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Introduction

A nodal curve C is an irreducible plane curve of degree n which
contains only nodes (= A1 singularities). A nodal curve is called a
maximal nodal curve if it is rational and nodal. By Plücker
formula, it must contain (n−1)(n−2)

2 nodes to be maximal. In the
space of polynomials of two variables, a maximal nodal curve can
be understood as a generalization of a Chebycheff polynomial. In
our paper [?], we constructed a maximal nodal curve of join type
f (x) + g(y) = 0 using a Chebycheff polynomial f (x) and a similar
polynomial g(y) that has one maximal value and two minimal
values.
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Construction from Fermat curveand the Dual Geometry

In this paper, we present another extremely simple way, for a given
integer n > 2, to construct a maximal nodal curve Dn−1 with a
beautiful symmetry, as a bi-product of the geometry of the Fermat
curve xn + yn + 1 = 0. A smooth point P of a plane curve C is
called a flex point of flex-order k − 2, k ≥ 3 if the tangent line TP

at P and C intersect with intersection multiplicity k. The maximal
nodal curve Dn, which we construct in this paper, contains 3 flexes
of flex-order n − 2 and it is symmetric with respect to the
permutation of three variables U,V ,W .
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Zariski Conjecture

By a special case of Zariski and Fulton ([?, ?]),
π1(P2 − C ) = Z/nZ if C is a maximal nodal curve of degree n.
The examples Dn provide an alternate proof. Zariski observed ([?])
that the fundamental group of the complement of an irreducible
curve C of degree n is abelian if C has a flex of flex-order either n
or n − 1. Since the moduli of maximal nodal curves of degree n is
irreducible by Harris ( [?]), the claim follows.
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Construction

For the construction, we start from the Fermat curve
Fn : xn + yn + 1 = 0 and study singularities of the dual curve F̌n.
The Fermat curve and the dual curve F̌n have canonical
Z/nZ× Z/nZ actions, thus the defining polynomial of F̌n is
written as h(un, vn) = 0 for a polynomial h(u, v) of degree n − 1.
The curve h(u, v) = 0 defines our maximal nodal curve Dn−1.
Geometrically this is the quotient of the dual curve F̌n by the above
action. Moreover the curve Dn−1 is explicitly parametrized as

Dn−1 : u(t) = tn−1, v(t) = (−1− t)n−1.
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The Gauss map and the dual curves

We consider an irreducible plane curve C of degree n,
C : f (x , y) = 0 ⊂ C2. Its homogenization F (X ,Y ,Z ) = 0 defines
the projective curve C of degree n in P2 where
F (X ,Y ,Z ) = f (X/Z ,Y /Z )Z n. For a smooth point
P = (a, b, c) ∈ C , the tangent line is defined by
FX (P)X + FY (P)Y + FZ (P)Z = 0 where FX ,FY ,FZ are
derivatives in the corresponding variables. The dual projective
plane P̌2 has the dual coordinates U,V ,W . In the dual projective
plane P̌2, we usually work in the affine space {W ̸= 0} with the
coordinates (u, v) where u = U/W , v = V /W . The Gauss map
associated with C is defined by

GF : C → P̌2, GF (P) = (FX (P) : FY (P) : FZ (P)).

Thus in the affine coordinates (x , y), P = (x , y) ∈ C is mapped
into Gf (P) = (fx(x , y) : fy (x , y) : −xfx(x , y) − yfy (x , y)).
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The class formula

Class − formula0ň = n(n − 1)−
∑

P∈Σ(C)

(µ(C ,P) +m(C ,P)− 1)

If C is non-singular, we have ň = n(n − 1).
Cyclic action We assume that there exists a polynomial g(x , y)
such that f (x , y) = g(xm, y s) m ≥ s for some positive integers
m, s ≥ 2. Under this assumption, we consider the action on P2 of
the product of cyclic groups Zm,s := Z/mZ× Z/sZ, which is
defined as follows. Let ωℓ := exp(2πi/ℓ) and we identify the cyclic
group Z/ℓZ with the multiplicative subgroup of C∗ generated by
ωℓ. The action is defined by

ψ : Zm,s×P2 → P2, (γ, (x , y)) 7→ (x ωj
m, y ω

k
s ), where γ = (ωj

m, ω
k
s )

In the homogeneous coordinates, this action is written as

(γ, (X : Y : Z )) 7→ (Xωj
n : Yωk

s : Z )
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Action on Dual space

Define the action of Zm,s on the dual projective plane similarly:

ψ̌(γ, (u, v)) = (ωj
mu, ω

k
s v) or,

ψ̌(γ, (U : V : W )) = (ωj
mU : ωk

s V : W ).

Then by an easy computation,

Gf (P) = (mxm−1gx(x
m, y s) : sy s−1gy (x

m, y s) :

−mxmgx(x
m, y s)− sy sgy (x

m, y s))

Gf (P
γ) = (m(ωj

mx)m−1gx(x
m, y s) : s(ωk

s y)
s−1gy (x

m, y s) :

−mxmgx(x
m, y s)− sy sgy (x

m, y s))

= Gf (P)
1/γ
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Uop-Down Isomorphism

Proposition: The dual curve is invariant by the Zm,s -action. This
implies that f̌ (u, v) can be written as h(um, v s) using some
polynomial h(u, v). Note that h(u, v) is not the defining
polynomial of the dual curve of g(x , y) = 0 in general. However
we have the following fundamental result.
Theorem Let C (g) := {(x , y); g(x , y) = 0} ⊂ P2 and
D := {(u, v); h(u, v) = 0} ⊂ P̌2.
Then there exists a canonical birational mapping
Φm,s : C (g) → C (h).
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Proof

Let πm,s : P2 → P2, π̌m,s : P̌2 → P̌2 be the branched covering map
defined by

πm,s(X : Y : Z ) = (Xm : Y s Zm−s : Zm), πm,s(x , y) = (xm, y s)

π̌m,s(U : V : W ) = (Um : V s Wm−s : Wm), π̌m,s(u, v) = (um, v s)

πm,s : C → C (g) and π̌m,s : Č → C (h).

C : f (x , y) = 0
Gf−→ Č : f̌ (u, v) = 0yπm,s

yπ̌m,s

C (g) : g(x , y) = 0
Φm,s−→ C (h) : h(u, v) = 0
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Proof-bis

Let us consider the multi-valued section of πm,s :

λ : C (g) → C , λ(x , y) = (x1/m, y1/s).

The composition Φm,s := π̌m,s ◦ Gf ◦ λ : C (g) → C (h) is a
well-defined single valued rational mapping and it does not depend
on the choice of λ. In fact, it is given by:

Φm,s(x , y) =(
mm xm−1gx(x , y)

m

(−mx gx(x , y)− s y gy (x , y))m
,

ss y s−1gy (x , y)
s

(−mx gx(x , y)− s y gy (x , y))s

)
Similarly we consider a (multi-valued) section λ̌ : C2 → C2,
λ̌(u, v) = (u1/m, v1/s), of π̌m,s and the composition
Ψm,s = πm,s ◦ Gf̌ ◦ λ̌ : C (h) → C (g),

Ψm,s(u, v) =(
mm um−1(hu(u, v))

m

(−mu hu(u, v)− s v hv (u, v))m
,

ss v s−1(hv (u, v))
s

(−mu hu(u, v)− s v hv (u, v))s

)
.
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Proof-bis

It is easy to observe that Φm,s , Ψm,s satisfies Ψm,s ◦ Φm,s = idC(g)

and Φm,s ◦Ψm,s = idC(h) as the Gf̌ and Gf are mutually inverse.
For example, the equality Ψm,s ◦ Φm,s = idC(h) is shown as follows.
Put (x ′, y ′) := λ(x , y) and (u, v) := Gf (x

′, y ′). Then

Ψm,s ◦ Φm,s(x , y) = πm,s ◦ (Gf̌ ◦ λ̌ ◦ π̌m,s)(u, v)

= πm,s ◦ Gf̌ ((u, v)
γ) ∃γ ∈ Zm,s

= πm,s ◦ (Gf̌ (u, v))
1/γ

= πm,s((x
′, y ′)1/γ)

= πm,s(x
′, y ′) = (x , y)
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Singularities of the dual curves

We recall basic properties for the dual curve which we use later.
First case:Singularity from the singular points of C . Suppose that
P is a singular point of C . Then Gf (P) is a singular point of Č .
The exceptional case is when the topological equivalence class of
(C ,P) is Bk,k−1, k ≥ 3 . The Gauss image of P is a flex point of
flex-order k − 2.
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Flex points

The locus of the flex points are described by
Hess(F )(X ,Y ,Z ) = F (X ,Y ,Z ) = 0 where Hess(F )(X ,Y ,Z ) is
the hessian of F :

Hess(F )(X ,Y ,Z ) =

∣∣∣∣∣∣
FXX FXY FXZ
FYX FYY FYZ
FZX FZY FZZ

∣∣∣∣∣∣
Thus by Bézout theorem, we have

♯(flex points) = 3n(n − 2)

where the number is counted with multiplicity.
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Second case

There is another singularity which is produced from a special point
of C . There are two such special points: flex points (already
described above) and points with multi-tangent lines.
A smooth point P ∈ C gives a multi-tangent line if the tangent
line TP is also tangent to C at some other point Q ∈ C , so
TQ = TP . The most common one is a bi-tangent line. If P is a
bi-tangent point ( so there is another point Q ∈ C so that
I (C ,TP ;Q) = 2 and any other intersections C ∩ TP are
transverse), its image by the Gauss map is a node (i.e., A1). If it
has q-tangent points, the image is topologically equivalent to a
Brieskorn singularity Bq,q. This singularity has q smooth local
branches intersecting transversely.
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Dual Curve

The degree ň of Č is

ď = n(n − 1)−
∑
P

(µ(P) +m(C ,P)− 1)

Assuming that C is smooth and flex points of C are generic i.e.,
their flex-order are 3, and that C has only bi-tangent lines, the
classical formula tells that
class-formula1

♯(bi-tangents) =
(ň − 1)(ň − 2)

2
− 3n(n − 2)− (n − 1)(n − 2)

2
,

ň = n(n − 1).

For more general situation

(ň − 1)(ň − 2)

2
−

∑
Q∈Σ(Č)

δ(Č ,Q) =
(n − 1)(n − 2)

2
−

∑
P∈Σ(C)

δ(C ,P)
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Local (or global) parametrization

We assume that C is locally irreducible at P and C is parametrized
as

x = x(t), y = y(t), |t| ≤ 1

where x , y are the affine coordinate x = X/Z , y = Y /Z . Then the
local branch that is the image of the local irreducible germ (C ,P)
has the parametrization at Gf (P) (see [?], for example)

U(t) = y ′(t), V (t) = −x ′(t), W (t) = x ′(t)y(t) − x(t)y ′(t) (1)

If Č is locally irreducible at Gf (P), the above parametrization
describes the local germ (Č ,Gf (P)). Equivalently in the affine
coordinates (u, v) = (U/W ,V /W ), the parametrization is given as

u(t) =
y ′(t)

x ′(t)y(t) − x(t)y ′(t)
, v(t) =

−x ′(t)

x ′(t)y(t) − x(t)y ′(t)
(2)
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Geometry of Fermat curves

In this section, we study the Fermat curve of degree n:

Fn : F (X ,Y ,Z ) = X n + Y n + Z n = 0.

We denote the degree of the dual curve F̌n by ň. Note that
ň = n(n − 1). There is an obvious Zn,n acts on Fn and F̌n.
Note that Fn has 3n flexes of flex-order n − 2 at

P1,j := (0 : ξj : 1), P2,j := (ξj : 0 : 1), P3,j := (1 : ξj : 0),

j = 0, . . . , n − 1

where ξj = exp((2j + 1)
√
−1/n)

The tangent line at P1,j is defined by y = ξj and it produces a
Bn,n−1 singularity on F̌n at (U : V : W ) = (0 : 1 : − ξj). The
situation is exactly the same for other flexes through a
permutation of coordinates.
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Bi-tangents.

Now we consider bi-tangent (or multi-tangent) lines on Fn. The

dual curve F̌n has genus (n−1)(n−2)
2 and 3n Bn,n−1 singularities

coming from flex points. Then by the formula (??), the number of
the bi-tangent lines τ should be

τ =
(ň − 1)(ň − 2)

2
− 3n × (n − 1)(n − 2)

2
− (n − 1)(n − 2)

2

=
n2(n − 2)(n − 3)

2
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Calculation of bi-tangents

The Fermat curve Fn has n2(n−2)(n−3)
2 bi-tangent lines.
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Proof.

Let ω := exp(2π
√
−1/(n − 1).

Suppose that P = (a, b), Q = (a′, b′) ∈ Fn are bi-tangent points.
The tangent line at P is given by an−1x + bn−1y + 1 = 0. Thus
Gf (P) = (an−1 : bn−1 : 1) and the assumption implies

an + bn + 1 = (a′)n + (b′)n + 1 = 0, an−1 = (a′)n−1, bn−1 = (b′)n−1 (3)

Thus we can write a′ = aωk , b′ = bωj for some integers
0 < j , k < n − 1 and an(ωk − ωj) = (ωj − 1). As we assume that
P ̸= Q and P,Q ∈ C2, we may assume that j ̸= k and k, j ̸= 0.
Thus putting βj ,k := ωj−1

ωk−ωj , we get:

an = βj ,k , b
n = −1− βj ,k , a′ = aωk , b′ = bωj

for some 1 ≤ j , k ≤ n − 1, k ̸= j .
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Proof-bis

For any 0 < j < n− 1, put jc = n− 1− j . Observe that ω−j = ωjc .
Put αj ,k := ωk−1

1−ωj . Then we have

βj ,k =
ωj − 1

ωk − ωj
= α(j−k)c ,jc

The complex number βj ,k , or equivalently αj ,k , 1 ≤ j , k ≤ n − 1
and j ̸= k are all distinct.
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Geometry of the dual Fermat curve F̌n

Let f̌ (u, v) = 0 (and put F̌ (U,V ,W ) be its homogenization) be
the defining affine (resp. homogeneous) polynomial of the dual
curve where u, v are affine coordinates defined by
u = U/W , v = V /W . As Fn is a symmetric polynomial with Zn,n

action, F̌ (U,V ,W ) is a symmetric polynomial of degree n(n − 1)
with Zn,n action. (Recall that Zn,n = Z/nZ× Z/nZ.)
Namely we can write that f̌ (u, v) = h(un, vn) for some symmetric
polynomial h(u, v) of degree n − 1. We have already observed that
ň = n(n − 1) and the singularities are 3n Bn,n−1 singularities, and
n2(n − 2)(n− 3)/2 nodes i.e., A1-singularities. On each coordinate
axis U = 0, V = 0 and W = 0, there are exactly n Bn,n−1

singularities. The tangent line at P1,j is defined by y = ξj and its
Gauss image is a Bn,n−1 singularity at (U : V : W ) = (0 : 1 : −ξj).
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Construction of maximal nodal curves

We will give an explicit construction of such a maximal nodal curve
as an application of the Fermat curve. Let F̌ (U,V ,W ) be the
defining polynomial of F̌n and write it as
F̌ (U,V ,W ) = H(Un,V n,W n) with H(U,V ,W ) is a polynomial
of degree n − 1. Then we consider the curve of degree n − 1
defined by H(U,V ,W ) = 0. We denote it as Dn−1. We claim that
Dn−1 is a maximal nodal curve of degree n − 1. In fact, the
rationality follows from the rationality of the line L : x + y + 1 = 0
and by Theorem ??. As F̌n has n2(n − 1)(n − 2)/2 nodes outside
of the union of coordinate axis UVW = 0 and they are invariant by
the (Z/nZ)2 action. We consider n2-fold branched covering
π̌n,n : P2 → P2 as before. The image of n2(n − 2)(n − 3)/2 nodes
is now (n − 2)(n − 3)/2 nodes on Dn−1. Thus Dn−1 is maximal
nodal.

Mutsuo Oka Tokyo University of Science On Fermat curves and maximal nodal curves



Theorem

The curve Dn−1 is a maximal nodal curve and is parametrized as
follows.

Dn−1 : u(t) = tn−1, v(t) = (−1− t)n−1

It has 3 flexes of flex-order n − 1 on each coordinate axis whose
tangent lines are the coordinate axes. The defining polynomial
h(u, v) of Dn−1 is given by:

h(u, v) = Resultant (u − u(t), v − v(t), t).
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