On Fermat curves and maximal nodal curves

Mutsuo Oka
Tokyo University of Science

May 27, 2014, Institute of Mathematics, PAS

Introduction

A nodal curve C is an irreducible plane curve of degree n which contains only nodes ($=A_{1}$ singularities). A nodal curve is called a maximal nodal curve if it is rational and nodal. By Plücker formula, it must contain $\frac{(n-1)(n-2)}{2}$ nodes to be maximal. In the space of polynomials of two variables, a maximal nodal curve can be understood as a generalization of a Chebycheff polynomial. In our paper [?], we constructed a maximal nodal curve of join type $f(x)+g(y)=0$ using a Chebycheff polynomial $f(x)$ and a similar polynomial $g(y)$ that has one maximal value and two minimal values.

Construction from Fermat curveand the Dual Geometry

In this paper, we present another extremely simple way, for a given integer $n>2$, to construct a maximal nodal curve D_{n-1} with a beautiful symmetry, as a bi-product of the geometry of the Fermat curve $x^{n}+y^{n}+1=0$. A smooth point P of a plane curve C is called a flex point of flex-order $k-2, k \geq 3$ if the tangent line T_{P} at P and C intersect with intersection multiplicity k. The maximal nodal curve D_{n}, which we construct in this paper, contains 3 flexes of flex-order $n-2$ and it is symmetric with respect to the permutation of three variables U, V, W.

Zariski Conjecture

By a special case of Zariski and Fulton ([?, ?]), $\pi_{1}\left(\mathbb{P}^{2}-C\right)=\mathbb{Z} / n \mathbb{Z}$ if C is a maximal nodal curve of degree n. The examples D_{n} provide an alternate proof. Zariski observed ([?]) that the fundamental group of the complement of an irreducible curve C of degree n is abelian if C has a flex of flex-order either n or $n-1$. Since the moduli of maximal nodal curves of degree n is irreducible by Harris ([?]), the claim follows.

Construction

For the construction, we start from the Fermat curve $\mathcal{F}_{n}: x^{n}+y^{n}+1=0$ and study singularities of the dual curve $\check{\mathcal{F}}_{n}$. The Fermat curve and the dual curve $\breve{\mathcal{F}}_{n}$ have canonical $\mathbb{Z} / n \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z}$ actions, thus the defining polynomial of $\check{\mathcal{F}}_{n}$ is written as $h\left(u^{n}, v^{n}\right)=0$ for a polynomial $h(u, v)$ of degree $n-1$. The curve $h(u, v)=0$ defines our maximal nodal curve D_{n-1}. Geometrically this is the quotient of the dual curve $\check{\mathcal{F}}_{n}$ by the above action. Moreover the curve D_{n-1} is explicitly parametrized as

$$
D_{n-1}: \quad u(t)=t^{n-1}, \quad v(t)=(-1-t)^{n-1}
$$

The Gauss map and the dual curves

We consider an irreducible plane curve C of degree n,
$C: f(x, y)=0 \subset \mathbb{C}^{2}$. Its homogenization $F(X, Y, Z)=0$ defines the projective curve C of degree n in \mathbb{P}^{2} where
$F(X, Y, Z)=f(X / Z, Y / Z) Z^{n}$. For a smooth point
$P=(a, b, c) \in C$, the tangent line is defined by
$F_{X}(P) X+F_{Y}(P) Y+F_{Z}(P) Z=0$ where F_{X}, F_{Y}, F_{Z} are derivatives in the corresponding variables. The dual projective plane $\breve{\mathbb{P}}^{2}$ has the dual coordinates U, V, W. In the dual projective plane $\breve{\mathbb{P}}^{2}$, we usually work in the affine space $\{W \neq 0\}$ with the coordinates (u, v) where $u=U / W, v=V / W$. The Gauss map associated with C is defined by

$$
G_{F}: C \rightarrow \check{\mathbb{P}}^{2}, \quad G_{F}(P)=\left(F_{X}(P): F_{Y}(P): F_{Z}(P)\right)
$$

Thus in the affine coordinates $(x, y), P=(x, y) \in C$ is mapped into $G_{f}(P)=\left(f_{x}(x, y): f_{y}(x, y):-x f_{x}(x, y)-y f_{y}(x, y)\right)$.

The class formula

$$
\text { Class - formula0n̆ }=n(n-1)-\sum_{P \in \Sigma(C)}(\mu(C, P)+m(C, P)-1)
$$

If C is non-singular, we have $\check{n}=n(n-1)$.
Cyclic action We assume that there exists a polynomial $g(x, y)$ such that $f(x, y)=g\left(x^{m}, y^{s}\right) m \geq s$ for some positive integers $m, s \geq 2$. Under this assumption, we consider the action on \mathbb{P}^{2} of the product of cyclic groups $\mathbb{Z}_{m, s}:=\mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / s \mathbb{Z}$, which is defined as follows. Let $\omega_{\ell}:=\exp (2 \pi i / \ell)$ and we identify the cyclic group $\mathbb{Z} / \ell \mathbb{Z}$ with the multiplicative subgroup of \mathbb{C}^{*} generated by ω_{ℓ}. The action is defined by
$\psi: \mathbb{Z}_{m, s} \times \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}, \quad(\gamma,(x, y)) \mapsto\left(x \omega_{m}^{j}, y \omega_{s}^{k}\right)$, where $\gamma=\left(\omega_{m}^{j}, \omega_{s}^{k}\right)$
In the homogeneous coordinates, this action is written as

$$
(\gamma,(X: Y: Z)) \mapsto\left(X \omega_{n}^{j}: Y \omega_{s}^{k}: Z\right)
$$

Action on Dual space

Define the action of $\mathbb{Z}_{m, s}$ on the dual projective plane similarly:

$$
\begin{aligned}
& \check{\psi}(\gamma,(u, v))=\left(\omega_{m}^{j} u, \omega_{s}^{k} v\right) \text { or, } \\
& \check{\psi}(\gamma,(U: V: W))=\left(\omega_{m}^{j} U: \omega_{s}^{k} V: W\right) .
\end{aligned}
$$

Then by an easy computation,

$$
\begin{gathered}
G_{f}(P)=\quad\left(m x^{m-1} g_{x}\left(x^{m}, y^{s}\right): s y^{s-1} g_{y}\left(x^{m}, y^{s}\right):\right. \\
\left.-m x^{m} g_{x}\left(x^{m}, y^{s}\right)-s y^{s} g_{y}\left(x^{m}, y^{s}\right)\right) \\
G_{f}\left(P^{\gamma}\right)=\left(m\left(\omega_{m}^{j} x\right)^{m-1} g_{x}\left(x^{m}, y^{s}\right): s\left(\omega_{s}^{k} y\right)^{s-1} g_{y}\left(x^{m}, y^{s}\right):\right. \\
\left.-m x^{m} g_{x}\left(x^{m}, y^{s}\right)-s y^{s} g_{y}\left(x^{m}, y^{s}\right)\right) \\
=G_{f}(P)^{1 / \gamma}
\end{gathered}
$$

Uop-Down Isomorphism

Proposition: The dual curve is invariant by the $\mathbb{Z}_{m, s^{-}}$-action. This implies that $\check{f}(u, v)$ can be written as $h\left(u^{m}, v^{s}\right)$ using some polynomial $h(u, v)$. Note that $h(u, v)$ is not the defining polynomial of the dual curve of $g(x, y)=0$ in general. However we have the following fundamental result.
Theorem Let $C(g):=\{(x, y) ; g(x, y)=0\} \subset \mathbb{P}^{2}$ and
$D:=\{(u, v) ; h(u, v)=0\} \subset \breve{\mathbb{P}}^{2}$.
Then there exists a canonical birational mapping $\Phi_{m, s}: C(g) \rightarrow C(h)$.

Proof

Let $\pi_{m, s}: \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}, \check{\pi}_{m, s}: \check{\mathbb{P}}^{2} \rightarrow \check{\mathbb{P}}^{2}$ be the branched covering map defined by

$$
\begin{gathered}
\pi_{m, s}(X: Y: Z)=\left(X^{m}: Y^{s} Z^{m-s}: Z^{m}\right), \pi_{m, s}(x, y)=\left(x^{m}, y^{s}\right) \\
\check{\pi}_{m, s}(U: V: W)=\left(U^{m}: V^{s} W^{m-s}: W^{m}\right), \check{\pi}_{m, s}(u, v)=\left(u^{m}, v^{s}\right) \\
\pi_{m, s}: C \rightarrow C(g) \text { and } \check{\pi}_{m, s}: \check{C} \rightarrow C(h) . \\
C: f(x, y)=0 \quad \xrightarrow{G_{f}} \quad \check{C}: \check{f}(u, v)=0 \\
C(g): g(x, y)=0 \xrightarrow{\pi_{m, s}} C(h): h(u, v)=0
\end{gathered}
$$

Proof-bis

Let us consider the multi-valued section of $\pi_{m, s}$:

$$
\lambda: C(g) \rightarrow C, \lambda(x, y)=\left(x^{1 / m}, y^{1 / s}\right)
$$

The composition $\Phi_{m, s}:=\check{\pi}_{m, s} \circ G_{f} \circ \lambda: C(g) \rightarrow C(h)$ is a well-defined single valued rational mapping and it does not depend on the choice of λ. In fact, it is given by:
$\Phi_{m, s}(x, y)=$

$$
\left(\frac{m^{m} x^{m-1} g_{x}(x, y)^{m}}{\left(-m \times g_{x}(x, y)-s y g_{y}(x, y)\right)^{m}}, \frac{s^{s} y^{s-1} g_{y}(x, y)^{s}}{\left(-m \times g_{x}(x, y)-s y g_{y}(x, y)\right)^{s}}\right)
$$

Similarly we consider a (multi-valued) section $\check{\lambda}: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$, $\check{\lambda}(u, v)=\left(u^{1 / m}, v^{1 / s}\right)$, of $\check{\pi}_{m, s}$ and the composition $\Psi_{m, s}=\pi_{m, s} \circ G_{\check{f}} \circ \check{\lambda}: C(h) \rightarrow C(g)$,
$\Psi_{m, s}(u, v)=$
$\left(\frac{m^{m} u^{m-1}\left(h_{u}(u, v)\right)^{m}}{\left(-m u h_{u}(u, v)-s v h_{v}(u, v)\right)^{m}}, \frac{s^{s} v^{s-1}\left(h_{v}(u, v)\right)^{s}}{\left(-m u h_{u}(u, v)-s v h_{v}(u, v)\right)^{s}}\right)$.
Mutsuo Oka Tokyo University of Science

Proof-bis

It is easy to observe that $\Phi_{m, s}, \Psi_{m, s}$ satisfies $\Psi_{m, s} \circ \Phi_{m, s}=\mathrm{id}{ }_{C(g)}$ and $\Phi_{m, s} \circ \Psi_{m, s}=\operatorname{id}_{C(h)}$ as the $G_{\check{f}}$ and G_{f} are mutually inverse. For example, the equality $\Psi_{m, s} \circ \Phi_{m, s}=\mathrm{id}_{C(h)}$ is shown as follows. Put $\left(x^{\prime}, y^{\prime}\right):=\lambda(x, y)$ and $(u, v):=G_{f}\left(x^{\prime}, y^{\prime}\right)$. Then

$$
\begin{gathered}
\Psi_{m, s} \circ \Phi_{m, s}(x, y)=\pi_{m, s} \circ\left(G_{\breve{f}} \circ \check{\lambda} \circ \check{\pi}_{m, s}\right)(u, v) \\
=\pi_{m, s} \circ G_{\check{f}}\left((u, v)^{\gamma}\right) \quad \exists \gamma \in \mathbb{Z}_{m, s} \\
=\pi_{m, s} \circ\left(G_{\check{f}}(u, v)\right)^{1 / \gamma} \\
=\pi_{m, s}\left(\left(x^{\prime}, y^{\prime}\right)^{1 / \gamma}\right) \\
=\pi_{m, s}\left(x^{\prime}, y^{\prime}\right)=(x, y)
\end{gathered}
$$

Singularities of the dual curves

We recall basic properties for the dual curve which we use later. First case:Singularity from the singular points of C. Suppose that P is a singular point of C. Then $G_{f}(P)$ is a singular point of \check{C}. The exceptional case is when the topological equivalence class of (C, P) is $B_{k, k-1}, k \geq 3$. The Gauss image of P is a flex point of flex-order $k-2$.

Flex points

The locus of the flex points are described by $\operatorname{Hess}(F)(X, Y, Z)=F(X, Y, Z)=0$ where $\operatorname{Hess}(F)(X, Y, Z)$ is the hessian of F :

$$
\operatorname{Hess}(F)(X, Y, Z)=\left|\begin{array}{lll}
F_{X X} & F_{X Y} & F_{X Z} \\
F_{Y X} & F_{Y Y} & F_{Y Z} \\
F_{Z X} & F_{Z Y} & F_{Z Z}
\end{array}\right|
$$

Thus by Bézout theorem, we have

$$
\sharp(\text { flex points })=3 n(n-2)
$$

where the number is counted with multiplicity.

Second case

There is another singularity which is produced from a special point of C. There are two such special points: flex points (already described above) and points with multi-tangent lines.
A smooth point $P \in C$ gives a multi-tangent line if the tangent line T_{P} is also tangent to C at some other point $Q \in C$, so $T_{Q}=T_{P}$. The most common one is a bi-tangent line. If P is a bi-tangent point (so there is another point $Q \in C$ so that $I\left(C, T_{P} ; Q\right)=2$ and any other intersections $C \cap T_{P}$ are transverse), its image by the Gauss map is a node (i.e., A_{1}). If it has q-tangent points, the image is topologically equivalent to a Brieskorn singularity $B_{q, q}$. This singularity has q smooth local branches intersecting transversely.

Dual Curve

The degree \check{n} of \check{C} is

$$
\check{d}=n(n-1)-\sum_{P}(\mu(P)+m(C, P)-1)
$$

Assuming that C is smooth and flex points of C are generic i.e., their flex-order are 3, and that C has only bi-tangent lines, the classical formula tells that class-formula1

$$
\begin{aligned}
& \sharp(\text { bi-tangents })=\frac{(\check{n}-1)(\check{n}-2)}{2}-3 n(n-2)-\frac{(n-1)(n-2)}{2}, \\
& \quad \check{n}=n(n-1) .
\end{aligned}
$$

For more general situation

$$
\frac{(\check{n}-1)(\check{n}-2)}{2}-\sum_{Q \in \Sigma(\check{C})} \delta(\check{C}, Q)=\frac{(n-1)(n-2)}{2}-\sum_{P \in \Sigma(C)} \delta(C, P)
$$

Local (or global) parametrization

We assume that C is locally irreducible at P and C is parametrized as

$$
x=x(t), y=y(t), \quad|t| \leq 1
$$

where x, y are the affine coordinate $x=X / Z, y=Y / Z$. Then the local branch that is the image of the local irreducible germ (C, P) has the parametrization at $G_{f}(P)$ (see [?], for example)

$$
\begin{equation*}
U(t)=y^{\prime}(t), \quad V(t)=-x^{\prime}(t), W(t)=x^{\prime}(t) y(t)-x(t) y^{\prime}(t) \tag{1}
\end{equation*}
$$

If \check{C} is locally irreducible at $G_{f}(P)$, the above parametrization describes the local germ $\left(\check{C}, G_{f}(P)\right)$. Equivalently in the affine coordinates $(u, v)=(U / W, V / W)$, the parametrization is given as

$$
\begin{equation*}
u(t)=\frac{y^{\prime}(t)}{x^{\prime}(t) y(t)-x(t) y^{\prime}(t)}, \quad v(t)=\frac{-x^{\prime}(t)}{x^{\prime}(t) y(t)-x(t) y^{\prime}(t)} \tag{2}
\end{equation*}
$$

Geometry of Fermat curves

In this section, we study the Fermat curve of degree n :

$$
\mathcal{F}_{n}: F(X, Y, Z)=X^{n}+Y^{n}+Z^{n}=0
$$

We denote the degree of the dual curve $\check{\mathcal{F}}_{n}$ by \check{n}. Note that $\check{n}=n(n-1)$. There is an obvious $\mathbb{Z}_{n, n}$ acts on \mathcal{F}_{n} and $\check{\mathcal{F}}_{n}$. Note that \mathcal{F}_{n} has 3 n flexes of flex-order $n-2$ at

$$
\begin{gathered}
P_{1, j}:=\left(0: \xi_{j}: 1\right), P_{2, j}:=\left(\xi_{j}: 0: 1\right), P_{3, j}:=\left(1: \xi_{j}: 0\right) \\
\quad j=0, \ldots, n-1 \\
\text { where } \quad \xi_{j}=\exp ((2 j+1) \sqrt{-1} / n)
\end{gathered}
$$

The tangent line at $P_{1, j}$ is defined by $y=\xi_{j}$ and it produces a $B_{n, n-1}$ singularity on $\check{\mathcal{F}}_{n}$ at $(U: V: W)=\left(0: 1:-\xi_{j}\right)$. The situation is exactly the same for other flexes through a permutation of coordinates.

Bi-tangents.

Now we consider bi-tangent (or multi-tangent) lines on \mathcal{F}_{n}. The dual curve $\check{\mathcal{F}}_{n}$ has genus $\frac{(n-1)(n-2)}{2}$ and $3 n B_{n, n-1}$ singularities coming from flex points. Then by the formula (??), the number of the bi-tangent lines τ should be

$$
\begin{aligned}
\tau & =\frac{(\check{n}-1)(\check{n}-2)}{2}-3 n \times \frac{(n-1)(n-2)}{2}-\frac{(n-1)(n-2)}{2} \\
& =\frac{n^{2}(n-2)(n-3)}{2}
\end{aligned}
$$

Calculation of bi-tangents

The Fermat curve \mathcal{F}_{n} has $\frac{n^{2}(n-2)(n-3)}{2}$ bi-tangent lines.

Proof.

Let $\omega:=\exp (2 \pi \sqrt{-1} /(n-1)$.
Suppose that $P=(a, b), Q=\left(a^{\prime}, b^{\prime}\right) \in \mathcal{F}_{n}$ are bi-tangent points.
The tangent line at P is given by $a^{n-1} x+b^{n-1} y+1=0$. Thus
$G_{f}(P)=\left(a^{n-1}: b^{n-1}: 1\right)$ and the assumption implies
$a^{n}+b^{n}+1=\left(a^{\prime}\right)^{n}+\left(b^{\prime}\right)^{n}+1=0, \quad a^{n-1}=\left(a^{\prime}\right)^{n-1}, \quad b^{n-1}=\left(b^{\prime}\right)^{n-1}$
Thus we can write $a^{\prime}=a \omega^{k}, \quad b^{\prime}=b \omega^{j}$ for some integers $0<j, k<n-1$ and $a^{n}\left(\omega^{k}-\omega^{j}\right)=\left(\omega^{j}-1\right)$. As we assume that $P \neq Q$ and $P, Q \in \mathbb{C}^{2}$, we may assume that $j \neq k$ and $k, j \neq 0$. Thus putting $\beta_{j, k}:=\frac{\omega^{j}-1}{\omega^{k}-\omega^{j}}$, we get:

$$
a^{n}=\beta_{j, k}, b^{n}=-1-\beta_{j, k}, \quad a^{\prime}=a \omega^{k}, b^{\prime}=b \omega^{j}
$$

for some $1 \leq j, k \leq n-1, k \neq j$.

Proof-bis

For any $0<j_{k}<n-1$, put $j_{c}=n-1-j$. Observe that $\omega^{-j}=\omega^{j_{c}}$. Put $\alpha_{j, k}:=\frac{\omega^{k}-1}{1-\omega^{j}}$. Then we have

$$
\beta_{j, k}=\frac{\omega^{j}-1}{\omega^{k}-\omega^{j}}=\alpha_{(j-k)_{c}, j_{c}}
$$

The complex number $\beta_{j, k}$, or equivalently $\alpha_{j, k}, 1 \leq j, k \leq n-1$ and $j \neq k$ are all distinct.

Geometry of the dual Fermat curve $\check{\mathcal{F}}_{n}$

Let $\check{f}(u, v)=0$ (and put $\check{f}(U, V, W)$ be its homogenization) be the defining affine (resp. homogeneous) polynomial of the dual curve where u, v are affine coordinates defined by $u=U / W, v=V / W$. As \mathcal{F}_{n} is a symmetric polynomial with $\mathbb{Z}_{n, n}$ action, $\check{F}(U, V, W)$ is a symmetric polynomial of degree $n(n-1)$ with $\mathbb{Z}_{n, n}$ action. (Recall that $\mathbb{Z}_{n, n}=\mathbb{Z} / n \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z}$.) Namely we can write that $\check{f}(u, v)=h\left(u^{n}, v^{n}\right)$ for some symmetric polynomial $h(u, v)$ of degree $n-1$. We have already observed that $\check{n}=n(n-1)$ and the singularities are $3 n B_{n, n-1}$ singularities, and $n^{2}(n-2)(n-3) / 2$ nodes i.e., A_{1}-singularities. On each coordinate axis $U=0, V=0$ and $W=0$, there are exactly $n B_{n, n-1}$ singularities. The tangent line at $P_{1, j}$ is defined by $y=\xi_{j}$ and its Gauss image is a $B_{n, n-1}$ singularity at $(U: V: W)=\left(0: 1:-\xi_{j}\right)$.

Construction of maximal nodal curves

We will give an explicit construction of such a maximal nodal curve as an application of the Fermat curve. Let $\check{F}(U, V, W)$ be the defining polynomial of $\check{\mathcal{F}}_{n}$ and write it as
$\check{F}(U, V, W)=H\left(U^{n}, V^{n}, W^{n}\right)$ with $H(U, V, W)$ is a polynomial of degree $n-1$. Then we consider the curve of degree $n-1$ defined by $H(U, V, W)=0$. We denote it as D_{n-1}. We claim that D_{n-1} is a maximal nodal curve of degree $n-1$. In fact, the rationality follows from the rationality of the line $L: x+y+1=0$ and by Theorem ??. As \check{F}_{n} has $n^{2}(n-1)(n-2) / 2$ nodes outside of the union of coordinate axis $U V W=0$ and they are invariant by the $(\mathbb{Z} / n \mathbb{Z})^{2}$ action. We consider n^{2}-fold branched covering $\check{\pi}_{n, n}: \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$ as before. The image of $n^{2}(n-2)(n-3) / 2$ nodes is now $(n-2)(n-3) / 2$ nodes on D_{n-1}. Thus D_{n-1} is maximal nodal.

Theorem

The curve D_{n-1} is a maximal nodal curve and is parametrized as follows.

$$
D_{n-1}: u(t)=t^{n-1}, \quad v(t)=(-1-t)^{n-1}
$$

It has 3 flexes of flex-order $n-1$ on each coordinate axis whose tangent lines are the coordinate axes. The defining polynomial $h(u, v)$ of D_{n-1} is given by:

$$
h(u, v)=\operatorname{Resultant}(u-u(t), v-v(t), t)
$$

References

(J. Harris.
On the Severi problem.
Invent. Math., 84(3):445-461, 1986.
(1) M. Namba.

Geometry of projective algebraic curves.
Decker, New York, 1984.

- M. Oka.

Geometry of cuspidal sextics and their dual curves.
In Singularities—Sapporo 1998, pages 245-277. Kinokuniya,
Tokyo, 2000.
圊 R. J. Walker.
Algebraic Curves.
Princeton Mathematical Series, vol. 13. Princeton University
Press, Princeton, N. J., 1950.

