorentzian metric on U
defined by assuming the basis X0, ..., Xn to be orthonormal with respect to
g̃ with a time orientation X0. Let ∇̃φ denote the gradient of φ with respect
to g̃. Evidently

g(v,∇Hφ(q)) = dqφ(v) = g̃(v, ∇̃φ(q))

for every v ∈ Hq. Next it is clear that since ∇Hφ(q) is spacelike, ∇̃φ(q) is

spacelike too. It implies that TqN =
(
Span{∇̃φ(q)}

)g̃
, and to finish the

proof of (12) we observe that Hq ∩
(
Span{∇̃φ(q)}

)g̃
= (Span{∇Hφ(q)})g .

�

Lemma 5.2. Suppose that φ : U −→ R is such a smooth function defined
on an open set U ⊂M , that the horizontal gradient ∇Hφ is everywhere null
past directed on U . Denote by γ : [0, T ] −→ U an arbitrary trajectory of
−∇Hφ. Then γ([0, T ]) ⊂ ∂̃J+(γ(0), U) (i.e. γ is geometrically optimal) and
γ is a unique U-maximizer.

Proof. Take any nspc.f.d. curve η : [α, β] −→ U such that η(α) = γ(0),
η(β) = γ(T ). Then

0 = φ(γ(T ))− φ(γ(0)) = φ(η(β))− φ(η(α)) =

∫ β

α

(φ(η(t))̇dt (13)

=

∫ β

α

g(η̇(t),∇Hφ(η(t)))dt ≥ 0. (14)

(13) means that η̇(t) and −∇Hφ(η(t)) are parallel a.e. on [α, β]. Thus η is
a reparameterization of γ and the assertion is proven by Theorems 3.1 and
3.2. �
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Theorem 5.1. Suppose that γ : [0, T ] −→ M , T > 0, is a null f.d. Hamil-
tonian geodesic starting from γ(0) = q0, and let U be a neighbourhood of q0.
Then, provided T and U are sufficiently small, γ([0, T ]) ⊂ ∂̃J+(q0, U) and γ
is a unique U-maximizer between its endpoints.

Proof. The proof below is modelled, to some extent, on the proof in [16]
of local optimality of sub-Riemannian Hamiltonian geodesics. During the
whole proof we assume that U is a neighbourhood of q0 which is as small as
we need.

Let Γ(t) = (γ(t), λ(t)), 0 ≤ t ≤ T , be a Hamiltonian lift of γ, i.e.
Γ̇(t) =

−→
H(Γ(t)). Assume that X0 is a unit t.f.d. vector field on U . Let

moreover Y1, ..., Yn−1 be an involutive family of vector fields (Yj’s are not
supposed to be horizontal) such that γ̇(0), Y1(q0), ..., Yn−1(q0), X0(q0) form a
basis of Tq0M , and Y1(q0), ..., Yn−1(q0) ∈ kerλ(0). Now we will construct a
1-form λ̄ on U with the following properties:
(1) λ̄(q0) = λ(0);
(2)

⟨
λ̄(q), Yj(q)

⟩
= 0 on U , j = 1, ..., n− 1;

(3)
⟨
λ̄(q), X0(q)

⟩
̸= 0 on U ;

(4) H(q, λ̄(q)) = 0 on U .
This can be done, for instance, by use of the implicit function theorem.
Let c = ⟨λ(0), X0(q0)⟩; obviously c ̸= 0. Introduce some local Darboux
coordinates (q, ω) = (q0, ..., qn, ω0, ..., ωn) on T ∗M|U and write

F (q, ω) = (H(q, ω), ⟨ω, Y1(q)⟩ , ..., ⟨ω, Yn−1(q)⟩ , ⟨ω,X0(q)⟩ − c).

Direct computation shows that F (q0, λ(0)) = 0 and

det
∂(F 0, ..., F n)

∂(ω0, ..., ωn)
(q0, λ(0)) = det[γ̇(0), Y1(q0), ..., Yn−1(q0), X0(q0)] ̸= 0.

Thus, if ωα = ωα(q), α = 0, ..., n, is a solution of F (q, ω) = 0 satisfying
ωα(q0) = λα(0) for every α, then λ̄ =

∑n
α=0 ωαdq

α has properties (1), (2),
(3), (4).

Next, let gt : U −→ M , |t| < ε, ε > 0, be the flow of X0. By Lt let
us denote the integral manifold of the family {Y1, ..., Yn−1} passing through
gtq0, and set L =

∪
|t|<ε Lt; L is a smooth hypersurface (X0 is transverse to

each Lt) and q0 ∈ L. For any q ∈ L let Γq = (γq, λq) : (−ε, ε) −→ T ∗M be a
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curve defined by Γq(0) = (q, λ̄(q)), Γ̇q(t) =
−→
H(Γq(t)). In particular Γ = Γq0 .

Introduce further a smooth null f.d. vector field X defined by condition

X(γq(t)) = dΓq(t)π
−→
H(Γq(t)) = γ̇q(t).

Similarly as in [16] one shows that
−→
HX(Γq(t)) =

−→
H(Γq(t)) for every q ∈ L

and t, |t| < ε, where by HX we mean the function HX : T ∗M −→ R,
HX(q, p) = ⟨p,X(q)⟩. Denote by hs the flow of X, again defined for |s| < ε.
It is well-known that the flow of

−→
HX has the form

(q, λ) −→ (hsq,
(
(dqh

s)−1)T λ). (15)

As the next step we define a function φ : U −→ R by formula φ(hsq) = t
whenever q ∈ Lt. Clearly, φ is smooth and (∂X0φ)(q0) ̸= 0 on U which
means that ∇Hφ(q0) ̸= 0 on U .

To finish the proof let Nt = {φ = t}. Let q = hsq̄ ∈ Nt, q̄ ∈ Lt; we have

TqNt = dq̄h
s(Tq̄Lt)⊕ Span{X(q)}.

Let w ∈ dq̄h
s(Tq̄Lt) ∩Hq. Then w = dq̄h

s(v), v ∈ Tq̄Lt. Now

g(X(q), w) = g(γ̇q̄(s), w) = ⟨λq̄(s), dq̄hs(v)⟩ =
⟨
λ̄(q̄), v

⟩
= 0

by (15) and property (2) above. We have just proved that

X(q) ∈ TqNt ∩ (TqNt ∩Hq)
g

which by Lemma 5.1 shows that ∇Hφ(q) is a null vector. However q ∈ U
was arbitrary, therefore ∇Hφ is a null field on U . Since (∂X0φ)(q0) = 1, so
∂X0φ > 0 on U , and ∇Hφ is past directed. Finally, since g(∇Hφ,X) = 0 on
U , the fields ∇Hφ and X must be colinear. We conclude that, after a change
of parameterization, γ is a trajectory of −∇Hφ, and the result follows from
Lemma 5.2. �

In [6], Proposition 4.1, we proved that t.f.d. Hamiltonian geodesics are
locally maximizing. As a corollary of Theorem 5.1 we state a stronger version
of this proposition.

Proposition 5.1. Let γ : [a, b] −→M be a nspc.f.d. Hamiltonian geodesic.
Then for every t ∈ (a, b) there exists an open set U ∋ γ(t) such that γ ∩ U
is a unique U-maximizer.
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6 The boundary ∂̃J+(q0, U)

Consider a time-oriented sub-Lorentzian manifold (M,H, g). In this section
we attempt to describe nspc.f.d. curves that start from q0 and are contained
(at least to some moment of time) in the boundary ∂̃I+(q0, U) = ∂̃J+(q0, U),
q0 being a point in M and U its sufficiently small normal neighbourhood.
For instance in the Lorentzian geometry, i.e. for H = TM , it is known that
∂̃J+(q0, U) is formed by null f.d. geodesics emanating from q0, and these are
the only nspc.f.d. curves starting from q0 and contained in ∂̃J+(q0, U); in
particular ∂̃J+(q0, U) contains no timelike curves, and the local Lorentzian
distance from q0 vanishes on ∂̃J+(q0, U).

6.1 Preliminary remarks

Everywhere in this section q0 is a fixed point in M and U denotes its nor-
mal neighbourhood. Let X0, X1, ..., Xk be an orthonormal frame for (H, g)
defined on U with a time orientation X0.

Recall that all nspc.f.d. curves in U starting from q0 can be recovered
via the control system (5) with the set of control parameters equal to C. Let
us observe, however, that instead of (5) it is sometimes more convenient to
work with the control affine system

q̇(t) = X0(q(t)) +
k∑
j=1

uj(t)Xj(q(t)) (16)

with square integrable controls u : [0, T (u)] −→ Bk(0, 1), where final time
T (u) > 0 depends on a control and Bk(0, 1) = {(u1, ..., uk) ∈ Rk :

∑k
i=1 u

2
i ≤

≤ 1} is the unit closed ball centered at zero.
Indeed, every trajectory of the system (16) is at the same time a tra-

jectory of (5). Take a trajectory γ : [0, T ] −→ U of (5). Then q̇(t) =∑k
α=0 uα(t)Xα(q(t)), where

k∑
j=1

u2j(t) ≤ u20(t), u0(t) > 0 (17)

a.e. on [0, T ], and u0, ..., uk are square integrable. Let us define a real
number T1 and a function σ : [0, T ] −→ [0, T1] by T1 =

∫ T
0
u0(s)ds and
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σ(t) =
∫ t
0
u0(s)ds. Since σ̇(t) > 0 a.e. and σ is absolutely continuous,

σ is increasing. Let τ : [0, T1] −→ [0, T ] be the inverse function. Then
τ̇(t) = 1

u0(τ(t))
a.e. Now let q1 : [0, T1] −→ U , q1(t) = q(τ(t)). Clearly

q̇1(t) = X0(q1(t)) +
k∑
j=1

uj(τ(t))

u0(τ(t))
Xj(q1(t))

which by (17) implies that q1(t) is a trajectory of (16). Also, by remark
at the end of Section 4, both systems (5) and (16) have the same (up to
a change of parameter) geometrically optimal extremals. In this way the
dimension of the space of control parameters drops by one, while a drift
term appears.

Now we will prove two lemmas which we will use below. To avoid possible
misunderstandings let us emphasize that by a smooth curve we mean a 1-
dimensional embedded submanifold. Such a notion of smoothness of a curve
is invariant with respect to changes of parameter.

Lemma 6.1. Let γ : [0, T ] −→ U , γ(0) = q0, be a nspc.f.d. geometri-
cally optimal curve, i.e. γ([0, T ]) ⊂ ∂̃J+(q0, U). Suppose that there exists a
biextremal λ(t) = (γ(t), p(t)) such that

(⟨p(t), X0(γ(t))⟩ , ..., ⟨p(t), Xk(γ(t))⟩) ̸= (0, ..., 0), t ∈ [0, T ]. (18)

Then γ is null f.d. and smooth.

Proof. Without loss of generality we may assume that γ is parameterized
as in (16), so let

γ̇(t) = X0(γ(t)) +
k∑
i=1

ui(t)Xi(γ(t)).

Suppose that k = 1. By PMP (Theorem 4.1)

⟨p(t), X0(γ(t))⟩+ u(t) ⟨p(t), X1(γ(t))⟩ = ⟨p(t), X0(γ(t))⟩+

+max
|u|≤1

u ⟨p(t), X1(γ(t))⟩ = 0 (19)
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(the first equality in (19) holding a.e.). Therefore, by (18) and (19)
⟨p(t), X1(γ(t))⟩ vanishes nowhere. Thus u(t) = sgn ⟨p(t), X1(γ(t))⟩ which
ends the proof for k = 1.

Suppose now that k ≥ 2, u(·) ∈ L2([0, T ], Bk(0, 1)). The PMP Hamilto-
nian is

hu(p, q) = ⟨p,X0(q)⟩+
k∑
i=1

ui ⟨p,Xi(q)⟩ ,

and the maximum condition of PMP may be rewritten as{ ∑k
i=1 ui(t) ⟨p(t), Xi(γ(t))⟩ = max|u|≤1

∑k
i=1 ui ⟨p(t), Xi(γ(t))⟩ a.e.,

⟨p(t), X0(γ(t))⟩+
∑k

i=1 ui(t) ⟨p(t), Xi(γ(t))⟩ = 0 on [0, T ].
(20)

By assumption (18) the maximum in the first equation in (20) is, for almost
every t, attained at u(t) ∈ ∂Bk(0, 1). Using (18) and (20) it follows that there
exists a neighbourhood Ω of λ([0, T ]) in T ∗M such that for (q, p) ∈ Ω the
function Bk(0, 1) ∋ (u1, ..., uk) −→ ⟨p,X0(q)⟩ +

∑k
i=1 ui ⟨p,Xi(q)⟩ attains

its maximum at a point u = u(q, p) ∈ ∂Bk(0, 1). Applying Lagrange’s
multipliers rule we find a function a = a(q, p) such that

⟨p,Xi(q)⟩ = a(q, p)ui(q, p), i = 1, ..., k. (21)

(21) gives

a2(q, p) =
k∑
i=1

⟨p,Xi(q)⟩2 ,

hence a(q, p) ̸= 0 on Ω. Now, the maximized Hamiltonian (cf. [1])

h(q, p) = hu(q,p)(q, p) = ⟨p,X0(q)⟩+

√√√√ k∑
i=1

⟨p,Xi(q)⟩2

is smooth on Ω. Evidently λ̇(t) =
−→
h (λ(t)), and the proof is over. �

Having proved Lemma 6.1, we can draw one more conclusion from (18).

Lemma 6.2. Let γ : [0, T ] −→ U , γ(0) = q0, be a nspc.f.d. geometrically
optimal curve admitting a biextremal lift λ(t) = (γ(t), p(t)) satisfying the
condition (18). Then, up to a change of parameterization, γ is a null f.d.
Hamiltonian geodesic.
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Proof. The PMP Hamiltonian applied to the system (5) is equal to

hu(q, p) =
k∑

α=0

uα ⟨p,Xα(q)⟩ , (22)

and the maximum condition reads

k∑
α=0

uα(t) ⟨p(t), Xα(γ(t))⟩ = max
u∈C

k∑
α=0

uα ⟨p(t), Xα(γ(t))⟩ = 0, (23)

where by Lemma 6.1 we can suppose that the control u(t) generating γ is
smooth. By assumption (18) the maximum in (23) is attained on ∂C∩{u0 >
0}. Using Lagrange’s multipliers rule there exists a function a(t) such that

−a(t)u0(t) = ⟨p(t), X0(γ(t))⟩ , a(t)uj(t) = ⟨p(t), Xj(γ(t))⟩ , j = 1, ..., k.

a(t) is smooth and does not vanish on [0, T ]. Let A(q, p) be a smooth
non-vanishing function defined on a neighbourhood of λ([0, T ]), such that
A(λ(t)) = a(t). Let

ũ0(q, p) = −⟨p,X0(q)⟩
A(q, p)

, ũj(q, p) =
⟨p,Xj(q)⟩
A(q, p)

, j = 1, ..., k.

We find that in a neighbourhood of λ([0, T ])

h(q, p) = hũ(q,p)(q, p) =
2

A(q, p)
H(q, p),

where H is the geodesic Hamiltonian defined in Section 2.6. Because of (23)
H(γ(t), p(t)) = 0 for all t. Evidently (γ(t), p(t))̇ =

−→
h (γ(t), p(t)). Rewriting

this in some local Darboux coordinates (q0, ..., qn, p0, ..., pn) we have{
q̇j = ∂

∂pj
( 2
A
)H + 2

A
∂H
∂pj

= 2
A
∂H
∂pj

ṗj = − ∂
∂qj

( 2
A
)H− 2

A
∂H
∂qj

= − 2
A
∂H
∂qj

,

and the proof is finished. �
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6.2 Generic rank ≥ 3 case

We start with the following lemma.

Lemma 6.3. Let γ : [0, T ] −→ M be a nspc.f.d. curve such that γ(0) = q0
and γ([0, T ]) ⊂ ∂̃J+(q0, U). Suppose in addition that γ|[t1,t2], [t1, t2] ⊂ [0, T ],
is a timelike curve. Then γ|[t1,t2] is a Goh curve.

Proof. Again the PMP Hamiltonian is of the form

hu(q, p) =
k∑

α=0

uα ⟨p,Xα(q)⟩ , q ∈ U , p ∈ T ∗
qM , u ∈ C.

Let

γ̇(t) =
k∑

α=0

uα(t)Xα(γ(t)),

and let λ = (γ, p) : [0, T ] −→ T ∗M be a biextremal covering γ. Clearly
(λ|[t1,t2], u|[t1,t2]) enters the maximum condition of PMP

k∑
α=0

u(t)α ⟨p(t), Xα(γ(t))⟩ = max
v∈C

k∑
α=0

vα ⟨p(t), Xα(γ(t))⟩

a.e. on [t1, t2]. Since u(t) ∈ C0 for almost every t ∈ [t1, t2], this maximum
condition reads

⟨p(t), Xα(γ(t))⟩ = 0, t ∈ [t1, t2], α = 0, ..., k, (24)

which is equivalent to saying that γ|[t1,t2] is abnormal (cf. remark at the end
of Section 2.1).

Remark moreover that γ is geometrically optimal also relative to the set
C0 of control parameters. Since C0 is open and λ|[t1,t2] is totally singular,
λ|[t1,t2] enters the Goh condition (cf. [1])

⟨p(t), [Xα, Xβ] (γ(t))⟩ = 0, α, β = 0, ..., k, t ∈ [t1, t2].

�
Now we suppose that (M,H, g) is a sub-Lorentzian manifold, where rank

H ≥ 3. It turns out that if H is generic then nontrivial Goh curves do
not exist - see [5]. Using this and Lemma 6.3 one obtains the following
proposition.
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Proposition 6.1. Let H be a generic (in sense of [5]) distribution of rank
≥ 3, and let g be a Lorentzian metric on H. Then for every q0 ∈ M and
every normal neighbourhood U of q0 the set I+(q0, U) is open.

Proof. Suppose q ∈ ∂̃J+(q0, U) ∩ I+(q0, U). Then there exists a t.f.d.
curve γ joining q0 to q. By Section 4 γ is contained in ∂̃J+(q0, U), so by
Lemma 6.3 γ is a Goh curve. In this way we obtain a contradiction. �

6.3 Further assumptions

Here we are interested in conditions guaranteeing that f [U ]|∂̃J+(q0,U) = 0,
f [U ] being the sub-Lorentzian distance from q0. Unfortunately the absence
of Goh curves, as in the previous subsection, does not exclude possibility
of the existence of points q ∈ ∂̃J+(q0, U) such that f [U ](q) > 0. This is
because there exist nspc.f.d. curves that have no timelike pieces but have
positive length. It is easy to construct such curves. Take an interval [0, T ],
T > 0. Let A ⊂ [0, T ] be an arbitrary nowhere dense subset of positive
measure. Now let u0(t) = 1 for t ∈ [0, T ], and

u1(t) = ... = uk(t) =

{ 1√
k
: t ∈ [0, T ]\A

0 : t ∈ A
.

Clearly, if γ̇(t) =
∑k

α=0 uα(t)Xα(γ(t)), γ(0) = q0, then the restriction γ|[t1,t2]
is not a timelike curve for any subinterval [t1, t2] ⊂ [0, T ], nevertheless L(γ) >
0. Our aim is to find a condition that excludes such curves from among the
extremals.

So in this subsection we make the following assumption (cf. [4]):
(i) if rank H is even, we suppose that for any q ∈ U and any non-zero

covector p ∈ T ∗
qM , the matrix (⟨p, [Xα, Xβ](q)⟩)α,β=0,...,k is invertible;

(ii) if rank H is odd, we suppose H is a 2-generating distribution.

Theorem 6.1. Let q0 ∈ M and let U be a normal neighbourhood of q0.
Under the above assumptions made on H, the set ∂̃J+(q0, U) is made up of
null f.d. curves starting from q0. Consequently, I+(q0, U) is open. Moreover,
f [U ]|∂̃J+(q0,U) = 0 and f [U ] is continuous at points of ∂̃J+(q0, U).

Proof. Suppose that γ : [0, T ] −→ U , γ(0) = q0, is an arbitrary geomet-
rically optimal nspc.f.d. curve, u : [0, T ] −→ C is a control generating γ,
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and λ = (γ, p) : [0, T ] −→ T ∗U is a biextremal covering γ. Let

A = {t ∈ [0, T ] : g(γ̇(t), γ̇(t)) < 0} .

We will show that A is of measure zero which will mean that γ is a null
curve. For almost every t ∈ A, the maximum condition of PMP gives

⟨p(t), X0(γ(t))⟩ = ... = ⟨p(t), Xk(γ(t))⟩ = 0.

By absolute continuity of the mapping t −→ ⟨p(t), Xα(γ(t))⟩, the set{
t ∈ [0, T ] : ⟨p(t), Xα(γ(t))⟩ = 0,

d

dt
⟨p(t), Xα(γ(t))⟩ ≠ 0

}
has measure zero for every α = 0, ..., k, so it suffices to show that

A0 ={
t ∈ [0, T ] : ⟨p(t), Xα(γ(t))⟩ = 0,

d

dt
⟨p(t), Xα(γ(t))⟩ = 0, α = 0, .., k

}
has measure zero. In view of our assumptions made onH, this last statement
becomes clear if we recall that

d

dt
⟨p(t), Xα(γ(t))⟩ =

k∑
β=0

uβ(t) ⟨p(t), [Xα, Xβ](γ(t))⟩ , α = 0, ..., k.

It remains to show that f [U ] is continuous at points of ∂̃J+(q0, U). To
this end take a q ∈ ∂̃J+(q0, U). As we know there exists a U -maximizer
γ joining q0 to q. By Section 4 such a γ is contained in ∂̃J+(q0, U). Con-
sequently, by the first part of the proof, γ is null f.d. and f [U ](q) = 0.
Take any sequence {qν} ⊂ J+(q0, U) such that qν −→ q, and let γν be
a U -maximizer connecting q0 to qν . After passing to a subsequence, {γν}
converges in the C0 topology on curves to a nspc.f.d. curve γ̃ joining q0
to q. Again, γ̃ must be contained in ∂̃J+(q0, U), thus γ̃ is null. By upper
semicontinuity of sub-Lorentzian arc length

0 ≤ lim sup f [U ](qν) = lim supL(γν) ≤ L(γ̃) = 0

as ν −→ ∞, which finally gives limν−→∞ f [U ](qν) = f [U ](q). �
Unfortunately, we are not able to state any general theorem concerning

regularity properties of geometrically optimal curves described by Theorem
6.1. Remark also that the example in 3.2.3 shows that f [U ] needs not be
continuous at points of ∂̃J+(q0, U) in the general case.
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6.4 Contact case

Let M be a (2n + 1)-dimensional manifold and suppose that (H, g) is a
contact sub-Lorentzian structure on M , i.e. H is a contact distribution.
Again U will stand for a normal neighbourhood of a point q0. We will prove
a theorem which generalizes in some sense results obtained in [17] and [15].

Theorem 6.2. Let γ : [0, T ] −→ U , γ(0) = q0, be a geometrically optimal
curve. Then, if U is a normal neighbourhood of q0, γ is a null f.d. curve
with a finite number of non-smooth points. Smooth pieces of γ are null
Hamiltonian geodesics.

Proof. Let λ(t) = (γ(t), p(t)) be a corresponding biextremal, and let u(t)
be a geometrically optimal control generating γ. After modification of u on
the set of measure zero we can assume that u(t) is defined and non-zero
everywhere. Define a set Z by

{t ∈ [0, T ] : (⟨p(t), X0(γ(t))⟩ , ..., ⟨p(t), X2n−1(γ(t))⟩) = 0, γ(t) ∈ U} ,

where X0, ..., X2n−1 is an orthonormal basis of H defined on U . By Lemmas
6.1, 6.2 it is enough to prove that Z is finite.

Denote by Xt the non-autonomous vector field

Xt(q) =
k∑

α=0

uα(t)Xα(q).

As is known (see for instance [16]) Xt(q), q ∈ U , is a so-called strong bracket
generator. In our particular situation it means that

TqM = Span{X0(q), ..., X2n−1(q), [Xt, X0](q), ..., [Xt, X2n−1](q)}

for every q ∈ U . Suppose now that s1, s1 + s2 ∈ Z, s2 > 0. Let gt be
the flow of Xt computed from time s1, that is to say gs(q) = η(s), where
η̇(t) = Xt(η(t)), η(s1) = q. From the proof of PMP (cf. [1]) it is known that

p(s1 + s2) =
((
dγ(s1)g

s1+s2
)−1

)T
p(s1). Finally we have

0 = ⟨p(s1 + s2), Xm(γ(s1 + s2))⟩ =⟨
p(s1),

(
dγ(s1)g

s1+s2
)−1

Xm(γ(t+ s))
⟩
=

s2 ⟨p(s1), [Xs1 , Xm](γ(s1))⟩+O(s22)

for every m = 0, ..., k, which is impossible for arbitrarily small s2. �
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6.5 The case rankH = 2

In this case (16) becomes a control system

q̇(t) = X0(q(t)) + u(t)X1(q(t)), q(0) = q0,

with a scalar input u, |u| ≤ 1. Evidently, there are exactly two (up to a
change of parameter) smooth null f.d. curves γ+, γ− starting from q0; first
corresponding to u(t) ≡ 1, and the second corresponding to u(t) ≡ −1. At
the same time there are exactly two null f.d. Hamiltonian geodesics initiating
in q0, so they coincide with γ+, γ−. In particular, in rank 2 case, every null
f.d. smooth curve is geometrically optimal.

Using above considerations and [21] one can obtain many partial results
concerning the boundary of reachable sets for sub-Lorentzian metrics on
rank 2 distributions. Here are two examples. The first one is a strengthened
version of Theorem 6.2.

Proposition 6.2. Let H be a generic germ at the origin of a rank 2 dis-
tribution on R3, and let g be a Lorentzian metric on H. Then, for every
q0 sufficiently close to the origin, and for every sufficiently small normal
neighbourhood U of q0, the set ∂̃J+(q0, U) is made up of null f.d. curves
starting from q0. If γ+ and γ− stand for the two null f.d. Hamiltonian
geodesics starting from q0, then for every q ∈ ∂̃J+(q0, U)\{γ+, γ−} a unique
nspc.f.d. curve joining q0 to q is a null curve with exactly one non-smooth
point. Moreover N+(q0, U) = J+(q0, U).

Proof. In fact, only uniqueness of geometrically optimal curves and a
number of non-smooth points need to be clarified. We will use results from
[17] and [15], where generic control affine systems on R3 were studied (we
can also use Theorem 6.2).

Take a point q0 and its normal neighbourhood U . We assume that U is
so small that the theorem on normal forms from [7] can be applied to it. So
suppose that there are coordinates x, y, z on U such that x(q0) = y(q0) =
z(q0) = 0 and (H, g) possesses an orthonormal frame on U in the normal
form

X = (1 + y2φ) ∂
∂x

+ xyφ ∂
∂y

+ 1
2
y(1 + ψ) ∂

∂z

Y = −xyφ ∂
∂x

+ (1− x2φ) ∂
∂x

− 1
2
x(1 + ψ) ∂

∂z

(25)

with a time orientation X; here φ, ψ are smooth functions on U satifying
φ(0, 0, z) = ψ(0, 0, z) = ∂ψ

∂x
(0, 0, z) = ∂ψ

∂y
(0, 0, z) = 0. Now, for U sufficiently
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small, the horizontal gradient of the function (x, y, z) −→ x is timelike past
directed. It follows that for every nspc.f.d. curve γ : [a, b] −→ U , the
function t −→ x(γ(t)) is increasing on [a, b].

Consider now the control affine system on U

q̇ = X + uY , |u| ≤ 1. (26)

Denote by A(q0, t, U) its accesible set from q0 at time t in U , and let A(q0,
≤ T, U) =

∪
0≤t≤T A(q0, t, U). If γ : [0, T ] −→ U is an arbitrary trajectory

of (26) starting from γ(0) = q0, then x-coordinate of γ satisfies

x(t) = t+

∫ t

0

(y − ux)yβds, (27)

0 ≤ t ≤ T . Now |x| ≤ d, |β| ≤ ε, |y| ≤ |x| in J+(q0, U), where d = d(U)
and ε = ε(U) are positive constants that can be taken as small as we wish
by shrinking U . Take U so as to have 2d2ε ≤ 1

2
. For such a U , J+(q0, U) ⊂

A(q0,≤ T, U), where by (27) 0 < T ≤ d
1−2d2ε

. Again shrinking U we obtain
T > 0 small enough to apply [15] or [17]. �

Proposition 6.3. Let H be a germ at the origin of a rank 2 distribution
on R3. Suppose that H is generic in the class of all distributions admitting
abnormal curves, and let g be a Lorentzian metric on H. Then there exists
a germ (at the origin) of a hypersurface S such that for every q0 sufficiently
close to the origin, and for every sufficiently small normal neighbourhood U
of q0 :
(i) if q0 /∈ S then ∂̃J+(q0, U) is described by Proposition 6.2;
(ii) if q0 ∈ S then ∂̃J+(q0, U) may additionally contain curves of positive
length.

As suggested in [15] we apply [20] to prove one more result, this time in
Rn, n ≥ 3. Introduce the following notation: (ad0)Y = Y , (adk+1X)Y =
[X, (adkX)Y ], k = 1, 2, ...

Proposition 6.4. Let H be an analytic rank 2 distribution on Rn defined
in a neighbourhood U of 0. Suppose that g is such a Lorentzian metric on
H that there exists an analytic orthonormal frame X,Y on U , X is a time
orientation, with the following property:
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for every positive integer m there exist analytic functions α(m)
0 ,· · · ,α(m)

m , β(m)

defined on U , such that |β(m)| < 1 and

[Y, (admX)Y ] =
m∑
i=0

α
(m)
i (adiX)Y + β(m)(adm+1X)Y . (28)

Then, possibly shrinking U , for every q ∈ ∂̃J+(q0, U) a nspc.f.d. curve
joining 0 to q is null and has a finite number of non-smooth points.

Proof. Let us notice that under the condition (28) the Lie algebra gener-
ated by X and Y is equal to L = Span{X, (adiX)Y , i = 0, 1, ...}. Indeed, to
see this it is enough to prove that for every positive integer k the following
condition is fulfilled

[(adkX)Y, (admX)Y ] ∈ L, m = 0, 1, ... (29)

A proof is by induction. For k = 0 it is just the condition (28). Suppose
(29) true for positive integers ≤ k. Then

[(adk+1X)Y, (admX)Y ] =

= (adX)[(adkX)Y, (admX)Y ]− [(adkX)Y, (adm+1X)Y ]

and the inductive hypothesis gives [(adk+1X)Y, (admX)Y ] ∈ L.
Now suppose that γ : [0, T ] −→ U is geometrically optimal. We repa-

rameterize γ as in (16), i.e. γ̇(t) = X(γ(t)) + u(t)Y (γ(t)), where u(·) is a
corresponding geometrically optimal control. Let λ(t) = (γ(t), p(t)) satisfy
PMP.

Suppose that |u(t)| < 1 for t ∈ ∆, ∆ being an interval contained in
[0, T ]. By maximum condition of PMP - the PMP Hamiltonian is hu(q, p) =
⟨p,X(q)⟩+ u ⟨p, Y (q)⟩ - we have

⟨p(t), X(γ(t))⟩ = ⟨p(t), Y (γ(t))⟩ = 0, t ∈ ∆. (30)

Differentiation of (30) with respect to t gives ⟨p(t), (adX)Y (γ(t))⟩ = 0 on
∆. Now let us assume that⟨

p(t), (adiX)Y (γ(t))
⟩
= 0, i = 1, ..., k, t ∈ ∆. (31)
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Differentiating (31) with respect to t for i = k gives⟨
p(t), (adk+1X)Y (γ(t))

⟩
+ u(t)

⟨
p(t),

[
Y, (adkX)Y

]
(γ(t))

⟩
= 0

which, using (28), (31), reduces to(
1 + u(t)β(k)(t)

) ⟨
p(t), (adk+1X)Y (γ(t))

⟩
= 0.

Recalling that |β(k)| < 1 we see that
⟨
p(t), (adkX)Y (γ(t))

⟩
= 0 on ∆ for

every k = 1, 2, .... But then p(t) = 0 by the first part of the proof which
contradicts PMP. Thus the fuction t −→ ⟨p(t), Y (γ(t))⟩ cannot vanish on
any interval, so by [20], Lemma 3, it has only a finite number of zeros. In
this way γ is a null f.d. curve with a finite number of switching times. �

6.6 One remark about the image under exponential
mapping

Let us mention here that for purely dimensional reasons formulas of type (2)
do not hold in the sub-Lorentzian geometry. More precisely

∂̃J+(q0, U) ̸= expq0
({
λ ∈ T ∗

q0
M : H(q0, λ) = 0, ⟨λ,X(q0)⟩ < 0

})
∩ U

(⟨λ,X(q0)⟩ = g(Gλ,X(q0)), so this expression must be negative (cf. Section
2.6)). At the same time formulas of type (1) do hold, at least in some cases
- cf. [9].

7 Appendix. Reachable sets in the Martinet
flat case

Let X, Y , H, ω and g be defined as in Section 3.2.3. The structure (H, g)
will be referred to as the sub-Lorentzian Martinet flat structure. To simplify
the notation we will write I+(0) for I+(0,R3) and J+(0) for J+(0,R3). We
are going to prove the following

Proposition 7.1. If I+(0), J+(0) are reachable sets determined by the sub-
Lorentzian Martinet flat structure (H, g), then

I+(0) =

{
1

4
(−xy2 + |y|3) < z <

1

16
(x2 − y2)(x+ 3|y|), x > 0

}
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∪{(x, 0, 0): x > 0}
and

J+(0) =

{
1

4
(−xy2 + |y|3) ≤ z ≤ 1

16
(x2 − y2)(x+ 3|y|), x ≥ 0

}
. (32)

Moreover, if U is a normal neighbourhood of the zero, then

I+(0, U) = I+(0) ∩ U, J+(0, U) = J+(0) ∩ U. (33)

Proof. Let us start from the observation that

J+(0) ∩ {y = 0} ∩ {z < 0} = ∅, (34)

which follows from Section 3.2.3. Next, for Γ = {|y| < x, x > 0}, we have

I+(0) ∩ {z = 0} = {|y| < x, x > 0} ∩ {z = 0} . (35)

To see (35) it is enough to notice that for every a ∈ (−1, 1) the curve
t −→ (t, at, 0) is t.f.d. It is also obvious that

I+(0) ⊂ Γ, (36)

which is easy when we look at the formulas defining the fields X, Y .
In order to prove Proposition 7.1 we need to consider two families of

functions, namely

φa(x, y, z) = −xy2 + α|y|3 − 4z

and

Φα(x, y, z) = −x3−3αx2|y|+(1+2α−2α2)xy2+α(2α+1)|y|3+4(1+α)2z,

0 ≤ α ≤ 1. One easily verifies that

∇Hφa = 3y2X + 3α(sign y)y2Y

and
∇HΦα =

−3(x− |y|)(x+ (2α+ 1)|y|)X − 3α(sign y)(x− |y|)(x+ (2α+ 1)|y|)Y
from which it follows that on the set Γ ∩ {y ̸= 0} the gradient ∇Hφa (resp.
∇HΦa) is t.f.d for 0 ≤ α < 1, and is null f.d. for α = 1. We will prove three
lemmas.
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Lemma 7.1.

I+(0) ∩ {z ̸= 0} ⊂ {(x, y, z) : φ1(x, y, z) < 0, Φ1(x, y, z) < 0, x > 0} .

Proof. Let q0 = (x0, y0, z0) ∈ I+(0) ∩ {z ̸= 0}. There exists a t.f.d.
curve γ : [0, 1] −→ R3 such that γ(0) = 0, γ(1) = q0. The two functions
t −→ φ1(γ(t)), t −→ Φ1(γ(t)) are increasing on every connected component
of the set {t ∈ [0, 1] : γ(t) ∈ {y ̸= 0}}. On the other hand, if γ(t) ∈ {y = 0}
for t ∈ [t1, t2] ⊂ [0, 1] then, using (10), γ|[t1,t2] satisfies ż = 1

2
y(yẋ− xẏ) = 0,

thus is of the form t −→ (x(t), 0, z(t1)), t1 ≤ t ≤ t2. Since x(t) increases,
t −→ Φ1(γ(t)) increases and t −→ φ1(γ(t)) is constant. Recalling that
z0 ̸= 0, the proof is finished in view of (34). �

Lemma 7.2.

{(x, y, z) : φ1(x, y, z) < 0, x > 0, z < 0} ⊂ I+(0) ∩ {z < 0} .

Proof. Take a q0 = (x0, y0, z0) ∈ {φ1 < 0, x > 0, z < 0} with, say, y0 > 0;
the case y0 < 0 is treated analogously. Since φ1(q0) < 0, we can find
an α ∈ (0, 1) so as to have φ1/α(q0) < 0. Fix such an α; in particular
αx0 − y0 > 0. Write out the equations for trajectories of ∇Hφa:

ẋ = 3y2

ẏ = 3αy2

ż = 3
2
y3(y − αx)

. (37)

In the set {y > 0} we can reparameterize (37) to obtain
ẋ = 1
ẏ = α
ż = 1

2
y(y − αx)

.

The solution curve γ starting from (x0, y0z0) at t = 0 has the form
x(t) = x0 + t
y(t) = y0 + αt
z(t) = z0 +

1
2
y0(y0 − αx0)t+

1
4
α(y0 − αx0)t

2

.

Let t̂ = −y0
α
< 0. One easily checks that x(t) > 0, y(t) > 0, and x(t) −

|y(t)| > 0 for t ∈ (t̂, 0); by the way we know that γ does not leave Γ for
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t ∈ (t̂, 0), so γ|(t̂,0] is t.f.d. Finally z(t̂) = −1
4
φ1/α(q0) > 0. This means that

there exists a t0 ∈ (t̂, 0) with z(t0) = 0, i.e. γ(t0) ∈ I+(0) by (35). Thus also
q0 ∈ I+(0) and the proof is finished. �
Lemma 7.3.

{(x, y, z) : Φ1(x, y, z) < 0, x > 0, z > 0} ⊂ I+(0) ∩ {z > 0} .

Proof. Let q0 = (x0, y0, z0) ∈ {Φ1 < 0, x > 0, z > 0}. At first we in-
vestigate the case y0 = 0. Fix a number u ∈ (−1, 1) and let σ̇(t) =
−(X + uY )(σ(t)), σ(0) = q0. Clearly, σ is timelike past directed and if
t > 0 is sufficiently small then σ(t) ∈ {Φ1 < 0, x > 0, z > 0} ∩ {y ̸= 0}.
Thus it suffices to consider the case y0 ̸= 0.

So suppose y0 > 0 (the case y0 < 0 is treated similarly). Take an α ∈
(0, 1) such that Φ1/α(q0) < 0. For such an α, and after reparameterization
in the set {y > 0}, equations for trajectories of ∇HΦα take the form

ẋ = 1
ẏ = −α
ż = 1

2
y(yẋ− xẏ)

.

Integrating with the initial condition (x0, y0, z0) we obtain
x(t) = x0 + t
y(t) = y0 − αt
z(t) = z0 +

1
2
y0(y0 + αx0)t− 1

4
α(y0 + αx0)t

2

.

Let t̂ = y0−x0
1+α

< 0. It is easily seen that x(t) > 0, y(t) > 0, x(t)−y(t) > 0 for
t ∈ (t̂, 0). We also obtain z(t̂) = α2

4(1+α)2
Φ1/α(q0) < 0 from which it follows

that there exists a t0 ∈ (t̂, 0) with z(t0) = 0. As in the proof of the previous
lemma it means that γ(t0) ∈ I+(0). �

(35) and (36) together with Lemmas 7.1, 7.2, 7.3 prove (7.1) and (32).
Finally, to justify (33), see [9] for the proof of analogous statement in the
Heisenberg case. �
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Multidimensional formal Takens normal form
Ewa Stróżyna 1, Henryk Żoła̧dek 2

Abstract

We present a multidimensional analogue of the classical Takens
normal form for a nilpotent singularity of a vector field.

Recall the result of F. Takens.

Theorem 1 ([Ta]) Given an analytic germ of planar vector field of the
form V = x2∂x1 +h.o.t. there exists a formal change of the coordinates x1, x2

reducing it to the form

V Takens = (x2 + a (x1))∂x1 + b (x1) ∂x2

where a (x1) = a2x
2
1 + ... and b (x1) = b2x

2
1 + ... are formal power series.

The Takens normal form is obtained by solving the homological equation

[x2∂x1 , Z] = W

which is a linear approximation to the condition(
g1Z

)∗
V = V Takens,

where gtZ is the formal flow generated by a formal vector field Z and V =
V Takens +W. It means that the space x2

1C [[x1]] ∂x1 + x2
1C2 [[x1]] ∂x2 is com-

plementary to the space
adx2∂x1

{C [[x1, x2]]≥2 ∂x1 +C [[x1, x2]]≥2 ∂x2}, where C [[x1]]≥2 is the space of
series with second order zero at x1 = x2 = 0. This is the definition of the
Takens normal form.

Remark 1 The Takens normal form is not complete. A. Baider and J.
Sanders [BS], A. Algaba, E. Freire and E. Gamaro [AFG] and H. Kokubu,

1Faculty of Mathematics and Information Science, Warsaw University of Technology,
Pl. Politechniki 1, 00-661 Warszawa, Poland, email: strozyna@mini.pw.edu.pl

2Institute of Mathematics, University of Warsaw, ul. Banacha 2, 02-097 Warszawa,
Poland. email: zoladek@mimuw.edu.pl
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H. Oka and D. Wang [KOW] showed that some terms in the power series
a(x1) and b(x1) can be cancelled. In some cases a complete normal form was
obtained, but many cases still remain unsolved.

Consider now germs of analytic vector fields in (Cn, 0) with nilpotent
linear part at the singular point x = 0. Assume firstly that there is only one
Jordan cell. Therefore we take

V = X + h.o.t. (1)

where

X = (n− 1)x2∂x1 + (n− 2)x3∂x2 + . . .+ xn∂xn−1 . (2)

(The coefficients before xi+1∂xi
can be chosen arbitrarily). Define the fol-

lowing additional vector fields

Y = x1∂x2 + 2x2∂x3 + . . .+ (n− 1)xn−1∂xn ,
H = −(n− 1)x1∂x1 − (n− 3)x2∂x2 + . . .+ (n− 1)xn∂xn .

(3)

Lemma 1 The vector fields X, Y,H define an irreducible representation
σ of the Lie algebra sl (2,C) such that

σ(A) = X, σ(B) = Y, σ(C) = H,

where A =

(
0 1
0 0

)
, B =

(
0 0
1 0

)
and C =

(
1 0
0 −1

)
generate

sl(2,C).

Proof. See the book of J.-P. Serre [Ser] and the papers [CS1], [CS2].
�

The vector field Y , treated as a differentiation of the ring

C [x] = C[x1, . . . , xn],

is a so-called locally nilpotent derivation (see [Now]). It means that for any
polynomial f (x) ∈ C[x] we have

Y N(f) ≡ 0
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for some N > 0. (Of course, X is also a locally nilpotent derivation). With
any locally nilpotent derivation one associates its ring of constants, i.e.

C [x]Y = {g ∈ C [x] : Y g = 0} .

Lemma 2 We have

C [x]Y = C [G1, G2, . . . , Gn−1] [x
−1
1 ] ∩C[x]

where G1 = C1 = x1 and Gj are homogeneous polynomials of degree j defined
inductively by

Gj = Cj · x1
j−1,

Cj = xj+1 −
(

j
1

)
Cj−1

(
x2

x1

)1

− . . .−
(

j
j − 2

)
C2

(
x2

x1

)j−2

−
(

j
j

)
C1

(
x2

x1

)j

.

Proof. The system of equations defining the vector field Y is following

ẋ1 = 0, ẋ2 = x1, ẋ3 = 2x2, . . .

Since x1(t) ≡ C1 = const and since we can shift the time t, we can assume
that x2(t) = x1t, or

t = x2/x1.

The other equations are solved in the form

xj+1(t) = Cj + j

∫ t

0

xj(s)ds.

From this the formulas from the lemma follow. Also the homogeneity of the
polynomials Gj follows from this.

On the other hand, the space of solutions is parametrized by the con-
stants of motion Cj. Each Cj, j ≥ 2, depends linearly on xj+1, with coefficient
being a power of x1; the same is true for Gj, j ≥ 2. Since any polynomial
first integral depends polynomially on x3, . . . , xn, we can replace the latter
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variables by functions of G2, . . . , Gn−1 and of x1 and x2; moreover, the de-
pendence on x2 is polynomial. Thus our first integral becomes a polynomial
in x2 with coefficients depending on elementary first integrals G1, . . . , Gn−1.

As the latter polynomial represents a first integral of Y, it cannot contain
positive powers of x2. �

Remark 2 For n = 2 we get C [x]Y = C [x1] . It is easy to prove that
for n = 3 we have C [x]Y = C [G1, G2] .

But for n = 4 the ring of constants of the derivation Y is not equal
to the polynomial ring of our three polynomials. We have G2 = x1x3 − x2

2,

G3 = x2
1x4−3x1x2x3+2x3

2. However the following first integral G̃4 = 3x2
2x

2
3−

4x3
2x4 + 6x1x2x3x4 − 4x1x

3
3 − x2

1x
2
4 cannot be expressed as a polynomial in

G1, G2, G3. In fact, for n = 4 the ring C[x]Y is a ring of regular functions on
the algebraic hypersurface in C4 defined by 8x2u− y3+8z2 = 0 (see [Now]).
Also for greater dimensions the ring C[x]Y is not equal to C[Cn−1].

By a theorem of Weitzenböck [Wei] the ring C[x]Y is finitely generated,
but its structure for general n is not known. There exist examples of lo-
cally nilpotent derivations such that their rings of constants are not finitely
generated.

For more information we refer the reader to the habilitation thesis of A.
Nowicki [Now] and to the book of Freudenburg [Fre].

Among the first integrals for the vector field Y we distinguish those which
are also first integrals for the vector field X. It is easy to see that they are
altogether first integrals for the vector field H.

From the examples in Remark 2 we find that G2 = x1x3 − x2
2 is also a

first integral for X when n = 3; it is invariant with respect to the change
(x1, x2, x3) → (x3, x2, x1) . Similarly, the integral G̃4 is a first integral for
sl(2,C) when n = 4.

The vector field H defines a quasi-homogeneous gradation degH in the
ring C [x] , such that

degH xj = 2j − n− 1.

It follows that the first integrals F for Y which are first integrals for sl(2,C)
can be characterized by the property

degH F = 0,

i.e. that it contains only monomials of quasi-homogeneous degree 0.
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Note that the first integrals Gj defined in Lemma 2 have degH Gj < 0.
Generally any first integral of Y contains only terms of degH ≤ 0. Denote by
C [x]Y,0 = kerY ∩ kerX, respectively by C [x]Y,<0 = kerY ⊖ kerX, the ring
of polynomial first integrals for sl(2,C), respectively the ring of polynomial
first integrals for Y which contain only terms of nonzero quasi-homogeneous
degree degH .

Remark 3 The three vector fields X,Y,H define a distribution D ⊂
TCn, i.e. a (singular) subbundle such that the fiber Dx at a point x is
spanned by the vectors X(x), Y (x), H(x). If n ≥ 4 then at a general point
the dimension of the space Dx equals 3, but at some points this dimension
falls down. If n = 2, 3 then typically dimDx = 2.

Since the vector fields generate a Lie algebra, the distribution is inte-
grable. By the Frobenius theorem there exists a foliation F with typical
leaves L of dimension 3 (for n ≥ 4) or of dimension 2 (n = 3). In fact, the
leaves are orbits of the action of the Lie group SL(2,C). Since the phase
flows gtX and gtY are polynomial (as X and Y are locally nilpotent deriva-
tions) and since (gtH)

∗xj = et·degH xjxj arises from an algebraic action of
C∗, the leaves L are algebraic varietes. So there should exist algebraic first
integrals for the foliation F .

Existence of polynomial first integrals for F follows also from the Clebsch–
Gordan formula.

We can now formulate the main result of this work. Denote by C[x]k and
C[[x]]≥k (respectively C[x]Yk , C[[x]]Y≥k, C[x]Y,<0

k , C[[x]]Y,<0
≥k ) the subspaces of

C[[x]] (respectively of C[[x]]Y , C[[x]]Y,<0) consisting of homogeneous poly-
nomials of degree k and of series which have zero of order ≥ k at the origin.

Theorem 2 Any germ of the form (1) can be reduced by means of a
formal change of variables x1, ..., xn to the following

V Takens = X + F1 (G) ∂x1 + . . .+ Fn (G) ∂xn , (4)

where Fj (G) = Fj (G1, . . . , Gn−1) are formal power series in G2, . . . ,
Gn−1 with coefficients being Laurent polynomials in G1 = x1 and such that
Fj ◦ G (x) ∈ C[[x]]≥2 and Fj ∈ C[x]Y,<0 for j = 1, . . . , n − 1. Moreover, the
form (4) is unique in a sense that the space

C[[x]]Y,<0
≥2 · ∂x1 + . . .+C[[x]]Y,<0

≥2 · ∂xn−1 +C[x]Y≥2 · ∂xn
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is complementary to the space

adX {C[[x]]≥2 · ∂x1 + . . .+C[[x]]≥2 · ∂xn} .

Example 1 For n = 3 the Takens normal form is following

ẋ1 = 2x2 + x1Φ1(x1, G2), ẋ2 = x3 + x1Φ2(x1, G2), ẋ3 = Φ3(x1, G2).

For n = 4 we have

Fj =
∑

a,b,c,d≥0

f
(j)
a,b,c,dG

a
1G

b
2G

c
3G̃

d
4,

where a + 2b + 3c + 4d ≥ 2, a = 0, 1 if d > 0, and 3a + 2b + 3c > 0 for
j = 1, 2, 3.

Proof of Theorem 2. Let Z = Z1 (x) ∂x1 + . . . + Zn (x) ∂xn be a
homogeneous vector field of degree k. We have

adXZ = X (Zn) ∂n

+(X (Zn−1)− (n− 1)Zn) ∂xn−1

. . . . . . . . . . . . . . . . . . . . .

+(X (Z1)− Z2) ∂x1 .

Theorem 2 follows from the following two lemmas.

Lemma 3 In the space C [x]k of homogeneous polynomials we have

kerY ⊕ ImX = C [x]k ,

kerX ⊖ kerY ⊂ ImX,

where kerX ⊖ kerY = C [x]X,>0
k denotes the space of first integrals for X

which contain only terms with nonzero quasi-homogeneous degree degH .

Proof. The vector fields X, Y,H define a representation of the Lie al-
gebra sl (2,C) in the space C [x]k of homogeneous polynomials. It is known
that any finite dimensional representation is split into irreducible represen-
tations, so-called highest weight representations (see [Ser]). Therefore

C [x]k = H1 ⊕ . . .⊕Hm,
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and any Hj has a basis {e1, . . . , ed} such that

Xe1 = 0, Xe2 = (d− 1)e1, . . . , Xed = ed−1,

Y e1 = e2, . . . , Y ed−1 = (d− 1)ed, Y ed = 0,

H (ej) = (2j − d− 1)ej.

We see that ImX = span(e1, . . . , ed−1), kerX = span(e1), kerY = span(ed).
Hence kerY ⊕ ImX = Hj.

If d > 1 then we see that kerX ⊂ ImX. If d = 1 then X = Y = H = 0
and kerX ⊖ kerY = 0 ⊂ ImX.

Now the equalities from Lemma 3 hold when restricted to any subspace
Hj. Therefore they hold also in C[x]k. �

Lemma 4 The space kerY ⊖kerX ·∂x1+. . .+kerY ⊖kerX ·∂xn−1+kerY ·
∂xn is complementary to the space adXXk in the space Xk of homogeneous
vector fields of degree k.

Proof. From Lemma 3 we see that the last component of the action of
adX on Z equals X (Zn), i.e. lies in the image of X in C [x]k. So the n–th
component of the normal form should be the kernel of Y |C[x]k

. Note that
the Zn is not unique, when killing a suitable part in ∂xn ; we can add some
Z̃n ∈ kerX to Zn.

The (n− 1)–th component of the action adX equals X (Zn−1)− λn−1Zn.
So all polynomials from ImX can be killed.

We can hope to make an additional cancellation using Z̃n from kerX.
Lemma 3 says that we can write Z̃n = Z̃<0

n + Z̃0
n, where

— Z̃<0
n lies in ImX (and we gain nothing);

— Z̃0
n belongs to kerY ∩ kerX (here we cancel terms from C [x]Y,0k ).

So, the (n− 1)–th component in the normal form is in kerY ⊖ kerX.
Analogously we consider successively other components. �

Remark 4 We can generalize Theorem 2 to the case when X, the linear
part of V, has several nilpotent Jordan cells. For example, when X is given
by the matrix
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0 n− 1 . . . 0

0 . . .
0 1

0

 0

0


0 m− 1 . . . 0

0 . . .
0 1

0




Then X and the vector field Y , which is given by the matrix


0
1 0

. . . 0
n− 1 0

 0

0


0
1 0

. . . 0
m− 1 0




,

define a representation of the Lie algebra sl(2,C). The normal form is

V Takens = X +
m+n∑
j=1

Fj (G) ∂xj

where Fj(G1, . . . , Gn−1, G
′
1, . . . , G

′
m−1) are formal series of polynomials G2

, . . . , Gn−1 , G′
2 , . . . , G′

m−1 with coefficients being Laurent polynomi-
als in G1 = x1 and G′

1 = xn+1. The polynomials G′
1, G

′
2, . . . , G

′
m−1 gen-

erate the field of constants of the part of Y associated with the variables
xn+1, . . . , xn+m. The polynomials Fj, j ̸= n, n + m, do not contain terms
with zero quasi-homogeneous degree.

Remark 5 Another question is whether the Takens form is analytic
(provided that the initial vector field is analytic near the origin). In the
two-dimensional case the analyticity was proved in [SZ] and [Lo]. Some
partial results in this direction were obtained also by V. Basov [Ba1, Ba2].
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We began to study this problem for n ≥ 3, but it looks very difficult.
We think that when n ≥ 3 the above normal form is not analytic in general.
We plan to continue investigations.

Remark 6 R. Cushman and J. Sanders [CS1, CS2] also studied the
normal form for the nilpotent singularities and also used the representa-
tion theory of the Lie algebra sl(2,C). However their normal form is more
complicated than ours. In fact, they applied the representation of this Lie
algebra directly in the space Xk of homogeneous vector fields using the op-
erator adX , adY and adH , while we are working in the space C[x]k of ho-
mogeneous polynomials. Moreover, they seem not to explore the property
kerX ⊖ kerY ⊂ ImX from Lemma 3.
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