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Preface

This volume contains papers written on the occasion of the 25th anniversary
of the Singularity Theory Seminar acting in Warsaw University of Technol-
ogy. Around eight hundred talks by leading experts in singularities, mathe-
matical physics, symplectic geometry, differential geometry, algebraic geom-
etry, local algebra and related topics were delivered in form of minicourses,
research lectures and reports. The Seminar’s activity culminated in the con-
densed school-conferences organized every year. Since 1998 these conferences
were dominated by very productive collaboration teams: the ”Geometry and
Topology of Caustics” team and the ”Polish-Japanese Singularity Theory
Working Days” team, both oriented towards modern implementations of sin-
gularity theory.

In this volume we collect papers on the part of singularity theory related
to its geometrical representations: A-equivalence of maps according to the
volume preserving or symplectic diffeomorphisms. Integrability of implicit
Hamiltonian systems around singularities. Reachable sets for the Heisenberg
sub-Lorentzian structure. The complex symplectic moduli spaces of uni-
modal parametric plane curve singularities. Admissible weights for weighted
Bergman spaces. Exotic moduli of Goursat distributions. The Euler charac-
teristic of a link of a set defined by a Noetherian family of analytic functions.
Drapeau Theorem for differential systems. Formal orbital normal forms for
the nilpotent singularity. Surfaces which contain many circles. The Euler
number of the normalization of a certain singular hypersurface. Projective
invariants associated to the special parabolic points of surfaces and to swal-
lowtails. Centre symmetry sets and other invariants of algebraic sets.

The geometric ideas initiated by considerations of singularity theory have
been tremendously successful, and we believe that their interaction with the
central mathematical disciplines and other branches of science will bring a
substantial feedback and new interesting mathematical methods for applica-
tions.

StanisÃlaw Janeczko
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Volume-preserving diffeomorphisms on varieties and
AΩ-equivalence of maps

Wojciech Domitrz 1 and Joachim Rieger 2

Abstract

We describe a cohomological criterion for a pair of diffeomorphic
variety-germs (or, more generally, set-germs) to be volume-preserving
diffeomorphic. We also show that for the class of varieties that are
quasi-homogeneous with respect to a smooth submanifold this coho-
mology vanishes, so that volume-preserving diffeomorphic is equiva-
lent to diffeomorphic (over C) or orientation-preserving diffeomorphic
(over R). Likewise, we give a criterion for a pair of left-right equivalent
map-germs to be AΩ-equivalent (i.e. left-right equivalent by volume-
preserving diffeomorphisms on the left) and we show that for the class
of weakly quasi-homogeneous map-germs each left-right orbit corre-
sponds to one AΩ-orbit (over C) or to one or two AΩ-orbits (over
R).

1 Introduction

We study the local classification of singular varieties and maps under the
action of the group of volume-preserving diffeomorphisms, which is not a
geometric subgroup in the sense of Damon [11] (the tangent space fails to have
the structure of a finitely generated module). The definition of a geometric
subgroup G of the Mather groups A and K collects the properties that are
required in the proofs of the finite determinacy and versal unfolding theorems
for any such G, the central theorems for any classification. For non-geometric
subgroups of A and K moduli (and even functional moduli) often appear
rather quickly already in low codimension (even in codimension 0), see e.g.
[14]. On the other hand, Martinet wrote 30 years ago in his book (see p. 50
of the English translation [29]) on the classification problem in unimodular
geometry – i.e. the classification of map-germs under the subgroup AΩ of A

1Faculty of Mathematics and Information Science, Warsaw University of Technology,
Pl. Politechniki 1, 00-661 Warszawa, Poland, e-mail: domitrz@mini.pw.edu.pl

2Institut für Algebra und Geometrie, Universität Halle, D-06099 Halle (Saale), Ger-
many, e-mail: rieger@mathematik.uni-halle.de
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in which the target diffeomorphisms are volume preserving – that the groups
involved “are big enough that there is still some hope of finding a reasonable
classification theorem”. It turns out that Martinet was right – the results of
the present paper imply, for example, that the classifications of stable maps
for AΩ and A agree (at least over C).

Apart from the AΩ-equivalence of map-germs, we will study volume-
preserving diffeomorphisms on set-germs V ⊂ (Kn, 0). Despite the title of
our paper we will only require that I(V ) 6= {0} (with I(V ) the vanishing
ideal) and use the terms set-germ and germ of a variety to mean the same
thing (in many applications of our results V will indeed be a variety, defined
by a collection of analytic or C∞ function-germs, with possibly non-isolated
singularities, e.g. when V is the discriminant or the image of a mapping).

The following earlier work is related to our results on volume-preserving
diffeomorphisms on set-germs. In [39], [10] the local classification problem
for functions under the action of volume-preserving diffeomorphisms was first
considered (leading to the so-called isochore Morse Lemma), and more re-
cently isochore versal deformations were studied in [9] and [21]. The results
of [39], [10] were generalized in another direction in [16], [17] and [18]. The
starting point of the present paper are the articles [2], [4], [38] and [23]. In [2]
powers of C-analytic volume forms were studied. In particular V. I. Arnol’d
proved that two germs of quasi-homogeneous C-analytic hypersurfaces with
isolated singularity are volume-preserving diffeomorphic if and only if they
are diffeomorphic. The generalization of this result was obtained in [38]
(see also [25],[26],[27],[28]). In that paper A. N. Varchenko proved that the
dimension of the moduli space of germs of C-analytic volume forms under
the action of diffeomorphism-germs preserving a fixed hypersurface with an
isolated singularity is equal to the difference of the Milnor number and the
Tjurina number of this hypersurface. (By a result of K. Saito [37] this dif-
ference is zero if and only if the hypersurface is quasi-homogeneous.)

The results on AΩ-equivalence of map-germs f : (Kn, 0) → (Kp, 0) in the
present paper are related to the following earlier work. In [4] V. I. Arnol’d
introduced the local symplectic algebra and classified singular parameter-
ized curves of the type A2k on a symplectic manifold. G. Ishikawa and S.
Janeczko studied the local classification problem of parameterized curves on
2-dimensional symplectic manifold. (In dimension 2 a symplectic form is a
volume form.) All simple germs in this classification are quasi-homogeneous
and the orbit of an A-simple C-analytic quasi-homogeneous germ under the
action of C-analytic symplectomorphisms is the same as the A-orbit of this
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germ. As a consequence of our results on AΩ-equivalence of map-germs we
obtain the following generalization of this result on parameterized curve-
germs in symplectic 2-manifolds: an A-simple map-germ from an n-manifold
into a symplectic 2-manifold is quasi-homogeneous if and only if its A-orbit
and its AΩ-orbit coincide (in target dimension 2 the volume preserving dif-
feomorphisms are symplectomorphisms).

Here is an outline of the content of the present paper. In Section 2 we
describe the main equivalence relations for germs of volume forms and map-
germs and we summarize our main results.

In Section 3 we define the notion of a weak algebraic restriction of the
germ of a k-form to a germ of a singular variety V , which is a modification
of the notion of algebraic restriction defined by M. Zhitomirskii ([41], see
also [12]). The k-forms with zero weak algebraic restriction to V form a
subcomplex W∗

0 (V ) of the de Rham complex on Kn, and we will see that
Hn(W∗

0 (V )) vanishes for germs V that are quasi-homogeneous with respect to
a smooth submanifold (as defined in [13]: the quasi-homogeneity with respect
to a smooth submanifold may be understood as the quasi-homogeneity with
positive and zero weights).

In Section 4 we use the cohomology of the complex W∗
0 (V ) introduced in

the previous section to present necessary and sufficient conditions for a pair
of diffeomorphic variety-germs – or, more generally, set-germs – to be volume-
preserving diffeomorphic (RΩ-equivalent for some given volume form Ω) and
for a pair of volume forms to be RV -equivalent (i.e. to be related by pull-
back by a diffeomorphism preserving a given variety-germ V ). Furthermore,
we show that dimKHn(W∗

0 (V )) is the dimension of the RV -moduli space
and that Hn(W∗

0 (V )) vanishes for those V that are quasi-homogeneous with
respect to a smooth submanifold.

In Sections 5 and 6 we study AΩ- and Af -equivalence of map-germs and
volume forms (in the same way as beforeRΩ- andRV -equivalence of varieties
and volume forms): for AΩ-equivalence we fix a volume form Ω on the target
and require that the target (left) diffeomorphisms in a left-right equivalence
of a pair of map-germs preserve Ω, whereas for Af equivalence the map-
germ f is given and a pair of volume forms on the target of f is related
by pull-back by some Φ, where (Φ, Ψ) lies in the isotropy subgroup of f in
the group A of left-right equivalences. We present necessary and sufficient
conditions for AΩ-equivalence of map-germs and Af -equivalence of volume
forms and we give formulas for the dimensions of the Af - and AΩ-moduli
spaces. Furthermore, we show that for the class of weakly quasi-homogeneous
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map-germs each left-right orbit corresponds to one AΩ-orbit (over C) or to
one or two AΩ-orbits (over R). The study of AΩ- and Af -equivalence in
Section 5 is in the style of that of RΩ- and RV -equivalence in Section 4.
In Section 6 we study the AΩ classification of map-germs using infinitesimal
methods (in the style of Mather, looking at the “tangent spaces” of AΩ-
orbits). Our results give the classification of AΩ-orbits of maps Cn → Cp

from the corresponding lists of A-simple germs f as follows: f is AΩ-simple
if and only if it is weakly quasi-homogeneous and not A-adjacent to any
non-weakly quasi-homogeneous germ. In dimensions (n, p) with p < 2n it is
sufficient to work with the smaller class of quasi-homogeneous map-germs,
but for p ≥ 2n the wider class of weakly quasi-homogeneous germs is required
for obtaining the AΩ-simple orbits – all our examples of A-simple weakly
quasi-homogeneous map-germs, which are not quasi-homogeneous, occur for
p ≥ 2n.

Acknowledgements. The authors wish to express their thanks to Goo
Ishikawa, StanisÃlaw Janeczko, Andrew du Plessis, Maria Ruas and Michail
Zhitomirskii for many helpful conversations and remarks during the writing
of this paper. These results were obtained while the authors were guests
at the Institute of Mathematics, Polish Academy of Sciences (IMPAN) and
the Banach Centre at IMPAN, respectively, where WD was supported by
IMPAN and JHR by the EU programme Centre of Excellence – IMPAN-
Banach Centre, ICA1-CT-2000-70024.

2 Summary of the main equivalence relations

and results

Our results on the equivalence of varieties V0 and V1 under volume preser-
ving diffeomorphisms (i.e. under RΩ-equivalence, where Ω is a fixed volume
form on the ambient space) will be deduced from corresponding statements
about the equivalence of pairs of volume forms Ω0 and Ω1 under pull-back
by diffeomorphisms RV -preserving a fixed variety V . Likewise, our results
about AΩ equivalence of map-germs f, g : (Kn, 0) → (Kp, 0) (where Ω is a
fixed volume form on Kp) will follow from corresponding statements about
what we call Af equivalence (with f : (Kn, 0) → (Kp, 0) fixed) of volume
forms Ω0 and Ω1 on Kp below.
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Convention: throughout this paper we will be considering germs of
maps, coordinate changes, differential forms, vector fields etc. at the origin
in Kn or Kp, and all objects are real-analytic or smooth (C∞) when K = R
and complex-analytic when K = C. Also recall that we do not distinguish
germs of a variety V and set-germs: we only assume that the ideal of (smooth
or analytic) function-germs vanishing on V is different from {0}. With this
understood we consider the following equivalences.

(i) RV and IRV equivalence. Given a set-germ V ⊂ (Kn, 0) and a pair
of volume forms Ωi, i = 0, 1 we have:

Ω0 ∼RV
Ω1 ⇐⇒ ∃Φ ∈ Diff(Kn, 0) such that Φ(V ) = V, Φ∗Ω1 = Ω0.

And if, in the above situation, Ω0 and Ω1 can be joined by a smooth path
contained in a single RV -orbit then we write Ω0 ∼IRV

Ω1

(ii) RΩ equivalence. Given a volume form Ω on Kn and a pair of set
germs Vi ⊂ Kn, i = 0, 1 we have:

V0 ∼RΩ
V1 ⇐⇒ ∃Φ ∈ Diff(Kn, 0) such that Φ(V0) = V1, Φ∗Ω = Ω.

Notice that we obtain an equivalence V0 ∼RΩ
V1 by first applying an arbitrary

diffeomorphism Φ with Φ(V0) = V1 that changes the volume form to Ω1 =
Φ∗Ω, and then mapping Ω1 back to Ω by pulling back by some Ψ ∈ RV0 .

For map-germs f : (Kn, 0) → (Kp, 0) we consider the following equiva-
lences.

(iii) Af and IAf equivalence. For the isotropy subgroup Iso(f) :=
{(Φ, Ψ) ∈ A : Φ ◦ f ◦Ψ−1 = f} of a map-germ f and a pair of volume forms
Ωi, i = 0, 1, in Kp we have:

Ω0 ∼Af
Ω1 ⇐⇒ ∃(Φ, Ψ) ∈ Iso(f) such that Φ∗Ω1 = Ω0.

And again if, in the above situation, Ω0 and Ω1 can be joined by a smooth
path contained in a single Af -orbit then we write Ω0 ∼IAf

Ω1.
(iv) AΩ equivalence. Given a volume form Ω on the target Kp and a

pair of map-germs f, g then we have:

f ∼AΩ
g ⇐⇒ ∃(Φ, Ψ) ∈ A such that Φ∗Ω = Ω, f = Φ ◦ g ◦Ψ−1.

We can obtain an AΩ-equivalence of f and g by first applying an arbitrary
A-equivalence mapping g to f and Ω to some Ω1 = (Φ−1)∗Ω and then pulling
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back Ω to Ω1 using Af -equivalence, as in the diagram below:

(Kn, 0)
g−→ (Kp, Ω, 0)yΨ

yΦ

(Kn, 0)
f−→ (Kp, Ω1, 0)yΨ̃

yΦ̃

(Kn, 0)
f−→ (Kp, Ω, 0)

In fact, given f , g and Ω as above, the following statements are equivalent: (i)
f and g are AΩ-equivalent and (ii) there exist (Φ, Ψ) ∈ A and (Φ̃, Ψ̃) ∈ Iso(f)
such that the above diagram commutes.

The following theorem summarizes the main results on RV and RΩ equi-
valence (it combines the statements of Theorems 4.3 and 4.9 and Proposition
4.5 below). Given a germ of a variety V ⊂ (Kn, 0), we say that a k-form has
zero weak algebraic restriction to V if it is equal to dα + β, where α is a
(k− 1)-form and β a k-form such that df ∧α|V = 0 and df ∧ β|V = 0 for any
f ∈ I(V ). And we denote by [Ω]V the class of Ω in the cohomology group
Hn(W∗

0 (V )), where W∗
0 (V )) is the subcomplex of the de Rham complex of

differential forms with zero weak algebraic restriction to V (see Section 3
below for precise definitions). Furthermore, we say that two cohomology
classes [Ω0]V0 and [Ω1]V1 are diffeomorphic if there is a diffeomorphism Φ of
(Kn, 0) that maps V0 to V1 and [Φ∗Ω1]V0 = [Ω0]V0 (see 4.8 below). Finally let
div(Derlog(V )) ⊂ Cn be the K-subspace of Cn (Cn–the local ring of smooth
or analytic function-germs on (Kn, 0)) consisting of the divergences of the
logarithmic vector fields on V . Then we have the following

Theorem 2.1. For germs of varieties V, V0, V1 ⊂ (Kn, 0) and of volume
forms Ω, Ω0, Ω1 we have the following.

(i) Given V : Ω0 ∼IRV
Ω1 ⇐⇒ [Ω0]V = [Ω1]V .

(ii) Fixing Ω: V0 ∼RΩ
V1 ⇐⇒ [Ω]V0 and [Ω]V1 are diffeomorphic.

(iii) Fixing V , the number of RV -moduli of germs of volume forms on
(Kn, 0) is equal to

dimKHn(W∗
0 (V )) = dimKCn/div(Derlog(V )).

The next result summarizes the statements in Theorems 4.4 and 4.10 (va-
rieties V that are quasi-homogeneous with respect to a smooth submanifold
were introduced in [13], in Section 3 we will see that for such V we have
Hn(W∗

0 (V )) = 0).
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Theorem 2.2. Consider germs of varieties V, V1 ⊂ (Kn, 0) and of volume
forms Ω, Ω0, Ω1. If V is quasi-homogeneous with respect to a smooth sub-
manifold then the following statements hold.

(i) Ω0 ∼RV
Ω1, for any pair Ω0, Ω1 (over K = C) or for any pair Ω0, Ω1

such that Ω0|0, Ω1|0 define the same orientation (over K = R).

(ii) Fixing Ω: V1 ∼RΩ
V ⇐⇒ Φ(V ) = V1 for some germ Φ, of a

diffeomorphism (over K = C) or an orientation-preserving diffeomorphism
(over K = R).

For map-germs f the following theorem summarizes the main results on
Af and AΩ equivalence (it combines the results of Theorems 5.7 and 5.19,
Corollary 5.8 and Proposition 6.7 below). Here Lift(f) denotes the Cp-
module (Cp – local ring of functions on the target of f) of vector fields
Y liftable over f , Lift0(f) the submodule of Lift(f) consisting of those
Y that lift to source vector fields vanishing at 0 and let div(Lift0(f)) :=
{div(Y ) : Y ∈ Lift0(f)} ⊂ Cp. The symbol [Ω]f denotes the class of the
volume form Ω under the following equivalence (divLift0(f)-equivalence see
Def. 5.5 below): Ω0 and Ω1 are equivalent if Ω1 − Ω0 = div(Y )Ω for some
Y ∈ Lift0(f) and some (or, in fact, any) volume form Ω. For A-equivalent
map-germs f and g, i.e. g = Φ ◦ f ◦ Ψ−1, the classes [Ω]f and [Ω]g are
diffeomorphic if [Φ∗Ω]g = [Ω]f . Then we have the following

Theorem 2.3. For map-germs f, g : (Kn, 0) → (Kp, 0) and germs of volume
forms Ω, Ω0, Ω1 in (Kp, 0) we have the following.

(i) Given f : Ω0 ∼IAf
Ω1 ⇐⇒ [Ω0]f = [Ω1]f .

(ii) Fixing Ω: f ∼AΩ
g ⇐⇒ [Ω]f and [Ω]g are diffeomorphic.

(iii) Fixing f , the number of Af -moduli of germs of volume forms on
(Kp, 0) is equal to

dimKCp/div(Lift0(f)) = dimK TA · f/TAΩ · f,

where in the second term Ω is some fixed volume form and TAΩ · f denotes
the tangent space to the AΩ-orbit through f at f .

A map-germ f is weakly quasi-homogeneous if it is quasi-homogeneous
for integer weights, non-negative weighted degrees and positive total degree
(for some choice of coordinates in source and target). The following is a
summary of Theorems 5.14 and 5.20.
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Theorem 2.4. Consider map-germs f, g : (Kn, 0) → (Kp, 0) and germs of
volume forms Ω, Ω0, Ω1 in (Kp, 0). If f is weakly quasi-homogeneous then the
following statements hold.

(i) Ω0 ∼Af
Ω1 for any pair Ω0, Ω1 (over K = C) or for any pair Ω0, Ω1

such that Ω0|0, Ω1|0 define the same orientation (over K = R).
(ii) Fixing Ω: g ∼AΩ

f ⇐⇒ g ∼A f , where the target diffeomor-
phisms (in the elements of A) are arbitrary (over K = C) or are orientation-
preserving (over K = R).

Remark 2.5. (1) One could deduce Theorems 2.3 and 2.4 on map-germs
f from Theorems 2.1 and 2.2 by considering the set-germ ∆(f) ⊂ (Kp, 0),
which denotes the discriminant of f (for n ≥ p) or the image (for n < p), and
using the results in [32], [33], [8] on critical normalizations. However, we
shall give direct, self-contained proofs of these theorems that apply to a larger
class of map-germs f than the ones considered in [32], [33], [8]. Also notice
that one could try to obtain Theorem 2.4 from its “infinitesimal version”
in Proposition 6.1, which says that for weakly quasi-homogeneous maps f we
have the equality TA·f = TAΩ ·f of tangent spaces, using arguments similar
to the ones in [19].

(2) Our results on mono-germs f can be generalized to multi-germs, this
just complicates the notation without really changing the proofs.

3 Cohomology of forms with zero weak

algebraic restriction to a singular set

Let V be a germ of a subset of Kn at 0. Let I(V ) be the ideal of smooth
(K-analytic) function-germs vanishing on V . We assume that I(V ) 6= {0}.
Definition 3.1. We say that germs of k-forms ω0 and ω1 have the same
weak algebraic restriction to V if there exists a germ of a (k − 1)-form α
and a germ of a k-form β such that ω1 − ω0 = dα + β and df ∧ α|V = 0,
df ∧ β|V = 0 for any f ∈ I(V ).

We say that the germ of a k-form ω has zero weak algebraic restriction to
V if ω and a germ of the zero k-form have the same weak algebraic restriction
to V .

This definition is a modification of the definition of an algebraic restriction
to a singular set V introduced by M. Zhitomirskii for 1-forms in [41] and
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generalized to arbitrary k-forms in [12]. Germs of k-forms ω0 and ω1 have
the same algebraic restriction to V if there exists a germ of a (k− 1)-form α
and a germ of a k-form β such that ω1 − ω0 = dα + β and α|V = 0, β|V = 0.

It is obvious that if ω0 and ω1 have the same algebraic restriction to V
then they have the same weak algebraic restriction to V . But it is easy to see
that the weak algebraic restriction of any n-form on Kn to a subset V ⊂ Kn

such that I(V ) 6= {0} is zero (see Proposition 3.5) and that this is not true
for algebraic restrictions of volume forms to singular hypersurfaces.

If V is a germ of a smooth submanifold then ω0 and ω1 have the same
algebraic restriction to V if and only if ω0 and ω1 have the same pullback to
V , i.e. they have the same geometric restriction to V (see [12]). The same is
true for the weak algebraic restriction to a smooth submanifold. On smooth
submanifolds the notions of algebraic restriction, weak algebraic restriction
and geometric restriction coincide. This is not true on singular sets (see
Example 3.4)

Proposition 3.2. If V is a smooth submanifold then ω0 and ω1 have the
same weak algebraic restriction to V if and only if ω0 and ω1 have the same
pullback to V .

Proof : It is enough to show that a germ of a k-form ω has zero weak algebraic
restriction if and only if the pullback of ω to V vanishes. We may assume
that k < n. Let V be a a germ of a p-dimensional submanifold. Then
there exists a local coordinate system (x1, . . . , xn) on Kn such that V =
{x1 = . . . = xn−p = 0}. The pullback of ω to V vanishes if and only if
ω =

∑n−p
i=1 xiαi + dxi ∧ βi, where αi is a germ of a k-form and βi is a germ of

a (k − 1)-form for i = 1, . . . , n− p. But then

ω =

n−p∑
i=1

xi(αi − dβi) + d(

n−p∑
i=1

xiβi).

Thus ω has zero weak algebraic restriction to V .
Now assume that ω has zero weak algebraic restriction to V . Thus

ω = α + dβ,

where α is a germ of a k-form and β is a germ of a (k − 1)-form such that
df ∧ α|V = 0, df ∧ β|V = 0 for any f ∈ I(V ).
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We may write α in the following way

α =

n−p∑
i=1

xiγi + dxi ∧ δi + π∗V σ,

where γi is a germ of a k-form on Kn, δi is a germ of a (k − 1)-form on Kn

(i = 1, . . . , n−p), σ is a germ of a k-form on V and πV : Kn 3 (x1, . . . , xn) 7→
(xn−p+1, . . . , xn) ∈ V is the germ of the standard projection on V . But
dxi ∧ α|V = 0. Thus we obtain that σ = 0 (for k < n). Therefore the
pullback of α to V vanishes. In the same way we can show that the pullback
of β to V vanishes. 2

If V is a hypersurface then we have the following proposition.

Proposition 3.3. If I(V ) =< f >, where f is a smooth (K-analytic)
function-germ, then a k-form ω has zero weak algebraic restriction to V if
and only if the pullback of ω to the regular part of V vanishes.

Proof : The pullback of ω to the regular part of V vanishes if and only if
df ∧ ω|V = 0. But this means that ω has zero weak algebraic restriction to
V . 2

Let V be a germ of subset of Kn. If ω has weak zero algebraic restriction
to V then the pullback of ω to the regular part of V vanishes. If V is the
germ of a singular curve in K3 then the pullback of the germ of any 2-form
to the regular part of V vanishes. But it is easy to see that there are 2-forms
which do not have zero weak algebraic restriction to V .

Example 3.4. Let V = {x2
1−x2

2−x2
3 = x2x3 = 0} be a germ of a subset of K3

at 0. Then pullback of any 2-form to the regular part of V vanishes, because
the regular part of V is 1-dimensional, but the germ of a 2-form dx1 ∧ dx2

does not have zero weak algebraic restriction to V .
The germ of the form ω = x1dx2 ∧ dx3 + x2dx3 ∧ dx1 + x3dx1 ∧ dx2

has zero weak algebraic restriction to V , because d(x2
1 − x2

2 − x2
3) ∧ ω =

2(x2
1 − x2

2 − x2
3)dx1 ∧ dx2 ∧ dx3 and d(x2x3)∧ ω = 2x2x3dx1 ∧ dx2 ∧ dx3. But

ω does not have zero algebraic restriction to V (see [12]).

We denote by Wk
0 (V ) the set of k-forms with zero weak algebraic restric-

tion to V . One can show that

11



Proposition 3.5. Let ω be a germ of an n-form on Kn. If I(V ) 6= {0} then
ω ∈ Wn

0 (V ).

Proof : If f 6= 0 then df ∧ ω is the germ of an (n + 1)-form on Kn. Thus
df ∧ ω = 0 for any f ∈ I(V ). 2

It is easy to see that W∗
0 (V ) is a differential subcomplex of the complex

of differential forms on Kn. Thus we can define the cohomology groups of
this subcomplex

Hk(W∗
0 (V )) =

{ω ∈ Wk
0 (V ) : dω = 0}

{dα : α ∈ Wk−1
0 (V )}

By Proposition 3.3, if H is a hypersurface then H∗(W∗
0 (H)) is the cohomology

of the subcomplex of forms with vanishing pullback to the regular part of H,
which we denote by H∗

Giv(H). These were considered in [F] and [22] in the
C-analytic category (see also [13]). In [22] (see also [F]) it was proved that if
V is the germ of a quasi-homogeneous C-analytic variety then Hk

Giv(V ) = {0}
for k > 0. This result was generalized in [13].

We are interested in Hn(W∗
0 (V )). We define a class of subsets of Kn

for which this cohomology group vanishes. These are the subsets which are
quasi-homogeneous with respect of a smooth submanifold, as defined in ([13])

Definition 3.6. A germ of a subset V ⊂ Kn is called quasi-homogeneous with
respect to a smooth submanifold S if there exists a local coordinate system

(x1, . . . , xk, y1, . . . , yn−k)

and positive numbers
w1, . . . , wk

(called weights) such that S is given by equations x1 = 0, . . . , xk = 0 and, for
all t, the map

Ft : (x1, . . . , xk, y1, . . . , yn−k) 7→ (tw1x1, . . . , t
wkxk, y1, . . . , yn−k)

sends any point p ∈ V to a point Ft(p) ∈ V , provided that p and Ft(p) are
sufficiently close to 0.

This is a generalization of the classical quasi-homogeneity. The classical
quasi-homogeneity is quasi-homogeneity with respect to S = {0}. The quasi-
homogeneity with respect to a smooth submanifold is the classical quasi-
homogeneity with some of the weights allowed to be 0.

12



Example 3.7. Let

N = {(x1, x2, y) ∈ R3 : (x2
1 − x2

2)
2 + yx2

1x
2
2 = 0}.

The set N is quasi-homogeneous with respect to the curve S : {x1 = x2 = 0}
with weights (1, 1): if (x1, x2, y) ∈ N then (tx1, tx2, y) ∈ N . In ([13]) it was
shown that N is not quasi-homogeneous (in any coordinate system) in the
classical sense.

Example 3.8. Let V be a germ of a subset of a smooth hypersurface H. Then
V is quasi-homogeneous with respect to H. Indeed, there exists a coordinate
system (x1, x2, . . . , xn) on Kn such that H = {x1 = 0}.
Thus Ft(x1, x2, . . . , xn) = (tx1, x2, . . . , xn) maps V to V .

The vector field

Ew =
k∑

i=1

wixi
∂

∂xi

.

is called the Euler vector field for a coordinate system (x1, . . . , xk, y1, . . . , yn−k)
with weights w = (w1, . . . , wk). If V is quasi-homogeneous with respect to a
submanifold {x1 = . . . = xk = 0} with positive weights (w1, . . . , wk) then Ew

is tangent to V . In fact it was proved in [13] that

Theorem 3.9. Let S be a smooth submanifold of Rn. Let N = {H1 = . . . =
Hp = 0}, where H1, . . . , Hp generate the ideal of smooth (or K-analytic)
function-germs vanishing on N , and suppose that the set of non-singular
points of N (the points near which N has the structure of a smooth submani-
fold of Rn) is dense in N .

Then N is quasi-homogeneous with respect to S if and only if there exists
a vector field which is tangent to N , vanishes at any point x ∈ S, and whose
eigenvalues at x ∈ S corresponding to directions transversal to S do not
depend on x and are real positive numbers.

Proposition 3.10. Let V be the germ of a subset of Kn. If V is quasi-
homogeneous with respect to a smooth k-dimensional submanifold (k < n)
then Hn(W∗

0 (V )) = 0.

The proof the above proposition is based on the following lemma.

Lemma 3.11. Let Ew be a germ of the Euler vector field for a coordinate
system (x1, . . . , xk, y1, . . . , yn−k) with positive weights w = (w1, . . . , wk) and

13



let Ω0 be the germ of the volume-form dx1 ∧ . . . ∧ dxk ∧ dy1 ∧ . . . ∧ dyn−k.
If ω is the germ of a smooth (K-analytic) n-form on Kn then there exists a
smooth (K-analytic) function-germ g on Kn such that ω = d(g(EwcΩ0)).

Proof : Let Gt(x1, . . . , xk, y1, . . . , yn−k) = (ew1tx1, . . . , e
wktxk, y1, . . . , yn−k) for

t ≤ 0 and x = (x1, . . . , xk, y1, . . . , yn−k) ∈ Kn. It is easy to see that

(Gt)
′ :=

d

dt
Gt = Ew ◦Gt, G0 = IdKn , lim

t→−∞
Gt(x, y) = (0, y)

for any (x, y) = (x1, . . . , xk, y1, . . . , yn−k) ∈ Kn. Thus

ω = G∗
0ω − lim

t→−∞
G∗

t ω =

∫ 0

−∞
(G∗

t ω)′dt. (3.1)

But ω = fΩ0, where f is a smooth (K-analytic) function-germ and

(G∗
t ω)′ = G∗

t LEwω = G∗
t d(Ewcω) = d(G∗

t (Ewcω)).

Thus
(G∗

t ω)′ = d(G∗
t (EwcfΩ0)) = d((f ◦Gt)G

∗
t (EwcΩ0)).

It is easy to check by direct calculation that G∗
t (EwcΩ0) = et

Pk
i=1 wi(EwcΩ0).

Therefore (G∗
t ω)′ = d((f ◦ Gt)e

t
Pk

i=1 wi(EwcΩ0)). Combining this with (3.1)
we obtain

ω = d(

∫ 0

−∞
((f ◦Gt)e

t
Pk

i=1 wi)dt(EwcΩ0)) = d(g(EwcΩ0)),

where the function-germ g on Kn is defined in the following way:

g(x, y) =

∫ 0

−∞
et
Pk

i=1 wi(f(Gt(x, y)))dt.

It is easy to see that g is smooth (K-analytic), because

∫ 0

−∞
et
Pk

i=1 wi(f(Gt(x, y)))dt =

∫ 1

0

sαf(Fs(x, y))ds

where α = (
∑k

i=1 wi)− 1 and

Fs(x1, . . . , xk, y1, . . . , yn−k) = (sw1x1, . . . , s
wkxk, y1, . . . , yn−k)
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for any (x, y) = (x1, . . . , xk, y1, . . . , yn−k) and s ∈ [0, 1]. Multiplying weights
by a sufficiently large constant we may assume that α > 1. 2

Proof : [Proof of Proposition 3.10] Let ω be a germ of an n-form on Kn. It
is obvious that df ∧ ω = 0 for any f ∈ I(V ). By Lemma 3.1 there exists an
n-form β such that ω = d(Ewcβ) where Ew is the Euler vector field for V .
But for any f ∈ I(V ) df ∧ (Ewcβ) = (Ewcdf)β and Ewcdf ∈ I(V ). Thus
df ∧ (Ewcβ)|V = 0. 2

Proposition 3.12. Let V be a germ of a subset of Kn. If there exists a germ
of a vector field Y tangent to V , such that Y |0 6= 0, then Hn(W∗

0 (V )) = 0.

Proof : There exists a coordinate system (x1, x2, . . . , xn) on Kn such that
Y = ∂

∂x1
. If ω is a germ of an n-form then

ω = gdx1∧dx2∧. . .∧dxn = d(

∫ x1

0

g(t, x2, . . . , xn)dt
∂

∂x1

cdx1∧dx2∧. . .∧dxn),

where g is a function-germ. It is easy to see that

df ∧ (

∫ x1

0

g(t, x2, . . . , xn)dt
∂

∂x1

cdx1 ∧ dx2 ∧ . . . ∧ dxn)|V = 0

for any f ∈ I(V ). Thus Hn(W∗
0 (V )) = 0. 2

Remark 3.13. We can also prove Proposition 3.12 in a different way. If ∂
∂x1

is tangent to V then x1
∂

∂x1
is tangent to V too. By Lemma 3.1, using the same

argument as in the proof of Proposition 3.10, we obtain Hn(W∗
0 (V )) = 0. If

V satisfies the assumptions of Theorem 3.9 then V is quasi-homogeneous with
respect to {x1 = 0}.

Let Cn be the ring of smooth (K-analytic) function-germs at 0 on Kn.
Let I(V ) be the ideal in Cn of function-germs vanishing on V .

Let Derlog(V ) denote the module of germs at 0 of vector fields tangent
to V , i.e. Y ∈ Derlog(V ) if Y (I(V )) ⊂ I(V ).

Let div(Y ) denote the divergence of a vector field Y =
∑n

i=1 gi
∂

∂xi
with

respect to the volume form Ω0 = dx1 ∧ . . . ∧ dxn, i.e.

div(Y ) =
LY Ω0

Ω0

=
d(Y cΩ0)

Ω0

=
n∑

i=1

∂gi

∂xi

.
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Then div(Derlog(V )) := {div(Y ) ∈ Cn : Y ∈ Derlog(V )} is a K-vector
subspace of Cn.

Proposition 3.14. Hn(W∗
0 (V )) ∼= Cn

div(Derlog(V ))
.

Proof : Let ω0 and ω1 be germs of n-forms on Kn. Let Ω0 be the germ of
a volume form on Kn. Then ω0 = g0Ω0 and ω1 = g1Ω0, where g0 and g1

are function-germs on Kn, and [ω0]V = [ω1]V in Hk(W∗
0 (V )) if and only if

ω0 − ω1 = dα, where α is the germ of an (n − 1)-form on Kn such that
df ∧ α|V = 0 for any f ∈ I(V ). Let X be a germ of a vector field such that
α = XcΩ0 then

df ∧ α = df ∧ (XcΩ0) = (Xcdf)Ω0.

Thus df ∧ α|V = 0 if and only if Xcdf ∈ I(V ).
We obtain that [ω0]V = [ω1]V in Hn(W∗

0 (V )) if and only if g0 − g1 =
div(X), where X ∈ Derlog(V ). 2

Remark 3.15. Proposition 3.10 can be proved using Proposition 3.14. It
is easy to show that if V is quasi-homogeneous with respect to the smooth
submanifold then div(Derlog(V )) is Cn.

Definition 3.16. We say that a cohomology class a ∈ Hn(W∗
0 (V )) is reali-

zable by a volume form if there exists a germ Ω of a volume form such that
[Ω]V = a. We denote by [V ol]V the set of all cohomology classes realizable
by volume forms.

Proposition 3.17. If there exists a germ of a volume form with zero coho-
mology class in Hn(W∗

0 (V )) then [V ol]V = Hn(W∗
0 (V )).

Proof : Let Ω be a germ of a volume form such that [Ω]V = [0]V ∈ Hn(W∗
0 (V )).

Let α be a germ of an n-form on Kn. If α|0 = 0 then β = α + Ω is a germ of
a volume form and [β]V = [α]V ∈ Hn(W∗

0 (V )). 2

Proposition 3.18. If Hn(W∗
0 (V )) \ [V ol]V 6= ∅ then Hn(W∗

0 (V )) \ [V ol]V
is a K-linear subspace of Hn(W∗

0 (V )).
If L is a finite dimensional linear subspace of Hn(W∗

0 (V )) such that
L ∩ [V ol]V 6= ∅ then there exists a base a1, . . . , adimK L of L such that
a1, . . . , adimK L are realizable by volume forms.
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Proof : By Proposition 3.17, [0]V is not realizable by a volume form. If a ∈
Hn(W∗

0 (V )) is not realizable by a volume form then neither is λa for any
λ ∈ K, because if λ 6= 0 and there exists a germ Ω of a volume form such
that λa = [Ω]V then a = [ 1

λ
Ω]V . In the same way we show that if a, b ∈

Hn(W∗
0 (V )) are not realizable by a volume form then neither is a + b.

Let us assume that Hn(W∗
0 (V )) \ [V ol]V 6= ∅. Then by Proposition 3.17

any germ of a volume form has non-zero cohomology class in Hn(W∗
0 (V )).

Let Ω be a germ of a volume form such that [Ω]V ∈ L. Then [Ω]V 6= [0]V and
let [Ω]V , [β2]V , . . . , [βdimK L]V be a base of L. Let a1 = [Ω]V and ai = [βi]V if
βi|0 6= 0 and ai = [βi + Ω]V if βi|0 = 0 for i = 2, . . . , dimK L. It is easy to see
that a1, . . . , adimK L is a base of L and a1, . . . , adimK L are realizable by volume
forms. 2

By Propositions 3.17 and 3.18 we obtain the following corollary.

Corollary 3.19. dimK[V ol]V = dimKHn(W∗
0 (V )).

Proof : If there exists a germ of a volume form with zero cohomology class
in Hn(W∗

0 (V )) then [V ol]V = Hn(W∗
0 (V )) by Proposition 3.17. But if

Hn(W∗
0 (V )) \ [V ol]V 6= ∅ then [V ol]V = Hn(W∗

0 (V )) \ T , where T is a
subspace of codimension at least 1 by Proposition 3.18. 2

4 Volume preserving diffeomorphisms on

varieties

Let Ω0, Ω1 be germs at 0 of smooth (K-analytic) volume-forms on Kn. Let V
be the germ at 0 of a subvariety of Kn. We define two equivalence relations
on the space of volume forms on Kn.

Definition 4.1. We say that Ω0 and Ω1 are RV -equivalent if there exists a
germ of a diffeomorphism Φ : (Kn, V, 0) → (Kn, V, 0) (preserving V ) such
that Φ∗Ω1 = Ω0.

Definition 4.2. We say that Ω0 and Ω1 are IRV -equivalent if there exists
a smooth family of germs of diffeomorphisms Φt : (Kn, V, 0) → (Kn, V, 0)
(preserving V ) for t ∈ [0, 1] such that Φ0 = Id and Φ∗

1Ω0 = Ω1.
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It is obvious that IRV -equivalence impliesRV -equivalence. We now prove
one of the main results of the paper.

Theorem 4.3. Let V be a germ of a subset of Kn. Let Ω0 and Ω1 be germs
of smooth (or K-analytic) volume forms on Kn. If K = R we assume that
Ω0 and Ω1 define the same orientation of Kn.

Then [Ω0]V = [Ω1]V in Hn(W∗
0 (V )) if and only if Ω0 and Ω1 are IRV -

equivalent.

Proof : First we assume that any germ of a vector field tangent to V vanishes
at 0. If [Ω0]V = [Ω1]V in Hn(W∗

0 (V )) then there exists a germ of an (n− 1)-
form α on Kn such that

Ω0 − Ω1 = dα, df ∧ α|V = 0 ∀f ∈ I(V ). (4.1)

We use Moser’s homotopy method ([31]). Let Ωt = Ω0 + t(Ω1 − Ω0) for
t ∈ [0, 1]. It is easy to see that if Ω0 and Ω1 define the same orientation of
Rn then Ωt is a germ of a volume-form at 0 for any t ∈ [0, 1]. We are looking
for diffeomorphisms Φt : (Kn, 0) → (Kn, 0) for t ∈ [0, 1] such that

Φ?
t Ωt = Ω0 (4.2)

and Φ0 = IdKn , Φt(V ) ⊂ V . Differentiating (4.2) we obtain

Φ?
t (LUtΩt + Ω1 − Ω0) = 0,

where Ut ◦ Φt = d
dt

Φt. Φt(V ) ⊂ V if and only if Ut is tangent to V . Thus by
(4.1) we have

d(UtcΩt) = Ω0 − Ω1 = dα. (4.3)

Thus we want to find Ut tangent to V such that

UtcΩt = α. (4.4)

Let X be a germ of a vector field such that XcΩ0 = α. Then df ∧ α =
df ∧ (XcΩ0) = (Xcdf)Ω0. We have that df ∧α|V = 0 for any f ∈ I(V ). Thus
Xcdf ∈ I(V ) for any f ∈ I(V ), which means that X is tangent to V . By the
above assumption X|0 = 0. But

Ωt = gtΩ0

18



where gt is a non-vanishing function-germ at 0. Hence Ut = 1
gt

X is a solution

of (4.4), which is tangent to V and vanishes at 0. By integration of Ut we
obtain a smooth family of germs of diffeomorphism Φt : (Kn, 0) → (Kn, 0)
for t ∈ [0, 1] such that Φt(V ) ⊂ V , Φ0 = Id and Φ?

1Ω1 = Ω0.
To conclude the proof of the forward direction, assume that there exists

a germ of vector field Y tangent to V such that Y |0 6= 0. Then there exists
a coordinate system (x1, . . . , xn) on Kn such that Y = ∂

∂x1
. If ω is a germ of

an n-form then
Ω0 − Ω1 = gdx1 ∧ dx2 ∧ . . . ∧ dxn =

d(

∫ x1

0

g(t, x2, . . . , xn)dt
∂

∂x1

cdx1 ∧ dx2 ∧ . . . ∧ dxn),

where g is some function-germ and X =
∫ x1

0
g(t, x2, . . . , xn)dt ∂

∂x1
vanishes at

0.
But Y |0 6= 0 also implies that Hn(W∗

0 ) = 0, by Proposition 3.12. Now we
can continue in the same way as in the first part of the proof.

For the converse, assume that Ω0 and Ω1 are IRV -equivalent. Then
there exists a smooth family of germs of diffeomorphisms Φt : (Kn, V, 0) →
(Kn, V, 0) (preserving V ) for all t ∈ [0, 1] such that Φ0 = Id and Φ∗

1Ω0 = Ω1.
Let (Φt)

′ = d
dt

Φt = Xt ◦ Φt. Then

Ω1−Ω0 = Φ∗
1Ω0−Ω0 =

∫ 1

0

(Φ∗
t Ω0)

′dt =

∫ 1

0

(Φ∗
tLXtΩ0)dt =

∫ 1

0

Φ∗
t d(XtcΩ0)dt.

Thus

Ω1 − Ω0 = d

(∫ 1

0

Φ∗
t (XtcΩ0)dt

)
.

Xt is tangent to V . Thus for any f ∈ I(V )

df ∧ (XtcΩ0)|V = (Xtcdf) ∧ Ω0|V = 0.

But
df ∧ Φ∗

t (XtcΩ0) = Φ∗
t (d((Φ−1

t )∗f) ∧ (XtcΩ0))

and Φt(V ) ⊂ V . Hence df ∧ Φ∗
t (XtcΩ0)|V = 0, which implies that

df ∧
∫ 1

0

Φ∗
t d(XtcΩ0)dt|V = 0.

Thus [Ω0]V = [Ω1]V in Hn(W∗
0 (V )). 2
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In [2] (see also [38], [28]) it was shown that if V is the germ of a C-
analytic quasi-homogeneous hypersurface with an isolated singularity then
any two holomorphic volume forms on Cn are RV -equivalent. More generally
we have (for set-germs V of any codimension and with possibly non-isolated
singularities) the following

Theorem 4.4. Let V be a germ of a subset of Kn.

1. Let K = R and let Ω0 and Ω1 be germs of smooth or R-analytic volume-
forms at 0. If V is quasi-homogeneous with respect to a smooth sub-
manifold of Rn and Ω0|0, Ω1|0 define the same orientation of T0Rn then
Ω0 and Ω1 are RV -equivalent.

2. Let K = C and let Ω0 and Ω1 be germs of C-analytic volume-forms at
0. If V is quasi-homogeneous with respect to a C-analytic submanifold
of Cn then Ω0 and Ω1 are RV -equivalent.

In [38] it was shown that if H = {f = 0} is a germ at 0 of a C-analytic
hypersurface in Cn with isolated singularity at 0 then the number of IRH-
moduli of volume forms on Cn is equal to µ− τ , where µ = dimC

On

< ∂f
∂x1

,..., ∂f
∂xn

>

is the Milnor number of H and τ = dimC
On

<f, ∂f
∂x1

,..., ∂f
∂xn

>
is the Tjurina number

of H.
Let V be the germ of a subset of Kn and let Ω be the germ of a volume

form on Kn. The IRV -orbit of Ω is the identity component of the RV -orbit
of Ω. Thus the number of RV -moduli of germs of volume forms is equal to
the number of IRV -moduli of germs of volume forms. By Theorem 4.3 and
Proposition 3.14 we obtain the following result.

Proposition 4.5. Let V be a germ of a subset of Kn. Then the number of
RV -moduli of germs of volume forms is equal to

dimKHn(W∗
0 (V )) = dimK

Cn

div(Derlog(V ))
.

Proof : Let Ω0 and Ω1 be germs of volume forms on Kn. If [Ω0]V = [Ω1]V in
Hn(W∗

0 (V )) then Ω0 and Ω1 are RV -equivalent by Theorem 4.3. By Coro-
llary 3.19 and Proposition 3.14 we have dimK[V ol]V = dimKHn(W∗

0 (V )) =
dimK

Cn

div(Derlog(V ))
. Now assume that Ω0 and Ω1 are RV -equivalent. We also
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may assume that they are in the same component of an RV -orbit. But then
they are IRV -equivalent. Hence [Ω1]V = [Ω0]V in Hn(W∗

0 (V )) by Theorem
4.3. 2

Let Ω be the germ of a fixed smooth (K-analytic) volume-form on Kn at
0, and let V1, V2 be germs of subsets of Kn at 0 ∈ Kn.

Definition 4.6. V1 and V2 are RΩ-equivalent if there exists a volume-preser-
ving diffeomorphism-germ Φ : (Kn, Ω, 0) → (Kn, Ω, 0) (i.e. Φ∗Ω = Ω) such
that Φ(V1) = V2.

It is easy to prove that

Proposition 4.7. Let Φ : (Kn, 0) → (Kn, 0) be a germ of a diffeomorphism
such that Φ(V1) = V2.

If ω is the germ of a k-form which has zero weak algebraic restriction to
V2 then Φ∗ω has zero weak algebraic restriction to V1.

If ω is the germ of a k-form which has zero weak algebraic restriction to
V2 and [ω]V2 = 0 in Hk(W∗

0 (V2)) then [Φ∗ω]V1 = 0 in Hk(W∗
0 (V1)).

Proof : If ω has zero weak algebraic restriction to V2 then ω = α + dβ, where
α is the germ of a k-form and β is the germ of a (k − 1)-form such that
df ∧ α|V2 = 0 and df ∧ β|V2 = 0 for any f ∈ I(V2). Then Φ∗ω = Φ∗α + dΦ∗β.
Let g be a function-germ vanishing on V1. Then (Φ−1)∗g ∈ I(V2), because
Φ(V1) = V2. Thus d(Φ−1)∗g ∧ α|V2 = 0. Hence

dg ∧ Φ∗α|V1 = Φ∗(d((Φ−1)∗g) ∧ α)|V1 = 0.

In the same way we show that dg ∧ Φ∗β|V1 = 0. The proof of the second
statement is similar. 2

Thus we can define diffeomorphic cohomology classes.

Definition 4.8. We say that cohomology classes [ω1]V1 ∈ Hk(W∗
0 (V1)) and

[ω2]V2 ∈ Hk(W∗
0 (V2)) are diffeomorphic if there exists a germ of a diffeomor-

phism Φ : (Kn, 0) → (Kn, 0) such that Φ(V1) = V2 and [Φ∗ω2]V1 = [ω1]V1 in
Hk(W∗

0 (V1)).

Now, as a corollary of Theorem 4.3, we obtain the following theorem.

Theorem 4.9. V1 and V2 are RΩ-equivalent if and only if the classes
[Ω]V1 ∈ Hn(W∗

0 (V1)) and [Ω]V2 ∈ Hn(W∗
0 (V2)) are diffeomorphic.
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Proof : It is obvious that if V1 and V2 are RΩ-equivalent then the classes
[Ω]V1 ∈ Hn(W∗

0 (V1)) and [Ω]V2 ∈ Hn(W∗
0 (V2)) are diffeomorphic.

If [Ω]V1 ∈ Hn(W∗
0 (V1)) and [Ω]V2 ∈ Hn(W∗

0 (V2)) are diffeomorphic then
there exists a germ of a diffeomorphism Φ : (Kn, 0) → (Kn, 0) such that
Φ(V1) = V2 and [Φ∗Ω]V1 = [Ω]V1 in Hk(W∗

0 (V1)). Theorem 4.3 implies that
there exists a germ of a diffeomorphism Ψ : (Kn, 0) → (Kn, 0) such that
Ψ(V1) = V1 and Ψ∗Φ∗Ω = Ω. Thus the germ of the diffeomorphism Φ ◦ Ψ
preserves the volume form Ω and maps V1 to V2. 2

Theorem 4.4 can be formulated in the following way.

Theorem 4.10. Let V, V1 be germs of subsets of Kn at p.

1. Let K = R and fix a germ Ω of a smooth (or R-analytic) volume-
form at p. If V is quasi-homogeneous with respect to a smooth sub-
manifold then V and V1 are RΩ-equivalent if and only if there exists
a germ of smooth (R-analytic) orientation-preserving diffeomorphism
Φ : (Rn, 0) → (Rn, 0) such that Φ(V ) = V1.

2. Let K = C and fix a germ Ω of a C-analytic volume-form at p. If V
is quasi-homogeneous with respect to a C-analytic submanifold then V
and V1 are RΩ-equivalent if and only if V and V1 are C-analytically
diffeomorphic.

Here is an example of a germ of a singular curve on R2 which determines
an orientation on R2.

Example 4.11. Let V1 = {(x1, x2) ∈ R2 : x3
2− x5

1 = 0} and V2 = {(x1, x2) ∈
R2 : x3

2 + x5
1 = 0}. V1 and V2 are quasi-homogeneous with weights (3, 5) and

they are diffeomorphic. For example take Φ(x1, x2) = (−x1, x2). But they
are not RΩ-equivalent, because any diffeomorphism mapping V1 to V2 changes
the orientation of R2.

5 AΩ-equivalence of maps

We now study AΩ-equivalence of map-germs f , where Ω is a fixed volume
form on the target of f . The results about AΩ-equivalence will follow from
those about Af -equivalence of volume forms, where the map-germ f is fixed,
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in the same way as the results aboutRΩ were obtained in the previous section
from those about RV .

Furthermore, as mentioned already in Remark 2.5, a slightly weaker ver-
sions of the results about maps f can be deduced from those about set-germs
V , by considering vector fields tangent to the discriminant (or the image)
∆(f) of f . More precisely, using the results in [32], [33], [8] – and in partic-
ular the necessary and sufficient conditions in Theorem 2 of [8] for a vector
field tangent to ∆(f) to lift over f – we could deduce our results about AΩ

and Af from those about RΩ and RV (taking V = ∆(f)) for the class of
maps f satisfying the conditions in Theorem 2 of [8]. This class would, for
example over C, include all A-finite map-germs f : (Cn, 0) → (Cp, 0) for
all pairs (n, p) different from (n, 2), n ≥ 2. Nevertheless, working directly
with liftable vector fields, we can avoid these restrictions – see Example 5.13
below for a weakly quasi-homogeneous map-germ f (to which our Theorem
2.4 applies) which does not satisfy the conditions in [8].

First, we recall the definition of a liftable vector field ([1], [8]).

Definition 5.1. The germ of a vector field Y on Kp is liftable or lifts over
a map-germ f : (Kn, 0) → (Kp, 0) to a germ of a vector field X at 0 on Kn if

df(X) = Y ◦ f.

(Considering homomorphisms tf from the Cn-module of source vector
fields to the Cn-module θf of smooth sections of f ∗TKp and ωf from the
Cp-module of target vector fields to θf , given by X 7→ df(X) and Y 7→ Y ◦ f
respectively, the above equation becomes tf(X) = ωf(Y ) – this notation will
be used in the next section when we study the AΩ-tangent space of f .) We
denote the Cp-module of germs of vector fields liftable over f by Lift(f) and
the Cp-submodule of Lift(f) of germs of vector fields liftable over f to germs
of vector fields vanishing at 0 by Lift0(f).

Let Ω0, Ω1 be germs at 0 of smooth (K-analytic) volume-forms on Kp and
let f : (Kn, 0) → (Kp, 0) be a smooth (or K-analytic) map-germ.

Definition 5.2. We say that Ω0 and Ω1 are Af -equivalent if there exist
germs of diffeomorphisms Φ : (Kp, 0) → (Kp, 0) and Ψ : (Kn, 0) → (Kn, 0)
such that Φ∗Ω1 = Ω0 and Φ ◦ f = f ◦Ψ.

Remark 5.3. The condition Φ ◦ f = f ◦Ψ is equivalent to Φ ◦ f ◦Ψ−1 = f .
It means that f is preserved by A-action of (Ψ−1, Φ).
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Definition 5.4. We say that Ω0, Ω1 are IAf -equivalent if there exist smooth
families of germs of diffeomorphisms Φt : (Kp, 0) → (Kp, 0) and Ψt : (Kn, 0) →
(Kn, 0) for t ∈ [0, 1] such that Φ0 = IdKp, Ψ0 = IdKn, Φ∗

1Ω0 = Ω1 and
Φt ◦ f = f ◦Ψt for t ∈ [0, 1].

Obviously IAf -equivalence implies Af -equivalence.

Let div(Y ) denote the divergence of a germ of a vector field Y with respect
to the germ of the volume form Ω, i.e. div(Y )Ω = d(Y cΩ) = LY Ω.

Definition 5.5. We say that germs of volume forms Ω0 and Ω1 are divLift0(f)
-equivalent if there exists a germ of a vector field Y ∈ Lift0(f) such that
Ω1 − Ω0 = div(Y )Ω.

Remark 5.6. divLift0(f) is an equivalence relation.
We denote the divLift0(f)-equivalence class of a germ of a volume form
Ω0 by [Ω0]f . The definition of divLift0(f) does not depend of the choice of
germ of a volume form Ω. If Ω̃ is the germ of another volume form then
Ω = gΩ̃. If Ω1 − Ω0 = d(Y cΩ) for Y ∈ Lift0(f) then Ω1 − Ω0 = d(gY cΩ̃)
and gY ∈ Lift0(f).

Now we state one of the main results of this section.

Theorem 5.7. Let f : (Kn, 0) → (Kp, 0) be a smooth (K-analytic) map-
germ. Let Ω0 and Ω1 be germs of smooth (K-analytic) volume forms on Cp.
If K = R we assume that Ω0 and Ω1 define the same orientation of Rp.

Then Ω0 and Ω1 are IAf -equivalent if and only if Ω0 and Ω1 are
divLift0(f)-equivalent.

Proof : First we assume that Ω1 −Ω0 = div(Y )Ω0 and df(X) = Y ◦ f , where
X is the germ of a vector field at 0 on Kn such that X|0 = 0. We use Moser’s
homotopy method ([31]). Let Ωt = Ω0 + t(Ω1 − Ω0) for t ∈ [0, 1]. It is easy
to see that Ωt is the germ of a volume-form at 0 for any t ∈ [0, 1]. We are
looking for diffeomorphisms Φt : (Kp, 0) → (Kp, 0), Ψt : (Kn, 0) → (Kn, 0) for
t ∈ [0, 1] such that

Φ?
t Ωt = Ω0 (5.1)

and Φ0 = IdKp , Ψ0 = IdKn , Φt ◦ f = f ◦Ψt. Differentiating (5.1) we obtain

Φ?
t (LYtΩt + Ω1 − Ω0) = 0,
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where Yt ◦Φt = d
dt

Φt. We have Φt ◦ f = f ◦Ψt if and only if Yt ◦ f = df(Xt),
where Xt ◦Ψt = d

dt
Ψt. By the assumptions

d(YtcΩt) = Ω0 − Ω1 = div(Y )Ω0 = d(Y cΩ0). (5.2)

But
Ωt = htΩ0,

where ht is a non-vanishing function-germ at 0. Hence Yt = 1
ht

Y is a solution
of (5.2). Multiplying df(X) = Y ◦ f by 1/ht ∈ Cp (using the Cp-module
structure of Lift(f)) we have

Yt ◦ f = (
1

ht

Y ) ◦ f = df((
1

ht

◦ f)X) = df(Xt),

where Xt := ( 1
ht
◦ f)X vanishes at 0, because X vanishes at 0. And Yt

vanishes at 0 too, because Yt|0 = Yt|f(0) = df |0(Xt|0) = df |0(0) = 0.
Integrating Yt and Xt we obtain diffeomorphism-germs Φt : (Kp, 0) →

(Kp, 0) and Ψt : (Kn, 0) → (Kn, 0) such that Φ?
1Ω1 = Ω0 and Φt ◦ f = f ◦Ψt.

Now assume that Ω1 and Ω0 are IAf -equivalent. Then there exist smooth
families of germs of diffeomorphisms Φt : (Kp, 0) → (Kp, 0) and Ψt : (Kn, 0) →
(Kn, 0) such that Φ0 = IdKp , Ψ0 = IdKn , Φ∗

1Ω0 = Ω1 and Φt ◦ f = f ◦Ψt for
all t ∈ [0, 1]. Thus

Ω1 − Ω0 =

∫ 1

0

d

dt
Φ∗

t Ω0dt =

∫ 1

0

Φ∗
t d(YtcΩ0)dt = d

∫ 1

0

Φ∗
t (YtcΩ0)dt,

where Yt is a germ of a vector field on Kp such that Yt ◦ Φt = d
dt

Φt.
But

∫ 1

0

Φ∗
t (YtcΩ0)dt =

∫ 1

0

(
d(Φ−1

t )(Yt ◦ Φt)
)cΦ∗

t Ω0dt =

∫ 1

0

Jac(Φt)ỸtdtcΩ0,

where Ỹt = d(Φ−1
t )(Yt ◦ Φt) is a germ of a vector field on Kp and Jac(Φt) =

det dΦt.
Differentiating Φt ◦ f = f ◦ Ψt we obtain Yt ◦ f = df(Xt), where Xt is a

germ of a vector field at 0 such that Xt ◦Ψt = d
dt

Ψt.

Then Ỹt ◦ f = d(Φ−1
t )(Yt ◦Φt ◦ f) = d(Φ−1

t )(Yt ◦ f ◦Ψt) = d(Φ−1
t )(df(Xt ◦

Ψt)) = d(Φ−1
t ◦ f)(Xt ◦ Ψt) = d(f ◦ Ψ−1

t )(Xt ◦ Ψt) = df(d(Ψ−1
t )(Xt ◦ Ψt)).

Thus
Ỹt ◦ f = df(X̃t), t ∈ [0, 1],
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where X̃t = d(Ψ−1
t )(Xt ◦Ψt) is a germ of a vector field on Kn.

Hence
∫ 1

0

Jac(Φt)Ỹtdt ◦ f = df

(∫ 1

0

(Jac(Φt) ◦ f)X̃tdt

)
.

Thus a germ of a vector field Y =
∫ 1

0
Jac(Φt)Ỹtdt lifts over f to a germ of a

vector field X =
∫ 1

0
(Jac(Φt) ◦ f)X̃tdt and Ω1 − Ω0 = d(Y cΩ0) = div(Y )Ω0.

It is easy to see that X vanishes at 0, because Xt|0 = 0. 2

From Theorem 5.7 we get the following corollary, using the fact the
IAf -orbit of Ω is the identity component of the Af -orbit of Ω.

Corollary 5.8. The number of Af -moduli of germs of volume forms on Kn

is equal to dimK
Cp

div(Lift0(f))
.

We now define a class of map-germs f for which div(Lift0(f)) is Cp.

Definition 5.9. We say that a smooth (K-analytic) map-germ f : (Kn, 0) →
(Kp, 0) is weakly quasi-homogeneous if it is quasi-homogeneous with non-
negative degrees δ1, . . . , δp and a positive total degree δ1 + . . .+δp for inte-
ger weights w1, . . . , wn (fixing coordinates (x1, . . . , xn) ∈ Kn and (X1, . . . , Xp)
∈ Kp).

For convenience, we assume that the degree of the zero function-germ is
1 (see Example 5.12 below).

Define Euler-like vector fields on Kn (with wi ∈ Z)

Ew =
n∑

i=1

wixi
∂

∂xi

.

and on Kp (with δi ≥ 0,
∑

i δi > 0)

Eδ =

p∑
i=1

δiXi
∂

∂Xi

.

The following easy proposition gives one more equivalent definition of
weak quasi-homogeneity of a map.

Proposition 5.10. The following conditions on a smooth (K-analytic) map-
germ f are equivalent:
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(i) f is weakly quasi-homogeneous with degrees δ = (δ1, . . . , δp) for weights
w = (w1, . . . , wn) in coordinate systems x = (x1, . . . , xn) on Kn and
X = (X1, . . . , Xp) on Kp;

(ii) Eδ ◦ f = df(Ew).

All quasi-homogeneous map-germs are weakly quasi-homogeneous. But
there are weakly quasi-homogeneous map-germs which are not quasi-homoge-
neous.

Example 5.11. Let f : (Kn, 0) → (Kp, 0) be a map-germ A-equivalent to

f̃(u, x1, . . . , xn−1) = (u, g(x1, . . . , xn−1))

for some map-germ g : (Kn−1, 0) → (Kp−1, 0). Then f is weakly quasi-
homogeneous. For f̃ we take weights (1, 0, . . . , 0).

Example 5.12. Let f : (Kn, 0) → (Kp, 0) be a map-germ A-equivalent to

f̃(x1, . . . , xn) = (g(x1, . . . , xn), 0)

for some map-germ g : (Kn, 0) → (Kp−1, 0). Then f is weakly quasi-homogene-
ous. For f̃ we take weights (0, . . . , 0). The total degree of f is 1, because the
degree of the zero component function-germ is 1.

Example 5.13. In [8]

f : (C3, 0) → (C2, 0), f(u, x, y) = (u, x4 + y4 + ux2y2)

is presented as an example of a map-germ which is not generically a trivial
unfolding of a quasi-homogeneous germ. This f is also an example of a
weakly quasi-homogeneous map-germ (for the weights (0, 1, 1)).

Notice that the map-germ f in the third example fails to be A-finite
and that in the first example f is either stable (if g is stable) or it fails
to be A-finite. In the next section we describe a more subtle example of a
weakly quasi-homogeneous (but not quasi-homogeneous)A-simple map-germ
without zero component functions (see Example 6.4).

Using Lemma 3.1 we prove the following theorem.
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Theorem 5.14. 1. Let f : (Rn, 0) → (Rp, 0) be a smooth (R-analytic)
weakly quasi-homogeneous map-germ and let Ω0 and Ω1 be germs of smooth
(R-analytic) volume-forms at 0. If Ω0|0 and Ω1|0 define the same orientation
of T0Rp then Ω0 and Ω1 are Af -equivalent.
2. Let f : (Cn, 0) → (Cp, 0) be a C-analytic weakly quasi-homogeneous map-
germ and let Ω0 and Ω1 be germs C-analytic volume-forms at 0. Then Ω0

and Ω1 are Af -equivalent.

Proof : Let Ew be the Euler-like vector field on Kn for a coordinate sys-
tem (x1, . . . , xn) with weights w = (w1, . . . , wn) of weak quasi-homogeneity
for f and let Eδ be the Euler vector field on Kp for a coordinate system
(X1, . . . , Xp) with non-negative weights δ = (δ1, . . . , δp), which are degrees
of weak quasi-homogeneity of f . We may assume that δ1, . . . , δk are posi-
tive integers and δk+1 = . . . = δp = 0. Therefore Eδ satisfies the con-
ditions of Lemma 3.1. Let Ω1 be a germ of volume form on Kp and let
Ω0 = ±dX1 ∧ . . . ∧ dXp (we choose the sign of Ω0 in such way that Ω0|0 and
Ω1|0 define the same orientation of T0Rp for K = R, and Ω0 = dX1∧ . . .∧dXp

for K = C).
We show that Ω1 and Ω0 are Af -equivalent.
By Lemma 3.1 we have

Ω0 − Ω1 = d(h(EδcΩ0)), (5.3)

where h is a function-germ. From Proposition 5.10 we have Eδ ◦ f = df(Ew)
and multiplying by h ◦ f we get

(hEδ) ◦ f = df((h ◦ f)Ew),

and (h ◦ f)Ew|0 = 0, because Ew|0 = 0.
Hence, by Theorem 5.7, Ω1 and Ω0 are IAf -equivalent. 2

Remark 5.15. Theorem 5.14 can also be proved using Proposition 5.8. It is
easy to show that if f is weakly quasi-homogeneous then div(Lift0(f)) is Cp.

Let Ω be a germ of a volume form on Kp and let f, g : (Kn, 0) → (Kp, 0)
be map-germs.

Definition 5.16. f and g are AΩ-equivalent if there exists a germ of a
volume-preserving diffeomorphism Φ : (Kp, Ω, 0) → (Kp, Ω, 0) (i.e. Φ∗Ω = Ω)
and a germ of a diffeomorphism Ψ : (Kn, 0) → (Kn, 0), such that

f ◦Ψ = Φ ◦ g.
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Proposition 5.17. Let Φ : (Kp, 0) → (Kp, 0) and Ψ : (Kn, 0) → (Kn, 0) be
germs of diffeomorphisms such that

f ◦Ψ = Φ ◦ g.

If the germs of volume forms Ω0 and Ω1 are divLift0(f)-equivalent then Φ∗Ω0

and Φ∗Ω1 are divLift0(g)-equivalent.

Proof : There exist germs of vector fields X on Kn and Y on Kp such that
Ω1 − Ω0 = d(Y cΩ), df(X) = Y ◦ f and X|0 = 0, because Ω0 and Ω1 are
divLift0(f)-equivalent.

Φ∗Ω1 −Φ∗Ω0 = d(Φ∗(Y cΩ)) = d(Ỹ cΦ∗Ω), where Ỹ = d(Φ−1)(Y ◦Φ) is a
germ of a vector field on Kp.

But Ỹ ◦g = d(Φ−1)(Y ◦Φ◦g) = d(Φ−1)(Y ◦f ◦Ψ) = d(Φ−1)(df(X ◦Ψ)) =
d(Φ−1 ◦ f)(X ◦Ψ) = d(g ◦Ψ−1)(X ◦Ψ) = dg(d(Ψ−1)(X ◦Ψ)).

Thus Ỹ ◦ g = dg(X̃), where X̃ = d(Ψ−1)(X ◦ Ψ) is a germ of a vector
field on Kn vanishing at 0, because X|0 = 0.

Hence Φ∗Ω0 and Φ∗Ω1 are divLift0(g)-equivalent. 2

Next we can define diffeomorphic divLift0-equivalence classes.

Definition 5.18. [Ω]f and [Ω]g are diffeomorphic if there exist germs of
diffeomorphisms Φ : (Kp, 0) → (Kp, 0) and Ψ : (Kn, 0) → (Kn, 0) such that

f ◦Ψ = Φ ◦ g, [Φ∗Ω]g = [Ω]g.

As a corollary of Theorem 5.7 we obtain the following theorem.

Theorem 5.19. f and g are AΩ-equivalent if and only if [Ω]f and [Ω]g are
diffeomorphic.

Proof : If f and g are AΩ-equivalent then it is obvious that [Ω]f and [Ω]g are
diffeomorphic.

Now assume that [Ω]f and [Ω]g are diffeomorphic. Then there exist germs
of diffeomorphisms Φ : (Kp, 0) → (Kp, 0) and Ψ : (Kn, 0) → (Kn, 0) such that
f ◦ Ψ = Φ ◦ g and [Φ∗Ω]g = [Ω]g. By Theorem 5.7 there exist germs of
diffeomorphisms Φ1 : (Kp, 0) → (Kp, 0) and Ψ1 : (Kn, 0) → (Kn, 0) such that
g ◦Ψ1 = Φ1 ◦ g and Φ∗

1(Φ
∗Ω) = Ω. Then f ◦Ψ ◦Ψ1 = Φ ◦ g ◦Ψ1 = Φ ◦Φ1 ◦ g

and (Φ ◦ Φ1)
∗Ω = Ω. Hence f and g are AΩ-equivalent. 2

From Theorem 5.14 we obtain the following corollary.
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Theorem 5.20. 1. Let f : (Rn, 0) → (Rp, 0) be a smooth (R-analytic)
weakly quasi-homogeneous map-germ and let Ω be the germ of a smooth (R-
analytic) volume-form at 0. Let g : (Rn, 0) → (Rp, 0) be another smooth
(R-analytic) map-germ, then f and g are AΩ-equivalent if and only if there
exist a germ of a smooth (R-analytic) orientation-preserving diffeomorphism
Φ : (Rp, 0) → (Rp, 0) and a germ of a smooth (R-analytic) diffeomorphism
Ψ : (Rn, 0) → (Rn, 0) such that Φ ◦ g ◦Ψ = f .
2. Let f : (Cn, 0) → (Cp, 0) be a C-analytic weakly quasi-homogeneous
map-germ and let Ω be the germ of a C-analytic volume-form at 0. Let
g : (Cn, 0) → (Cp, 0) be another C-analytic map-germ, then f and g are
AΩ-equivalent if and only if f and g are A-equivalent.

The following example explains the role of the orientation in the real case.

Example 5.21. Let f1 : R 3 t 7→ (t3, t5) ∈ R2 and f2 : R 3 t 7→ (t3,−t5) ∈
R2 (see [23]). It is easy to see that f1 and f2 are quasi-homogeneous and
A-equivalent. But they are not AΩ-equivalent, because their images f1(R) =
{(x1, x2) ∈ R2 : x3

2 − x5
1 = 0} and f2(R) = {(x1, x2) ∈ R2 : x3

2 + x5
1 = 0} fail

to be RΩ-equivalent as set-germs at 0 ∈ R2 (see Example 4.11).

6 AΩ-classification of maps

From the work of Mather it is clear that theA-stable map-germs f : (Kn, 0) →
(Kp, 0) are all quasi-homogeneous. The classification of the AΩ-stable germs
therefore coincides with the corresponding A-classification for K = C, for
K = R a given A-orbit corresponds to one or two AΩ-orbits. Also, Mather’s
nice pairs of dimensions (n, p) are the same for A and AΩ. In the present sec-
tion we describe the classification of the AΩ-simple orbits in those dimensions
(n, p) for which the A-simple orbits are known and we study the foliation of
A-orbits of modality one and two by AΩ-orbits for (n, 2), n ≥ 2. We also
relate the number of Af -moduli to the dimension of TA · f/TAΩ · f , which
requires some notation for the tangent spaces to orbits.

Given a map-germ f : (Kn, 0) → (Kp, 0) we use coordinates x = (x1, . . . ,
xn) in the source and (X1, . . . , Xp) in the target, and we also denote the
vector fields ∂/∂xi and ∂/∂Xi by ei. Recall the usual definition of the A-
tangent space TA · f = tf(Mnθn) + ωf(Mpθp), where Mn and Mp denote
the maximal ideals in the local rings Cn and Cp of function-germs in the
source and target of f , respectively, and where tf : θn → θf , a 7→ df(a)
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and ωf : θp → θf , b 7→ b ◦ f are homomorphisms from the Cn-module of
source vector fields θn and the Cp-module of target vector fields θp into the
Cn-module θf of smooth sections of f ∗TKp. For the subgroup AΩ = R×LΩ

of A we have to restrict θp to divergence-free vector fields, the left tangent
space TLΩ · f is no longer a Cp-module. Let Λd denote the K-vector space
of homogeneous divergence-free vector fields in Kp of degree d. Notice that
Λd is the kernel of the epimorphism

div : (θp)(d) :=
Md

p · θp

Md+1
p · θp

→ H(d−1) :=
Md−1

p

Md
p

,

which maps a vector field on Kp of degree d to its divergence. Hence

dim Λd = dim(θp)(d) − dim H(d−1) = (p− 1)
(

p+d−1
d

)
+

(
p+d−2

d

)
.

The dim Λd vector fields

∏

l 6=i

Xαl
l ei,

∑

l

αl = d, i = 1, . . . , p

and (setting hXi
:= ∂h/∂Xi)

−hXj
e1 + hX1ej, h =

∏

l

Xαl
l , α1, αj ≥ 1,

∑

l

αl = d + 1, j = 2, . . . , p

are clearly linearly independent and hence form a basis for Λd. The tangent
space to the LΩ-orbit at f is then given by TLΩ · f = f ∗ ⊕d≥1 Λd. As
usual, for any group of equivalences G we denote the extended pseudogroup
of non-origin preserving diffeomorphisms by Ge.

The following result is the infinitesimal version (and, of course, a direct
consequence) of Theorem 5.20, but we give a short direct proof.

Proposition 6.1. Let f : (Kn, 0) → (Kp, 0) be a weakly quasi-homogeneous
map-germ. Then we have an inclusion

TL · f ⊂ TAΩ · f,

and hence TAΩ · f = TA · f . One also has TAΩ,e · f = TAe · f .
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Proof : Fixing coordinates, we suppose that f = (f1, . . . , fp) is weighted ho-
mogeneous with non-negative degrees and positive total degree δ1 + . . . + δp

for integer weights w1, . . . , wn. Let Xα =
∏

l X
αl
l and |α| ≥ 0. The following

elements of TAΩ · f yield ωf(XαXi · ∂/∂Xi) ∈ TL · f , i = 1, . . . , p:

ωf(−(1 + αj)X1X
α · ∂/∂X1 + (1 + α1)XjX

α · ∂/∂Xj), j = 2, . . . , p

together with

tf(f ∗(Xα)
n∑

i=1

wixi·∂/∂xi)−
p∑

j=2

δj·ωf(−1 + αj

1 + α1

XαX1·∂/∂X1+XαXj·∂/∂Xj)

= (1 + α1)
−1

p∑
j=1

(1 + αj)δj · ωf(XαX1 · ∂/∂X1)

(notice that
∑

j(1 + αj)δj 6= 0, for any exponent vector α, is equivalent to
the weak quasi-homogeneity of f). And the remaining elements of TL· f are
of the form

ωf(
∏

l 6=i

Xαl
l · ∂/∂Xi) ∈ TLΩ · f.

The desired inclusion now follows, and the last statement is trivial, because
the constant target vector fields are divergence-free. 2

Remark 6.2. Notice that the above proof for AΩ = R × LΩ cannot be
adapted to A′

Ω := RΩ × L, but we can obtain a corresponding result for
the subgroup K′Ω of the contact group K for which the diffeomorphisms on
the right are volume-preserving (simply exchange the roles of source and tar-
get vector fields in the above proof, and use multiplication by xα ∈ Cn). For
f quasi-homogeneous for non-negative weights wi and positive total weight
w1 + . . .+wn we obtain that K′Ω · f = TK · f , and for general f one obtains a
formula for dimK TK · f/TK′Ω · f . Notice that considering volume-preserving
diffeomorphisms on the right is more closely related to earlier work on the
isochore Morse lemma [39, 10] (and can be considered as an extension of this
work on functions to the case of mappings). But, in fact, the K′Ω-classification
of map-germs f corresponds to the classification of varieties V = f−1(0) up
to volume-preserving diffeomorphisms in Sections 3 and 4 in the same way
as ordinary K-equivalence corresponds to the equivalence of varieties up to
ambient diffeomorphisms (at least when Cn/f ∗Mp is reduced).
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The criterion in the next easy lemma is sufficient for detecting in the
existing classifications of A-simple orbits those which are foliated by an r-
parameter family, r ≥ 1, of AΩ-orbits.

Lemma 6.3. Consider a germ fu : (Kn, 0) → (Kp, 0) of the form fu =
f+u·M , where f is a quasi-homogeneous germ, u ∈ K and M = Xα·∂/∂Xj /∈
TA·f = TAΩ·f is a monomial vector of positive weighted degree (with respect
to the weights of f). Then we have the following:

(i) The coefficient u is not a modulus for A-equivalence.
(ii) For a set of weights for which f is weighted homogeneous, let (θn)0,

(θp)0 and (θf )0 denote the filtration-0 parts of the modules of source and
target vector fields and vector fields along f , respectively. If the kernel of the
linear map

γ(f) : (θn)0 ⊕ (θp)0 → (θf )0, (a, b) 7→ tf(a)− ωf(b),

of K-vector spaces is 1-dimensional then u is an AΩ-modulus of fu.

Proof : Let f be weighted homogeneous for the weights w1, . . . , wn, and asso-
ciate to the target variables the weights δ1, . . . , δp. Then the weighted degree
of ∂/∂Xi is −δi, so that f has filtration 0 and M has filtration r > 0.

For A-equivalence we consider the following element of TA · fu:

tfu(
n∑

i=1

wixi · ∂/∂xi)− ωfu(

p∑
j=1

δjXj · ∂/∂Xj) = ruM.

From Mather’s lemma (Lemma 3.1 in [30]) we conclude that the connected
components of K \ {0} of the parameter axis lie in a single A-orbit, hence u
is not a modulus for A.

For the second statement we observe that dim ker γ(f) = 1 implies that
this kernel is spanned by the pair of Euler fields (Ew, Eδ) (which is unique
up to a multiplication by an element of K∗). For M /∈ TA · f implies that
the only generator of M in TA · fu must be of the form tfu(a)−ωfu(b) with
(a, b) a non-zero multiple of (Ew, Eδ), but Eδ has non-zero divergence, hence
this generator does not belong to TAΩ · fu. Now Mather’s lemma implies
that u is a modulus for AΩ. 2

We can distinguish three types of weakly quasi-homogeneous map-germs
f : (Kn, 0) → (Kp, 0): (a) quasi-homogeneous, (b) not quasi-homogeneous
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and having an A-representative with a zero component function (their image
lies in a smooth hypersurface in Kp) and (c) the remaining ones. Looking
at the existing classifications of A-simple germs we see that all non-weakly
quasi-homogeneous map-germs satisfy condition (ii) of the lemma above and
hence have an AΩ-modulus along the positive filtration term. Then for di-
mensions (n, p) with p < 2n the weakly quasi-homogeneous A-simple germs
are all in fact quasi-homogeneous (i.e. of type (a)). For p = 2n and n ≥ 2 the
weakly quasi-homogeneous germs are of type (c) or are quasi-homogeneous,
see the classification in [24]. For p > 2n and n ≥ 2 we have all three types
of weakly quasi-homogeneous germs. Finally, for curves in Kp the weakly
quasi-homogeneous germs for p = 2 are all quasi-homogeneous, for p ≥ 3
they are quasi-homogeneous or of type (b) (see [6],[3]).

Example 6.4. Consider the series 22k of map germs (Cn, 0) → (C2n, 0),
n ≥ 3, from the classification of A-simple germs f : (Kn, 0) → (K2n, 0),
n ≥ 2, in [24] given by:

gk = (x1, . . . , xn−1, x1y + y3, x2y, . . . , xn−1y, x1y
2 + y2k+1, x2y

2 + y4), k ≥ 2.

The germs 22k are not semi-quasi-homogeneous: if we write gk = f + y2k+1 ·
e2n−1 then the weighted homogeneous initial part f is not A-finite. For n = 3
all the germs 22k are A-simple, for n ≥ 4 only 222 is A-simple (the germs
22≥3 do not have an A-modulus, but they lie in the closure of non-simple
A-orbits).

Now consider AΩ-equivalence. Writing fu = f + u · y2k+1 · e2n−1 we see
that dim ker γ(f) = n− 2. For n = 3 part (ii) of Lemma 6.3 implies that the
coefficient u is an AΩ-modulus. For n ≥ 4 the germs fu are weakly quasi-
homogeneous of type (c) (take w(x1) = w(x2) = w(y) = 0 and w(xi) = 1,
i ≥ 3) and AΩ-equivalent to gk (for u 6= 0).

Next, one obtains the classification of AΩ-simple orbits from the existing
A-classification using the following

Remark 6.5. An A-simple germ in the existing classifications is AΩ-simple
if and only if it does not lie in the closure of the orbit of any non-weakly
quasi-homogeneous germ.

As an example, let us consider map-germs with target dimension p = 2.
The classification of AΩ-simple map-germs f : (Kn, 0) → (K2, 0) in the curve
case n = 1 has been described in [23] (for target dimension 2 the symplectic
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forms are volume forms). For any n ≥ 2 we have the following classification
over K = C.

Proposition 6.6. (i) The following map-germs f : (Cn, 0) → (C2, 0) rep-
resent the AΩ-orbits within the A-simple orbits (here “type r” refers to the
notation in [34, 36] for the A-orbits).

AΩ-modality 0: (x, y) (type 1); (x, y2 +
∑n−2

i=1 z2
i ) (type 2); (x, xy + y3 +∑n−2

i=1 z2
i ) (type 3); (x, y3 + xky +

∑n−2
i=1 z2

i ), k > 1 (type 4k); (x, xy + y4 +∑n−2
i=1 z2

i ) (type 5).
AΩ-modality ≥ 1: (x, xy + y5 + ay7 +

∑n−2
i=1 z2

i ) (types 6,7); (∗) (x, xy2 +
y4 +

∑
k≥2 aky

2k+1 +
∑n−2

i=1 z2
i ) (types 112k+1); (x, xy2 + y5 + ay6 + by9 +∑n−2

i=1 z2
i ) (types 12,13,14); (x, x2y + y4 + ay5 +

∑n−2
i=1 z2

i ) (types 16,17); (∗)
(x2 + ay2l+1, y2 + x2m+1), l ≥ m ≥ 1 (type IIl,m2,2 ).

(ii) The A-unimodal orbits of map-germs f : (Cn, 0) → (C2, 0) of lowest
codimension in their K-orbit, containing the remaining A-unimodal orbits in
their closures, have the following representatives (see [35]):

(x, y4 + x3y + ax2y2 + x3y2 +
n−2∑
i=1

z2
i ), a 6= −3/2 (type 19)

(x, xy + y6 + y8 + ay9 +
n−2∑
i=1

z2
i ) (type 8)

(x, xy + y3 + ay2z + z3 + z5) (type I).

For AΩ-equivalence the corresponding normal forms are:

(x, y4 + x3y + ax2y2 + bx3y2 +
n−2∑
i=1

z2
i )

(x, xy + y6 + ay8 + by9 + cy14 +
n−2∑
i=1

z2
i )

(x, xy + y3 + ay2z + z3 + bz5).

All A-unimodal germs therefore have AΩ-modality at least two.

Proof : The classification of the orbits of AΩ-modality 0 follows from the
remark preceding the statement of the proposition.
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For the semi-quasi-homogeneous map-germs f = f0+f+ theA-determinacy
degree, say r, of the initial part f0 is an upper bound for the AΩ-determinacy
degree of f . The normal forms of such f can then be obtained with the usual
techniques (Mather’s lemma) applied to the Lie group Ar

Ω of r-jets of ele-
ments of AΩ (we omit the details of these calculations).

Finally, the map-germs f = f0 + f+ marked by an (∗) are not semi-quasi-
homogeneous. As a consequence we cannot use the A-determinacy degree
of the weighted homogeneous initial parts f0 as an upper bound for the AΩ-
determinacy degree of f . For the germs IIl,m2,2 we can show that these are
formally (2l + 1)-AΩ-determined (for a 6= 0). For the germs 112k+1 we only
know that a2 is an AΩ-modulus (and we can set a3 and a4 to zero, provided
a2 is non-zero).
See also Remark 6.8 (below) on the problem of AΩ-determinacy. 2

Denote the number of G-moduli (G = A or AΩ) of a map-germ f by
mG(f), and let mA/AΩ

(f) := dimK(TA · f/TAΩ · f) be the dimension of the
AΩ-moduli space. Then mAΩ

(f) = mA(f) + mA/AΩ
(f), where mA/AΩ

(f) is
equal to the number of Af -moduli by Corollary 5.8 and the following result.

Proposition 6.7. There is an isomorphism

TA · f
TAΩ · f

∼= Cp

div(Lift0(f))
.

Proof : We use the notation TidA = TidR+ TidL for the tangent space to the
A-group at the identity, rather than the usual notation TidR = Mn · θn and
TidL = Mp · θp.

The map β : TidA → Cp, (a, b) 7→ divb is surjective with kernel TidAΩ,
hence there is an isomorphism β̄ : TidA/TidAΩ → Cp and the map

γ̄ :
TidA
TidAΩ

→ Mn · θf

TAΩ · f , [(a, b)] 7→ [tf(a)− wf(b)]

is independent of the choice of (ã, b̃) ∈ [(a, b)] and hence well-defined. Its
image is TA · f/TAΩ · f and

ker γ̄ = {[(a, b)] : tf(a)− wf(b) ∈ TAΩ · f}.
Hence Cp/β̄(ker γ̄) is isomorphic to TA · f/TAΩ · f . And it is easy to see
that β̄(ker γ̄) = div(Lift0(f)). 2
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Remark 6.8. For A-finite map-germs f , that are not semi-quasi-homogeneous,
two questions arise: (i) is such an f always AΩ-finite? (ii) Is there an esti-
mate for the AΩ-determinacy degree?

(i) Composing the above isomorphism

σ : Cp/div(Lift0(f)) → TA · f/TAΩ · f

with an epimorphism

g : Mn · θf/TAΩ · f →Mn · θf/TA · f

with kernel TA · f/TAΩ · f (coming from the second isomorphism theorem
for the vector spaces TAΩ · f ⊂ TA · f ⊂Mn · θf) we get an exact sequence

0 −→ Cp

div(Lift0(f))

σ−→ Mn · θf

TAΩ · f
g−→ Mn · θf

TA · f −→ 0.

Hence we have:

cod(AΩ, f) = cod(A, f) + mA/AΩ
(f),

and for A-finite f the germ f̃ of f at any point of a punctured neighbor-
hood of the origin in the source is A-stable, hence weighted homogeneous, so
that mA/AΩ

(f̃) = 0. Unfortunately, div(Lift0(f)) is not an ideal in Cp, so
we cannot conclude (from the Nullstellensatz) that mA/AΩ

(f) is finite. For
plane curves, Ishikawa and Janeczko [23] have shown that cod(AΩ,e, f) is
equal to the delta invariant δ(f), and it is known that δ(f) < ∞ is equivalent
to the A-finiteness of f . The analogue of the delta invariant for map-germs
f : (Kn, 0) → (K2n, 0), n ≥ 2, is the double-point number d(f), whose finite-
ness is again equivalent to the A-finiteness of f (see [24]), but the equation
cod(AΩ,e, f) = d(f) does not hold for n ≥ 2.

(ii) Suppose that for an r-A-determined map-germ f the following holds:
Ml

nθf ⊂ TKe ·f (Ke is the extended contact group) and Mk
p ⊂ div(Lift0(f))

(so that f is AΩ-finite). Then f is (r + l(k + 2)− 1)-AΩ-determined. To see
this, let Gs denote the subgroup of G consisting of elements of G with identity
s-jet and apply the inverse β̄−1 of the isomorphism β̄ : TidA/TidAΩ → Cp

in the proof of the above proposition to Mk
p. It follows that TAΩ,k+1 · f =

TAk+1 ·f , and 2.7.3 of [7] then implies that f is (r+ l(k+2)−1)-determined
for Ak+1 and hence for AΩ.
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Implicit Hamiltonian systems with fold singularities on
the plane

Takuo Fukuda 1 and StanisÃlaw Janeczko 2

1 Introduction

Let R2 be the symplectic plane endowed with the symplectic structure ω =
dy ∧ dx, where (x, y) are the standard coordinates on R2 (cf. [6]). Then the
tangent bundle TR2 of R2 is also a symplectic manifold with the natural
symplectic structure

ω̄ = dẏ ∧ dx− dẋ ∧ dy,

where (p, q) = ((x, y), (ẋ, ẏ)) are coordinates on TR2 = R2 ×R2. Let

π : TR2 → R2 π(p, q) = p

denote the projection of the tangent bundle onto the plane.
A Lagrangean submanifold of the symplectic manifold (TR2, ω̄) is called

an implicit Hamiltonian system on the symplectic plane (R2, ω) (see [1], [3],
[2]).

Let M ⊂ TR2 be an implicit Hamiltonian system. Singular points of the
restricted map

π |M : M → R2

are called singular points of the implicit Hamiltonian system M (see [4], [5]).
A symplectomorphism φ : P → P ′ between open subsets of R2 induces a

symplectomorphism between their tangent bundles

φ̄ : TP → TP ′ defined by φ̄(p, q) = (φ(p), dφp(q)).

In this note, we will classify integrable fold singularities of implicit Hamil-
tonian systems on R2 up to germs of symplectomorphisms of the tangent
bundle TR2 induced by germs of symplectomorphisms of R2.
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Definition 1.1. Let M, N ⊂ TR2 be implicit Hamiltonian systems and
let (p, q) ∈ M and (p′, q′) ∈ N be their singular points. We say that the
germs (M, (p, q)) and (N, (p′, q′)) are symplectomorphic if there exists a germ
of symplectomorphism φ : (R2, p) → (R2, p′) such that φ̄((M, (p, q))) =
(N, (p′, q′)).

2 Main Theorem

Now we formulate our main theorem, which will be proved in the last section.

Theorem 2.1. 1) If ((0, 0), q) ∈ M ⊂ TR2 is a fold singular point of
an implicit Hamiltonian system, then the germ (M, (p, q)) of the implicit
Hamiltonian system is symplectomorphic to the germ (MF , ((0, 0), q)) of the
implicit Hamiltonian system MF generated by

F (x, y, λ) = λ3 + yλ + c(x, y),

where q = (
∂F

∂y
(0, 0, 0),−∂F

∂x
(0, 0, 0)).

2) The implicit Hamiltonian system generated by

F (x, y, λ) = λ3 + yλ + c(x, y)

is smoothly integrable if and only if

F (x, y, λ) = λ3 + yλ + ya(x, y) for some function-germ a(x, y).

3) Let (MF , ((0, 0), q)) and (MG, ((0, 0), q′)) be two germs of integrable
implicit Hamiltonian systems generated by

F (x, y, λ) = λ3 + yλ + ya(x, y) and G(x, y, λ) = λ3 + yλ + yb(x, y),

where q = (
∂F

∂y
(0, 0, 0),−∂F

∂x
(0, 0, 0)), q′ = (

∂G

∂y
(0, 0, 0),−∂G

∂x
(0, 0, 0)).

Then (MF , ((0, 0), q)) and (MG, ((0, 0), q′)) are symplectomorphic if and only
if a(x, y) and b(x, y) are symplectomorphic under a symplectomorphism of
the form φ(x, y) = (x + α(y), y):

b(x, y) = a(x + α(y), y).
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3 A classification of fold singularities:

polynomial case

In this section, as corollaries of Theorem 2.1, we give a complete classification
of fold singularities of implicit Hamiltonian systems generated by functions
of the form

F (x, y, λ) = λ3 + yλ + ya(x, y)

where functions a(x, y) are polynomials in variable x with coefficients in Ey:

a(x, y) = an(y)xn + an−1(y)xn−1 + · · ·+ a0(y), ai ∈ Ey.

Corollary 3.1. Let a(x, y) be a polynomial in variable x with coefficients
in Ey:

a(x, y) = an(y)xn + an−1(y)xn−1 + · · ·+ a0(y).

Then coefficient an(y) of the highest degree term xn is a symplectic in-
variant of the implicit Hamiltonian system germ (MF , ((0, 0), q)) generated
by the function

F (x, y, λ) = λ3 + yλ + ya(x, y).

In other words, if (MF , ((0, 0), q)) is symplectomorphic to another implicit
Hamiltonian system germ (MG, ((0, 0), q)) generated by the function

G(x, y, λ) = λ3 + yλ + yb(x, y),

with

b(x, y) = bm(y)xm + bm−1(y)xm−1 + · · ·+ b0(y),

then m = n and bn(y) = an(y).

Proof For a symplectomorphism φ of the form φ(x, y) = (x + α(y), y),
we have

a ◦ φ(x, y) = an(y)(x + α(y))n + an−1(y)(x + α(y))n−1 + · · ·+ a0(y)

= an(y)xn + (nan(y)α(y) + an−1(y))xn−1 + · · · .

Thus symplectomorphisms φ of the form φ(x, y) = (x+α(y), y) do not change
the coefficient an(y) of the highest degree term xn. 2
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Theorem 3.2. Let a(x, y) be a polynomial in variable x with coefficients
in Ey:

a(x, y) = an(y)xn + an−1(y)xn−1 + · · ·+ a0(y),

and let
F (x, y, λ) = λ3 + yλ + ya(x, y).

1) If

the degree of an(y) < the degree of an−1(y),

then the implicit Hamiltonian system germ (MF , ((0, 0), q)) is symplectomor-
phic to the germ of the implicit Hamiltonian system generated by

G(x, y, λ) = λ3 + yλ + yb(x, y)

for some polynomial b(x, y) in variable x

b(x, y) = an(y)xn + bn−2(y)xn−2 + · · ·+ b0(y).

of the same degree n as a(x, y) with the same coefficient an(y) of the highest
degree term and null coefficient of the term xn−1.

2) Suppose that polynomials a(x, y) and b(x, y) in x have the same co-
efficients of the highest degree term xn and null coefficients of xn−1:

a(x, y) = an(y)xn + an−2(y)xn−2 + · · ·+ a0(y),

b(x, y) = an(y)xn + bn−2(y)xn−2 + · · ·+ b0(y).

Then the implicit Hamiltonian system germs (MF , ((0, 0), q)) and
(MG, ((0, 0), q′)) generated respectively by

F (x, y, λ) = λ3 + yλ + ya(x, y) and G(x, y, λ) = λ3 + yλ + yb(x, y)

are symplectomorphic to each other if and only if a(x, y) = b(x, y).

Proof 1) Set

α(y) = −an−1(y)

nan(y)
and

φ(x, y) = (x− an−1(y)

nan(y)
, y).

45



Then we have

a ◦ φ(x, y) = an(y)(x + α(y))n + an−1(y)(x + α(y))n−1 + · · ·+ a0(y)

= an(y)xn + (nan(y)α(y) + an−1(y))xn−1 + · · ·
= an(y)xn + (nan(y)(−an−1(y)

nan(y)
) + an−1(y))xn−1 + · · ·

= an(y)xn + 0× xn−1 + · · · .

2) Of course, if a(x, y) = b(x, y), then we have (MF , ((0, 0), q)) =
(MG, ((0, 0), q′)).

Conversely, suppose that (MF , ((0, 0), q)) and (MG, ((0, 0), q′)) are sym-
plectomorphic to each other. Then from Theorem 2.1, 3),

b(x, y) = a(x + α(y), y) for some α(y) ∈ my

= an(y)(x + α(y))n + an−1(y)(x + α(y))n−1 + · · ·
= an(y)xn + nan(y)α(y)xn−1 + · · · .

If α(y) 6= 0, then the coefficient nan(y)α(y) of xn−1 is not 0, which contradicts
the assumption that the coefficient of xn−1 in b(x, y) is 0. Thus α(y) must
be 0 and we have b(x, y) = a(x, y). 2

Theorem 3.3. Let a(x, y) be a polynomial in variable x with coefficients
in Ey:

a(x, y) = an(y)xn + an−1(y)xn−1 + · · ·+ a0(y),

and let
F (x, y, λ) = λ3 + yλ + ya(x, y).

1) If

the degree of an(y) ≥ the degree of an−1(y),

then the implicit Hamiltonian system germ (MF , ((0, 0), q)) is symplectomor-
phic to the germ of the implicit Hamiltonian system generated by

G(x, y, λ) = λ3 + yλ + yb(x, y)

for some polynomial b(x, y) in x with the same coefficient an(y) of the highest
degree term xn as a(x, y) and of the form

b(x, y) = an(y)xn + bn−1(y)xn−1 + · · ·+ b0(y)
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such that bn−1(y) is a polynomial in y with

the degree of bn−1(y) ≤ the degree of an(y).

2) Suppose that

a(x, y) = an(y)xn + an−1(y)xn−1 + · · ·+ a0(y)

and
b(x, y) = an(y)xn + bn−1(y)xn−1 + · · ·+ b0(y)

have the same coefficient an(y) of the highest degree term xn and that an−1(y)
and bn−1(y) are polynomials in y such that

the degree of an−1(y) ≤ the degree of an(y),

the degree of bn−1(y) ≤ the degree of an(y).

Then the implicit Hamiltonian system germs (MF , ((0, 0), q)) and
(MG, ((0, 0), q′)) generated respectively by

F (x, y, λ) = λ3 + yλ + ya(x, y) and G(x, y, λ) = λ3 + yλ + yb(x, y).

are symplectomorphic to each other if and only if a(x, y) = b(x, y).

Proof 1) Let r be the degree of an(y). Represent the coefficient an−1(y)
in a sum of Taylor polynomial of an−1(y) of degree r and the higher term:

an−1(y) = bn−1(y) + cn−1(y), bn−1(y) =
r∑

i=0

1

i!

dian−1

dyi
(0)yi.

Then we have degree of cn−1(y) > degree of an(y). Set

φ(x, y) = (x− cn−1(y)

nan(y)
, y).

Then we have

a ◦ φ(x, y) = an(y)xn + bn−1(y)xn−1 + · · · ,

and
the degree of bn−1(y) ≤ the degree of an(y).
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2) Suppose that

b(x, y) = a(x + α(y), y) for some α(y) ∈ my

Then

b(x, y) = an(y)(x + α(y))n + an−1(y)(x + α(y))n−1 + · · ·
= an(y)xn + (nan(y)α(y) + an−1(y))xn−1 + · · · ,

and bn−1(y) = nan(y)α(y) + an−1(y).

On one hand bn−1(y) is a polynomial of degree less than the order of an(y).
On the other hand, if α(y) 6= 0, then nan(y)α(y)+an−1(y) is not a polynomial
of degree less than the degree of an(y). Thus α(y) must be 0 and b(x, y) =
a(x, y). 2

The above two theorems give a complete classification of fold singularities
of integrable implicit Hamiltonian systems generated by functions of the form

F (x, y, λ) = λ3 + yλ + ya(x, y),

a(x, y) being a polynomial in x with coefficients in Ey.

4 Non-polynomial case:

tangent spaces of symplectic orbits

We have no such a complete classification for the case where a(x, y)’s are
not polynomials in x with coefficients in Ey. However we can deduce some
symplectic invariants for such systems from the main theorem. For example
we have the following

Corollary 4.1. Let a(x, y) be of the form

a(x, y) = a0(x) + ya1(x, y).

Then the function a0(x) is a symplectic invariant of the germ (MF , ((0, 0), q))
of the implicit Hamiltonian system MF defined by

F (x, y, λ) = λ3 + yλ + ya(x, y);
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i.e. if another germ (MG, ((0, 0), q′)) of the implicit Hamiltonian system MG

defined by

G(x, y, λ) = λ3 + yλ + yb(x, y) with b(x, y) = b0(x) + yb1(x, y)

is symplectomorphic to (MF , ((0, 0), q)), then we have a0(x) = b0(x).

Proof Since (MF , ((0, 0), q)) and (MG, ((0, 0), q′)) are symplectomor-
phic, from 3) of the theorem, we have

b(x, y) = a(x + α(y), y) for some function α(y)

and

b0(x) + yb1(x, y) = a0(x + α(y)) + ya1(x + α(y), y)

= a0(x) + α(y)ā0(x, y) + ya1(x + α(y), y)

for some function ā0(x, y).

Thus we have b0(x) = a0(x). 2

More interesting symplectic invariants are derived from the tangent spaces
of symplectic orbits. From 1) of Theorem 2.1, every fold singularity of implicit
Hamiltonian system is generated by a generating function of the form

λ3 + yλ + c(x, y), c(x, y) ∈ mx,y.

From 3) of Theorem 2.1, two generating families

F (x, y, λ) = λ3 + yλ + ya(x, y) and G(x, y, λ) = λ3 + yλ + yb(x, y),

generate symplectomorphic germs of integrable implicit Hamiltonian systems
if and only if a(x, y) and b(x, y) are symplectomorphic under a symplecto-
morphism of the form φ(x, y) = (x + α(y), y):

b(x, y) = a(x + α(y), y).

Therefore in order to classify fold singularities of integrable implicit Hamil-
tonian systems, it is enough to classify functions a(x, y) ∈ Ex,y up to sym-
plectomorphism φ(x, y) of the form

φ(x, y) = (x + α(y), y).
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Let S0 denote the set of symplectomorphisms of the form φ(x, y) = (x +
α(y), y):

S0 = {φ(x, y) | φ(x, y) = (x + α(y), y) for some α ∈ my}.

The composition of φ(x, y) = (x + α(y), y) and ψ(x, y) = (x + β(y), y) is

ψ ◦ φ(x, y) = ψ(x + α(y), y) = (x + α(y) + β(y), y).

Thus we have

Lemma 4.2. S0 is an abelian group with composition of maps. Moreover
it is a real vector space isomorphic to the vector space my with the correspon-
dence

φ(x, y) = (x + α(y), y) ∈ S0 7→ α(y) ∈ my.

The orbit S0(a(x, y)) of a function a(x, y) ∈ Exy is given by

S0(a(x, y)) = {a(x + α(y), y) | α(y) ∈ my}.

Since S0 is a real vector space isomorphic to the vector space my with the
above correspondence, for a ∈ Exy, a vector tangent to S0(a) at a is given by

da(x + tα(y), y)

dt
|t=0 for some α(y) ∈ my.

Therefore vectors tangent to S0(a) at a have the form

v =
∂a

∂x
α.

Thus we call the set

{∂a

∂x
α | α ∈ my} =

∂a

∂x
my

the tangent space of the orbit S0(a) at a.
Let b(x, y) be symplectomorphic to a(x, y): b(x, y) = a(x + α(y), y).

Then
∂b

∂x
(x, y) =

∂a

∂x
(x + α(y), y).

Now consider the isomorphism

φ∗ : mxy → mxy defined by φ∗(c) = c ◦ φ.
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Then we have

φ∗(
∂a

∂x
) =

∂(a ◦ φ)

∂x
and φ∗((

∂a

∂x
)my) = (

∂a ◦ φ

∂x
)my = (

∂b

∂x
)my.

Since φ∗ : mxy → mxy is an isomorphism, we have the isomorphism between
the quotient spaces

φ∗ :
mxy

∂a
∂x

my

∼= mxy

∂b
∂x

my

.

And for each positive integer k, we have also an isomorphism

φ∗ :
mxy

∂a
∂x

my + mk+1
xy

∼= mxy

∂b
∂x

my + mk+1
xy

.

Thus we have

Theorem 4.3. The numbers

ck(a) = dimR
mxy

∂a
∂x

my + mk+1
xy

, k = 1, 2, . . . ,

are symplectic invariants.

5 Preliminaries to the proof of the

main theorem

Here we check elementary properties of generating functions.

5.1 Generating functions of implicit Hamiltonian
systems

Let M ⊂ TR2 be an implicit Hamiltonian system and let (p, q) ∈ M be a
fold or cusp singularity of M , i.e. a fold or cusp singular point of π |M : M →
R2. Then the corank d(π |M)(p,q) = 1. Therefore, by Hörmander -Arnold-
Weinstein generating family representation of M, there exists a smooth func-
tion germ F : (R2 ×R, (p, 0)) → (R, 0) such that

(M, (p, q)) = the germ at (p, q) of the set

{(x, y,
∂F

∂y
(x, y, λ),−∂F

∂x
(x, y, λ)) | ∂F

∂λ
(x, y, λ) = 0, (x, y, λ) ∈ R2 ×R},
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and such that

(p, q) = (p,
∂F

∂y
(p, 0),−∂F

∂x
(p, 0)),

rank(
∂2F

∂x∂λ
,

∂2F

∂y∂λ
)(p, 0) = 1, and

∂2F

∂λ2
(p, 0) = 0.

In what follows, we assume that M is generated by some generating
family-germ F as above and denote it by MF . Without loss of generality,
we may assume that germs of implicit Hamiltonian systems we consider are
those at ((0, 0), q) ∈ TR2, i.e. (MF , ((0, 0), q)).

Our purpose in this note is to classify integrable fold and cusp singularities
of implicit Hamiltonian systems on R2 up to germs of symplectomorphisms
of the tangent bundle TR2 induced by germs of symplectomorphisms of R2.
In order to do so, as we will see below, it is enough to classify their generating
families up to germs of diffeomorphisms of (R2 ×R, (0, 0, 0)) of the form

φ̃(x, y, λ) = (φ(x, y), Λ(x, y, λ)),

φ : (R2, (0, 0)) → (R2, (0, 0)), being a symplectomorphism-germ.

Definition 5.1. A diffeomorphism germ

φ̃ : (R2 ×R, (0, 0, 0)) → (R2 ×R, (0, 0, 0))

of the form φ̃(x, y, λ) = (φ(x, y), Λ(x, y, λ)),

φ : (R2, (0, 0)) → (R2, (0, 0)) being a symplectomorphism, is called a ge-
neralized symplectomorphsm.

Definition 5.2. Two generating family germs F and G : (R2 ×R,
(0, 0, 0)) → (R, 0) are said to be symplectomorphic if there exists a gener-
alized symplectomorphism germ

φ̃ : (R2×R, (0, 0, 0)) → (R2×R, (0, 0, 0)), φ̃(x, y, λ) = (φ(x, y), Λ(x, y, λ))

such that
G(x, y, λ) = F (φ(x, y), Λ(x, y, λ)).

Lemma 5.3. Let F and G : (R2 × R, (0, 0, 0)) → (R, 0) be symplec-
tomorphic generating family germs. Then the implicit Hamiltonian system
germs (MF , ((0, 0), q)) and (MG, ((0, 0), q′)) are symplectomorphic.
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We prove the lemma by proving the following two lemmas.

Lemma 5.4. Let F : (R2×R, (0, 0, 0)) → (R, 0) be a symplectomorphic
generating family germ. Let φ = (φ1, φ2) : (R2, (0, 0)) → (R2, (0, 0)) be
a symplectomorphism germ and let G : (R2 ×R, (0, 0, 0)) → (R, 0) be the
generating family germ defined by

G(x, y, λ) = F (φ(x, y), λ).

Then we have
φ̄(MG, ((0, 0), q′)) = (MF , ((0, 0), q));

the germs (MF , ((0, 0), q)) and (MG, ((0, 0), q′)) of the implicit Hamiltonian
systems generated by F and G, respectively are symplectomorphic, where q =
(∂F/∂y(0, 0),−∂F/∂x(0, 0)) and q′ = (∂G/∂y(0, 0),−∂G/∂x(0, 0)).

Proof Since

∂G

∂x
(x, y, λ) =

∂F

∂x
(φ(x, y), λ)

∂φ1

∂x
(x, y) +

∂F

∂y
(φ(x, y), λ)

∂φ2

∂x
(x, y),

∂G

∂y
(x, y, λ) =

∂F

∂x
(φ(x, y), λ)

∂φ1

∂y
(x, y) +

∂F

∂y
(φ(x, y), λ)

∂φ2

∂y
(x, y),

we have (
∂G
∂y

(x, y, λ)

−∂G
∂x

(x, y, λ)

)
=

(
0 1
−1 0

)(
∂G
∂x

(x, y, λ)
∂G
∂y

(x, y, λ)

)

=

(
0 1
−1 0

)( ∂φ1

∂x
(x, y) ∂φ2

∂x
(x, y)

∂φ1

∂y
(x, y) ∂φ2

∂y
(x, y)

)(
∂F
∂x

(φ(x, y), λ)
∂F
∂y

(φ(x, y), λ)

)

=

(
0 1
−1 0

) (
∂φ1

∂x
(x, y) ∂φ1

∂y
(x, y)

∂φ2

∂x
(x, y) ∂φ2

∂y
(x, y)

)t (
0 −1
1 0

)(
∂F
∂y

(φ(x, y), λ)

−∂F
∂x

(φ(x, y), λ)

)
.

Thus we have

Jφ(x, y)

(
∂G
∂y

(x, y, λ)

−∂G
∂x

(x, y, λ)

)
=

Jφ(x, y)

(
0 1
−1 0

)
Jφ(x, y)t

(
0 −1
1 0

)(
∂F
∂y

(φ(x, y), λ)

−∂F
∂x

(φ(x, y), λ)

)

=

(
0 1
−1 0

) (
0 −1
1 0

)(
∂F
∂y

(φ(x, y), λ)

−∂F
∂x

(φ(x, y), λ)

)
=

(
∂F
∂y

(φ(x, y), λ)

−∂F
∂x

(φ(x, y), λ)

)
.
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Therefore we have

φ̄(x, y,
∂G

∂y
(x, y, λ),−∂G

∂x
(x, y, λ)) =

(φ(x, y),
∂F

∂y
(φ(x, y), λ),−∂F

∂x
(φ(x, y), λ)))

and
φ̄(MG, ((0, 0), q′)) = (MF , ((0, 0), q)).

2

Lemma 5.5. Let (MF , ((0, 0), q)) ⊂ (TR2, ((0, 0), q)) be an implicit Hamil-
tonian system generated by F (x, y, λ). Let φ̃ : (R2 × R, (0, 0, 0)) → (R2 ×
R, (0, 0, 0)) be a generalized symplectomorphism of the form

φ̃(x, y, λ) = (x, y, Λ(x, y, λ)).

Set
G(x, y, λ) = F (x, y, Λ(x, y, λ)).

Then we have
(MG, ((0, 0), q)) = (MF , ((0, 0), q)).

Proof Set

M̃F = {(x, y, λ) | ∂F

∂λ
(x, y, λ) = 0},

M̃G = {(x, y, λ) | ∂G

∂λ
(x, y, λ) = 0},

ΨF : R2 ×R → TR2 = R2 ×R2,

ΨF (x, y, λ) = (x, y,
∂F

∂y
(x, y, λ),−∂F

∂x
(x, y, λ)),

ΨG : R2 ×R → TR2 = R2 ×R2,

ΨG(x, y, λ) = (x, y,
∂G

∂y
(x, y, λ),−∂G

∂x
(x, y, λ)).

Since

∂G

∂λ
(x, y, λ) =

∂F

∂λ
(x, y, Λ(x, y, λ))

∂Λ

∂λ
(x, y, λ) and

∂Λ

∂λ
(x, y, λ) 6= 0,
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we have φ̃(M̃G) = M̃F .

Moreover, since

∂G

∂x
(x, y, λ) =

∂F

∂x
(x, y, Λ(x, y, λ)) on M̃G,

∂G

∂y
(x, y, λ) =

∂F

∂y
(x, y, Λ(x, y, λ)) on M̃G,

we have

ΨG |gMG
= (ΨF ◦ φ̃) |gMG

,

and

MF = ΨF (M̃F ) = ΨF (φ̃(M̃G)) = (ΨF ◦ φ̃)(M̃G) = (ΨG)(M̃G) = MG.

2

5.2 Generating functions of fold and cusp singularities

Let (MF , ((0, 0), q)) ⊂ (TR2, ((0, 0), q)) be a fold or cusp singularity of an
implicit Hamiltonian system generated by F (x, y, λ). Let

π̃ : R2 ×R → R2 be the projection, π̃(x, y, λ) = (x, y),

and set

M̃F = {(x, y, λ) | ∂F

∂λ
(x, y, λ) = 0}.

From the definition of generating functions,

((0, 0), q) = ((0, 0),
∂F

∂y
(0, 0, 0),−∂F

∂x
(0, 0, 0)), and

rank(
∂2F

∂x∂λ
,

∂2F

∂y∂λ
)(0, 0, 0) = 1.

Therefore, without loss of generality, we may assume that

∂2F

∂y∂λ
(0, 0, 0) 6= 0.
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Then, by the implicit function theorem, there exists a function η(x, λ) such

that M̃F has the form

M̃F = {(x, η(x, λ), λ) | (x, λ) ∈ R2},

and that the restriction of the projection π̃ to M̃F can be expressed in terms
of the coordinates (x, λ) of M̃F :

π̃ |MF
(x, λ) = (x, η(x, λ)).

Now, suppose that ((0, 0), q) ∈ MF is a fold singular point. Then we have

∂η

∂λ
(0, 0) = 0,

∂2η

∂λ2
(0, 0) 6= 0,

and, by the relation of derivatives of η(x, λ) and ∂F
∂λ

(x, y, λ), we have

∂F

∂λ
(0, 0, 0) =

∂2F

∂λ2
(0, 0, 0) = 0 and

∂3F

∂λ3
(0, 0, 0) 6= 0.

In the case where ((0, 0), q) ∈ MF is a cusp singular point, we have

∂η

∂λ
(0, 0) =

∂2η

∂λ2
(0, 0) = 0,

∂3η

∂λ3
(0, 0) 6= 0,

and
∂kF

∂λk
(0, 0, 0) = 0, (k = 1, 2, 3),

∂4F

∂λ4
(0, 0, 0) 6= 0.

Thus we have

Lemma 5.6. 1) If ((0, 0), q) ∈ MF is a fold singular point, then we
have

∂F

∂λ
(0, 0, 0) =

∂2F

∂λ2
(0, 0, 0) = 0 and

∂3F

∂λ3
(0, 0, 0) 6= 0.

2) If ((0, 0), q) ∈ MF is a cusp singular point, then we have

∂kF

∂λk
(0, 0, 0) = 0, (k = 1, 2, 3),

∂4F

∂λ4
(0, 0, 0) 6= 0.

Now, from Lemma 5.6, after a coordinate change of the variable λ in the
form of Λ(x, y, λ), we have
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Lemma 5.7. We may suppose that
1) If ((0, 0), q) ∈ MF is a fold singular point, then F (x, y, λ) is an un-

folding of λ3, and
2) if ((0, 0), q) ∈ MF is a cusp singular point, then F (x, y, λ) is an

unfolding of λ4.

Now a versal unfolding of λ3 is given by

G(u, λ) = λ3 + uλ.

From the versality of G(u, λ), for unfolding F (x, y, λ) of λ3, there is a coordi-
nate change of λ of the form Λ(x, y, λ) and functions a(x, y) and b(x, y) such
that

F (x, y, λ) = Λ(x, y, λ)3 + a(x, y)Λ(x, y, λ) + c(x, y).

Again, from Lemma 5.6, we may assume that F (x, y, λ) has the form

F (x, y, λ) = λ3 + a(x, y)λ + c(x, y).

At the beginning of this subsection we assumed that

∂2F

∂y∂λ
(0, 0, 0) 6= 0.

Therefore we have
∂a

∂y
(0, 0) 6= 0.

Lemma 5.8. For a(x, y) with

∂a

∂y
(0, 0) 6= 0.

there is always a function b(x, y) such that the mapping φ defined by

φ(x, y) = (a(x, y), b(x, y))

is a symplectomprphism.

Proof A diffeomorphism φ : R2 → R2 is a symplectomorphism if and
only if det Jφ(x, y) ≡ 1. Since

∂a

∂y
(0, 0) 6= 0,
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the Hamiltonian vector filed

Xa(x, y) =
∂a

∂y
(x, y)

∂

∂x
− ∂a

∂x
(x, y)

∂

∂y

is regular at (0, 0) and so is −Xa(x, y). Then, from the linearization theorem,
there exists a diffeomorphism-germ h = (h1, h2) : (R2, 0) → (R2, 0) such that

Jh(x, y)(−Xa(x, y)) =
∂

∂x
,

i.e.

(
∂h1

∂x
(x, y) ∂h1

∂y
(x, y)

∂h2

∂x
(x, y) ∂h2

∂y
(x, y)

) ( −∂a
∂y

(x, y)
∂a
∂x

(x, y)

)
=

(
1
0

)
.

Thus we have

det J(a, h2)(x, y) = det

(
∂a
∂x

(x, y) ∂a
∂y

(x, y)
∂h1

∂x
(x, y) ∂h1

∂y
(x, y)

)
= 1

and we may choose h1(x, y) as a desired function. 2

Since our purpose is to classify singularities of implicit Hamiltonian sys-
tems up to symplectomorphisms, by Lemma 5.8 we may assume that a(x, y) =
y. Thus we have

Lemma 5.9. 1) If ((0, 0), q) ∈ M ⊂ TR2 is a fold singular point of an
implicit Hamiltonian system, then the germ (M, (p, q)) of the implicit Hamil-
tonian system is symplectomorphic to the germ (MF , ((0, 0), q)) of the implicit
Hamiltonian system MF generated by a function F (x, y, λ) of the form

F (x, y, λ) = λ3 + yλ + c(x, y),

where q = (
∂F

∂y
(0, 0, 0),−∂F

∂x
(0, 0, 0)).

2) In the same way, if ((0, 0), q) ∈ M ⊂ TR2 is a cusp singular point of
an implicit Hamiltonian system, then the germ (M, ((0, 0), q)) of the implicit
Hamiltonian system is symplectomorphic to the germ (MF , ((0, 0), q)) of the
implicit Hamiltonian system MF generated by the function

F (x, y, λ) = λ4 + b(x, y)λ2 + yλ + c(x, y),

where q = (
∂F

∂y
(0, 0, 0),−∂F

∂x
(0, 0, 0)).
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6 Proof of the main theorem

In this section we prove our main theorem. Let us recall it first.
Theorem 2.1 1) If ((0, 0), q) ∈ M ⊂ TR2 is a fold singular point

of an implicit Hamiltonian system, then the germ (M, (p, q)) of the implicit
Hamiltonian system is symplectomorphic to the germ (MF , ((0, 0), q)) of the
implicit Hamiltonian system MF generated by a function F (x, y, λ) of the
form

F (x, y, λ) = λ3 + yλ + c(x, y),

where q = (
∂F

∂y
(0, 0, 0),−∂F

∂x
(0, 0, 0)).

2) The implicit Hamiltonian system generated by

F (x, y, λ) = λ3 + yλ + c(x, y)

is smoothly integrable if and only if

F (x, y, λ) = λ3 + yλ + ya(x, y) for some function a(x, y).

3) Let (MF , ((0, 0), q)) and (MG, ((0, 0), q′)) be the germs of integrable
implicit Hamiltonian systems generated by

F (x, y, λ) = λ3 + yλ + ya(x, y) and G(x, y, λ) = λ3 + yλ + yb(x, y),

where q = (
∂F

∂y
(0, 0, 0),−∂F

∂x
(0, 0, 0)), q′ = (

∂G

∂y
(0, 0, 0),−∂G

∂x
(0, 0, 0)).

Then (MF , ((0, 0), q)) and (MG, ((0, 0), q′)) are symplectomorphic if and only
if a(x, y) and b(x, y) are symplectomorphic under a symplectomorphism of
the form φ(x, y) = (x + α(y), y):

b(x, y) = a(x + α(y), y).

6.1 Proof of the main theorem

Proof of 1) 1) is the first part of Lemma 5.9.

Proof of 2) The implicit Hamiltonian system generated by

F (x, y, λ) = λ3 + yλ + c(x, y)
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is smoothly integrable if and only if the linear equation

∂2F

∂λ2
µ = {∂F

∂λ
, F} (mod

∂F

∂λ
)

has a smooth solution µ(x, y, λ). Since

∂F

∂λ
= 3λ2 + y,

∂2F

∂λ2
= 6λ and {∂F

∂λ
, F} =

∂c

∂x
(x, y),

the linear equation is of the form

6λµ(x, y, λ) =
∂c

∂x
(x, y) (mod 〈3λ2 + y〉Exyλ

).

Therefore the linear equation has a smooth solution if and only if

∂c

∂x
(x, y) ∈ 〈3λ2 + y, 6λ〉Exyλ

= 〈y, λ〉Exyλ
.

Since c(x, y) is a function of x and y, the equation has a smooth solution if
and only if

∂c

∂x
(x, y) ∈ 〈y〉Exy , i.e. c(x, y) = ya(x, y) for some a(x, y) ∈ Exy.

Thus the implicit Hamiltonian system generated by

F (x, y, λ) = λ3 + yλ + c(x, y)

is smoothly integrable if and only if F (x, y, λ) is of the form

F (x, y, λ) = λ3 + yλ + ya(x, y) for some function a(x, y).

Proof of 3) Suppose that the germs of implicit Hamiltonian systems
(MF , ((0, 0), q)) and (MG, ((0, 0), q′)) generated respectively by

F (x, y, λ) = λ3 + yλ + ya(x, y) and G(x, y, λ) = λ3 + yλ + yb(x, y),

are symplectomorphic.

Lemma 6.1. If (MF , ((0, 0), q)) and (MG, ((0, 0), q′)) are symplectomor-
phic, then there exists a symplectomorphism

φ(x, y) = (φ1(x, y), φ2(x, y))

such that
λ3 + yλ + yb(x, y) = G(x, y, λ) =

F (φ(x, y), λ) = λ3 + φ2(x, y)λ + φ2(x, y)a(φ1(x, y), φ2(x, y)).
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We postpone the proof of the lemma and continue the proof of the main
theorem. By Lemma 6.1,

λ3 + yλ + yb(x, y) = λ3 + φ2(x, y)λ + φ2(x, y)a(φ1(x, y), φ2(x, y)),

for some symplectomorphism

φ(x, y) = (φ1(x, y), φ2(x, y)).

Comparing the coefficients of λ, we have

φ2(x, y) = y.

Since φ(x, y) = (φ1(x, y), y) is a symplectomorphism,

det Jφ(x, y) = det

( ∂φ1

∂x
(x, y) ∂φ1

∂y
(x, y)

0 1

)
= 1.

Thus we have

∂φ1

∂x
(x, y) ≡ 1 and φ1(x, y) = x + α(y) for some α ∈ my

and b(x, y) = a(x + α(y), y).

Conversely, since F (x, y, λ) = λ3 + yλ + ya(x, y) and G(x, y, λ) = λ3 +
yλ+ya(x+α(y), y) are symplectomorphic, by Lemma 5.9, they generate the
symplectomorphic implicit Hamiltonian systems. 2

6.2 Proof of Lemma 6.1

Suppose that the germs of implicit Hamiltonian systems (MF , ((0, 0), q)) and
(MG, ((0, 0), q′)) generated respectively by

F (x, y, λ) = λ3 + yλ + ya(x, y) and G(x, y, λ) = λ3 + yλ + yb(x, y),

are symplectomorphic. Then we will prove that there exists a symplectomor-
phism

φ(x, y) = (φ1(x, y), φ2(x, y))

such that G(x, y, λ) = F (φ(x, y), λ).
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Lemma 6.2.

If (MF , ((0, 0), q)) = (MG, ((0, 0), q′)), then F (x, y, λ) = G(x, y, λ).

Proof of Lemma 6.2.
Since (MF , ((0, 0), q)) = (MG, ((0, 0), q′)), we have

∂F

∂x
(x, y, λ) =

∂G

∂x
(x, y, λ) for − 3λ2 = y.

Therefore we have

∂a

∂x
(x, y) =

∂b

∂x
(x, y) and hence b(x, y) = a(x, y) + c(y).

Moreover, since (MF , ((0, 0), q)) = (MG, ((0, 0), q′)), we have

∂F

∂y
(x, y, λ) =

∂G

∂y
(x, y, λ) for − 3λ2 = y.

Therefore we have

a(x, y) + y
∂a

∂y
(x, y) = b(x, y) + y

∂b

∂y
(x, y),

and, since b(x, y) = a(x, y) + c(y), we have

a(x, y) + y
∂a

∂y
(x, y) = a(x, y) + c(y) + y(

∂a

∂y
(x, y) +

∂c

∂y
(y)).

Thus

c(y) + y
∂c

∂y
(y) = 0 and c(y) ≡ 0.

Hence
a(x, y) = b(x, y) and F (x, y, λ) = G(x, y, λ).

2

Now let us prove Lemma 6.1. Suppose that the germs of implicit Hamil-
tonian systems (MF , ((0, 0), q)) and (MG, ((0, 0), q′)) generated respectively
by

F (x, y, λ) = λ3 + yλ + a(x, y) and G(x, y, λ) = λ3 + yλ + b(x, y),
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are symplectomorphic; i.e. there exists a symplectomorphism

φ(x, y) = (φ1(x, y), φ2(x, y))

such that
φ̄((MG, ((0, 0), q′))) = (MF , ((0, 0), q)),

where φ̄(x, y, ẋ, ẏ) = (φ(x, y), dφ(x,y)(ẋ, ẏ)).

Setting H(x, y, λ) = F (φ(x, y), λ), from Lemma 5.8, we have

φ̄((MH , ((0, 0), q′))) = (MF , ((0, 0), q)),

which was proved to be equal to φ̄((MG, ((0, 0), q′))).

Thus we have (MH , ((0, 0), q′)) = (MG, ((0, 0), q)), which implies, from Lemma
6.2, that

G(x, y, λ) = H(x, y, λ) = F (φ(x, y), λ).

2

of Lemma 6.1
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Reachable sets from a point for the Heisenberg
sub-Lorentzian structure on R3. An estimate for the

distance function
Marek Grochowski 1

Abstract

In this paper we compute reachable sets from a point for the
Heisenberg sub-Lorentzian metric on R3, and give one estimate (from
below) for the distance function. We also give examples of maximizing
non-Hamiltonian and non-smooth geodesics which are regular curves.

1 Introduction

1.1 Statement of the results

Suppose that (M, H, g) is a sub-Riemannian manifold. For a fixed point p0

let f(p) stand for the sub-Riemannian distance from p0. It can be proved
(cf. [2]; see also [6]) that one can choose local coordinates x1, ..., xn around
p0 (the so-called privileged coordinates centered at p0) such that xi(p0) = 0
and the following estimate holds true

c
(|x1|1/w1 + ... + |xn|1/wn

) ≤ f(x1, ..., xn) ≤ C
(|x1|1/w1 + ... + |xn|1/wn

)
,

or equivalently

c̃
√
|x1|2/w1 + ... + |xn|2/wn ≤ f(x1, ..., xn) ≤ C̃

√
|x1|2/w1 + ... + |xn|2/wn ,

where c, C (resp. c̃, C̃) are positive constants and w1, ..., wn are positive
integers determined by the sub-Riemannian structure under consideration (wi

is called a weight of xi). In particular, if f is the Heisenberg sub-Riemannian
distance from the origin in R3, and x, y, z are standard coordinates, then

c
√

x2 + y2 + |z| ≤ f(x, y, z) ≤ C
√

x2 + y2 + |z|, (1.1)

1Faculty of Mathematics and Science, Cardinal Wyszynski University, 01-815
Warszawa, ul. Dewajtis 5, Poland, e-mail: mgrochow@impan.gov.pl
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C, c > 0 (compare it with the Riemannian case where the distance from a
point, in suitable exponential coordinates, is given by

√
x1

2 + ... + xn
2).

The aim of this paper is to prove an estimate similar to this in (1.1)
for the distance function f [U ] determined by the Heisenberg sub-Lorentzian
structure on R3; unfortunately, only estimate from below is true. Since the
Heisenberg sub-Lorentzian structure, up to a change of coordinates, is a
nilpotent approximation of any contact sub-Lorentzian structure on R3 (cf.
normal forms in [4]), this paper is a first step toward computations in a
general contact case.

For all the details concerning the sub-Lorentzian geometry the reader is
referred to [3]. A review of basic notions and facts is presented in Section
1.2 (note that Proposition 1.2 and Examples 1.3, 1.4 are new in comparison
with the previous papers by the author).

In Section 2 we compute reachable sets I+(p0, U) and J+(p0, U) for the
Heisenberg metric, where U is a normal neighbourhood of p0 or U = R3

(Theorem 2.1).
In Section 3 we prove that the image of the set of ”timelike” covectors

under exponential mapping is equal to I+(0) (Proposition 3.1).
In Section 4 we prove Theorem 4.3 which states that for every (x, y, z) ∈

J+(0, U) √
x2 − y2 − 4|z| ≤ f [U ](x, y, z),

where U is a normal neighbourhood of the origin or U = R3. (Note here
that the distance from the origin in the Minkowski R3 space with standard
coordinates x, y, z is given on the set {−x2 + y2 + z2 < 0, x > 0} by formula
f(x, y, z) =

√
x2 − y2 − z2).

In Section 5 we construct null non-Hamiltonian and non-smooth maxi-
mizing geodesics which are regular curves. By the way, we study the problem
of uniqueness of null maximizers (Proposition 5.2).

1.2 Basic definitions and facts on sub-Lorentzian
geometry

A sub-Lorentzian manifold is a triple (M,H, h), where M is a smooth (n+1)-
dimensional manifold, H is a smooth bracket generating distribution on M
of constant rank k + 1, and h is a smooth Lorentzian metric on H.

Fix a sub-Lorentzian manifold (M, H, h). For each point p ∈ M a vector
v ∈ Hp is called horizontal. An absolutely continuous curve which is tangent
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to H a.e. and has square integrable derivative is called a horizontal (or
admissible) curve.

Unless otherwise specified, all vectors and curves are supposed to be hori-
zontal.

Fix a point p ∈ M , and denote by Ωp the set of all (horizontal) curves
γ : [0, 1] −→ M starting from γ(0) = p. The endpoint map endp : Ωp −→ M
is a mapping that assigns to each curve γ ∈ Ωp its end γ(1). endp is of class
C∞ with respect to the structure of Hilbert manifold on Ωp. Now, a curve
γ ∈ Ωp is said to be regular (resp. singular) if it is a regular (resp. critical)
point of endp. It can be proved that in a contact case only constant curves
are singular.

A vector v ∈ Hp is called timelike if h (v, v) < 0, spacelike if h (v, v) > 0
or v = 0, null if h(v, v) = 0 and v 6= 0, nonspacelike if h(v, v) ≤ 0. A curve is
called timelike if its tangent is timelike a.e.; similarly for spacelike, null and
nonspacelike curves.

By a time orientation of (M, H, h) we mean a continuous timelike vector
field on M . From now on we suppose our (M, H, h) to be time-oriented.

If X is a time orientation, then a nonspacelike v ∈ Hp is called future
directed if h(v, X(p)) < 0, and is called past directed if h(v, X(p)) > 0.

Throughout this paper f.d. stands for ”future directed”, t. for ”timelike”,
and nspc. for ”nonspacelike”. So, for instance, a t.f.d. curve is a curve which
is horizontal and timelike future directed.

By H we will denote the Hamiltonian associated with our sub-Lorentzian
metric. Locally it can be defined as follows: let X0, X1, ..., Xk be an orthonor-
mal frame for H defined on an open U with X0 timelike; then

H(x, λ) = −1

2
〈λ,X0〉2 +

1

2

k∑
j=1

〈λ,Xj〉2

on T ∗M |U . By
−→H we denote the corresponding Hamiltonian vector field on

T ∗M , and Φs stands for its flow. Notice that π ◦Φs(λ) = π ◦Φ1(sλ) for any
covector λ, where π : T ∗M −→ M is the canonical projection.

A curve γ : [α, β] −→ U is called a Hamiltonian geodesic if it is of the form
γ(s) = π ◦Φs(λ); in such a case [α, β] 3 s −→ Φs(λ) is called a Hamiltonian
lift of γ. Note that a Hamiltonian geodesic which is a regular curve has a
unique Hamiltonian lift.

Each Hamiltonian geodesic is either timelike, spacelike or null (i.e. it does
not change its causal character).
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For a point p ∈ M denote by expp the exponential mapping with the pole
at p, which is defined as follows. Let Dp stand for the set of all covectors
λ ∈ T ∗

p M such that the curve s −→ π ◦Φs(λ) is defined on the interval [0, 1].
The set Dp is open and expp : Dp −→ M acts by formula expp(λ) = π◦Φ1(λ).

For a nspc. curve γ : [α, β] −→ M we define its length to be

L(γ) =

∫ β

α

|h(γ̇, γ̇)|1/2dt.

Fix an open set U ; a nspc.f.d. curve γ : [α, β] −→ U is called a U-
maximizer, if it is the longest curve from γ(α) to γ(β) among all nspc.f.d.
curves contained in U and joining γ(α) to γ(β). We also use a name U-
geodesic for a curve in U whose each suitably short sub-arc is a U -maximizer
(note that in [3] only timelike curves were used).

By a unique U-maximizer (or a unique maximizing U -geodesic) we mean
a (nspc.f.d.) curve γ : [α, β] −→ U such that for each t1, t2 ∈ [α, β] with
t1 < t2, the restriction γ|[t1, t2] is the only U -maximizer between γ(t1) and
γ(t2). It can be proved that if γ : [α, β] −→ M is a t.f.d. Hamiltonian
geodesic then for each t ∈ (α, β) there is a neighbourhood U of γ(t) such
that γ ∩ U is a unique U -maximizer.

If ϕ : U −→ R is a smooth function on an open U , then its horizontal
gradient ∇Hϕ is, by definition, a vector field on U such that (∂vϕ)(p) =
h(v,∇Hϕ(p)) for any v ∈ Hp and p ∈ U . If ∇Hϕ is unit timelike past
directed on U then the trajectories of −∇Hϕ are unique U -maximizers.

d[U ](·, ·) will denote the sub-Lorentzian distance function relative to a set
U ⊂ M , which is defined as follows. For p, q ∈ U let Ω−

p,q(U) be the set of all
nspc.f.d. curves contained in U and joining p to q; then

d[U ](p, q) =

{
sup

{
L(γ) : γ ∈ Ω−

p,q(U)
}

in case Ω−
p,q(U) 6= ∅

0 in case Ω−
p,q(U) = ∅.

For a general U very little can be said about d[U ]. However for a fixed
point p0 one can construct a family of certain special neighbourhoods of p0.
Their construction goes as follows. We take any neighbourhood U of p0.
Shrinking it we assume U compact, and that there is a basis X0, ..., Xn of
TM over U such that X0, ..., Xk is an orthonormal basis of H with X0 being
a time orientation. Now we define a Lorentzian metric h̃ on U by declaring
the basis X0, ..., Xn to be orthonormal with respect to h̃, with the same time
orientation X0. Finally, again shrinking U we can assume that U is a convex
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neighbourhood of p0 with respect to h̃, and that U is contained in some other
convex neighbourhood of p0. A set U obtained in this way is called a normal
neighbourhood of p0. Remark that the Lorentzian manifold (U, h̃) is strongly
causal [10].

For a fixed p0 and U 3 p0, let f [U ](p) = d[U ](p0, p).

Proposition 1.1 ([3]). If U is a normal neighbourhood of p0 then f [U ] is
finite and upper semicontinuous on U . Moreover, if γ is a U-maximizer
joining p0 to a point p ∈ U , such that γ is a t.f.d. Hamiltonian geodesic
which is a regular curve, then f [U ] is continuous at each point of γ.

We need some notion of convergence of sequences of curves. Suppose that
γν ,γ : [a, b] −→ M , ν = 1, 2, ..., are curves in M ; we say that {γν} converges
to γ in the C0 topology on curves if γν(a) −→ γ(a), γν(b) −→ γ(b), and
for each open V containing γ there is an integer Λ such that γν ⊂ V for all
ν > Λ. Now, let U be a normal neighbourhood of p0 and take a sequence
γν : [0, l] −→ U of nspc.f.d. curves such that γν(0) = p0 and their endpoints
γν(l) tend to a point p ∈ U . Then it can be proved that there exists a
subsequence {γνi

} convergent in the C0 topology to a nspc.f.d. curve joining
p0 to p and contained in U .

For an open set U and fixed p0 ∈ U , we define two reachable sets :
I+(p0, U) (resp. J+(p0, U)) is the set of all points p ∈ U that can be reached
from p0 along a t.f.d. (resp. nspc.f.d.) curve contained in U . In terms of
control theory (cf. [7]) I+(p0, U) is just the set reachable from p0 for the
family of all smooth t.f.d. vector fields on U ; in the Lorentzian geometry it is
called the chronological future of p0 (with respect to U). Similarly, J+(p0, U)
is the set reachable from p0 for the family of all smooth nspc.f.d. vector fields
on U , and in the Lorentzian geometry it is called the causal future of p0 (with
respect to U).

Proposition 1.2. For any normal neighbourhood U of a point p0 (i) J+(p0, U)
is a closed subset in U ; (ii) cl(I+(p0, U)) = J+(p0, U), where cl stands for
the closure with respect to U .

Proof : Take any sequence {pν}, pν ∈ J+(p0, U), and pν −→ p with p ∈ U .
Let γν be a nscp.f.d. curve in U which connects p0 to pν . Passing to a
subsequence we can assume that γν −→ γ in the C0 topology on curves. As
we already know γ is nspc.f.d., joins p0 to p, and γ ⊂ U which proves (i).

Using the same argument as in (i) one shows the inclusion cl(I+(p0, U)) ⊂
J+(p0, U). To prove the reverse inclusion take a point p ∈ J+(p0, U) and
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an open set V , p ∈ V ⊂ U . Let γ : [0, T ] −→ U be a nspc.f.d. curve
such that γ(0) = p0, γ(T ) = p. Let η : [0, T ] −→ U be a smooth nspc.f.d.
approximation of γ such that η(0) = p0 and η(T ) ∈ V . Extending the domain
of η we can assume that η : (−ε, T + ε) −→ U is nspc.f.d. and smooth. Next
let Z be a smooth nspc.f.d. vector field defined on a neighbourhood, say G,
of the set η((−ε, T +ε)) such that η̇(t) = Z(η(t)), t ∈ (−ε, T +ε). Denote by
X0, X1, ..., Xk an orthonormal basis of H over U (which exists by definition
of normal neighbourhoods); then

Z = ϕ0X0 +
k∑

j=1

ϕjXj

where ϕ0 > 0 and −ϕ2
0 +

∑k
j=1 ϕ2

j ≤ 0. Finally choose a sequence of real
numbers {aν} such that 0 < aν ↗ 1, and define

Zν = ϕ0X0 + aν

k∑
j=1

ϕjXj.

Of course, for every ν, Zν is a smooth t.f.d. vector field on G. Moreover,
Zν ⇒ Z on any compact K, where η([0, T ]) ⊂ K ⊂ G. Now for each ν
consider a curve ην which is (the unique) solution to the following problem:
η̇ν(t) = Zν(ην(t)), ην(0) = p0. For every sufficiently large ν the curve ην is
defined on [0, T ] and ην ⇒ η. It follows that there is a ν such that ην(T ) ∈ V ,
from which I+(p0, U) ∩ V 6= ∅ and the proof is over. 2

In the Lorentzian geometry the above proposition is also true; one can
prove even more, namely I+(p0, U) is always open. The two examples below
show that I+(p0, U) need not be open in the sub-Lorentzian case, and that
the sub-Lorentzian distance function from p0 need not be continuous.

Example 1.3. (Cf. [8]) Let ω = x2dy − (1 − x)dz be a 1-form on R3 and
set H = ker ω. Let X = (1 − x)∂/∂y + x2∂/∂z, Y = ∂/∂x. Define a
sub-Lorentzian metric h with formulae

h(X,X) = −1, h(Y, Y ) = 1, h(X,Y ) = 0, (1.2)

and take X as a time orientation of (R3, H, h). Consider a curve γ : [0, b] −→
R3, γ(t) = (0, t, 0), b > 0. Of course γ is t.f.d.; it can also be proved,
in the same way as in the sub-Riemannian geometry, that γ is a singular
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curve which is not a Hamiltonian geodesic. We will show that Ω−
(0,0,0),(0,b,0) =

Ω−
(0,0,0),(0,b,0)(R

3) consists, up to a change of parameterization, of a single
curve, namely γ. This will imply, in particular, that γ is a U-maximizer for
any normal neighbourhood U of the origin. Suppose that η ∈ Ω−

(0,0,0),(0,b,0),

η(t) = (x(t), y(t), z(t)), 0 ≤ t ≤ T . Then

η̇(t) = α(t)X(η(t)) + β(t)Y (η(t))

which gives
η̇(t) =

(
β(t), α(t)(1− x(t)), α(t)x2(t)

)
.

Since η is nscp.f.d., α(t) > 0 a.e. Now

z(T ) =

∫ T

0

α(t)x2(t)dt = 0 (1.3)

from which x(t) vanishes a.e. It means that z(t) = 0 everywhere and η coin-
cides with γ up to a change of parameterization. Using the same argument
one shows that a point of the form (0, b, c) with c < 0 does not belong to
I+(0, U), U being any normal neighbourhood of the zero containing (0, b, c).
Therefore I+(0, U) is not open and f [U ], the sub-Lorentzian distance from
the origin, is not continuous at points (0, b, 0), b > 0.

Example 1.4. (Cf. [9]) Let ω = dz− x2dy be (the Martinet) 1-form on R3.
Again set H = ker ω. Let X = ∂/∂y + x2∂/∂z, and Y = ∂/∂x. Define a
sub-Lorentzian metric h using (1.2) and take X as a time orientation. Again
consider a curve γ : [0, b] −→ R3, γ(t) = (0, t, 0), b > 0. One sees that γ
is t.f.d., it is a singular curve, but this time γ is a Hamiltonian geodesic.
Now, if η ∈ Ω−

(0,0,0),(0,b,0), η(t) = (x(t), y(t), z(t)), 0 ≤ t ≤ T , then again

(1.3) holds with α(t) > 0 a.e. This shows that Ω−
(0,0,0),(0,b,0) contains, up to

a change of parameterization, only one curve γ, I+(0, U) is not open, and
the corresponding sub-Lorentzian distance f [U ] is not continuous at points of
γ\{0}.

These two examples show that the statement of Proposition 1.1 cannot be
strengthened. Let us also note here that a t.f.d. geodesic which is a regular
curve cannot be contained in the boundary ∂I+(0, U).

At the end let us extract one more property of normal neighbourhoods.
Once more we fix a point p0 and its normal neighbourhood U . Let h̃ be a
Lorentzian metric on U arising from the definition of normal neighbourhoods.
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Next, let f̃ [U ] be the Lorentzian distance from p0 relative to U determined
by h̃ and let Ĩ+(p0, U) be the set of all points from U that can be reached
from p0 by a (not necessarily horizontal) curve in U which is t.f.d. with
respect to h̃. It is well known ([1]) that f̃ [U ] is smooth on Ĩ+(p0, U) and
the gradient ∇f̃ [U ] with respect to h̃ is timelike past directed. This last
statement implies that f̃ [U ] is non-decreasing along nspc.f.d. curves in U .
Obviously ∂I+(p0, U)∩ ∂U ⊂ ∂Ĩ+(p0, U)∩ ∂U and the latter set is a smooth
hypersurface. Therefore:

Proposition 1.5. There exists a (non-horizontal) vector field W = ∇f̃ [U ]
which is transverse to ∂Ĩ+(p0, U) ∩ ∂U , and which ”pushes” all nspc.f.d.
curves which are in Ĩ+(p0,M)\Ĩ+(p0, U) away from ∂Ĩ+(p0, U) ∩ ∂U . In
particular, no nspc.f.d. curve can enter the set I+(p0, U) through the set
∂I+(p0, U) ∩ ∂U .

2 Reachable sets for the Heisenberg metric

Consider R3 equipped with the Heisenberg sub-Lorentzian structure (H, h),
i.e. H = ker ω, ω = dz − 1

2
(ydx − xdy), and h is defined by h(X, X) = −1,

h(Y, Y ) = 1, h(X, Y ) = 0, where

X =
∂

∂x
+

1

2
y

∂

∂z
, Y =

∂

∂y
− 1

2
x

∂

∂z
; (2.1)

we take X to be a time orientation. The aim of this section is to compute the
sets I+(p0, U) and J+(p0, U), where p0 ∈ R3 and U is its arbitrary normal
neighbourhood.

We start from the case p0 = 0 and I+(0) = I+(0,R3). To this end let us
consider a family of functions ηα = −x2 + y2 + α|z|, |α| ≤ 4. Then

∇Hηα = (2x− 1
2
αy)X + (2y − 1

2
αx)Y , z > 0

and
∇Hηa = (2x + 1

2
αy)X + (2y + 1

2
αx)Y , z < 0.

Let
Γa = {ηa < 0, x > 0} .

In both cases above the field ∇Hηα is t.f.d. for |α| < 4 and is null f.d. for
|α| = 4 on the set Γ0 ∩ {z 6= 0}.

71



Consider at first η0. Looking at the behaviour of the fields X and Y on
∂Γ0 we have

J+(0) ⊂ Γ0 = {η0 ≤ 0, x ≥ 0} ,

where we set J+(0) = J+(0,R3) (cf. [4]). Now, since ∇Hη0 is nspc.f.d. on
Γ0\{0}, and since each nspc.f.d. curve which projects on the set

{y = ±x, x > 0, z = 0}

must be a null curve, we see that for any t.f.d. curve γ : [0, T ] −→ R3,
γ(0) = 0, the function t −→ η0(γ(t)) is decreasing a.e. It follows that
I+(0) ⊂ Γ0.

We will show that

I+(0) = Γ4. (2.2)

First of all let us notice that

Γ0 ∩ {z = 0} ⊂ I+(0);

this is because each line x = t cosh ϕ, y = t sinh ϕ, z = 0, t > 0, is a t.f.d.
curve.

Take any p ∈ I+(0), i.e. p = γ(T ), where γ : [0, T ] −→ R3 is t.f.d. and
γ(0) = 0. Since, as we already know, γ((0, T ]) ⊂ Γ0 and ∇Hη4 is null f.d.
on Γ0, the function t −→ η4(γ(t)) is decreasing a.e. It means, however, that
η4(p) < 0 and ” ⊂ ” is true in (2.2).

To prove the reverse inclusion take a p ∈ Γ4, p = (x0, y0, z0). Fix an ε > 0
this small that

−x2
0 + y2

0 + 16
4−ε
|z0| < 0, 4− ε > 0. (2.3)

Put α = 4 − ε and write equations for ∇Hηα. We distinguish two cases:
z0 > 0 




ẋ = 2x− 1
2
αy

ẏ = −1
2
αx + 2y

ż = 1
4
α(x2 − y2)

(2.4)

and z0 < 0 



ẋ = 2x + 1
2
αy

ẏ = 1
2
αx + 2y

ż = 1
4
α(y2 − x2)

(2.5)

(if z0 = 0 then there is nothing to do, see remark above).
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Consider the case z0 > 0. Solving (2.4) with inital condition
(x(0), y(0), z(0)) = (x0, y0, z0) we get

z(t) = z0 + α
16

(x2
0 − y2

0)(e
4t − 1).

Because of (2.3) the equation z(t) = 0 has a negative solution with respect
to t:

t =
1

4
ln

x2
0 − y2

0 − (16/α)|z0|
x2

0 − y2
0

.

It shows that there is a trajectory of −∇Hηα joining p with a point p̃ ∈
Γ0 ∩ {z = 0} ⊂ I+(0). After time reversal we obtain a trajectory, say, σ of
the field ∇Hηα that joins p̃ to p. Since such a σ is t.f.d., p ∈ I+(0). Similar
argument works for z0 < 0, thus ”⊃” in (2.2) is proved.

Next, let U be a normal neighbourhood of the origin; we will show that

I+(0, U) = I+(0) ∩ U . (2.6)

Evidently I+(0, U) ⊂ I+(0) ∩ U . Take a point p ∈ I+(0) ∩ U and let γ :
[0, T ] −→ R3 be a t.f.d. curve joining 0 to p. Suppose γ leaves U . Since it
cannot leave the set I+(0) it falls into the set I+(0)\U . Now ∂(I+(0)\U) =
B1 ∪ B2, where B1 = {η4 = 0, x > 0} \U and B2 = {η4 ≤ 0, x > 0} ∩ ∂U .
Consider the vector field ∇Hη4 in a neighbourhood of B1 and the field W
from Proposition 1.5 in a neighbourhood of B2. Both fields taken together
prevent all nspc.f.d. curves which are in I+(0)\U from leaving I+(0)\U .
Thus we get a contradiction since γ cannot reenter U and reach p. This ends
the proof of (2.6).

Finally, take any p0 = (x0, y0, z0). It is easy to see that the mapping

Φ(x, y, z) = (x− x0, y − y0,
1
2
(yx0 − xy0) + z − z0), (2.7)

which carries p0 to 0, preserves the Heisenberg sub-Lorentzian structure:
Φ∗X = X, Φ∗Y = Y ; in particular, if γ is a maximizer joining p0 to p1 then
Φ ◦ γ is a maximizer joining 0 to Φ(p1).

In this way, and with the aid of Proposition 1.2, we have proved the
following

Theorem 2.1. Consider the Heisenberg sub-Lorentzian metric on R3. Then

I+(0,R3) =
{−x2 + y2 + 4|z| < 0, x > 0

}
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and
J+(0,R3) =

{−x2 + y2 + 4|z| ≤ 0, x ≥ 0
}

.

Also, for any normal neighbourhood U of zero,

I+(0, U) = I+(0,R3) ∩ U

and
J+(0, U) = J+(0,R3) ∩ U .

Next, if p0 = (x0, y0, z0) ∈ R3 is arbitrary and U is its normal neighbourhood
or U = R3, then

I+(p0, U) = Φ−1(I+(0, U))

and
J+(p0, U) = Φ−1(J+(0, U)),

where Φ is defined by (2.7).

Remark 2.2. The equality J+(0,R3) = {η4 ≤ 0, x ≥ 0} requires some ex-
planations. Observe that a function ϕ(x, y, z) = x satisfies ∇Hϕ = −X on
the whole R3. Such a ϕ is called a ”time function”, and its existence insures
that Lemma 3.1 of [3], and hence Proposition 1.2 above, applies to U = R3

in case of the Heisenberg sub-Lorentzian metric.

From now on by f [U ] we will denote the sub-Lorentzian distance from
the origin induced by the Heisenberg structure; we also set f = f [R3]. As a
consequence of above considerations we obtain two corollaries.

Corollary 2.3. For any normal neighbourhood U of zero f [U ] = f|J+(0,U).

Proof : We use two fields: ∇Hη4 and the one from Proposition 1.5 2

Corollary 2.4. For any normal neighbourhood U of the origin f [U ] vanishes
on {η4 = 0} ∩ U and is continuous at points of the set {η4 = 0} ∩ U .

Proof : The first part follows from the fact that ∇Hη4 keeps all nspc.f.d.
curves which are in I+(0, U) from reaching the set {η4 = 0}. Then any
nspc.f.d. curve γ which joins zero to a point of {η4 = 0} must be entirely
contained in {η4 = 0}. Obviously, for such a γ, η4(γ(t)) = 0 for all t, from
which h(γ̇,∇Hη4) = 0. However ∇Hη4 is a null field, so γ must be a null
curve.
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To prove the second part let us fix a p ∈ {η4 = 0}∩U and take a sequence
I+(0, U) 3 pν −→ p. Let γν be a U -maximizer connecting zero to pν . Passing
to a subsequence, γν −→ γ in the C0 topology, where γ is nspc.f.d. and joins
the zero to p. Thus γ is a null curve and lim sup f [U ](pν) ≤ f [U ](p) = 0, i.e.
lim f [U ](pν) = f [U ](p), which ends the proof. 2

3 Image under exponential mapping

For any p ∈ R3 and λ ∈ T ∗
pR3 let

H(p, λ) = −1

2
〈λ,X〉+

1

2
〈λ, Y 〉

be the Hamiltonian associated with the Heisenberg sub-Lorentzian structure.
Next, let

Ep0 =

{
λ ∈ T ∗

p0
R3 : H(p0, λ) < 0,

〈
λ,

∂

∂x

〉
< 0

}
.

In this section we prove the following

Proposition 3.1. expp0
(Ep0) = I+(p0,R3).

Take a point p0 = (x0, y0, z0), and let Φ be the mapping as in (2.7).

Lemma 3.2. If γ is a t.f.d. Hamiltonian geodesic then so is Φ ◦ γ.

Proof : Let γ : [a, b] −→ R3 be a t.f.d. Hamiltonian geodesic. Extend it at
both ends to a t.f.d. Hamiltonian geodesics γ, now defined on [a− ε, b + ε],
ε > 0. Suppose that [a, b] ⊂ ⋃m

i=1 ∆i, where ∆1, ..., ∆m are intervals such
that ∆i ∩ ∆i+1 6= ∅, and γi = γ|∆i

is a unique Ui-maximizer for a suitable
open Ui, i = 1, ..., m − 1 ([3], prop. 4.1). Now, Φ ◦ γi = Φ ◦ γ|∆i

is a
unique Φ(Ui)-maximizer for each i. Using Proposition 5.1 below, Φ ◦ γi is a
Hamiltonian geodesic, i.e. it possesses a Hamiltonian lift to the cotangent
bundle. Uniqueness of Hamiltonian lifts for Hamiltonian geodesics which are
regular curves insures existence of the Hamiltonian lift of Φ ◦ γ. 2
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Since it is clear that expp0
(Ep0) = Φ−1(exp0(E0)), it suffices to prove

exp0(E0) = I+(0). To this end let us recall (see [4]) equations of t.f.d.
Hamiltonian geodesics (parametrized by arc length) starting from the origin:





x(t, ϕ, r0) = 1
r0

sinh ϕ− 1
r0

sinh(ϕ− r0t)

y(t, ϕ, r0) = 1
r0

cosh ϕ− 1
r0

cosh(ϕ− r0t)

z(t, ϕ, r0) = − 1
2r2

0
(r0t− sinh(r0t))

(3.1)

for r0 6= 0, and 



x(t, ϕ, 0) = t cosh ϕ
y(t, ϕ, 0) = t sinh ϕ
z(t, ϕ, 0) = 0

(3.2)

for r0 = 0.

Fix a point p = (x0, y0, z0) ∈ I+(0), i.e. |z0| < 1
4
(x2

0 − y2
0), |y0| < x0,

x0 > 0, and assume z0 6= 0. In order to prove Proposition 3.1 we must
show that p can be reached from 0 by one of the geodesics (3.1). We see
that projections on the (x, y)-plane of these geodesics are suitable branches
of hyperbolas (

y − cosh ϕ
r0

)2

−
(
x− sinh ϕ

r0

)2

= 1
r2
0
, (3.3)

and (3.3) describes the projection of a geodesic joining 0 to p, if

r0 = 2
x0 sinh ϕ− y0 cosh ϕ

x2
0 − y2

0

. (3.4)

At first consider the case z0 > 0. If a curve in (3.1) is supposed to connect
0 to p we must have r0 > 0, and its projection on the (x, y)-plane can be
described as the graph of the function

y(x; ϕ) = cosh ϕ
r0

−
√(

x− sinh ϕ
r0

)2

+ 1
r2
0

(3.5)

with r0 as in (3.4) and ϕ0 < ϕ < ∞, where ϕ0 = 1
2
ln x0+y0

x0−y0
. Now we lift (3.5)

to a geodesic (3.1) using the formula 2dz = ydx − xdy. This geodesic will
be defined by equations y = y(x; ϕ), z = z(x; ϕ) (it is indeed a Hamiltonian
geodesic because for any given p = (x0, y0, z0) each curve in the (x, y)-plane
passing through (x0, y0) has a unique lift to a horizontal curve in R3 passing
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through p), where

z(x; ϕ) = cosh ϕ
2r0

x− 1
2r2

0
ln

x− sinh ϕ
r0

+

s�
x− sinh ϕ

r0

�2

+
1
r2
0

1
r0

(cosh ϕ−sinh ϕ)
+

+ sinh ϕ
2r0

√(
x− sinh ϕ

r0

)2

+ 1
r2
0
− sinh ϕ cosh ϕ

2r2
0

.

Finally, we obtain

lim
ϕ−→ϕ+

0

z(x0; ϕ) = 0, lim
ϕ−→∞

z(x0; ϕ) = 1
4
(x2

0 − y2
0),

so there is a ϕ for which z(x0; ϕ) = z0 and the corresponding geodesic (3.1)
reaches p.

The case z0 < 0 is treated in the similar manner. If a curve in (3.1) is
supposed to connect 0 to p, then we must have r0 < 0, and its projection on
the (x, y)-plane can be described as the graph of the function

y(x; ϕ) = cosh ϕ
r0

+

√(
x− sinh ϕ

r0

)2

+ 1
r2
0
;

again r0 is as in (3.4), −∞ < ϕ < ϕ0, ϕ0 as above. We lift it to a geodesic

z(x; ϕ) = cosh ϕ
2r0

x− 1
2r2

0
ln

x− sinh ϕ
r0

−
s�

x− sinh ϕ
r0

�2

+
1
r2
0

1
r0

(cosh ϕ−sinh ϕ)
+

− sinh ϕ
2r0

√(
x− sinh ϕ

r0

)2

+ 1
r2
0
− sinh ϕ cosh ϕ

2r2
0

,

and finish the proof of this case by checking

lim
ϕ−→−∞

z(x0; ϕ) = −1
4
(x2

0 − y2
0), lim

ϕ−→ϕ−0
z(x0; ϕ) = 0.

The remaining case z0 = 0 is trivial using (3.2).

4 The Distance Function

4.1 Dilations δµ and their properties

Let δµ : R3 −→ R3, δµ(x, y, z) = (µx, µy, µ2z), µ > 0. It is a simple matter to
verify that the two fields X, Y in (2.1) defining the Heisenberg sub-Lorentzian
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structure satisfy
(δµ)∗X = µX, (δµ)∗Y = µY . (4.1)

Thanks to (4.1) the δµ’s play a key role in the sequel (see [2] for the sub-
Riemannian case).

We start with the observation that each δµ preserves causal character of
curves. Let γ : [a, b] −→ R3 be, for instance, a t.f.d. curve. Then

γ̇(t) = u0(t)X(γ(t))+u1(t)Y (γ(t)), −u0(t)
2 +u1(t)

2 < 0, u0(t) > 0 a.e.

Now (4.1) gives

(δµ ◦ γ)̇(t) = µu0(t)X((δµ ◦ γ)(t)) + µu1(t)Y ((δµ ◦ γ)(t)),

so δµ ◦ γ : [a, b] −→ R3 is t.f.d. It follows that for each µ > 0

δµ(I+(0)) ⊂ I+(0), δµ(J+(0)) ⊂ J+(0).

Next we see that for each nspc.f.d. curve γ and any µ > 0, L(δµ ◦ γ) =
µL(γ). Applying this to the distance function we have

Proposition 4.1. For each µ > 0 sufficiently small

f [U ](δµp) = µf [U ](p).

Proof : By the definition of f [U ], for each positive integer ν there is a nspc.f.d.
curve γν joining 0 to p in U , such that

f [U ](p)− 1

ν
≤ L(γν). (4.2)

At the same time for each ν the curve t −→ δµ(γν(t)) joins 0 to δµp, so

µL(γν) = L(δµ ◦ γν) ≤ f [U ](δµp). (4.3)

(4.2) and (4.3) together with letting ν −→∞ give

µf [U ](p) ≤ f [U ](δµp).

Using the same argument we get

µ−1f [U ](δµp) ≤ f [U ](δµ−1δµp) = f [U ](p).

2

Recall that by f we mean f [R3].
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Corollary 4.2. f is finite. It follows that for each µ > 0 and every p ∈
I+(0), f(δµp) = µf(p), and consequently f is upper semi-continuous.

Proof : Suppose that f(p) = ∞ for a p ∈ I+(0). Thus, for every positive
integer ν, there exists a nspc.f.d. curve γν joining 0 to p and such that
L(γν) > ν. Take a µ > 0 with δµp ∈ U , where U is a normal neighbourhood
of the origin. Now δµ ◦ γν is a nspc.f.d. curve in U that joins 0 to δµp, and
L(δµ ◦ γν) > µν for every ν. This is, however, a contradiction with finiteness
of f [U ].

Next, using the same argument as in the proof of Proposition 4.1 we show
that f(δµp) = µf(p), p ∈ I+(0).

To prove the last part take a p ∈ I+(0) and such a µ > 0 that δµp ∈ U ,
U being a normal neighbourhood of zero. Now it suffices to observe (cf.
Corollary 2.3) that f = µ−1f [U ] ◦ δµ in a neighbourhood of p. 2

4.2 Estimate for the Distance Function

Let U be a normal neighbourhood of the origin or U = R3. All we can
say about f [U ] is that it is upper semi-continuous, it is differentiable on a
neighbourhood of the set I+(0, U)∩{z = 0} (cf. [4], [5]), and it is continuous
at all points of the set ∂I+(0, U)\∂U (see Corollary 2.4). The main reason
for our little knowledge about f [U ] is that we do not know if all non-null
U -maximizers are t.f.d. Hamiltonian geodesics (if we knew this the situation
would get much simpler). In this section we prove one more thing yet about
f [U ] –a certain estimate from below.

Let
g(x, y, z) =

√
η4(x, y, z) =

√
x2 − y2 − 4|z|

be defined on J+(0). Evidently, g(δµp) = µg(p); moreover f and g coincide
on J+(0) ∩ {z = 0}.

Take an ε > 0 and define Mε = {g = ε}. Now, consider all t.f.d. Hamil-
tonian geodesics with r0 6= 0, joining the origin to Mε, i.e. the ones which
are solutions of (3.1) and additionally satisfy

x2 − y2 − 4|z| = ε2. (4.4)

Suppose at first that r0 > 0. The condition (4.4) means

sinh2(
r0t

2
) +

r0t

2
− sinh(

r0t

2
) cosh(

r0t

2
) =

1

4
r2
0ε

2. (4.5)
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Setting α = r0t and

F (α) = 2
(
sinh2 α

2
+

α

2
− sinh

α

2
cosh

α

2

)
= α− 1 + e−α,

(3.1) can be rewritten as

F (α) =
1

2
r2
0ε

2, (4.6)

α > 0. Clearly, F increases; moreover F (α) = 1
2
α2 + o(α2), so F admits the

inverse G of the form G(β) =
√

2β1/2 + o(β1/2), β > 0. Applying G to both
sides of (4.6) we get

t(r0; ε) =
1

r0

G(
1

2
r2
0ε

2),

where t(r0; ε) is the length of a segment (between 0 and Mε) of a geodesic (3.1)
with the initial covector (− cosh ϕ, sinh ϕ, r0) ∈ T ∗

0R3. Since the function

β −→ G(β)√
β

, β > 0, increases, one easily verifies the following equalities:

inf
β>0

G(β)√
β

= lim
β−→0+

G(β)√
β

=
√

2, sup
β>0

G(β)√
β

= lim
β−→∞

G(β)√
β

= ∞.

Recall that by Proposition 3.1 each point of Mε can be reached by a Hamil-
tonian geodesic starting from zero. Now, for any p = (x, y, z) ∈ Mε with
z > 0 we have

f(p)

g(p)
=

f(p)

ε
≥ inf

r0>0

1

r0ε
G(

1

2
r2
0ε

2) = 1 (4.7)

and

sup
p∈Mε

f(p)

g(p)
= sup

p∈Mε

f(p)

ε
≥ sup

r0>0

1

r0ε
G(

1

2
r2
0ε

2) = ∞. (4.8)

Fix a normal neighbourhood U of the origin. Take an arbitrary q ∈
I+(0, U); then q = δµp, where p = δε/g(q)q ∈ Mε, µ = g(q)/ε. Now it is clear
from (4.7) that

f [U ](q)

g(q)
=

f(δµp)

g(δµp)
=

f(p)

g(p)
≥ 1

from which f [U ] ≥ g on J+(0, U).
At the same time take an N > 0; by (4.8) there exists a p ∈ Mε such that

f(p)/g(p) > N . Now, for a suitable µ > 0, q = δµp ∈ I+(0, U) and

f [U ](q)

g(q)
=

f(δµp)

g(δµp)
=

f(p)

g(p)
> N .
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Similar arguments work for r0 < 0, and therefore z < 0, so in this way
we have completed the proof of the following

Theorem 4.3. For every (x, y, z) ∈ J+(0, U), where U is a normal neigh-
bourhood of the origin or U = R3, the following estimate is true:

f [U ](x, y, z) ≥
√

x2 − y2 − 4|z|.
On the other hand, the reverse inequality, i.e. f [U ] ≤ Cg, does not hold for
any constant C.

5 Non-Hamiltonian geodesics which are

regular curves

Fix a time-oriented sub-Lorentzian manifold (M, H, h), dim M = n+1, rank
H = k + 1. Let an open set U ⊂ M be a domain of local coordinates, and
suppose that p, q ∈ U are such that q ∈ I+(p, U). We want to apply the
Maximum Principle of Pontryagin (PMP) to the following problem: (TFD)
among all t.f.d. curves joining p to q and contained in U find the longest
one. To this end let X0, ..., Xk be an orthonormal frame for H on U with a
time orientation X0. It is natural to take

K1 =

{
(u0, ..., uk) ∈ Rk+1 : −u2

0 +
k∑

j=0

uj
2 < 0, u0 > 0

}

as the set of control parameters. Consider the system of equations

ẋ(t) =
k∑

α=0

uα(t)Xα(x(t)),

where u = (u0, ..., uk) ∈ L2([0, T ], K1). Further, for any u = (u0, ..., uk) ∈ K1

let ‖u‖ = |−u2
0 + u2

1 + ... + u2
k|1/2

and define the cost function to be

J(x, u) = −
∫ T

0

‖u(t)‖ dt.

Finally, introduce the usual Hamiltonian for PMP: Hλ0 : T ∗U ×K1 −→ R,

Hλ0(x, λ, u) =
k∑

α=0

uα 〈λ,Xα〉+ λ0 ‖u‖ ,
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where λ0 ∈ R, u ∈ K1, λ ∈ T ∗
xU . By

−→Hλ0 denote the Hamiltonian vector
field on T ∗U corresponding to the function Hλ0 of variables x and λ, where
u is a parameter. Now the PMP applied to our problem says: if (x(t), u(t)),
0 ≤ t ≤ T , is an optimal trajectory for (TFD), then there exists a λ0 ≤ 0
and an absolutely continuous lift (x, λ, u) : [0, T ] −→ T ∗U × K1 of x such

that λ(t) 6= 0, (x, λ)̇ =
−→Hλ0, and

Hλ0(x(t), λ(t), u(t)) = sup {Hλ0(x(t), λ(t), v) : v ∈ K1} = 0. (5.1)

It turns out that, similarly to in the sub-Riemannian case, there are only
two types of solutions to (TFD), as is described in the proposition below.

Proposition 5.1. Each extremal of the PMP with the set K1 of control
parameters is either a Hamiltonian geodesic (then it can be a regular or a
singular curve) or a strictly abnormal extremal (which is a singular curve).
Moreover, each abnormal extremal is a singular curve.

Proof : Since K1 is open, we can replace the condition (5.1) with

∂Hλ0

∂ua

(x(t), λ(t), u(t)) = 0,

α = 0, 1, ..., k and proceed analogously as in the sub-Riemannian case. 2

Unfortunately, the set K1 of control parameters is not appropriate for
studying U -maximizers. Instead we must consider the problem: (NSPCFD)
among all nspc.f.d. curves joining p to q and contained in U find the longest
one. This time the suitable set of control parameters is

K2 =

{
(u0, ..., uk) ∈ Rk+1 : −u2

0 +
k∑

j=0

uj
2 ≤ 0, u0 > 0

}
.

Now, if we apply PMP to the problem (NSPCFD), Proposition 5.1 is no
longer true – all we can say is that a t.f.d. U -maximizer being a smooth
curve is a Hamiltonian geodesic. In particular, one can find non-Hamiltonian
U -maximizers which are regular curves (a phenomenon which does not occur
in the sub-Riemannian situation); every such maximizer is either null, non-
smooth or it changes its causal character (i.e. it has null and timelike pieces).

In our case of the Heisenberg sub-Lorentzian metric, it is very easy to
construct an example of a null non-Hamiltonian and non-smooth maximizer.
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First of all observe that the results of Section 2 imply that each nspc.f.d.
curve starting from 0 and contained in ∂J+(0) is a null maximizer, and
these are the only null maximizers. Moreover, since there are only two null
f.d. Hamiltonian geodesics (namely half-lines {y = ±x, x ≥ 0, z = 0} – see
[5]), any maximizer that connects 0 to a p = (x0, y0, z0) ∈ ∂J+(0), z0 6= 0,
cannot be Hamiltonian. Suppose that γ is such a non-Hamiltonian and null
maximizer. Assume γ smooth. Every smooth and null curve satisfies ẏ = ẋ
(resp. ẏ = −ẋ), i.e. y = const + x (resp. y = const − x). In our case
γ(0) = 0, so y = x (resp. y = −x) along γ; in other words γ coincides with
one of the two null f.d. Hamiltonian geodesics, which is not true. Thus null
non-Hamiltonian maximizers are not smooth.

Next, for a fixed p = (x0, y0, z0) ∈ ∂J+(0) = {η4 = 0} with z0 6= 0 we will
construct the unique null maximizer joining 0 to p (see [5] for the proof of
existence of such curves). At first let us make two observations. Lift a curve
ξ̃(t) = (a + t, b − t, 0), a > 0, |b| < a, to a (horizontal) curve lying on the
surface {η4 = 0, x ≥ 0}. It can be done in a unique way:

ξ(t) =





x(t) = a + t
y(t) = b− t
z(t) = 1

4
(a2 − b2) + 1

2
(a + b)t;

the resulting curve is contained in {η4 = 0, x ≥ 0, z ≥ 0} and is always null.
Analogously, a curve ζ̃(t) = (a + t, b + t, 0), a > 0, |b| < a, has a unique
(horizontal) lift to the surface {η4 = 0, x ≥ 0}, and this lift happens to be a
null curve

ζ(t) =





x(t) = a + t
y(t) = b + t
z(t) = 1

4
(b2 − a2) + 1

2
(b− a)t

contained in {η4 = 0, x ≥ 0, z ≤ 0}. In particular, every null maximizer that
leaves the set {y = x, x > 0, z = 0} (resp. {y = −x, x > 0, z = 0}) stays in
{η4 = 0, x > 0, z > 0} (resp. {η4 = 0, x > 0, z < 0}).

Now, take a p = (x0, y0, z0) ∈ ∂J+(0) with, say, z0 > 0. Using the above
procedure we lift the curve

γ̃(t) =

{
(t, t, 0) : 0 ≤ t ≤ 1

2
(x0 + y0)

(t, x0 + y0 − t, 0) : 1
2
(x0 + y0) < t ≤ x0

to the surface {η4 = 0} and obtain a null maximizer

γ(t) =

{
(t, t, 0) : 0 ≤ t ≤ 1

2
(x0 + y0)

(t, x0 + y0 − t, 1
2
(x0 + y0)t− 1

4
(x0 + y0)

2) : 1
2
(x0 + y0) < t ≤ x0
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joining 0 to p. Remarks above show that any such maximizer, after leaving
the set {y = x, x ≥ 0, z = 0}, must satisfy ẏ = ẋ; this proves uniqueness of
γ.

Similar construction yields a null and unique maximizer that joins 0 to a
p = (x0, y0, z0) ∈ ∂J+(0) with z0 < 0.

Proposition 5.2. For each p = (x0, y0, z0) ∈ ∂J+(0) there exists the unique
null maximizer γp joining the origin to p. Every such γp is contained in
∂J+(0). In case z0 6= 0, γp is not smooth and is not a Hamiltonian geodesic.

At the end let us remark that away from the set {z = 0} all null maxi-
mizers are trajectories of the horizontal gradient ∇Hη4.
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The complex symplectic moduli spaces of uni-modal
parametric plane curve singularities

Go-o Ishikawa 1 and StanisÃlaw Janeczko 2

Abstract

Classification of zero-modal singularities of parametric plane curves
under diffeomorphism equivalence is extended to uni-modal singulari-
ties. Both the simple and uni-modal singularities of parametric plane
curves are classified further under symplectomorphic equivalence. In
particular the corresponding cyclic symplectic moduli spaces are re-
constructed as canonical ambient spaces for the diffeomorphism mod-
uli spaces which are no longer Hausdorff spaces.

1 Introduction

In [3], Bruce and Gaffney classified the simple (0-modal) singularities of para-
metric plane curves f : (C, 0) → (C2, 0) under diffeomorphism equivalence
(right-left equivalence) in the complex analytic category into the classes A2`,
E6`, E6`+2, W12, W18 and W#

1,2`−1 (` = 1, 2, 3, . . . ); see also [2] and Table 1. In
the present paper the classification is extended to the uni-modal singularities
as follows:

Theorem 1.1. Under diffeomorphism equivalence the uni-modal singulari-
ties of parametric plane curves f : (C, 0) → (C2, 0) are classified into the

1Department of Mathematics, Hokkaido University, Sapporo 060-0810, Japan, e-mail:
ishikawa@math.sci.hokudai.ac.jp
Partially supported by Grants-in-Aid for Scientific Research, No. 14340020.

2Institute of Mathematics, Polish Academy of Sciences, ul. Śniadeckich 8, 00-950
Warszawa, Poland and Institute of Mathematics, Warsaw University of Technology, Pl.
Politechniki 1, 00-661 Warszawa, Poland, e-mail: janeczko@mini.pw.edu.pl
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following list:

N20 : (t5, t6 + t8 + λt9) (−λ ∼ λ), (t5, t6 + t9), (t5, t6 + t14), (t5, t6),

N24 : (t5, t7 + t8 + λt11), (t5, t7 + t11 + λt13) (−λ ∼ λ),
(t5, t7 + t13), (t5, t7 + t18), (t5, t7),

N28 : (t5, t8 + t9 + λt12), (t5, t8 + t12 + λt14) (−λ ∼ λ),
(t5, t8 + t14 + λt17) (−λ ∼ λ), (t5, t8 + t17), (t5, t8 + t22), (t5, t8),

W24 : (t4, t9 + t10 + λt11) (λ 6= 19
18

), (t4, t9 + t10 + 19
18

t11 + λt15),
(t4, t9 + t11), (t4, t9 + t15), (t4, t9 + t19), (t4, t9),

W30 : (t4, t11 + t13 + λt14) (−λ ∼ λ), (t4, t11 + t14 + λt17) (λ 6= 25
22

),
(t4, t11 + t14 + 25

22
t17 + λt21) (ωλ ∼ λ, ω3 = 1),

(t4, t11 + t17), (t4, t11 + t21), (t4, t11 + t25), (t4, t11),

W#
2,2`−1 : (t4, t10 + t2`+9 + λt2`+11) (ωλ ∼ λ, ω2`−1 = 1) (` = 1, 2, 3, . . . ).

In the list, for instance −λ ∼ λ means that (t5, t6 + t8 + λ′t9) is diffeo-
morphic to (t5, t6 + t8 + λt9) if and only if λ′ = ±λ.

In [7], motivated by the symplectic bifurcation problem, we gave the
symplectic classification of simple singularities of parametric plane curves
in the real case. (For the higher dimensional case, see [8]). In this paper
we classify symplectically both the simple and uni-modal singularities of
parametric plane curves in the complex case.

We call holomorphic parametric curve-germs f, g : (C, 0) → (C2, 0)
diffeomorphic (resp. symplectomorphic) if there exist a bi-holomorphic dif-
feomorphism σ of (C, 0) and a bi-holomorphic diffeomorphism τ (resp. a
bi-holomorphic symplectomorphism τ) of (C2, 0) (for the holomorphic sym-
plectic form dx ∧ dy on C2) satisfying τ(g(t)) = f(σ(t)).

Let r be a non-negative integer. A curve-germ f is called r-modal if a
finite number of s-parameter families (0 ≤ s ≤ r) of diffeomorphism classes
form a neighborhood of f in the space of curve-germs. Then we have:

Theorem 1.2. A simple or uni-modal singularity f : (C, 0) → (C2, 0) is
symplectomorphic to a germ which belongs to one of the following families
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(called “symplectic normal forms”):

A2` : (t2, t2`+1),
E6` : (t3, t3`+1 + Σ`−1

j=1λjt
3(`+j)−1),

E6`+2 : (t3, t3`+2 + Σ`−1
j=1λjt

3(`+j)+1),
W12 : (t4, t5 + λt7),
W18 : (t4, t7 + λt9 + µt13),

W#
1,2`−1 : (t4, t6 + λt2`+5 + µt2`+9), λ 6= 0, (` = 1, 2, . . . )

N20 : (t5, t6 + λ1t
8 + λ2t

9 + λ3t
14),

N24 : (t5, t7 + λ1t
8 + λ2t

11 + λ3t
13 + λ4t

18),
N28 : (t5, t8 + λ1t

9 + λ2t
12 + λ3t

14 + λ4t
17 + λ5t

22),
W24 : (t4, t9 + λ1t

10 + λ2t
11 + λ3t

15 + λ4t
19),

W30 : (t4, t11 + λ1t
13 + λ2t

14 + λ3t
17 + λ4t

21 + λ5t
25),

W#
2,2`−1 : (t4, t10 + λ1t

2`+9 + λ2t
2`+11 + λ3t

2`+13 + λ4t
2`+17 + λ5t

2`+21),

λ1 6= 0, (` = 1, 2, . . . )

Moreover we determine their symplectic moduli spaces as listed in Tables
1 and 2:

Theorem 1.3. Let fλ(t) = (tm, tn + λ1t
r1 + λ2t

r2 + · · · + λst
rs) be one of

the symplectic normal forms of simple or uni-modal singularities. Then two
curve-germs fλ and fλ′ belonging to the same family are symplectomorphic if
and only if there exists an (m + n)-th root ζ ∈ C of unity satisfying

λ′1 = ζr1−nλ1, λ′2 = ζr2−nλ2, . . . , λ′s = ζrs−nλs.

In particular each symplectic moduli space of a family is a Hausdorff space
in the natural topology and it is extended to a cyclic quotient singularity.

In his lecture notes [18], O. Zariski studied the moduli space of parametric
plane curve-germs, under diffeomorphism equivalence, for a given topologi-
cal type, or the equi-singularity class (m,β1, . . . , βg). (See §2). In particu-
lar, Zariski determined the moduli spaces for the classes (2, 2` + 1), (3, 3` +
1), (4, 5), (4, 6, 2` + 5), (5, 6) and (6, 7). He did not mention symplectomor-
phic equivalence at all, but surprisingly, he used, as pre-normal forms, several
symplectic normal forms given in Theorem 1.2. For instance, in [18] page 68,
he started with

x = t5, y = t6 + a8t
8 + a9t

9 + a14t
14
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in the concrete classification of the case (5, 6).

In this paper, clarifying the role of symplectomorphism equivalence, we
proceed Zariski’s classification via modality: by Bruce-Gaffney’s classifica-
tion and by Theorem 1.1, we determine the moduli spaces for the classes
(4, 7), (5, 7), (5, 8), (4, 9), (4, 11) and (4, 10, 2`+9) beyond Zariski’s result, ex-
cept for the class (6, 7) which is actually bi-modal. Moreover we can treat
the case (6, 7) by the same method developed in this paper.

The first author thanks T. Krasiński for valuable comments, in particular,
for information on the reference [18].

The classification of plane curve singularities is closely related to the
classification of Legendre curve singularities and the classification of Goursat
distributions ([12],[19],[13]). Actually P. Mormul has predicted several forms
in Theorem 1.1 from his classification results for uni-modal singularities of
Goursat distributions (private communication to the first author). Note how-
ever, that these classification problems have different features, and therefore,
to get the exact classification, we need a detailed analysis in each case.

In the next section we give an outline of the proofs of Theorem 1.2 and
Theorem 1.3. In the last section we outline the proof of Theorem 1.1.

2 Symplectic normal forms

Let f : (C, 0) → (C2, 0) be a germ of parametric holomorphic plane curve.
Then the following conditions on f are known to be equivalent ([16],[7]):

(i) f has an injective representative.

(ii) f is a normalization onto the image.

(iii) The diffeomorphism class of f is determined by a finite jet of f .

(iv) The symplectomorphism class of f is determined by a finite jet of f .

(v) The quotient vector space O1/f
∗O2 is finite dimensional.

We assume that f satisfies one (and therefore all) of the above conditions.
Here f ∗ : O2 = C{x, y} → O1 = C{t} is defined by composition: f ∗(h) = h◦
f . Recall that the number of double points δ(f) = dimCO1/f

∗O2 ([11],[17])
also has the meaning of the symplectic codimension of f , that is the number
of parameters needed to produce its versal unfolding via symplectomorphism
equivalence ([7]).
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DIFF. NORMAL FORM SYM. NORMAL FORM SYM. MODULI SPACE

A2` (t2, t2`+1) (t2, t2`+1)

E6`

(` ≥ 1)

(t3, t3`+1 + t3(`+p)+2)
(0 ≤ p ≤ `− 2)

(t3, t3`+1)
(t3, t3`+1 + Σ`−1

j=1λjt3(`+j)−1)

C`−1/G, G = Z/(3` + 4)Z
(λ1, . . . , λ`−1) 7→

(ζλ1, . . . , ζ3j−2λj , . . . , ζ3`−5λ`−1)
(ζ3`+4 = 1, primitive)

E6`+2

(` ≥ 1)

(t3, t3`+2 + t3(`+p)+4),
(0 ≤ p ≤ `− 2)

(t3, t3`+2)
(t3, t3`+2 + Σ`−1

j=1λjt3(`+j)+1)

C`−1/G, G = Z/(3` + 5)Z
(λ1, . . . , λ`−1) 7→

(ζ2λ1, . . . , ζ3j−1λj , . . . , ζ3`−4λ`−1)
(ζ3`+5 = 1, primitive)

W12
(t4, t5 + t7)

(t4, t5)
(t4, t5 + λt7)

C/G, G = Z/9Z
λ 7→ ζλ, (ζ9 = 1)

W18

(t4, t7 + t9)
(t4, t7 + t13)

(t4, t7)
(t4, t7 + λt9 + µt13)

C2/G, G = Z/11Z
(λ, µ) 7→ (ζλ, ζ3µ), (ζ11 = 1)

W#
1,2`−1

(` ≥ 1)
(t4, t6 + t2`+5)

(t4, t6 + λt2`+5 + µt2`+9)
(λ 6= 0)

(C∗ ×C)/G, G = Z/10Z,
(λ, µ) 7→ (ζ2`−1λ, ζ2`+3µ),

(ζ10 = 1, primitive)

Table 1: The complex symplectic moduli spaces of simple parametric plane
curve singularities.

SYM. NORMAL FORM SYM. MODULI SPACE

N20 (t5, t6 + λ1t8 + λ2t9 + λ3t14)
C3/G, G = Z/11Z

(λ1, λ2, λ3) 7→ (ζ2λ1, ζ3λ2, ζ8λ3),
(ζ11 = 1)

N24 (t5, t7 + λ1t8 + λ2t11 + λ3t13 + λ4t18)

C4/G, G = Z/12Z
(λ1, λ2, λ3, λ4) 7→

(ζλ1, ζ4λ2, ζ6λ3, ζ11λ4),
(ζ12 = 1, primitive)

N28
(t5, t8 + λ1t9 + λ2t12 + λ3t14

+λ4t17 + λ5t22)

C5/G, G = Z/13Z
(λ1, λ2, λ3, λ4, λ5) 7→

(ζλ1, ζ4λ2, ζ6λ3, ζ9λ4, ζ14λ5),
(ζ13 = 1, primitive)

W24 (t4, t9 + λ1t10 + λ2t11 + λ3t15 + λ4t19)

C4/G, G = Z/13Z
(λ1, λ2, λ3, λ4) 7→

(ζλ1, ζ2λ2, ζ6λ3, ζ10λ4),
(ζ13 = 1)

W30
(t4, t11 + λ1t13 + λ2t14 + λ3t17

+λ4t21 + λ5t25)

C5/G, G = Z/15Z
(λ1, λ2, λ3, λ4, λ5) 7→

(ζ2λ1, ζ5λ2, ζ6λ3, ζ10λ4, ζ14λ5),
(ζ15 = 1, primitive)

W#
2,2`−1

(t4, t10 + λ1t2`+9 + λ2t2`+11 + λ3t2`+13

+λ4t2`+17 + λ5t2`+21), (λ1 6= 0).

(C∗ ×C4)/G, G = Z/14Z
(λ1, λ2, λ3, λ4, λ5) 7→

(ζ2`−1λ1, ζ2`+1λ2, ζ2`+3λ3,
ζ2`+7λ4, ζ2`+11λ5),
(ζ14 = 1, primitive)

Table 2: The complex symplectic moduli spaces of uni-modal parametric
plane curve singularities.

90



We briefly recall the theory developed in [7] §7: The symplectic codimen-
sion of f is defined by

sp-cod(f) = dimC
Vf

tf(V1) + wf(V H2)

as an infinitesimal symplectic invariant of Mather’s type. Here Vf is the space
of germs of holomorphic vector fields v : (C, 0) → TC2 along f , which is the
space of infinitesimal deformations of f ; V1 is the space of germs of holomor-
phic vector fields over (C, 0) and V H2 is the space of germs of holomorphic
Hamiltonian vector fields over (C2, 0). The homomorphisms tf : V1 → Vf

and wf : V H2 → Vf are defined by tf(ξ) := f∗(ξ), ξ ∈ V1 and wf(η) := η ◦f
respectively. An unfolding F : (C × Cr, (0, 0)) → (C2 × Cr, (0, 0)) of f ,

F (t, u) = (fu(t), u), is symplectically versal if
∂fu

∂u1

(t, 0), . . . ,
∂fu

∂ur

(t, 0) gener-

ate Vf , over R, up to the space tf(V1) + wf(V H2) of deformations which are
covered by symplectomorphisms ([7], Proposition 7.1).

Set f(t) = (x(t), y(t)). For an infinitesimal deformation v(t) = a(t)
∂

∂x
+

b(t)
∂

∂y
∈ Vf , we define a generating function e(t) ∈ O1 of v by d(e(t)) =

b(t)d(x(t)) − a(t)d(y(t)), or e′(t) = b(t)x′(t) − a(t)y′(t) up to the constant
term. The generating function of tf(ξ) + wf(Hk) is equal to f ∗k, where k
is the Hamiltonian function of the Hamiltonian vector field Hk. Then there
exists an exact sequence of vector spaces:

0 → V ′
f

tf(V1)
→ Vf

tf(V1) + wf(V H2)
→ Rf

f ∗O2

→ 0,

where Rf = {e(t) ∈ O1 | ord(e′(t)) ≥ ord(f)− 1} and

V ′
f = {v(t) = a(t)∂/∂x + b(t)∂/∂y ∈ Vf | b(t)x′(t)− a(t)y′(t) = 0}.

Then we see that dimC V ′
f/tf(V1) = ord(f) − 1 = dimCO1/Rf . Therefore

we have

sp-cod(f) = dimC V ′
f/tf(V1) + dimC Rf/f

∗O2 = dimCO1/f
∗O2 = δ(f).

Some of parameters of the symplectically versal unfolding correspond to
deformations into less singular germs, and the remaining parameters provide
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the symplectic normal form within a given equi-singular class up to discrete
symplectomorphism equivalence classes. We recall a basic fact from the text-
book [17] in our context. Set m = ord(f). Then f is symplectomorphic to a
germ of the form (tm,

∑∞
k=m akt

k). Suppose m ≥ 2, that is, f is not an im-
mersion. Set β1 = min{k | ak 6= 0,m - k} and let e1 be the greatest common
divisor of m and β1, and inductively set βq = min{k | ak 6= 0, eq−1 - k}, and
let eq be the greatest common divisor of βq and eq−1, q ≥ 2. Then eg = 1 for
sufficiently large g, and we call (m = β0, β1, β2, . . . , βg) the Puiseux charac-
teristic of f , which is a basic diffeomorphism invariant. Setting e0 = m, we
have δ(f) = 1

2

∑g
q=1(βq−1)(eq−1−eq) ([11],[17]). Moreover the Puiseux char-

acteristic determines the homeomorphism equivalence class of f ([10],[18]).
We call a deformation of plane curve singularities equi-singular if the Puiseux
characteristic is preserved. Under an equi-singular deformation of f , we can
take a common monomial basis of O1/f

∗O2.
First we have:

Lemma 2.1. f is symplectomorphic to a germ of the form
(tm, tβ1 +

∑∞
k=β1+1 bkt

k).

Proof : Set ψ(x) =
∑β1−1

k=m akx
k/m and τ1(x, y) = (x, y−ψ(x)). Then τ1(f(t)) =

(tm,
∑∞

k=β1
akt

k) with aβ1 6= 0. Define α ∈ C∗ = C \ {0} by αm+β1aβ1 = 1,
and set σ(t) = αt and τ2(x, y) = (α−mx, αmy). Then τ1, τ2 are both symplec-
tomorphisms and we see that τ2(τ1(f(σ(t)))) has the required form. 2

To get symplectic normal forms, we first remark the following:

Lemma 2.2. Suppose O1/f
∗O2 has a monomial basis

t, t2, . . . , tm−1, tm+1, . . . , tr1+m, . . . , trs+m

where r1 + m, . . . , rs + m are all exponents greater than β1 + m. Then the
family

fc(t) = (tm, tβ1 +
∞∑

k=β1+1

bkt
k +

s∑
j=1

cjt
rj),

c = (c1, . . . , cs) ∈ Cs, gives a transversal to the symplectomorphism orbit.

Proof : Let v = ψ(t)
(

∂
∂y
◦ f

)
, ψ(t) =

∑∞
k=β1+1 ukt

k, be an infinitesimal de-

formation of f among the forms given in Lemma 2.1. Take the generating
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function e of v satisfying de(t) = ψ(t)d(tm), e(0) = 0. Then there exist
b̃1, b̃2, . . . , b̃m−1, b̃m+1, . . . , b̃r1+m, . . . , b̃rs+m ∈ C such that, setting

ϕ(t) = b̃1t+b̃2t
2+. . .+b̃m−1t

m−1+b̃m+1t
m+1+. . .+b̃r1+mtr1+m+. . .+b̃rs+mtrs+m,

we have e − ϕ ∈ f ∗O2. Set e − ϕ = h ◦ f . Since ord(e) ≥ β1 + m, we see
ord(h) ≥ 2. On the other hand, ϕ(t) = b̃r1+mtr1+m + . . . + b̃rs+mtrs+m. Then
we have

dϕ(t) = {(r1 + m)b̃r1+mtr1+m−1 + . . . + (rs + m)b̃rs+mtrs+m−1}dt

=
(

r1+m
m

b̃r1+mtr1 + . . . + rs+m
m

b̃rs+mtrs

)
d(tm).

Set w =
(

r1+m
m

b̃r1+mtr1 + . . . + rs+m
m

b̃rs+mtrs

)(
∂
∂y
◦ f

)
. Consider the Hamil-

tonian vector field Xh. Then, the field (v−w)−wf(Xh) has a zero as a gener-
ating function, that is, (v−w)−wf(Xh) ∈ V ′

f . Then there exists ξ ∈ V1 with
ξ(0) = 0 satisfying tf(ξ) = (v−w)−wf(Xh), that is v = w+ tf(ξ)+wf(Xh)
(cf. Lemma 8.2 and Theorem 8.7 of [7]). This means that the above family
is transversal to the symplectomorphism orbit through f . 2

A monomial basis of O1/f
∗O2 can be calculated by considering the semi-

group S(f) = {ord(h) | h ∈ f ∗O2} ⊆ N. In fact {tr | r ∈ N \ S(f), r > 0}
forms a monomial basis of O1/f

∗O2. Note that a system of generators for
the semigroup S(f) is calculated explicitly from the Puiseux characteristic.
Moreover there exists a number N depending only on the Puiseux characte-
ristic of f such that if φ ∈ O1 has order ≥ N , then φ ∈ f ∗O2 ([17]).

Example 2.3. (1) (W30) Let m = 4, β1 = 11. Then the semigroup S(f) is
generated by 4 and 11. A monomial basis ofO1/f

∗O2 is given by t, t2, t3, t5, t6,
t7, t9, t10, t13, t14, t17, t18, t21, t25, t29.

(2) (W#
1,2`−1) Let m = 4, β1 = 6 and β2 = 2`+5. Then S(f) is generated

by 4, 6 and 2`+11. The complement N\S(f) consists of 1, 2, 3, 5, 7, 9, 11, . . . ,
2` + 9, 2` + 13.

(3) (W#
2,2`−1) Let m = 4, β1 = 10 and β2 = 2` + 9. Then S(f) is

generated by 4, 10 and 2` + 19. The complement N \ S(f) consists of
1, 2, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, . . . , 2`+13, 2`+15, 2`+17, 2`+21, 2`+
25.

Proof of Theorem 1.2 : Under the notations of Lemma 2.2, consider the in-

finitesimal deformation v = κ(t)
(

∂
∂y
◦ f

)
, κ(t) = −∑

bkt
k, where the sum-

mation runs over k different from r1, . . . , rs. Then the Puiseux characteristics
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are preserved under the deformation

fu = (tm, tβ1 +
∞∑

k=β1+1

bkt
k − uκ(t))

(u ∈ [0, 1]) corresponding to v. This is clear when the greatest common
divisor e1 of m and β1 is equal to 1. From Example 2.3 (2)(3), it also holds
for W#

1,2`−1 and W#
2,2`−1. Then there exist wu =

∑s
j=1 cj,ut

rj , cj,u ∈ C, ξu ∈
V1, ξu(0) = 0, and ηu ∈ V H2, ηu(0) = 0, smoothly depending on u and
satisfying v = wu + tfu(ξu) + wfu(ηu). By integrating from u = 0 to u = 1
we see that f is symplectomorphic to

fλ(t) = (tm, tβ1 + λ1t
r1 + λ2t

r2 + . . . + λst
rs),

for some λ = (λ1, . . . , λs) ∈ Cs. In all cases except W#
1,2`−1 and W#

2,2`−1,
there are no restrictions on λ and we get the symplectic normal forms given
in Theorem 1.2. In the case of W#

1,2`−1, f is symplectomorphic to

fc = (t4, t6 + c1t
7 + . . . + c`t

2`+5 + c`+1t
2`+7).

Since the Puiseux characteristic of f is (4; 6, 2` + 5), we necessarily have
c1 = 0, . . . , c`−1 = 0 and c` 6= 0. Setting λ = c`, µ = c`+1, we get the
symplectic normal form. In the case of W#

2,2`−1, f is symplectomorphic to

fc = (t4, t10 + c1t
11 + c2t

13 + c15
3 + . . . + c`t

2`+9 + c`+1t
2`+11 + c`+2t

2`+13

+c`+3t
2`+17 + c`+4t

2`+21).

Since the Puiseux characteristic of f is (4; 10, 2`+9), we have c1 = 0, . . . , c`−1

= 0 and c` 6= 0, which gives the symplectic normal form. 2

In the process of symplectic classification, we observe a kind of rigidity.
Let fλ and fλ′ , with λ 6= λ′, be germs belonging to one of the symplectic
normal forms of simple or uni-modal parametric plane curve singularities.
Then fλ and fλ′ , are not isotopic by symplectomorphisms. Moreover we
have the following strong rigidity which implies Theorem 1.3 in each case:

Proposition 2.4. Let fλ and fλ′ be germs belonging to one of the symplectic
normal forms of simple or uni-modal parametric plane curve singularities. If
fλ and fλ′ are symplectomorphic, then they are linearly symplectomorphic:
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If there exists a symplectomorphism equivalence (σ, τ) satisfying τ ◦ fλ′ =
fλ ◦ σ, then there exists a symplectomorphism equivalence (Σ, T ) such that
T ◦ fλ′ = fλ ◦Σ, Σ : (C, 0) → (C, 0) is a complex linear transformation, and
T : (C2, 0) → (C2, 0) is a complex linear symplectic transformation.

Proof : We give the calculation in the case W30. Other cases can be treated
similarly. Set fλ = (t4, t11 +λ1t

13 +λ2t
14 +λ3t

17 +λ4t
21 +λ5t

25), and suppose
fλ and fλ′ are symplectomorphic for λ = (λ1, . . . , λ5) and λ′ = (λ′1, . . . , λ

′
5).

Set σ(t) = a1t + a2t
2 + . . . and, as components of τ(x, y),

x ◦ τ(x, y) = ax + by + h1x
2 + h2xy + h3y

2 + `1x
3 + `2x

2y
+`3xy2 + `4y

3 + . . . ,
y ◦ τ(x, y) = cx + ey + k1x

2 + k2xy + k3y
2 + m1x

3 + m2x
2y

+m3xy2 + m4y
3 + . . . .

Consider the equation fλ(σ(t)) = τ(fλ′(t)):

σ(t)m = x ◦ τ(t4, t11 + λ′1t
13 + λ′2t

14 + λ′3t
17 + λ′4t

21 + λ′5t
25) · · · · · · · · · (∗),

σ(t)11 + λ1σ(t)13 + λ2σ(t)14 + λ3σ(t)17 + λ4σ(t)21 + λ5σ(t)25

= y ◦ τ(t4, t11 + λ′1t
13 + λ′2t

14 + λ′3t
17 + λ′4t

21 + λ′5t
25) · · · · · · · · · (∗∗).

Now we are going to determine the coefficients of σ and τ of lower degree
terms, using the equations (*) and (**) in a zigzag manner. We denote for
comparison of terms in (*) (resp. (**)) of degree i by (*i) (resp. (**i)). First
by (*4), we have a4

1 = a. By (*5)(*6)(*7), we have a2 = 0, a3 = 0, a4 = 0.
By (**4), c = 0. By (**8), k1 = 0. By (**11), we have a11

1 = e. Since τ is
a symplectomorphism, we see that ae = 1, so we have a15

1 = 1. By (**12),
m1 = 0. By (**13), we get λ1a

13 = eλ′1 and therefore λ1a
2 = λ′1. By (**14),

λ2a
14 = eλ′2 and therefore λ1a

3 = λ′1. By (**15), 11a10
1 a5 = k2. From (*8), we

have 4a3a5 = h1. Since τ is a symplectomorphism, we have 2h1e + ak2 = 0.
Thus we see that a5 = 0. Then k2 = 0, h1 = 0. By (*9), 4a3a6 = 0 so
a6 = 0. By (*10), a7 = 0. By (*11), we have 4a3

1a8 = b. Then by (**17),
we have λ3a

17 = eλ′3, thus λ3a
6 = λ′3. By (**18), we have a8 = 0. Therefore

we have b = 0. By (*12), 4a3
1a8 = `1. By (**19), 11a10

1 a9 = m2. Since τ
is a symplectomorphism we have 6`1e + 2am2 = 0. Thus we have a9 = 0.
Then we have `1 = 0, m2 = 0. By (*13)(*14), we have a10 = 0, a11 = 0.
By (**21), we have λ4a

21 = eλ′4 so λ4a
10 = λ′4. By (**22), 11a10

1 a12 = k3.
By (*15), we have 4a3

1a12 = h2. Since τ is a symplectomorphism we have
h2e + 2ak3 = 0. Therefore a12 = 0, and k3 = 0, h2 = 0. Then, by (**23),
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we have a13 = 0, and by (*17)(*18), a14 = 0, a15 = 0. Finally, by (**25),we
have λ5a

25 = eλ′5, and λ5a
13 = λ′5. Therefore, setting T and Σ as the linear

parts of τ and σ respectively, we have T ◦ fλ′ = fλ ◦ Σ. 2

Remark 2.5. If two curve-germs f, g : (C, 0) → (C2, 0) are symplec-
tomorphic, then they are symplectically isotopic, that is there exist C∞

families of bi-holomorphic diffeomorphisms σs and bi-holomorphic symplec-
tomorphisms τs (s ∈ [0, 1]) on (C, 0) and (C2, 0) respectively such that
σ0(t) = t, τ0(x, y) = (x, y) and τ1(g(t)) = f(σ1(t)). This fact is a feature of
the complex case and it is proved by using the fact that SL(2,C) is arcwise
connected and the group of symplectomorphisms with identity linear part is
arcwise connected (cf. [6]). Thus our symplectic moduli space in Tables 1
and 2 are also moduli spaces for the symplectic isotopy equivalence.

3 Differential normal forms

The proof of Theorem 1.1 is similar to the one in [3]. We note that the sym-
plectic normal forms (Proposition 2.2) can play the role of an intermediate
classification, which also makes the diffeomorphic classification easier and
clearer.

First we have

Lemma 3.1. Let f : (C, 0) → (C2, 0) have the Puiseux characteristic
(m,β1, . . . ). If m ≥ 4 and β1 ≥ 13, or m ≥ 5 and β1 ≥ 9, or m ≥ 6 then the
modality of f is at least 2.

Proof : For instance, assume m = 4, β1 = 13. Then, in any neighborhood of
f , there exists a two-parameter family of germs at 0 which are diffeomorphic
to gλ = (t4, t13 + t14 + λ1t

15 + λ2t
19). We find this family by an infinitesimal

calculation. First, for each α ∈ N, we try to find ξ ∈ O1 and η1, η2 ∈ O2

with ξ(0) = 0, η1(0, 0) = 0, η2(0, 0) = 0, satisfying the equation

(
0
tα

)
≡

(
4t3ξ

(13t12 + . . .)ξ

)
+

(
η1(t

4, t13 + . . .)
η2(t

4, t13 + . . .)

)
mod

(
0

tα+1O1

)
.

Then we see that the equation is not solvable for α = 15 and α = 19.
Second, by a formal calculation, we verify that gλ and gλ′ are diffeomorphic
if and only if λ′ = λ. From this observation we see that, if m ≥ 4, β1 ≥ 13,
then the modality of f is ≥ 2.
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Other cases can be treated in a similar way. 2

Thus Theorem 1.1 will be proved if we check all remaining cases. Here
we will treat only the class W30 with the Puiseux characteristic (4, 11).

Consider the symplectic normal form fλ(t) = (t4, t11 + λ1t
13 + λ2t

14 +
λ3t

17 +λ4t
21 +λ5t

25). Suppose λ1 6= 0. Consider, for given ρ(t), the equation
(

0
ρ(t)

)
= ξ

(
4t3

11t10 + 13λ1t
12 + . . .

)
+

(
η1(fλ(t))
η2(fλ(t))

)
,

and try to find ξ(t), η1(x, y), η2(x, y) with ξ(0) = 0, η1(0, 0) = 0, η2(0, 0) = 0.
The equation is solvable for ρ(t) = t13, up to higher order terms, and solvable
for any ρ(t) with ordρ(t) ≥ 15. Then, by the homotopy method, we see
that: if λ1 6= 0 then f is diffeomorphic to (t4, t11 + t13 + λt14) for some
λ ∈ C; if λ1 = 0, λ2 6= 0, then f is diffeomorphic to (t4, t11 + t14 + λt17) for
some λ ∈ C, λ 6= 25

22
, or to (t4, t11 + t14 + 25

22
t17 + λt21) for some λ ∈ C; if

λ1 = 0, λ2 = 0, λ3 6= 0 (resp. λ1 = 0, λ2 = 0, λ3 = 0, λ4 6= 0; λ1 = 0, λ2 =
0, λ3 = 0, λ4 = 0, λ5 6= 0), then f is diffeomorphic to (t4, t11 + t17) (resp.
(t4, t11 + t21); (t4, t11 + t25)). The exact determination of the moduli space is
completed by direct formal calculations. The other cases are classified in a
similar way.

Remark 3.2. In general, for each equi-singularity class, the symplectic mod-
uli space is mapped canonically onto the differential moduli space, i.e. the
ordinary moduli space. The dimension of the fiber over a diffeomorphism
class [f ] is called the symplectic defect and denoted by sd(f) in [7]. It is
known that sd(f) = µ(f)− τ(f), where µ(f) = 2δ(f) is the Milnor number
of f and τ(f) is the Tyurina number of f ([15],[9],[4]). Let s(f) (resp. c(f))
be the symplectic modality, that is the number of parameters in the symplec-
tic normal form of f (resp. the codimension of the locus in the parameter
space corresponding to germs diffeomorphic to f). Then s(f)−c(f) = sd(f).
Thus we have the formula for the Tyurina number (by means of Varchenko-
Lando’s formula) as

τ(f) = 2δ(f) + c(f)− s(f).

For example, for f = (t4, t11 + t21) in the case of W30, we have δ(f) =
15, c(f) = 3, s(f) = 5 and in fact τ(f) = 28.

Note that the differential moduli space is not a Hausdorff space, while
the symplectic moduli space is, at least for 0-modal and 1-modal cases, as
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we clearly observe in Theorems 1.1 and 1.3. Therefore the symplectic moduli
space can be called a Hausdorffization of the differential moduli space.

Remark 3.3. The adjacency of simple and uni-modal singularities of para-
metric plane curves is generated (as an ordering) by A2` ← A2`+2, E6` ←
E6`+2 ← E6`+6 (` = 1, 2, . . . ), A6s−2 ← E12s−6, A6s ← E12s, A6s−2 ← E12s−4,
A6s+2 ← E12s+2 (s = 1, 2, . . . ), E8 ← W12 ← W18,W12 ← W#

1,1, E12 ←
W#

1,1 ← W18,W
#
1,2`−1 ← W#

1,2`+1 (` = 1, 2, . . . ),W#
1,1 ← N20 ← N24 ←

N28,W18 ← N24, W24 ← N28,W18 ← W24 ← W30, E18 ← W24 ← W#
2,1, E20 ←

W30,W
#
2,2`−1 ← W#

2,2`+1 (` = 1, 2, . . . ).
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On the space of admissible weights for weighted
Bergman spaces

RafaÃl Maj 1 and Zbigniew Pasternak-Winiarski 2

Abstract

The space AW (Ω) of admissible weights on an open set in Cn

and the functional transformation defined on this space by weighted
Bergman functions are considered. The new natural topology on
AW (Ω) is defined and properties of this topology are examined. Suit-
able examples illustrating the general considerations are given.

Key words and phrases: Bergman space, Bergman kernel, weighted
Bergman function, functional transform.
1991 AMS Subject Classification Code. 32H02, 32H10, 32L05,
53C55, 57R22, 58C10.

1 Introduction

In this paper we are concerned with the space of weights of integration, the
so called admissible weights, or a-weights for short, for which the weighted
Bergman function (the Bergman reproducing kernel) can be defined. The
concept of the a-weight was introduced and initially investigated in [12]. It
was also considered in [13]. The weighted Bergman functions have been
investigated by many authors in different contexts (see [1], [2], [3], [4], [6],
[7], [8], [9], and [15]). In particular they have appeared in theoretical physics
in the model of quantum theory described in [10] and [11]. The weights of
integration considered in this models are assumed to satisfy the following
equation of Monge-Ampère type

det
[∂2logµ(z)

∂zj∂zk

]
=

C

n!
(−1)

n(n+1)
2 µ(z)Kµ(z, z),
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Warszawa, Poland, e-mail: majo@tkdami.net

2Faculty of Mathematics, Warsaw University of Technology, Pl. Politechniki 1, 00-661
Warszawa, Poland, e-mail: pastwin@mini.pw.edu.pl
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where C is a constant, µ is an a-weight on an open set Ω ⊂ Cn and Kµ is the
weighted Bergman function defined by µ. It is clear that for the investigation
of this equation one should know the properties of the transformation µ 7→
K[µ] := Kµ and the properties (topological and differential) of the space of all
a-weights. Some of them have been described in [13], [14] and [16]. The main
purpose of the presented study is to give a description of a new topological
structure on the space of all a-weights which seems to be the most natural
one.

The paper is divided into three sections and this Introduction is the first
one. Preliminary notions and results have been collected in Section 2. In
Section 3 we describe a new topology on the space of admissible weights and
prove that the definition of this topology is correct (Def. 3.1, Th 3.1, Th.
3.2 and Th. 3.3). We find connected component of the space of admissible
weights. In the last part of this section we give sufficient conditions for the
space of admissible weights to be a Hausdorff space

Without any other explanations we use the following symbols: N–the set
of natural numbers; R–the set of reals; C–the complex plane.

2 Preliminaries

Any positive, Lebesgue measurable real function on an open set Ω ⊂ Cn is
called a weight (of integration) on Ω. The set of all weights on Ω will be
denoted by W (Ω) (we consider two weights as equivalent if they are equal
almost everywhere with respect to the Lebesgue measure on Ω). If µ ∈ W (Ω)
then L2(Ω, µ) denotes the space of all Lebesgue measurable complex valued
functions f on Ω such that (‖f‖µ)2 :=

∫
Ω
|f(z)|2µ(z)d2nz < ∞. The space

L2(Ω, µ) (the space of all µ-square integrable functions on Ω) equipped with
the scalar product

〈f |g〉µ :=

∫

Ω

f(z)g(z)µ(z)d2nz,

where f, g ∈ L2(Ω, µ), is a separable Hilbert space (see [17]). The space of
all holomorphic µ-square integrable functions on Ω is called the µ-Bergman
space and is denoted by L2H(Ω, µ). For any z ∈ Ω we define the evaluation
functional Ez on L2H(Ω, µ) as follows:

Ezf := f(z), f ∈ L2H(Ω, µ).
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Definition 2.1. A weight µ ∈ W (Ω) is said to be admissible if:
(i) L2H(Ω, µ) is a closed subspace of L2(Ω, µ);
(ii) for any z ∈ Ω the evaluation functional Ez is continuous on L2H(Ω, µ).

The set of all admissible weights on Ω will be denoted by AW (Ω).
Let µ ∈ AW (Ω) and let for any z ∈ Ω the function ez,µ represent the

evaluation functional Ez (in the sense of the Riesz representation theorem).

Definition 2.2. The function Kµ : Ω× Ω → C given by the formula

Kµ(z, w) := ez.µ(w), z, w ∈ Ω,

is called the µ-Bergman function of the set Ω (see [1], [12] or [13]).

The above definition can be interpreted as a definition of the transforma-
tion K with the domain AW (Ω), i.e.

K[µ] := Kµ, µ ∈ AW (Ω).

To characterize the range of this transformation we need the following result.

Theorem 2.1. If µ ∈ AW (Ω) then:
(i) for any z, w ∈ Ω

Kµ(w, z) = Kµ(z, w);

(ii) the function Kµ(z, w) is analytic in the real sense, holomorphic in z and
antiholomorphic in w;
(iii) Kµ is the integral kernel of the operator Pµ of 〈·|·〉µ-orthogonal projection
of L2(Ω, µ) onto L2H(Ω, µ), i.e. for any z ∈ Ω and any f ∈ L2(Ω, µ)

[Pµf ](z) =

∫

Ω

Kµ(z, w)f(w)µ(w)d2nw; (2.1)

(iv) the family {Kµ(·, w) : w ∈ Ω} is linearly dense in L2H(Ω, µ) and for any
z, w ∈ Ω

〈Kµ(·, z)|Kµ(·, w)〉µ = Kµ(z, w). (2.2)

Proof. For the proof of (i), (ii) and (iii) see [12], Th. 2.1 or [13], Th. 2.1.
Point (iv) follows immediately from (iii). 2

Let HA(Ω) be the real vector space of all complex-valued functions F
on Ω × Ω which are analytic in the real sense, holomorphic with respect to
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the first n variables, antiholomorphic with respect to the last n variables and
satisfy the equality

F (w, z) = F (z, w), w, z ∈ Ω.

We endow HA(Ω) with a Fréchet space topology given by the family of
seminorms {‖ · ‖X : X ⊂ Ω, X − compact}, where

‖F‖X := sup
(z,w)∈X×X

|F (z, w)|, F ∈ HA(Ω).

3 Topological and analytic structures on AW (Ω)

In [12] the set W (Ω) was endowed with the following topological and differ-
ential structure. Let us consider the set

U(Ω) := {g ∈ L∞R (Ω) : ess inf
z∈Ω

g(z) > 0}.

It is an open subset of the Banach space L∞R (Ω). Let for any µ ∈ W (Ω) the
map Φµ : U(Ω) → W (Ω) be given by the formula

[Φµ(g)](z) := g(z)µ(z), g ∈ U(Ω), z ∈ Ω.

It is clear that for any µ ∈ W (Ω) the map Φµ is a bijection of U(Ω) onto the
set U(Ω, µ) := Φµ(U(Ω)).

Proposition 3.1. Let µ ∈ W (Ω). Then
(i) for any ν ∈ W (Ω) if U(Ω, ν)∩U(Ω, µ) 6= ∅ then U(Ω, ν) = U(Ω, µ);
(ii) the family {(Φµ(X) : µ ∈ W (Ω), X-an open subset of U(Ω)} forms

a basis of some topology τ0 on W (Ω);
(iii) the family {(Φ−1

µ , U(Ω, µ)) : µ ∈ W (Ω)} forms an analytic atlas
of a Banach manifold on the topological space (W (Ω), τ0);

(iv) for any ν1, ν2 ∈ U(Ω, µ) the spaces L2(Ω, ν1) and L2(Ω, ν1) coin-
cide as vector spaces and the norms ‖ · ‖ν1 and ‖ · ‖ν2 are equivalent;

(v) if µ ∈ AW (Ω) then U(Ω, µ) ⊂ AW (Ω) i.e., AW (Ω) is an open
submanifold of W (Ω)

Proof. For the proof see [12], Proposition 2.3. 2

It is proved in [12] that the transformation K is analytic with respect to
the analytic (linear) structure on the space HA(Ω) described in the previous
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section and the analytic structure on AW (Ω) considered in Proposition 3.1
([12], Theorem 5.2). Although this analytic structure on AW (Ω) is conve-
nient in the proof of the result, the topology τ0 seems to be much too strong.
The following example illustrates the situation.

Example 3.1. Let Ω := {z ∈ C : |z| < 1} be the unit disc in C and let
µa := |z|a, for z ∈ Ω, where a ∈ R. It is shown in [12], Example 3.2 that for
a > −2 the µa-Bergman function K[µa] is given by the formula

K[µa](z, w) =
1

π(1− zw̄)2
+

a

2π(1− zw̄)
. (3.1)

Note that the map (−2; +∞) 3 a 7→ K[µa] ∈ HA(Ω) is analytic on (−2; +∞).
On the other hand, if a1 6= a2 then U(Ω, µa1) ∩ U(Ω, µa2) = ∅ and therefore
(−2; +∞) 3 a 7→ µa ∈ AW (Ω) is not a continuous map. Hence the analyti-
city of the map a 7→ K[µa] does not follow from the results of [12].

The main purpose of this paper is to introduce the topology and the
analytic structure on AW (Ω) which is weaker and more natural then the
previous one but seems to be strong enough to obtain the analyticity of the
map a 7→ K[µa]. At first we will prove the following theorem.

Theorem 3.1. Let X be a vector space endowed with two norms ‖ · ‖1

and ‖ · ‖2 such that:
(i) (X, ‖ · ‖1) and (X, ‖ · ‖2) are Banach spaces;
(ii) for any sequence (xn) in X and any a, b ∈ X, the condition

lim
n→∞

‖xn − a‖1 = 0 and lim
n→∞

‖xn − b‖2 = 0

implies a = b.
Then norms ‖ · ‖1 and ‖ · ‖2 are equivalent.

Proof. Let ‖ · ‖ be the norm in X given by

‖x‖ = ‖x‖1 + ‖x‖2, x ∈ X.

For any x ∈ X we have ‖x‖1 ≤ ‖x‖ and ‖x‖2 ≤ ‖x‖. Then if (xn) is a
Cauchy sequence with respect to ‖ · ‖, then it is a Cauchy sequence with
respect to norms ‖ · ‖1 and ‖ · ‖2. By (i) (xn) converges to an element y1 in
(X, ‖ · ‖1) and y2 in (X, ‖ · ‖2). Then by (ii) y1 = y2 and (xn) converges to
y = y1 = y2 in (X, ‖ · ‖). This means that (X, ‖ · ‖) is a Banach space. Let
Ai : (X, ‖ · ‖) → (X, ‖ · ‖i), i = 1, 2, be the identity operator. Then Ai is
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continuous and invertible. By the Banach inverse mapping theorem A−1
i is

continuous for i = 1, 2. Therefore ‖ · ‖ and ‖ · ‖i, i = 1, 2, are equivalent, i.e.
there exist constants Ci, i = 1, 2, such that

‖x‖2 ≤ ‖x‖ ≤ C1‖x‖1,

‖x‖1 ≤ ‖x‖ ≤ C2‖x‖2.

Consequently ‖ · ‖1 and ‖ · ‖2 are equivalent. 2

As a simple corollary we obtain

Theorem 3.2. Let µ1, µ2 ∈ AW (Ω) be such that the Bergman spaces
L2H(Ω, µ1) and L2H(Ω, µ2) coincide as vector spaces. Then the norms ‖·‖µ1

and ‖ · ‖µ2 are equivalent.

Proof. Let (fn) be a sequence in X := L2H(Ω, µ1) = L2H(Ω, µ2) such
that

lim
n→∞

‖fn − f‖µ1 = 0 and lim
n→∞

‖fn − g‖µ2 = 0

for some f, g ∈ X. Then by the continuity of evaluation functionals (Defini-
tion 2.1) for any z ∈ Ω

lim
n→∞

fn(z) = lim
n→∞

Ezfn = Ezf = f(z)

and
lim

n→∞
fn(z) = lim

n→∞
Ezfn = Ezg = g(z)

Hence f = g and by Theorem 3.1 the norms ‖ · ‖µ1 and ‖ · ‖µ2 are equivalent.
2

For any µ ∈ AW (Ω) we denote by V (Ω, µ) the set of all ν ∈ AW (Ω)
for which L2H(Ω, µ) and L2H(Ω, ν) coincide as vector spaces. We want to
endow V (Ω, µ) with the topological and analytic structure. We are going to
do it using the map

V (Ω, µ) 3 ν 7→ 〈·|·〉ν ∈ Heq(L2H(Ω, µ)), (3.2)

where Heq(L2H(Ω, µ)) denotes the set of all hermitian products on L2H(Ω, µ)
defining norms equivalent to ‖ · ‖µ. This set is an open cone in the real Ba-
nach space H(L2H(Ω, µ)) of all bounded hermitian forms on L2H(Ω, µ). Let
us recall that for any h ∈ H(L2H(Ω, µ)) the norm ‖h‖H is defined as the
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infimum of all such constants C > 0 that |h(f, g)| ≤ C‖f‖µ‖g‖µ for any
f, g ∈ L2H(Ω, µ). Since ‖ · ‖µ and ‖ · ‖ν are equivalent it is known that for
any ν ∈ V (Ω, µ) there exists the unique linear hermitian operator Aν on the
space L2H(Ω, µ) such that 〈f |g〉ν = 〈f |Aνg〉µ for all f, g ∈ L2H(Ω, µ). It is
positive definite and if ‖Aν‖µ denotes the operator norm of Aν in L2H(Ω, µ)
then we have the equality ‖〈·|·〉ν‖H = ‖Aν‖µ.

Now we are ready to introduce a new topology on AW (Ω).

Definition 3.1. Let µ ∈ AW (Ω). By τµ we denote the weakest topology
on V (Ω, µ) for which the map (3.2) is continuous.

Theorem 3.3. Let µ ∈ AW (Ω). Then
(i) for any ν ∈ AW (Ω), if V (Ω, ν) ∩ V (Ω, µ) 6= ∅ then V (Ω, ν) =

V (Ω, µ);
(ii) the family

B :=
⋃

µ∈AW (Ω)

τµ

form a basis of some topology τ on AW (Ω);
(iii) any set V (Ω, µ) is open and it is a connected component in the

topological space (AW (Ω), τ).

Proof. If κ ∈ V (Ω, ν) ∩ V (Ω, µ) then the following equality of vector
spaces holds

L2H(Ω, µ) = L2H(Ω, κ) = L2H(Ω, ν).

This implies that for any µ1 ∈ V (Ω, µ) and ν1 ∈ V (Ω, ν)

L2H(Ω, µ1) = L2H(Ω, ν1).

Hence ν1 ∈ V (Ω, µ) and µ1 ∈ V (Ω, ν). Consequently V (Ω, ν) = V (Ω, µ).
For the proof of (ii) note that B is a covering of AW (Ω). Moreover, if

X,Y ∈ B and X ∩ Y 6= ∅ then by (i) there exists µ ∈ AW (Ω) such that
X,Y ∈ τµ. Hence X ∩ Y ∈ τµ ⊂ B. It means that B is a basis of some
topology on AW (Ω).

For the proof of (iii) it is obvious that V (Ω, µ) is open with respect to τ .
On the other hand it is closed because of the equality

AW (Ω) \ V (Ω, µ) =
⋃

ν∈AW (Ω)\V (Ω,µ)

V (Ω, ν) ∈ τ

which is a consequence of (i). Now it is enough to show that V (Ω, µ) is
connected. Let µ0, µ1 ∈ V (Ω, µ) and let µ(t) := tµ1 + (1 − t)µ0 for any
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t ∈< 0; 1 >. We have µ(0) = µ0 and µ(1) = µ1. Since the hermitian
operator

Aµt = tAµ1 + (1− t)Aµ0

the map < 0; 1 >3 t 7→ Aµ(t) ∈ L(L2H(Ω, µ)) is continuous (i.e. the map
< 0; 1 >3 t 7→ 〈·|·〉µ(t) ∈ Heq(L2H(Ω, µ)) is continuous). Then, by the defi-
nition of τµ, the map µ(·) is continuous. It means that V (Ω, µ) is connected.

2

In general it may happen that (AW (Ω), τ) is not a Hausdorff space.

Proposition 3.1. The topological space (AW (Ω), τ) is Hausdorff iff the
map (3.2) is injective.

Proof. (⇒) Suppose that the map (3.2) is not injective, i.e. there exist two
different weights µ1, µ2 ∈ AW (Ω) such that L2H(Ω, µ1) = L2H(Ω, µ2) and
〈·|·〉µ1 = 〈·|·〉µ2 . Then the set {µ1} is not closed in (AW (Ω), τ) (the smallest
closed set containing µ1 contains also µ2. This implies that (AW (Ω), τ) is
not a Hausdorff space – a contradiction.

(⇐) Assume that the map (3.2) is injective. If µ1, µ2 ∈ AW (Ω) and
µ1 6= µ2 then: (a) L2H(Ω, µ1) 6= L2H(Ω, µ2) or (b) L2H(Ω, µ1) = L2H(Ω, µ2)
and 〈·|·〉µ1 6= 〈·|·〉µ2 . In case (a) we have µ1 ∈ V (Ω, µ1), µ2 ∈ V (Ω, µ2),
V (Ω, µ1) ∩ V (Ω, µ2) = ∅ and V (Ω, µ1), V (Ω, µ2) ∈ τ . In case (b) Aµ1 6= Aµ2 .
Since L(L2H(Ω, µ1)) is a Hausdorff space, there exist two open sets O1 and
O2 in this space such that Aµ1 ∈ O1, Aµ2 ∈ O2 and O1 ∩ O2 = ∅. Let

A(ν) := Aν , ν ∈ V (Ω, µ1).

Since the map A : V (Ω, µ1) → L(L2H(Ω, µ1)) is continuous, we obtain
that A−1(O1) and A−1(O2) are open sets in V (Ω, µ1), µ1 ∈ A−1(O1), µ2 ∈
A−1(O2) and

A−1(O1) ∩ A−1(O2) = A−1(O1 ∩ O2) = ∅.
Then (AW (Ω), τ) is Hausdorff. 2

Now we are ready to give a sufficient condition for the space (AW (Ω), τ)
to be a Hausdorff space

Definition 3.2. An open set Ω ⊂ Cn is said to be of bounded type if it
is biholomorphic to some bounded set Ω1 ⊂ Cn.

Theorem 3.4. Let Ω ⊂ Cn be an open set of bounded type. Then the
map (3.2) is injective and in a consequence the topological space (AW (Ω), τ)
is a Hausdorff space.
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Proof. It was proved in [16] (Theorem 3.1) that if Ω ⊂ Cn is of bounded
type, µ1, µ2 ∈ AW (Ω) and µ1 6= µ2 then the Bergman functions K[µ1] 6=
K[µ2]. It was also proved in [16] (Theorem 2.1) that the function K[µ] com-
pletely determines the space L2H(Ω, µ) and the scalar product 〈·|·〉µ. In
particular if K[µ1] 6= K[µ2] then 〈·|·〉µ1 6= 〈·|·〉µ2 . It means that the map (3.2)
is injective. 2

Example 3.2. Let Ω and let µa be such as in Example 3.1. Then Ω is
of bounded type and the holomorphic function

f(z) =
∞∑

m=0

cmzm, z ∈ Ω,

is an element of L2H(Ω, µa) iff

∞∑
m=0

|cm|2
2m + a + 2

< ∞.

The last condition is equivalent to the inequality

∞∑
m=0

|cm|2
2m + 2

< ∞

which does not depend on a. Hence for any a1, a2 ∈ (−2; +∞) we have

L2H(Ω, µa2) = L2H(Ω, µa1) = L2H(Ω, µ1),

where µ1 ≡ 1 is a weight of Lebesgue measure on Ω. It means that for any
a ∈ (−2; +∞) we have µa ∈ V (Ω, µ1).
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Exotic moduli of Goursat distributions exist already in
codimension three

Piotr Mormul 1

Abstract

A distribution D of rank ≥ 2 and corank r ≥ 2, on a manifold
M , is Goursat when its Lie square [D, D] is a distribution of constant
corank r− 1, the Lie square of [D, D] is of constant corank r− 2 and
so on step by step, until reaching in r steps the whole tangent bundle
TM .

It has not been known whether moduli of the local classification of Goursat
distributions of the type 2c from the reference work [MonZ], called ‘exotic’
in [M3], might show up already in codimension 3. (First examples of such
moduli, produced in [M3], were in codimension 4.) In the note we show a
concrete geometric class of codimension 3, for Goursat distributions of corank
r = 10, in which there does sit an exotic module, and give a shortcutted proof
of this fact.

1 Introduction

The note deals with Goursat flags – nested sequences of r ≥ 2 (one says then
about flags of length r) distributions in the tangent bundle TM to a (C∞, or
real analytic) manifold M of dimension n ≥ r+2, every bigger one being the
Lie square of the preceding and having by one bigger rank. Locally, without
loss of generality, one can assume that rank of D is simply 2; cf. p. 462 in
[MonZ].

Flags of a fixed length r, or distributions of corank r, are stratified into
geometric classes that can be labelled, or encoded, by words of length r
over the alphabet {G, S,T} such that a) they start with GG, and b) a letter
T never goes directly after a letter G. These classes are but the geometric
essence of regions of Jean, [J], constructed in the configuration space for the
renowned kinematical system ‘car + trailers’.

1Institute of Mathematics, Warsaw University, Banach st. 2, 02-097 Warsaw, Poland,
e-mail: mormul@mimuw.edu.pl
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The only generic – and only one dense and open – stratum is GGG. . . GG,
dealt with a hundred years ago (with no knowledge whatsoever of the ad-
jacent thinner singular strata) by Engel, vonWeber and E.Cartan. The
codimension of a stratum is easily seen in its code – it is the number of let-
ters not G in it; this property of geometric classes will often be used in the
present note.

Since 1997 it has been known that Goursat distributions have numeric
moduli of the local classification. More light on them was shed when Mont-
gomery and Zhitomirskii predicted in [MonZ] that there should altogether
exist five patterns of local prolongations of Goursat germs, denoted by them
1, 2a, 2b, 2c, and 3. Out of these five, only 2c and 3 are responsible for the
appearing of moduli, whereas the patterns 1, 2a, 2b create, from germs sit-
ting in one orbit of the local classification, only finite families of finer orbits
of Goursat germs of length bigger by one.

First found moduli were of type 3; that type is simpler than 2c. They
resided in the geometric classes GGGSTTGGG and GGSGSGSG. Only later,
in [M3], were there produced examples of type 2c, in the classes GGSGSSGSG
and GGSTTTGGGG.2

The object of the note is the geometric class C = GGGSSTGGGG of
Goursat distributions of corank 10. This class has been prompted by the
analysis of an important family of (unimodal) Legendre3 curves: x(t) = t4,
p(t) = t11 ± t13 + λt14, y(t) =

∫ t

0
p(τ) dx(τ), λ ∈ R – a parameter, which

was recently put forward by G. Ishikawa. The computations included in the
present note show that a so-called Goursat–Legendre duality, worked upon
by Montgomery&Zhitomirskii, see also Thm. 2 in [Is2], holds within this
precise geometric class C (within its generic part, in fact).

As mentioned already, with no loss of generality one can just think about
rank 2 distributions living on a 12-dimensional manifold, say M , and, as
germs, sitting in C. A module of type 2c will be produced, we underline, not
in the entire class C, but in a generic part of it, defined precisely in the next
section.

2 Such examples were not yet known in the time of writing of [MonZ] and pattern 2c
had been foreseen only theoretically.

3 ‘Legendre’ means tangent to the contact structure dy − p dx = 0 in R3(x, y, p). In
[Z] and [Is1] the reader may find a lot on contact classification of curves.
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2 Kumpera-Ruiz pseudo-normal forms for the

germs in C
A Goursat distribution D10 around p ∈ M , sitting in C as the germ at p, can
be viewed in Kumpera–Ruiz coordinates ([KR]), say x1, x2, . . . , x12 which
are centered at p. In fact, in the language of Pfaffian equations, D10 =
(ω1, ω2, . . . , ω10), where

ω1 = dx2−x3dx1, ω2 = dx3−x4dx1, ω3 = dx4−x5dx1, ω4 = dx1−x6dx5,
ω5 = dx5 − x7dx6, ω6 = dx7 − x8dx6, ω7 = dx8 − (1 + x9)dx6, ω8 =
dx9 − (E + x10)dx6, ω9 = dx10 − (a + x11)dx6, ω10 = dx11 − (b + x12)dx6.

In this description a, b and E are certain real parameters. Note (an elemen-
tary fact) that the additive constant in ω7, automatically nonzero in C, is
here normalized to 1 already. The first observation is that E can be reduced
to 0. Indeed, the infinitesimal symmetries of D10 are parametrized – see,
for inst., [M2] – by functions k = k(x1, x2, x3) called contact hamiltonians
(Arnold) or contactians (Lychagin). When E = 0, after due computations
based on Prop. 5.2 in [M2], the symmetry parametrized by k appears to have
at 0 the components

− k3∂1+ k∂2 + k1∂3 + k11∂4 + k111∂5 +
(
4k2 + 15k13

)
∂9

+ 13k1111∂10 + a
(
6k2 + 23k13

)
∂11 + b

(
7k2 + 27k13

)
∂11 |0 . (2.1)

Note the absence in this expansion of the ∂6, ∂7, ∂8 components, explained
by the relevant letters SST in the code of C. Note also that the coefficient
at ∂12 is a combination of those at ∂9 and ∂11:

b
(
7k2 + 27k13

) |0 = − b

2

(
4k2 + 15k13

)
+

3b

2a
a
(
6k2 + 23k13

) |0 . (2.2)

When the two latter vanish, so does the former. This is a key to the module
hidden in D10: if the additive constants at x9 (1) and x11 (a) are frozen, then
the constant b at x12 cannot be moved by symmetries embeddable in flows.
Yet there are also symmetries of Goursat objects not embeddable in flows. . .

The presence of the term k1111∂10 in (2.1) is, by standard techniques for
Goursat objects, sufficient to conjugate the zero and any non-zero value of
the constant E. That is, to conjugate a D10 with E = 0 and certain values
a and b to a different D10 with a prescribed non-zero E and certain other
values ã, b̃.
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Consequently, until the end of the present note we assume E = 0.

The role of the parameter a is, in distinction to E, important. Using
the notion of the symmetry dimension of a distribution D at a point p,
written SDp(D) (cf. Obs. 1 in [M1]; it is the dimension of the linear hull of
all infinitesimal symmetries of D at p), one is able to tell the value a = 0
from the remaining a 6= 0. Indeed, the matrix built of coefficients: 4, 15, and
6, 23 in (2.1) is invertible (compare the equality (2.2) ), and k is any smooth,
or real analytic, function in the vicinity of 0 ∈ R3. Hence it follows directly
from (2.1) that

SD0

(
D10

)
=

{
7 , when a = 0 ,

8 , when a 6= 0 .
(2.3)

Thus a = 0 and any value a 6= 0 are non-equivalent. Also, any two values a
and ã of different signs, a ã < 0, give non-equivalent flag members D9, and
all the more so D10. This statement is not immediate; its proof is similar to
the proof of Thm. 4.2 in [M2], with (2.3) replacing the symmetry dimension
data (31) and (33) in [M2]. On the other hand, any a 6= 0 can be quickly
normalized to sgn(a) (in the style of [M1], p. 225). Accordingly, the class C
splits up into the invariant parts GGGSSTGGG0G, GGGSSTGGG−G and
GGGSSTGGG+G. (This is, besides, an example of the prolongation pattern
2b of [MonZ] for the germs in the class GGGSSTGG.) In the sequel we will
restrict ourselves uniquely to the + and – parts. In fact, these are open parts
of C, while GGGSSTGGG0G is of codimension 1 in C.

3 The module of type 2c in GGGSSTGGG±G

Our object of consideration D10 is now given by the Pfaffian equations

dx2 − x3dx1 = 0, dx3 − x4dx1 = 0, dx4 − x5dx1 = 0, dx1 − x6dx5 = 0,
dx5−x7dx6 = 0, dx7−x8dx6 = 0, dx8−(1+x9)dx6 = 0, dx9−x10dx6 = 0,
dx10 − (a + x11)dx6 = 0, dx11 − (b + x12)dx6 = 0 ,

with a = ±1 and b ∈ R. The parameter a will be fixed in our arguments;
they look identical in either of the two generic parts of C.

Theorem 3.1. In the above family of germs at 0 ∈ R12 of Goursat distribu-
tions with fixed value of a ∈ {−1, 1}, the value |b| is a module of the local
smooth, or real analytic, classification, whereas every two values b and −b
are equivalent.
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Proof of Theorem 3.1, introductory part. Suppose that a local diffeo g =
(g1, g2, ..., g12) : (R12, 0) ←↩ conjugates two distributions D10 as above,

with parameters a, b and a, b̃ (a = ±1). By general considerations re-
lated to conjugating arbitrary Goursat distributions given in KR pseudo-
normal forms, we know that gl depends only on: x1, x2, x3 when l ≤ 3,
and on x1, x2, . . . , xl when 4 ≤ l ≤ 12. Moreover, because of the 4th and
5th letters in the code of C being S, g7(x1, . . . , x7) = x7F (x1, . . . , x7) and
g6(x1, . . . , x6) = x6G(x1, . . . , x6) for certain invertible at 0 functions F and
G.

In the sequel we shall write simply gl
k for ∂gl

∂xk . For instance, the inequality
∂gl

∂xl |0 6= 0 will henceforth be noted gl
l |0 6= 0.

Moreover still, we write D10 =
(
∂12, Yb

)
, where the second, more involved

generator is so constructed as to have no ∂12 component and satisfy all ten
Pfaffian equations in question,

Yb
T =

[
x7x6, x7x6x3, x7x6x4, x7x6x5, x7, 1,

x8, 1 + x9, x10, a + x11, b + x12, 0
]

.

In terms of these key vector field generators Yb and Yeb, the conjugacy by g
(which is subject to the mentioned restrictions!) means two things. Firstly,

Dg(x)Yb(x) = f(x) Yeb(g(x)) + h(x) ∂12 (3.1)

with certain function coefficients f and h such that f |0 6= 0. And secondly,
that g12

12 |0 6= 0. That last information will not be used; in the occurrence,
it follows easily from the previous data. When comparing coefficients at ∂l

on the both sides in (3.1), we will say: taking scalar equation ”l ” of (3.1).

The scalar equation ”8” of (3.1) implies g8
6+g8

8 |0 = f |0 implies g8
8 |0 =

f |0, because g8 sits in the ideal generated by x7 and x8. Now, by differen-
tiating ”8” of (3.1) wrt x9 at 0, one gets fg9

9 |0 = g8
8 |0, because f is given

by ”6” of (3.1) and depends only on x1, . . . , x7. Hence g9
9 |0 = 1 and also

fg10
10 |0 = 1 , (3.2)

because fg10
10 |0 = g9

9 |0 by differentiating ”9” of (3.1) wrt x10 at 0. We keep
drawing conclusions from (3.1). Its scalar equation ”10” evaluated at 0 says

g10
6 + g10

8 + a g10
10 |0 = a f |0 .

115



The sum of first two summands on the LHS of this equation vanishes in view
of (2.3) and arguments similar to those in [M2], p. 29:

g10
6 + g10

8 |0 = 0 . (3.3)

This implies g10
10 |0 = f |0 which can be coupled with (3.2). In this way

f |0 = g10
10 |0 = ±1 . (3.4)

Now we can differentiate ”11” of (3.1) wrt x11 at 0, obtaining fg11
11 |0 =

g10
10 |0, hence also, in view of (3.4),

g11
11 |0 = 1 . (3.5)

Passing to the main quantities, we evaluate at 0 scalar equation ”11” of (3.1),

g11
6 + g11

8 + a g11
10 + b g11

11 |0 = b̃ f |0 . (3.6)

On the LHS of this equation there happens something important.

Proposition 3.2. g11
6 + g11

8 + a g11
10 |0 = 0 .

A skeleton of proof (which altogether needs 10 pages) of this proposition
is given in the next section.

With Prop. 3.2 taken for granted and upon using equalities (3.4) and

(3.5), relation (3.6) boils down to precisely b = ± b̃.

What remains to be proved in Thm. 3.1 is to construct a conjugacy of two
germs D10 with the same value a and with the opposite values of the last pa-
rameter, i. e. with b and −b. It is an exercise (which is to be done backwards
from ω10 to ω1) that the following reflection Φ does that job, universally for
all values of b:

Φ(x1, x2, . . . , x12) =

(
x1, −x2, −x3, −x4, −x5, −x6, x7, −x8, x9, −x10, x11, −x12

)

Yet, needless to say, the brunt of the proof resides in justifying Proposition
3.2.
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4 Skeleton of proof of Proposition 3.2

We have not yet used the fact that g conjugates, one to the other, two
KR pseudo-normal forms with no additive constants at x10. In fact, scalar
equation ”9” of (3.1) evaluated at 0 reads

g9
6 + g9

8 |0 = 0 . (4.1)

In equation ”8” of (3.1), the function g9 gets expressed by f and g8. In turn,
in equation ”7” of (3.1), g8 gets expressed by f and g7. In consequence, it is
not long to verify that equation (4.1) boils down to

F6 |0 = ff6 |0 (4.2)

(remember also that (3.4) holds). At this point the proof takes an unex-
pected turn and returns to the – already used – equation (3.3). That sum
of partial derivatives of g10 at 0 vanishes due to the symmetry-dimension-
related arguments. One can write this vanishing in terms of f and F as well.
After a longer computation (3 handwritten pages) using also (4.2), equation
(3.3) boils down to (

F6

)2
+ 2F66 |0 = 0 . (4.3)

Now the time comes to likewise reduce the combination of partials of g11

showing up in Prop. 3.2, using under way the relations (4.2) – (4.3). The
outcome of 6 handwritten pages of computations reads4

g11
6 + g11

8 + a g11
10 |0 =

− 5ff5 + 10F5 − 4aF6 + 15
(
F6

)3
+ 10F666 + 30F67 − 15ff67 − 5ff666 |0 .

We note that, by ”5” and ”6” of (3.1), the function fF depends only on
x1, . . . , x6 and is affine in x6, while f can be expressed in terms of the function
G and is affine in x7. These facts suffice to continue the process of reduction,
and to obtain

g11
6 + g11

8 + a g11
10 |0

= ±
(
− 60G5 − 8aG6 + 120

(
G6

)3
(1 + 4G)− 60G666

)
|0

4 Equalities (4.2) and (4.3) are purely algebraic relations which can be used in more
than one way. So the result of simplifications might be written down in different forms,
too.
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(the ±1 factor on the RHS is f |0 = G |0 = ±1). Having gone so far, we note
that G = fFG

fF
, hence G can be expressed in terms of g1 (the numerator) and

g5 (the denominator). Remembering also that g5 is, by ”4” of (3.1), affine in
x5, so that the derivative g5

55 vanishes, after standard computations we get

g11
6 + g11

8 + a g11
10 |0 (4.4)

= ± 4
(
2ag1

1g
5
1 − 30

(
g1

1g
5
1

)3
(1 + 4g5

5) + 90g1
1

(
g5

1

)3
)
|0 .

Only at this moment we start to see something. On the RHS of (4.4) there is a
common factor g1

1g
5
1 |0, and the first subfactor in it, g1

1 |0 = fFG |0, clearly
does not vanish (in fact it equals 1). So how about the second subfactor
g5

1 |0 ? The gist of the matter is that it does vanish.

Lemma 4.1. g5
1 |0 = 0 .

Proof of Lemma 4.1. We look back at the relation (4.2) and try to express
it in terms of g5, if possible. To this end we write F = fF

f
, knowing that

the numerator (denominator) is given by equation ”5” (”6”) of (3.1). In the
outcome, not yet decisive, (4.2) gets reduced to

g5
1

G
− 2

g5
5

G2
G6 |0 = 2GG6 |0 .

Recall at this moment that

g1
1

g5
5

|0 = G |0 = f |0 = fF |0 = g5
5 |0 ,

implying g1
1 |0 = G2 |0 = 1. With this information, G6 |0 = − g5

1 |0 and
the eventual simplification of (4.2), or: final simplification of (4.1), reads

g5
1g

5
5 − 2g5

5

(− g5
1

) |0 = 2g5
5

(− g5
1

) |0 .

We know that g5
5 |0 6= 0, hence g5

1 |0 = 0. 2

In view of (4.4) and Lemma 4.1, g11
6 + g11

8 + a g11
10 |0 = 0. Prop. 3.2 is now

proved.

The (skeleton of) proof of Theorem 3.1 is finished.
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The Euler characteristic of a link of a set defined by a
Noetherian family of analytic functions

Aleksandra Nowel 1

1 Motivation

Sullivan (1971):
If X is a real algebraic set in Rn and x ∈ X, then χ(lk(x,X)) is even.

Parusiński–Szafraniec (1997), Coste–Kurdyka (1998):
For any regular morphism φ : X −→ W of real algebraic sets there exist real
polynomials g1, . . . , gs on W such that for every w ∈ W

χ(φ−1(w)) = sgn g1(w) + . . . + sgn gs(w).

Some properties used in the proof of this result come out of the Noethe-
rianity of the ring of real polynomials. Does it work in ”non-polynomial”
situations?

2 Problem

Ω – a semianalytic compact subset of Rn

A(Ω) – the algebra of real analytic functions defined in an open neighbour-
hood of Ω
F ⊂ A(Ω) – a family of real analytic functions

Yω =
(⋂

f∈F f−1(0)
)

ω
– the representative of the germ at ω

Xω = {x | x + ω ∈ Yω}0 – the representative of the germ at the origin

Lω = lk(0, Xω) = (Sn−1
ε ∩Xω) – the link of Xω at the origin

RESULT: there exist v1, . . . vs ∈ A(Ω) such that

1

2
χ(Lω) =

s∑
i=1

sgn vi(ω).

1Institute of Mathematics, Gdansk University, ul. Wita Stwosza 57, 80-962 Gdańsk,
Poland, e-mail: Aleksandra.Nowel@math.univ.gda.pl

120



3 Noetherian Families

Let A be an algebra over R and Γ – a subset of the maximal spectrum SM(A)
of A.

In Γ we have the topology induced from SM(A), i.e. F is closed in Γ if
F = {γ ∈ Γ | B ⊂ γ} for some B ⊂ A.

We assume that A and Γ satisfy the following conditions:

(a) for all γ ∈ Γ the canonical map R −→ A/γ is an isomorphism,

(b) Γ equipped with the topology of SM(A) is a Noetherian space (i.e.
every decreasing sequence of closed sets in Γ is stationary – any closed
set in Γ is the union of finitely many irreducible closed sets).

Assume a ∈ A, γ ∈ Γ and S ⊂ A. We denote

a(γ) ∈ R – the image of a under the map A −→ A/γ ∼= R
V (S) = {γ ∈ Γ : a(γ) = 0 for all a ∈ S}
closed sets in Γ ≡ sets V (S), S ⊂ A

Let x = (x1, . . . , xn).

A[[x]] (resp. R[[x]]) – the ring of formal power series in x with coefficients
in A (resp. in R)

R{x} – the ring of formal power series which are convergent in some
neighbourhood of the origin

Ac[[x]] – the subring of A[[x]] consisting of
∑

α aαxα such that
∑

α aα(γ)xα

∈ R{x} for each γ ∈ Γ

Let γ ∈ Γ and f =
∑

β aβxβ ∈ A[[x]]. We denote

fγ =
∑

β aβ(γ)xβ ∈ R[[x]]

If N is the ideal in A[[x]] generated by fi then

Nγ – the ideal in R[[x]] generated by fi,γ.

Definition A collection N of ideals of R[[x]] (resp. of R{x}) is called
a Noetherian family (parameterized by (A, Γ)) if there exists a couple (A, Γ)
satisfying the conditions (a) and (b) given above, and an ideal N ⊂ A[[x]]
(resp. N ⊂ Ac[[x]]) such that N = (Nγ)γ∈Γ.
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Definition The ÃLojasiewicz exponent L(I) of an ideal I in R{x} generated
by f1, . . . , fp is the infimum of the set of such α > 0 for which there exists
such c > 0 that

p∑
i=1

|fi(x)| ≥ c%(x, V (I))α

in some neighbourhood of the origin.

Theorem 3.1. (El Khadiri, Tougeron 1984) Let (Iγ)γ∈Γ be a Noetherian
family of ideals in R{x}. Then the family of ÃLojasiewicz exponents L(Iγ) of
the ideals Iγ is bounded.

Ω is a Noetherian space with the topology induced from SM(A(Ω))
(by identifying ω ∈ Ω with the ideal pω = {f ∈ A(Ω) | f(ω) = 0},
{⋂f∈B f−1(0)}B⊂A(Ω) is the family of closed sets in Ω).

The pair (A(Ω), Ω) satisfies conditions (a) and (b). Since Ω is a Noethe-
rian space, for every closed subset D of Ω there exist f1, . . . , fp ∈ A(Ω) such
that D =

⋂p
i=1 f−1

i (0) ∩ Ω, so D is an intersection of Ω and an analytic set.

Properties of Noetherian families imply

∃0≤h∈A(Ω)c[[x]] ∀ω∈Ω Xω = V0(hω).

A closed (with respect to the topology induced from SM(A(Ω))) subset
of Ω is irreducible if it is not a union of its two proper closed subsets. Every
closed subset D of a Noetherian space Ω has a decomposition into finitely
many irreducible components, i.e. D =

⋃k
i=1 Di, where every Di is a closed

irreducible subset of D and Di 6⊂
⋃

j 6=i Dj.
We will say that a function g : Ω −→ R is a sum of signs of analytic

functions if there exist g1, g2, . . . , gs ∈ A(Ω) s. t. g(ω) =
∑s

i=1 sgn gi(ω).

Lemma 3.2. Assume that for each closed irreducible subset D ⊂ Ω there
exists a proper closed subset Σ ⊂ D such that g restricted to D \ Σ is a sum
of signs of a.f. Then g is a sum of signs of a.f. on Ω.

Proof.

1. On D \ Σ we have

g(ω) =
s∑

i=1

sgn fi(ω).
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2. By induction on the number of irreducible components for a closed
subset D′ ⊂ Ω there exists a proper closed subset Σ′ ⊂ D′ such that
on D′ \ Σ′

g(ω) =
s′∑

i=1

sgn qi(ω).

3. From above we have

g(ω) =
s′∑

i=1

sgn qi(ω)

on Ω \ Σ.

Repeat the construction on Σ′:

g(ω) =
s′′∑
i=1

sgn ui(ω)

on Σ′ \ Σ′′.

We obtain:

Ω ⊃ Σ′ ⊃ Σ′′ ⊃ . . .

Noetherianity implies this sequence being stationary, i.e. there exists
k such that Σ(k) = ∅.
After some gluing we obtain

g(ω) =

p∑
i=1

sgn gi(ω) on Ω.

4 Solving the problem

Arguments similar to those of Parusiński and Szafraniec imply some facts:

1. Fω = (F 1
ω , . . . , F n

ω ) : (Rn, 0) −→ (Rn, 0) – analytic germs at the origin
such that

∀1≤i≤n ∃fi∈A(Ω)c[[x]] ∀ω∈Ω F i
ω(x) = fi(ω, x)

and 0 ∈ Rn is isolated in F−1
ω (0) for all ω ∈ D.
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For each closed irreducible subset D ⊂ Ω there exist k À 1, a ∈ R, a
proper closed Σ ⊂ D, and Gω(x) = Fω(x) + a(xk

1, . . . , x
k
n), ω ∈ D, such

that Gω have the same property as Fω, have algebraically isolated zero
at the origin, and deg0(Gω) = deg0(Fω).

deg0(Fω) is a sum of signs of a.f. on D \ Σ.

By Lemma 3.2 deg0(Fω) = deg0(Gω) is a sum of signs of a.f. on Ω.

2. If f ∈ A(Ω) then

χ (Sε ∩ {f(x + ω) ≤ 0}) = χ(Sω,ε ∩ {f ≤ 0}) = 1− deg0∇gω

for some gω ∈ R{x} having an isolated critical point at the origin.

Since ∇gω satisfies the assumptions of 1., χ(Sω,ε ∩ {f ≤ 0}) is a sum of
signs of a.f.

Lemma 4.1. If f ∈ A(Ω) then

1

2
(χ(Sn−1

ω,ε ∩ {f ≥ 0})± χ(Sn−1
ω,ε ∩ {f ≤ 0}))

is a sum of signs of a.f.

Proof. Let g(ω, t) = tf(ω), ω belongs to some neighbourhood of Ω, t ∈
[−1; 1]. The set Ω×[−1, 1] is compact and semianalytic, so g ∈ A(Ω×[−1, 1]).

One can show that for ε sufficiently small

χ(Sn−1
ω,ε ∩ {f ≥ 0}) = 2− χ(Sn

(ω,t),ε ∩ {g ≥ 0})

χ(Sn−1
ω,ε ∩ {f ≤ 0}) = 2− χ(Sn

(ω,−t),ε ∩ {g ≥ 0})
We have

χ(Sn
(ω,t),ε ∩ {g ≥ 0}) =

s∑
i=1

sgn gi(ω, t)

1

2
(χ({f ≥ 0} ∩ Sn−1

ω,ε )− χ({f ≤ 0} ∩ Sn−1
ω,ε )) =

=
1

2
lim

t→0+

s∑
i=1

(sgn gi(ω,−t)− sgn gi(ω, t)).
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Fix an irreducible component Dj ⊂ Ω. We have

gi(ω, t) = tkihi(ω, t),

where hi ∈ A(Ω× [−1; 1]), hi 6≡ 0 on ∆j × {0}. Let

Σ := {ω ∈ ∆j | ∀i=1,...,s hi(ω, 0) = 0}

and let h′i(ω) = −hi(ω, 0), ki odd, hi(ω) = 0, ki even. Then on ∆j \ Σ

1

2
lim

t→0+

s∑
i=1

(sgn gi(ω,−t)− sgn gi(ω, t)) =
s∑

i=1

sgn h′i(ω).

Clearly h′i ∈ A(Ω).

By Lemma 3.2 it is also a sum of signs of a.f. on Ω.

Theorem 4.2. 1
2
χ(Sn−1

ε ∩Xω︸ ︷︷ ︸
Lω

) is a sum of signs of a.f. on Ω.

Proof.
1

2
χ(Lω) =

1

2
χ(Sn−1

ε ∩ V0(hω)) =

=
1

2
[χ(Sn−1

ε ∩ {hω ≤ 0}) + χ(Sn−1
ε ∩ {hω ≥ 0})− χ(Sn−1

ε )] =

=
s∑

i=1

sgn hi(ω)− 1 + (−1)n−1

2

on Ω.

5 Corollaries

Corollary 5.1. χ(Lω) is even for ω ∈ Ω.

A function f : Ω −→ Z is semianalytically constructible if it admits a
representation as a finite sum

f =
∑

i

mi1Xi
,
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where the mi’s are integers, the Xi’s are semianalytic, and 1Xi
denotes the

characteristic function of the set Xi.
We can define the Euler integral and the link of f :

∫

Ω

f =
∑

i

miχ(Xi),

Λf(x) =

∫

Ω∩Sn−1
x,ε

f,

where ε is sufficiently small.
If f is a sum of signs of analytic functions fi, then f is semianalytically

constructible and: ∫

Ω

f =
s∑

i=1

(χ(Ai)− χ(Bi)) ,

where Ai = {fi ≥ 0}, Bi = {fi ≤ 0},

Λf(ω) =
s∑

i=1

(
χ(Ai ∩ Sn−1

ω,ε )− χ(Bi ∩ Sn−1
ω,ε )

)

for ε sufficiently small.

Corollary 5.2. The function 1
2
Λf is integer-valued and it is a sum of signs

of analytic functions.

If a 6= 0 6= b, then sgn a + sgn b = 1 + sgn ab mod 4.

Corollary 5.3. There exist a proper closed subset Σ ⊂ Ω, an integer µ and
an analytic function v ∈ A(Ω) such that v is 6= 0 on Ω\Σ, and for ω ∈ Ω\Σ

1

2
χ(Lω) = µ + sgn v(ω) mod 4.
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Drapeau Theorem for differential systems
Kazuhiro Shibuya 1 and Keizo Yamaguchi 2

Abstract

Generalizing the theorem for Goursat flags, we will characterize
those flags which are obtained by “Rank 1 Prolongation” from the
space of 1-jets for 1 independent and m dependent variables.

1 Introduction

This paper is concerned with the Drapeau Theorem for differential systems.
By a differential system (R,D) we mean a distribution D on a manifold R,
i.e. D is a subbundle of the tangent bundle T (R). The derived system ∂D
of D is defined, in terms of sections, by

∂D = D + [D,D].

whereD = Γ(D) denotes the space of sections of D. In general ∂D is obtained
as a subsheaf of the tangent sheaf of R (for the precise argument see e.g. [12],
[3]). Moreover higher derived systems ∂iD are defined successively by

∂iD = ∂(∂i−1D),

where we put ∂0D = D by convention. In this paper a differential system
(R, D) is called regular if ∂iD are subbundles of T (M) for every i ≥ 1.

We say that (R, D) is an m-flag of length k if (R, D) is regular and has
a derived length k, i.e. ∂kD = T (R);

D ⊂ ∂D ⊂ . . . ⊂ ∂k−2D ⊂ ∂k−1D ⊂ ∂kD = T (R),

such that rank D = m + 1 and rank ∂iD = rank ∂i−1D + m for i = 1, . . . , k.
In particular dim R = (k + 1)m + 1.

1Department of Mathematics, Graduate School of Science, Hokkaido University, Sap-
poro 060-0810, Japan, e-mail: shibuya@math.sci.hokudai.ac.jp

2Department of Mathematics, Graduate School of Science, Hokkaido University, Sap-
poro 060-0810, Japan, e-mail: yamaguch@math.sci.hokudai.ac.jp
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In particular (R, D) is called a Goursat flag (un drapeau de Goursat)
of length k when m = 1. Historically, by Engel, Goursat and Cartan, it
is known that a Goursat flag (R, D) of length k is locally isomorphic, at a
generic point, to the canonical system (Jk(M, 1), Ck) on the k-jet spaces of
1 independent and 1 dependent variable (for the definition of the canonical
system (Jk(M, 1), Ck), see §2). The characterization of the canonical (con-
tact) systems on jet spaces was given by R. Bryant in [2] for the first order
systems and in [12] and [13] for higher order systems for n independent and
m dependent variables. However, it was first explicitly exhibited by A.Giaro,
A. Kumpera and C. Ruiz in [6] that a Goursat flag of length 3 has singu-
larities and the research of singularities of Goursat flags of length k (k ≥ 3)
began as in [9]. To this situation, R. Montgomery and M. Zhitomirskii con-
structed the “Monster Goursat manifold” by successive application of the
“Cartan prolongation of rank 2 distributions” ([4]) to a surface and showed
that every germ of a Goursat flag (R,D) of length k appears in this “Monster
Goursat manifold” in [8], by first exhibiting the following Sandwich Lemma
for (R, D):

D ⊂ ∂D ⊂. . .⊂ ∂k−2D ⊂∂k−1D⊂ ∂kD = T (R)

∪ ∪ ∪
Ch (D)⊂Ch (∂D)⊂Ch (∂2D)⊂. . .⊂Ch (∂k−1D)

where Ch (∂iD) is the Cauchy characteristic system of ∂iD and Ch (∂iD) is
a subbundle of ∂i−1D of corank 1 for i = 1, . . . , k − 1. Here the Cauchy
Characteristic System Ch (C) of a differential system (R, C) is defined by

Ch (C)(x) = {X ∈ C(x) | Xcdωi ≡ 0 (mod ω1, . . . , ωs) for i = 1, . . . , s},

where C = {ω1 = . . . = ωs = 0 } is defined locally by defining 1-forms
{ω1, . . . , ωs}. Moreover, after [8], P. Mormul defined the notion of a special
m- flag of length k for m ≥ 2 to characterize those m-flags which are obtained
by successive application of the “generalized Cartan prolongation” to the
space of 1-jets of 1 independent and m dependent variables.

The main purpose of this paper is first to clarify the procedure of “Rank
1 Prolongation” of an arbitrary differential system (R,D) of rank m+1, and
to give good criteria for an m-flag of length k to be special, i.e. to be locally
isomorphic to the k-th Rank 1 Prolongation (P k(M), Ck) of a manifold M
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of dimension m + 1. More precisely we will show for an m-flag of length k
and for m ≥ 3:

Corollary 5.8. An m-flag (R, D) of length k for m ≥ 3 is locally isomorphic
to (P k(M), Ck) if and only if ∂k−1D is of Cartan rank 1, and moreover for
m ≥ 4, if and only if ∂k−1D is of Engel rank 1.

Here, the Cartan rank of (R, C) is the smallest integer ρ such that there
exist 1-forms {π1, . . . , πρ}, which are independent modulo {ω1, . . . , ωs} and
satisfy

dα ∧ π1 ∧ . . . ∧ πρ ≡ 0 (mod ω1, . . . , ωs) for ∀α ∈ C⊥ = Γ(C⊥),

where C = {ω1 = . . . = ωs = 0}. Furthermore the Engel (half) rank of
(R, C) is the smallest integer ρ such that

(dα)ρ+1 ≡ 0 (mod ω1, . . . , ωs) for ∀α ∈ C⊥,

Moreover we will show for an m-flag of length k and for m ≥ 2:

Corollary 6.3. An m-flag (R,D) of length k is locally isomorphic to
(P k(M), Ck) if and only if there exists a completely integrable subbundle F
of ∂k−1D of corank 1.

For this purpose, we will first review the geometric construction of jet
spaces in §2 and clarify the procedure of Rank 1 Prolongation in §3. In §4,
we will analyze the notion of a special m-flag of length k and reestablish the
local characterization of (P k(M), Ck) by utilizing the Realization Lemma
[12]. In §5 and §6, we will show the above criteria (the Drapeau Theorem)
for an m-flag of length k.

2 Geometric construction of jet spaces

In this section, we will briefly recall the geometric construction of jet bundles
in general, following [12] and [13], which is our basis for the later considera-
tions.

Let M be a manifold of dimension m + n. Fixing the number n, we form
the space of n-dimensional contact elements to M , i.e. the Grassmann bundle
J(M, n) over M consisting of n-dimensional subspaces of tangent spaces to
M . Namely, J(M,n) is defined by

J(M,n) =
⋃

x∈M

Jx, Jx = Gr(Tx(M), n),
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where Gr(Tx(M), n) denotes the Grassmann manifold of n-dimensional sub-
spaces in Tx(M). Let π : J(M,n) → M be the bundle projection. The
canonical system C on J(M, n) is, by definition, the differential system of
codimension m on J(M, n) defined by

C(u) = π−1
∗ (u) = {v ∈ Tu(J(M, n)) | π∗(v) ∈ u} ⊂ Tu(J(M,n))

π∗−→ Tx(M),

where π(u) = x for u ∈ J(M, n).
Let us describe C in terms of a canonical coordinate system in J(M, n).

Let uo ∈ J(M, n). Let (x1, . . . , xn, z
1, . . . , zm) be a coordinate system on a

neighborhood U ′ of xo = π(uo) such that dx1, . . . , dxn are linearly indepen-
dent when restricted to uo ⊂ Txo(M). We put

U = { u ∈ π−1(U ′)|dx1|u, . . . , dxn|u are linearly independent}.
Then U is a neighborhood of uo in J(M,n). Here dzα|u is a linear combination
of dxi|u’s, i.e. dzα|u =

∑n
i=1 pα

i (u)dxi|u. Thus, there exist unique functions
pα

i on U such that C is defined on U by the following 1-forms:

$α = dzα −
n∑

i=1

pα
i dxi (α = 1, . . . , m),

where we identify zα and xi on U ′ with their lifts on U . The system of
functions (xi, z

α, pα
i ) (α = 1, . . . ,m, i = 1, . . . , n) on U is called a canonical

coordinate system of J(M, n) subordinate to (xi, z
α).

(J(M,n), C) is the (geometric) 1-jet space and especially, in case m = 1, is

the so-called contact manifold. Let M , M̂ be manifolds of dimension m + n
and ϕ : M → M̂ be a diffeomorphism. Then ϕ induces the isomorphism
ϕ∗ : (J(M,n), C) → (J(M̂, n), Ĉ), i.e. the differential map ϕ∗ : J(M, n) →
J(M̂, n) is a diffeomorphism sending C onto Ĉ. The reason why the case
m = 1 is special is explained by the following theorem of Bäcklund.

Theorem (Bäcklund) Let M and M̂ be manifolds of dimension m + n.

Assume m ≥ 2. Then, for an isomorphism Φ : (J(M, n), C) → (J(M̂, n), Ĉ),

there exists a diffeomorphism ϕ : M → M̂ such that Φ = ϕ∗.

The essential part of this theorem is to show that F = Ker π∗ is the
covariant system of (J(M, n), C) for m ≥ 2. Namely an isomorphism Φ

sends F onto F̂ = Ker π̂∗ for m ≥ 2. For the proof, we refer the reader to
Theorem 1.4 in [13].
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In case m = 1, it is a well known fact that the group of isomorphisms
of (J(M, n), C), i.e. the group of contact transformations, is larger than the
group of diffeomorphisms of M . Therefore, when we consider the geometric
2-jet spaces, the situation differs according to whether the number m of
dependent variables is 1 or greater.

(1) Case m = 1. We should start from a contact manifold (J,C) of
dimension 2n+1, which is locally a space of 1-jets for one dependent variable
by Darboux’s theorem. Then we can construct the geometric second order
jet space (L(J), E) as follows: We consider the Lagrange-Grassmann bundle
L(J) over J consisting of all n-dimensional integral elements of (J,C):

L(J) =
⋃
u∈J

Lu ⊂ J(J, n),

where Lu is the Grassmann manifolds of all Lagrangian (or Legendrian) sub-
spaces of the symplectic vector space (C(u), d$). Here $ is a local contact
form on J . Namely, v ∈ J(J, n) is an integral element if and only if v ⊂ C(u)
and d$|v = 0, where u = π(v). Let π : L(J) → J be the projection. Then
the canonical system E on L(J) is defined by

E(v) = π−1
∗ (v) ⊂ Tv(L(J))

π∗−→ Tu(J),

where π(v) = u for v ∈ L(J). We have ∂E = π−1
∗ (C) and Ch (C) = {0}

(cf.[12]). Hence we get Ch (∂E) = Ker π∗, which implies the Bäcklund theo-
rem for (L(J), E) (cf. [12]).

Now we put
(J2(M,n), C2) = (L(J(M, n)), E),

where M is a manifold of dimension n + 1.

(2) Case m ≥ 2. Since F = Ker π∗ is a covariant system of (J(M,n), C),
we define J2(M, n) ⊂ J(J(M,n), n) by

J2(M,n) = {n-dim. integral elements of (J(M, n), C) transversal to F},
C2 is defined as the restriction to J2(M, n) of the canonical system on
J(J(M, n), n).

Now the higher order (geometric) jet spaces (Jk+1(M, n), Ck+1) for k ≥ 2
are defined (simultaneously for all m) by induction on k. Namely, for k ≥ 2,
we define Jk+1(M,n) ⊂ J(Jk(M, n), n) and Ck+1 inductively as follows:

Jk+1(M, n) = {n-dim. integral el. of (Jk(M, n), Ck) transv. to Ker (πk
k−1)∗},
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where πk
k−1 : Jk(M, n) → Jk−1(M,n) is the projection. Here we have

Ker (πk
k−1)∗ = Ch (∂Ck),

and Ck+1 is defined as the restriction to Jk+1(M, n) of the canonical system
on J(Jk(M, n), n). Then we have ([12],[13])

Ck ⊂. . .⊂ ∂k−2Ck ⊂∂k−1Ck⊂ ∂kCk = T (Jk(M, n))

∪ ∪ ∪
{0} = Ch (Ck)⊂Ch (∂Ck)⊂. . .⊂Ch (∂k−1Ck)⊂ F

where Ch (∂i+1Ck) is a subbundle of ∂iCk of corank n for i = 0, . . . , k − 2,
and when m ≥ 2, F is a subbundle of ∂k−1Ck of corank n. The transversality
conditions are expressed as

Ck∩F = Ch (∂Ck) for m = 2, Ck∩Ch (∂k−1Ck) = Ch (∂Ck) for m = 1

By the above diagram and the rank condition, the jet spaces (Jk(M, n), Ck)
can be characterized as higher order contact manifolds as in [12] and [13].

Here we observe that, if we drop the transversality condition in our de-
finition of Jk(M, n) and collect all n-dimensional integral elements, we may
have some singularities in Jk(M, n) in general. However, since every 2-form
vanishes on 1-dimensional subspaces, in case n = 1 the integrability condition
for v ∈ J(Jk−1(M, 1), 1) reduces to v ⊂ Ck−1(u) for u = πk

k−1(v). Hence
in this case we can safely drop the transversality condition in the above
construction, as in the next section, which constitutes the key construction
for the Drapeau theorem in later considerations.

3 Rank 1 Prolongation

Let (R, D) be a differential system, i.e. R is a manifold of dimension s+m+1
and D is a subbundle of T (R) of rank m+1. Starting from (R,D), we define

(P (R), D̂) as follows (cf. [4]):

P (R) =
⋃
x∈R

Px ⊂ J(R, 1),
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where

Px = {1-dim. integral el. of (R, D)} = {u ⊂ D(x) | 1-dim. subspaces} ∼= Pm.

Let p : P (R) → R be the projection. We define the canonical system D̂ on
P (R) by

D̂(u) = p−1
∗ (u) = {v ∈ Tu(P (R)) | p∗(v) ∈ u} ⊂ Tu(P (R))

p∗−→ Tx(R),

where p(u) = x for u ∈ P (R).

We call (P (R), D̂) the prolongation of rank 1 (or Rank 1 Prolongation for

short) of (R, D). Then P (R) is a manifold of dimension 2m + s + 1 and D̂
is a differential system of rank m + 1. In case (R, D) = (M,T (M)), we have

(P (M), D̂) = (J(M, 1), C). Moreover

J2(M, 1) ⊂ P (J(M, 1)) ⊂ J(J(M, 1), 1)

As for the prolongation of rank 1, we have

Proposition 3.1. Let (R,D) be a differential system of rank m + 1 and let

(P (R), D̂) be the prolongation of rank 1 of (R,D). Then D̂ is of rank m+1,

∂D̂ = p−1
∗ (D) and Ch (D̂) is trivial. Moreover, if Ch (D) is trivial, then

Ch (∂D̂) is a subbundle of D̂ of corank 1.

Proof. Let s + m + 1 be the dimension of R. For x ∈ R, let {$β, θα} (α =
1, . . . , m+1 , β = 1, . . . , s) be a coframe on a neighborhood U of x such that

D = {$1 = . . . = $s = 0}.

p−1(U) is covered by m + 1 open sets Ûi = {v ∈ p−1(U) | θi|v 6= 0} in P (R) :

p−1(U) = Û1 ∪ . . . ∪ Ûm+1.

For v ∈ Ûi, v is a 1-dimensional subspace of Tx(R), x = p(v). Hence, restrict-
ing θα to v, we have

θα|v = pα
i (v)θi|v for α = 1, . . . , ǐ, . . . , m + 1

where ˇ over a symbol means that the symbol is deleted. These pα
i (α =

1, . . . , ǐ, . . . , m + 1) constitute a fiber coordinate system on Ûi.
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Now we put

πα
i = θα − pα

i θi for α = 1, . . . , ǐ, . . . , m + 1.

Then we have

D̂ = {p∗$1 = . . . = p∗$s = πα
i = 0 (α = 1, . . . , ǐ, . . . ,m + 1)}.

Since d$β, dθα are 2-forms on M , d$β|u = 0, dθα|u = 0 for u ∈ P (R). This
implies that

d$β ≡ dθα ≡ 0 (mod $1, . . . , $s, πα
i (α = 1, . . . , ǐ, . . . ,m + 1)),

where we write $β, θα instead of p∗$β, p∗θα, respectively.
Thus the structure equation for D̂ reads

{
d$β ≡ 0 (mod $1, . . . , $s, πα

i (α = 1, . . . , ǐ, . . . , m + 1))
dπα

i ≡ θi ∧ dpα
i (mod $1, . . . , $s, πα

i (α = 1, . . . , ǐ, . . . , m + 1))

Therefore
∂D̂ = {$1 = . . . = $s = 0},

Ch (D̂) = {$1 = . . . = $s = πα
i = θi = dpα

i = 0 (α = 1, . . . , ǐ, . . . ,m + 1)}
These equations imply that ∂D̂ = p−1

∗ (D) and Ch (D̂) is trivial.

Moreover, if Ch(D) is trivial, it follows that

Ch (∂D̂) = Ch (p−1
∗ (D)) = p−1

∗ (Ch (D)) = Ker p∗

Then, by the very definition of canonical system D̂, it follows that Ch (∂D̂)

is a subbundle of D̂ of corank 1.

This proposition implies that, starting from any differential system (R,D),
we can repeat the procedure of Rank 1 Prolongation. Let (P 1(R), D1) be the
prolongation of rank 1 of (R,D). Then (P k(R), Dk) is defined inductively as
the prolongation of rank 1 of (P k−1(R), Dk−1), which is called k-th prolonga-
tion of rank 1 of (R,D). Moreover, starting from a manifold M of dimension
m + 1, we put

(P k(M), Ck) = (P (P k−1(M)), Ĉk−1)

where (P 1(M), C1) = (J(M, 1), C). When m = 1, (P k(M), Ck) are called
“monster Goursat manifolds” in [8].

Here we observe that the above proposition also implies

136



Proposition 3.2. Let (R,D) be an m-flag of length 1, i.e. dim R = 2m+1,
rank D = m+1 and ∂D = T (R). Then the k-th prolongation (P k(R), Dk) of
rank 1 of (R,D) is an m-flag of length k+1. Namely, Dk satisfies rank Dk =
m + 1, rank ∂i+1Dk = rank ∂iDk + m for i = 0, . . . , k and ∂k+1Dk =
T (P k(R)).

Schematically we have the following diagram;

Dk ⊂ ∂Dk ⊂ . . . ⊂ ∂k−1Dk ⊂ ∂kDk ⊂ ∂k+1Dk = T (P k(R))ypk∗

ypk∗

ypk∗

ypk∗

Dk−1 ⊂ . . . ⊂ ∂k−2Dk−1 ⊂ ∂k−1Dk−1 ⊂ ∂kDk−1 = T (P k−1(R))ypk−1∗

ypk−1∗

ypk−1∗

ypk−1∗

...
...

...
...

...
...

...
...yp2∗

yp2∗

yp2∗

D1 ⊂ ∂D1 ⊂ ∂2D1 = T (P 1(R))yp1∗

yp1∗

D ⊂ ∂D = T (R)

where pi : P i(R) → P i−1(R) is the projection. Here we note

∂kDk = (pk
0)
−1
∗ (D),

where pk
0 : P k(R) → R is the projection.

4 Special m-flags of length k

An m-flag (R, D) (m ≥ 2) of length k is called a special m-flag if: there
exists a completely integrable subbundle F of ∂k−1D of corank 1 that contains
Ch (∂k−1D), Ch (∂iD) is a subbundle of ∂i−1D of corank 1 for i = 1, . . . , k−1,
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and Ch (D) is trivial. In other words one should have the following diagram
for (R, D):

D ⊂ ∂D ⊂. . .⊂ ∂k−2D ⊂∂k−1D⊂ ∂kD = T (R)

∪ ∪ ∪ ∪
{0} = Ch (D)⊂Ch (∂D)⊂Ch (∂2D)⊂. . .⊂Ch (∂k−1D)⊂ F

where rank ∂iD = rank ∂i−1D + m for i = 1, . . . , k and rank D = m + 1.

First, by repeated use of Rank 1 prolongations starting from a manifold
M of dimension m + 1, we obtain by Proposition 3.1,

Proposition 4.1. (P k(M), Ck) is a special m-flag of length k.

Conversely, by utilizing the following Realization Lemma, we will show
that every special m-flag of length k is locally isomorphic to (P k(M), Ck).

Realization Lemma ([12], p.122) Let R and M be manifolds. Assume
that the quadruple (R, D, p,M) satisfies the following conditions:

(i) p is a map of R into M of constant rank.
(ii) D is a differential system on R such that F = Ker p∗ is a subbundle

of D of corank n.
Then there exists a unique map ψ of R into J(M, n) satisfying p = π · ψ

and D = ψ−1
∗ (C). Furthermore, let u be any point of R. Then ψ is in fact

defined by

ψ(u) = p∗(D(u)) as a point of Gr(Tx(M), n), x = π(u),

and satisfies Ker (ψ∗)u = F (u) ∩ Ch (D)(u).

Theorem 4.2. A special m-flag (R,D) of length k is locally isomorphic to
(P k(M), Ck), where M is a manifold of dimension m + 1. Moreover F is
unique for (R, D).

Proof. Let (R,D) be a special m-flag of length k. Matters being of local
nature, we may assume that the leaf space M = R/F of the foliation F
defined on R is a manifold of dimension 2m + 1 so that p : R → M is
a submersion and Ker p∗ = F . Putting p = ψ0, we will define maps ψi :
R → P i(M) such that Ker ψi

∗ = Ch (∂k−iD) for i = 1, . . . , k as follows:
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First, Realization Lemma for the quadruple (R, ∂k−1D, p, M) gives us the
map ψ1 of R into P 1(M) = J(M, 1) such that (ψ1

∗)
−1(C1) = ∂k−1D and

Ker (ψ1)∗ = Ch (∂k−1D). By dimension count, we see that ψ1 is locally a
submersion of R onto P 1(M). If the maps ψj : R → P j(M) such that
Ker ψj

∗ = Ch (∂k−jD) are defined for j = 1, . . . , i− 1, Realization Lemma for
(R, ∂k−iD, ψi−1, P i−1(M)) gives us the map ψi of R into P i(M) such that
(ψi

∗)
−1(Ci) = ∂k−iD and Ker (ψi)∗ = Ch (∂k−iD). Thus, for i = k, we obtain

the map ψk of R into P k(M) such that (ψk
∗)
−1(Ck) = D and Ker (ψk)∗ =

Ch (D) = {0}. Then, by dimension count, ψk is a local isomorphism of
(R, D) onto (P k(M), Ck).

For the uniqueness of F , we first observe that for a special m-flag (R, D)
of length 1 ψ1 is an isomorphism of (R, D) onto (J(M, 1), C). In this case
the uniqueness of F follows from Proposition 1.3 in [13], which gives the
characterization of the covariant system F . For a special m-flag (R, D) of
length k (k ≥ 2) we consider, locally, the leaf space J̄ = R/Ch (∂k−1D) by
Ch (∂k−1D). Let p̄ : R → J̄ be the projection. On J̄ we have differential
systems D̄ = ∂k−1D/Ch (∂k−1D) and F̄ = F/Ch (∂k−1D) such that F̄ is a
completely integrable subbundle of D̄ of corank 1 and Ch (D̄) is trivial, i.e.
(J̄ , D̄) is a special m-flag of length 1. Then the uniqueness of F = p̄−1

∗ (F̄ )
follows from that of F̄ . This completes the proof of Theorem.

Remark 4.3. After [8], P. Mormul first defined the notion of special m-flags
of length k for m ≥ 2 in a slightly different form in [10] (cf. Theorem 6.2),
generalizing the works of [7] or [11]. The above theorem was first observed
by him in Remark 3 [10].

In view of Theorem 4.2, our task is to characterize the special m-flags
among m-flags of length k, which will be accomplished in the following sec-
tions.

5 Main Theorem (m≥3)

Let (R,D) be an m-flag of length 1, i.e. R is a manifold of dimension 2m+1
such that rank D = m+1 and ∂D = T (R). By definition, (R, D) is a special
m-flag (m ≥ 2) if there exists a completely integrable subbundle F of D of
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corank 1 and Ch (D) is trivial. Then, by Realization Lemma, (R, D) is locally
isomorphic to (P 1(M), C1) = (J(M, 1), C), where M = R/F is (locally) the
leaf space of the foliation F on R. In case m = 1 it is easy to see that a
1-flag of length 1 is a contact manifold of dimension 3. 2-flags of length 1
have peculiar aspects and were extensively studied in [5] (cf. §6). Now we
start with the following characterization of special m-flags of length 1 for
m ≥ 3.

Proposition 5.1. An m-flag (R, D) of length 1 for m ≥ 3 is a special m-flag
if and only if D is of Cartan rank 1.

Here, the Cartan rank of (R, D) is the smallest integer ρ such that there
exist 1-forms {π1, . . . , πρ}, which are independent modulo {η1, . . . , ηm} and
satisfy

dα ∧ π1 ∧ . . . ∧ πρ ≡ 0 (mod η1, . . . , ηm) for ∀α ∈ D⊥ = Γ(D⊥),

where D = {η1 = . . . = ηm = 0 }.
Proof of Proposition 5.1. First, assume that (R, D) is special. Then we

can take local defining 1-forms {η1, . . . , ηm, ω}, which are independent at
each point, such that

D = {η1 = . . . = ηm = 0}, F = {η1 = . . . = ηm = ω = 0}.

Since F is completely integrable, dηβ ≡ 0 (mod η1, . . . , ηm, ω) for β =
1, . . . , m. Hence there exist 1-forms {$1, . . . , $m} such that

dηβ ≡ ω ∧$β (mod η1, . . . , ηm) for β = 1, . . . ,m.

This implies that D is of Cartan rank 1.
Conversely, assume that the Cartan rank of (R,D) is 1. Let us take local

defining 1-forms {η1, . . . , ηm} of D as above:

D = {η1 = . . . = ηm = 0}.

Since the Cartan rank of D is 1, there exists a 1-form ω, which is independent
modulo {η1, . . . , ηm} such that

ω ∧ dηβ ≡ 0 (mod η1, . . . , ηm) for β = 1, . . . ,m.
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Hence there exist 1-forms {$1, . . . , $m} such that

dηβ ≡ ω ∧$β (mod η1, . . . , ηm) for β = 1, . . . ,m.

Then, from rank ∂D = rank D+m, it follows that {η1, . . . , ηm, ω, $1, . . . ,
$m} are linearly independent. Taking exterior derivative of both sides of the
above mod equality, we get

0 ≡ dω ∧$β (mod η1, . . . , ηm, ω) for β = 1, . . . , m.

Hence, from m ≥ 3, we obtain dω ≡ 0 (mod η1, . . . , ηm, ω). Putting

F = {η1 = . . . = ηm = ω = 0},

we have

dηβ ≡ dω ≡ 0 (mod η1, . . . , ηm, ω) for β = 1, . . . , m.

Thus F is completely integrable. Moreover

Ch (D) = {η1 = . . . = ηm = ω = $1 = . . . = $m = 0}

implies Ch (D) is a subbundle of F of corank m. Hence Ch (D) is trivial.
This completes the proof of Proposition. ¤

Remark 5.2. As a characterization of 1-jet spaces, Bryant’s normal form
theorem is well known ([2], [3]). This theorem in 1 independent variable case
says that an m-flag (R, D) of length 1 for m ≥ 3 is a special m-flag if and
only if D is of Engel (half-)rank 1 and Ch (D) is trivial. Here the Engel rank
of (R,D) is the smallest integer ρ such that

(dα)ρ+1 ≡ 0 (mod η1, . . . , ηm) for ∀α ∈ D⊥,

where D = {η1 = . . . = ηm = 0}. Here we observe that we cannot replace the
Cartan rank 1 condition in the above Proposition by the Engel rank 1 condi-
tion when m = 3, as the following example shows: Let (y1, y2, y3, x0, x1, x2, x3)
be a coordinate system of R. Let us take a coframe {η1, η2, η3, θi(i = 0, . . . , 3)}
as follows:

η1 = dy1 + x2dx3, η2 = dy2 + x3dx1, η3 = dy3 + x1dx2, θi = dxi.
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Then, for D = {η1 = η2 = η3 = 0}, we have





dη1 ≡ θ2 ∧ θ3 (mod η1, η2, η3),
dη2 ≡ θ3 ∧ θ1 (mod η1, η2, η3),
dη3 ≡ θ1 ∧ θ2 (mod η1, η2, η3).

Thus (R,D) is a 3-flag of length 1 such that (R, D) is of Engel rank 1 and
has non-trivial Ch (D).

However, we can replace the Cartan rank 1 condition in the above Propo-
sition by the Engel rank 1 condition when m ≥ 4, as the following Lemma
implies.

Lemma 5.3. Let V be a vector space over R. Let ω1, . . . , ωr ∈ ∧2V be 2-
forms such that {ω1, . . . , ωr} are linearly independent and ωi ∧ ωj = 0 for
1 ≤ i ≤ j ≤ r. Then

(1) In case r = 2 there exist vectors v0, v1, v2 ∈ V , which are linearly
independent, such that

ω1 = v0 ∧ v1, ω2 = v0 ∧ v2.

(2) In case r = 3 one of the following holds:
(i) There exist vectors v1, v2, v3 ∈ V , which are linearly independent, such

that
ω1 = v2 ∧ v3, ω2 = v3 ∧ v1, ω3 = ±v1 ∧ v2.

(ii) There exist vectors v0, v1, v2, v3 ∈ V , which are linearly independent,
such that

ω1 = v0 ∧ v1, ω2 = v0 ∧ v2, ω3 = v0 ∧ v3.

(3) In case r ≥ 4 there exist vectors v0, . . . , vr ∈ V , which are linearly
independent, such that

ω1 = v0 ∧ v1, ω2 = v0 ∧ v2, . . . , ωr = v0 ∧ vr.

In case m = 1 every Goursat flag of length k (k ≥ 2) is a special 1-flag, i.e.
the Sandwich Lemma holds automatically ([8]). By contrast, we need some
condition for an m-flag of length 2 (m ≥ 2) to be special, as the following
example shows.

142



Example 5.4. Let R be a manifold of dimension 3m + 1 (m ≥ 2), and let
(xα, yβ, zβ) (α = 0, 1, . . . , m, β = 1, . . . , m) be a coordinate system on R. For
a fixed a ∈ {0, 1, . . . , m−2}, let us take a coframe {η1, . . . , ηm, ζ1, . . . , ζm, θ0,
. . . , θm} as follows:

θα = dxα , ηγdzγ + yγdx0 − 1
2
(x0)

2
dxγ (γ = 1, . . . , m− a− 1)

ζβ = dyβ + x0dxβ , ηδ = dzδ + yδ−1dxδ−1 (δ = m− a, . . . , m)

We consider D = {η1 = . . . = ηm = ζ1 = . . . = ζm = 0}. Then we have
{

dηβ ≡ 0 (mod η1, . . . , ηm, ζ1, . . . , ζm) for β = 1, . . . , m,
dζβ ≡ θ0 ∧ θβ (mod η1, . . . , ηm, ζ1, . . . , ζm) for β = 1, . . . , m.

{
dηγ ≡ ζγ ∧ θ0 (mod η1, . . . , ηm) for γ = 1, . . . , m− a− 1,
dηδ ≡ ζδ−1 ∧ θδ−1 (mod η1, . . . , ηm) for δ = m− a, . . . ,m.

Hence we get

∂D = {η1 = . . . = ηm = 0} , ∂2D = T (R) , Ch (∂D) =

= {η1 = . . . = ηm = ζ1 = . . . = ζm−1 = θ0 = θm−a−1 = . . . = θm−1 = 0}
Thus, (R, D) is an m-flag of length 2, but Ch(∂D) is not a subbundle of D.
Moreover rank Ch (∂D) is m− a.

In order to get good control over Ch (∂D), we prepare the following propo-
sition, which gives us the Sandwich Lemma for m ≥ 3.

Proposition 5.5. Let (R,D) be a regular differential system such that
rank ∂2D = rank ∂D + m and rank ∂D = rank D + m. Assume m ≥ 3
and the Cartan rank of ∂D is 1, then Ch (∂D) is a subbundle of D of corank
1. Moreover the Cartan rank of D is 1

In view of Lemma 5.3, we can replace the Cartan rank 1 condition by the
Engel rank 1 condition when m ≥ 4 (cf. Remark 5.6).

Proof. Let x be any point of R. By the rank condition, there exist linearly
independent 1-forms {πi, ηβ, ζβ(i = 1, . . . , s, β = 1, . . . , m)} defined on a
neighborhood U of x, where s = corank ∂2D, such that

∂2D = {π1 = . . . = πs = 0 },
∂D = {π1 = . . . = πs = η1 = . . . = ηm = 0 },
D = {π1 = . . . = πs = η1 = . . . = ηm = ζ1 = . . . = ζm = 0, }.
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{
dπi ≡ 0, dηβ 6≡ 0 (mod π1, . . . , πs, η1, . . . , ηm)
dηβ ≡ 0, dζβ 6≡ 0 (mod π1, . . . , πs, η1, . . . , ηm, ζ1, . . . , ζm)

Since the Cartan rank of ∂D is 1, there exist 1-forms {ω, $1, . . . , $m} on
a neighborhood V ⊂ U of x such that

dηβ ≡ ω ∧$β (mod π1, . . . , πs, η1, . . . , ηm)

From rank ∂2D = rank ∂D+m it follows that {πi, ηβ, ω, $β(i = 1, . . . , s, β =
1, . . . , m)} are linearly independent at each y ∈ V . Then we have

Ch (∂D) = {π1 = . . . = πs = η1 = . . . = ηm = ω = $1 = . . . = $m = 0},

Thus Ch (∂D) is a subbundle of ∂D of corank m + 1.
Now the structure equation for D implies

ω ∧$β ≡ 0 (mod π1, . . . , πs, η1, . . . , ηm, ζ1, . . . , ζm).

First of all, we claim: There exists no open neighborhood V ′ ⊂ V of x
such that ω vanishes identically on V ′ modulo D⊥. Assume the contrary, i.e.
there exists V ′ such that ωV ′ ≡ 0 (mod π1, . . . , πs, η1, . . . , ηm, ζ1, . . . , ζm).
Then we may assume ω = ζ1, so that

dηβ ≡ ζ1 ∧$β (mod π1, . . . , πs, η1, . . . , ηm)

Taking the exterior derivative of both sides of this mod equation, we obtain

0 ≡ dζ1 ∧$β (mod π1, . . . , πs, η1, . . . , ηm, ζ1).

Since {πi, ηβ, ζ1, $β(i = 1, . . . , s, β = 1, . . . , m)} are linearly independent
and m ≥ 3, we get

dζ1 ≡ 0 (mod π1, . . . , πs, η1, . . . , ηm, ζ1),

which contradicts the structure equation for D.

Now we divide the proof according to the dependence of ωx modulo
D⊥(x).

(1) ωx 6≡ 0 (mod π1, . . . , πs, η1, . . . , ηm, ζ1, . . . , ζm).
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From ω ∧$β ≡ 0 (mod D⊥), we have

$β ≡ 0 (mod π1, . . . , πs, η1, . . . , ηm, ζ1, . . . , ζm, ω).

Hence we have

$β ≡
m∑

γ=1

aβ
γζγ (mod π1, . . . , πs, η1, . . . , ηm, ω).

Since {πi, ηβ, ω, $β(i = 1, . . . , s, β = 1, . . . , m)} are linearly independent, it
follows that det

(
aβ

γ(x)
)6= 0. Therefore

Ch (∂D) = {π1 = . . . = πs = η1 = . . . = ηm = ω = $1 = . . . = $m = 0} =

= {π1 = . . . = πs = η1 = . . . = ηm = ζ1 = . . . = ζm = ω = 0} ⊂ D.

Thus Ch (∂D) is a completely integrable subbundle of D of corank 1, so
dζβ ≡ 0 (mod π1, . . . , πs, η1, . . . , ηm, ζ1, . . . , ζm, ω). Hence we have

dζβ ≡ ω ∧ θβ (mod π1, . . . , πs, η1, . . . , ηm, ζ1, . . . , ζm),

Since rank ∂D = rank D + m, {πi, ηβ, ζβ, ω, θβ(i = 1, . . . , s, β = 1, . . . , m)}
are linearly independent and the Cartan rank of D is 1.

(2) ωx ≡ 0 (mod π1, . . . , πs, η1, . . . , ηm, ζ1, . . . , ζm).
Since {πi, ηβ, ω, $β(i = 1, . . . , s, β = 1, . . . , m)} are linearly independent,

there exists β0 ∈ {1, . . . , m} such that $β0
x 6≡ 0 (mod D⊥(x)). We may

shrink our neighborhood V of x so that $β0
y 6≡ 0 (mod D⊥(y)) for each

y ∈ V . Then, from ω ∧$β0 ≡ 0 (mod D⊥), we have

ω ≡ 0 (mod π1, . . . , πs, η1, . . . , ηm, ζ1, . . . , ζm, $β0).

Moreover we claim:

$β ∧$β0 ≡ 0 (mod π1, . . . , πs, η1, . . . , ηm, ζ1, . . . , ζm),

holds on V for each β ∈ {1, . . . ,m}.
In fact, for each y ∈ V , we consider the following two cases.

(a) ωy 6≡ 0 (mod π1, . . . , πs, η1, . . . , ηm, ζ1, . . . , ζm).
From ω ∧ $β ≡ 0 (mod D⊥), we have $β

y ≡ λβωy (mod D⊥(y)).
Since λβ0 6= 0, we get ωy ≡ λ$β0

y for λ 6= 0. Hence $β
y ∧ $β0

y ≡ 0 (mod
D⊥(y)), as desired.
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(b) ωy ≡ 0 (mod π1, . . . , πs, η1, . . . , ηm, ζ1, . . . , ζm).
Assume the contrary, i.e. that there exists γ ∈ {1, . . . , m} such that

$γ
y ∧$β0

y 6≡ 0 (mod D⊥(y)). Then we may take a neighborhood V0 ⊂ V of
y so that

$γ
z ∧$β0

z 6≡ 0 (mod D⊥(z)),

for each z ∈ V0. However ω cannot vanish identically on V0, as shown above.
Hence there exists a point z0 ∈ V0 such that ωz0 6≡ 0 (mod D⊥(z0)). Then,
as in (a), we get $γ

z0
∧$β0

z0
≡ 0 (mod D⊥(z0)), which is a contradiction.

Since {πi, ηβ, ω, $β(i = 1, . . . , s, β = 1, . . . , m)} are linearly independent,
we obtain

Ch (∂D) = {π1 = . . . = πs = η1 = . . . = ηm = ω = $1 = . . . = $m = 0} =

= {π1 = . . . = πs = η1 = . . . = ηm = ζ1 = . . . = ζm = $β0 = 0} ⊂ D.

Thus Ch (∂D) is a completely integrable subbundle of D of corank 1. More-
over, as in (1), the Cartan rank of D is 1. This completes the proof of
Proposition.

Remark 5.6. We cannot replace the Cartan rank 1 condition in the above
Proposition by the Engel rank 1 condition when m = 3, as the following
example shows: Let (z1, z2, z3, y1, y2, y3, x0, x1, x2, x3) be a coordinate system
of R. Let us take a coframe {η1, η2, η3, ζ1, ζ2, ζ3, θ0, θ1, θ2, θ3} as follows:

η1 = dz1 + y1dx0, η2 = dz2 + y2dy1, η3 = dz3 + x0dy2,
ζ1 = dy1 − x1dx0, ζ2 = dy2 − x2dx0, ζ3 = dy3 − x3dx0,
θ0 = dx0, θ1 = dx1, θ2 = dx2, θ3 = dx3.

We consider D = {η1 = η2 = η3 = ζ1 = ζ2 = ζ3 = 0}. Then we have

{
dηβ ≡ 0 (mod η1, η2, η3, ζ1, ζ2, ζ3) for β = 1, 2, 3,
dζβ ≡ θ0 ∧ θβ (mod η1, η2, η3, ζ1, ζ2, ζ3) for β = 1, 2, 3.





dη1 ≡ ζ1 ∧ θ0 (mod η1, η2, η3),
dη2 ≡ (ζ2 + x2θ0) ∧ (ζ1 + x1θ0) (mod η1, η2, η3),
dη3 ≡ θ0 ∧ ζ2 (mod η1, η2, η3).

Hence we get
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∂D = {η1 = η2 = η3 = 0} , ∂2D = T (R),

Ch (∂D) = {η1 = η2 = η3 = ζ1 = ζ2 = θ0 = 0}.
Thus, (R, D) is a 3-flag of length 2 such that the Engel rank of ∂D is 1, but
Ch(∂D) is not a subbundle of D.

However, by Lemma 5.3, we can replace the Cartan rank 1 condition in
the above Proposition by the Engel rank 1 condition when m ≥ 4.

By utilizing the above proposition repeatedly, we obtain

Theorem 5.7. An m-flag (R, D) of length k for m ≥ 3 is a special m-flag if
and only if ∂k−1D is of Cartan rank 1. Moreover, an m-flag (R,D) of length
k for m ≥ 4 is a special m-flag if and only if ∂k−1D is of Engel rank 1.

Proof. The ‘only if’ part follows from the existence of the completely inte-
grable subbundle F of ∂k−1D of corank 1 for the special m-flag as in the
proof of Proposition 5.1.

For the ‘if’ part, first, the proof of Proposition 5.1 shows the existence of a
completely integrable subbundle F of ∂k−1D, which contains Ch (∂k−1D). By
repeated application of the previous proposition, we obtain that Ch (∂i+1D)
is a subbundle of ∂iD of corank 1 for i = 0, . . . , k − 2. Thus we are left to
show that rank D = rank Ch (D) + m + 1.

Let us take defining 1-forms of D, ∂D and Ch (∂D) such that

∂D = {π1 = . . . = πs = 0} , D = {π1 = . . . = πs = ζ1 = . . . = ζm = 0},
Ch (∂D) = {π1 = . . . = πs = ζ1 = . . . = ζm = ω = 0}.

where s is the corank of ∂D. Since Ch (∂D) is completely integrable, we have

dζα ≡ 0 (mod π1, . . . , πs, ζ1, . . . , ζm, ω), for α = 1, . . . , m.

Therefore, there exist 1-forms {θ1, . . . , θm} such that
{

dπi ≡ 0, (mod π1, . . . , πs, ζ1, . . . , ζm) for i = 1, . . . , s,
dζα ≡ ω ∧ θα, (mod π1, . . . , πs, ζ1, . . . , ζm) for α = 1, . . . , m.

Then, from rank ∂D = rank D + m it follows that {πi, ζα, ω, θα(i =
1, . . . , s, α = 1, . . . ,m)} are linearly independent. Hence

Ch (D) = {π1 = . . . = πs = ζ1 = . . . = ζm = ω = θ1 = . . . = θm = 0}.
Thus rank D = rank Ch (D) + m + 1. This completes the proof of the
Theorem.
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Hence, by Theorem 4.2, we obtain the Drapeau Theorem for m ≥ 3

Corollary 5.8. Let M be a manifold of dimension m+1. An m-flag (R, D)
of length k for m ≥ 3 is locally isomorphic to (P k(M), Ck) if and only if
∂k−1D is of Cartan rank 1, and moreover for m ≥ 4, if and only if ∂k−1D is
of Engel rank 1.

6 Integrable subbundle of corank 1

Let (R,D) be a 2-flag of length 1. Then it can be shown ([5]) that there
exists a local coframe {η1, η2, θ0, θ1, θ2} such that D = {η1 = η2 = 0},

{
dη1 ≡ θ0 ∧ θ1 (mod η1, η2),
dη2 ≡ θ0 ∧ θ2 (mod η1, η2).

Thus the Cartan rank of (R, D) is always 1 and we have the covariant system
F = {η1 = η2 = θ0 = 0} of D of corank 1 (cf. [14]). As is well known, F is
not necessarily completely integrable.

As for a 2-flag of length 2, we observe that, in Example 5.4, putting m = 2,
we obtain the following structure equation for D = {η1 = η2 = ζ1 = ζ2 = 0},
where

η1dz1 + y1dx0 − 1
2
(x0)

2
dx1, η2 = dz2 + y1dx1

ζ1 = dy1 + x0dx1, ζ2 = dy2 + x0dx2, θ0 = dx0, θ1 = dx1, θ2 = dx2,

{
dηβ ≡ 0 (mod η1, η2, ζ1, ζ2) for β = 1, 2,
dζβ ≡ θ0 ∧ θβ (mod η1, η2, ζ1, ζ2) for β = 1, 2.

{
dη1 ≡ ζ1 ∧ θ0 (mod η1, η2),
dη2 ≡ ζ1 ∧ θ1 (mod η1, η2).

Thus ∂D = {η1 = η2 = 0} and the Cartan rank of ∂D is 1, whereas Ch(∂D)
is not a subbundle of D. This shows that the statement of Proposition 5.5
is false for m = 2.

To cover the case m = 2, we strengthen the hypothesis of Proposition 5.5
as in the following.
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Proposition 6.1. Let (R,D) be a regular differential system such that
rank ∂2D = rank ∂D + m and rank ∂D = rank D + m. Assume that there
exists a completely integrable subbundle F of ∂D of corank 1, then Ch (∂D)
is a subbundle of D of corank 1.

Proof. Let x be any point of R. By the rank condition, there exist linearly
independent 1-forms {πi, ηβ, ζβ(i = 1, . . . , s, β = 1, . . . , m)} defined on a
neighborhood U of x, where s = corank ∂2D, such that

∂2D = {π1 = . . . = πs = 0},
∂D = {π1 = . . . = πs = η1 = . . . = ηm = 0},
D = {π1 = . . . = πs = η1 = . . . = ηm = ζ1 = . . . = ζm = 0}.

{
dπi ≡ 0, dηβ 6≡ 0 (mod π1, . . . , πs, η1, . . . , ηm)
dηβ ≡ 0, dζβ 6≡ 0 (mod π1, . . . , πs, η1, . . . , ηm, ζ1, . . . , ζm)

Moreover, since F is a subbundle of ∂D of corank 1, there exists a 1-form ω
such that {π1, . . . , πs, η1, . . . , ηm, ω} are linearly independent and

F = {π1 = . . . = πs = η1 = . . . = ηm = ω = 0 }

Since F is completely integrable, we have dηβ ≡ 0 (mod π1, . . . , πs, η1, . . . ,
ηm, ω). Hence there exist 1-forms {$1, . . . , $m} on a neighborhood V ⊂ U
of x such that

dηβ ≡ ω ∧$β (mod π1, . . . , πs, η1, . . . , ηm)

From rank ∂2D = rank ∂D+m it follows that {πi, ηβ, ω, $β(i = 1, . . . , s, β =
1, . . . , m)} are linearly independent at each y ∈ V . Then we have

Ch (∂D) = {π1 = . . . = πs = η1 = . . . = ηm = ω = $1 = . . . = $m = 0} ⊂ F,

Thus Ch (∂D) is a subbundle of F of corank m.
Now the structure equation for D implies

ω ∧$β ≡ 0 (mod π1, . . . , πs, η1, . . . , ηm, ζ1, . . . , ζm).

First of all, we claim: There exists no open neighborhood V ′ ⊂ V of x
such that ω vanishes identically on V ′ modulo D⊥. Assume the contrary, i.e.
there exists V ′ such that ωV ′ ≡ 0 (mod π1, . . . , πs, η1, . . . , ηm, ζ1, . . . , ζm).
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Then we may assume ω = ζ1 on V ′. Since F is completely integrable and
F = {π1 = . . . = πs = η1 = . . . = ηm = ζ1 = 0 }, we get

dζ1 ≡ 0 (mod π1, . . . , πs, η1, . . . , ηm, ζ1),

which contradicts the structure equation for D.

The rest of the proof is quite similar to that of Proposition 5.5, hence it
is omitted.

The above proposition is also obtained independently by Adachi [1].
By utilizing the above proposition repeatedly, we obtain

Theorem 6.2. An m-flag (R,D) of length k is a special m-flag if and only
if there exists a completely integrable subbundle F of ∂k−1D of corank 1.
Moreover, F is unique for (R,D).

Proof. The ‘only if’ part is trivial. For the ‘if’ part, by repeated application
of the above Proposition, we obtain that F ⊃ Ch (∂k−1D) and Ch (∂i+1D) is
a subbundle of ∂iD of corank 1 for i = 0, . . . , k− 2. Thus we are left to show
that rank D = rank Ch (D)+m+1, but the proof is the same as in Theorem
5.7. The uniqueness of F follows from Theorem 4.2.

Hence, by Theorem 4.2, we obtain the following Drapeau Theorem for
m ≥ 2.

Corollary 6.3. Let M be a manifold of dimension m+1. An m-flag (R, D)
of length k is locally isomorphic to (P k(M), Ck) if and only if there exists a
completely integrable subbundle F of ∂k−1D of corank 1.

References

[1] Adachi, J.: Global stability of special multi-flags, in preparation

[2] Bryant, R. : Some aspect of the local and global theory of Pfaffian
systems, Thesis, University of North Carolina, Chapel Hill, 1979

150



[3] Bryant, R., Chern, S., Gardner, R., Goldschmidt, H. and Griffiths,
P.: Exterior Differential Systems, MSRI Publ. vol. 18, Springer Ver-
lag, Berlin 1991

[4] Bryant, R. and Hsu, L.: Rigidity of integral curves of rank 2 distribu-
tions, Invent. Math. 144 (1993), 435–461
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The formal orbital normal forms for the nilpotent
singularity. The case of generalized saddle

Ewa Stróżyna 1

1 Introduction

Takens [Ta] began the study of germs of vector fields of the form

ẋ = y + . . . , ẏ = . . . (1.1)

where dots denote non-linear terms. Such singularities are called nilpotent
or Bogdanov-Takens singularities. In this paper the situation with complex
equations, i.e. (x, y) ∈ (C2, 0), and complex time is considered.

Takens had shown that there exists a formal change of coordinates x, y,
which reduces (1.1) to

ẋ = y + a(x), ẏ = b(x) (1.2)

where a(x) = arx
r + ar+1x

r+1 + . . . , r ≥ 2 and b(x) = bs−1x
s−1 + bsx

s +
. . . , s ≥ 3 are formal power series. The form (1.2), which is called Takens
prenormal form, is not the final normal form with respect to the orbital
equivalences.

The systematic study of complex nilpotent singularities from the orbital
classification point of view has begun with the works of Cerveau and Moussu
[CeMo], Elizarov et al. [EISV], Loray and Meziani [Lo,LoMe,Me] and Stróży-
na and ŻoÃla̧dek [StZo1,St,StZo2]. In particular, in [Lo,StZo1] a complete
formal orbital normal form was obtained for the case s < 2r (with arbs 6= 0),
called generalized cusp. In [St] a complete formal orbital normal form was
obtained for the case 2r < s, called generalized saddle-node. This short
article is devoted to present the main results of the paper [StZo2] considering
the orbital classification of nilpotent singularities in the remaining case

s = 2r

called generalized saddle.

1Faculty of Mathematics and Information Science, Warsaw University of Technology,
Pl. Politechniki 1, 00-661 Warszawa, Poland, e-mail: strozyna@mini.pw.edu.pl
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2 The results

Let VH = (y + axr)∂x + bx2r−1∂y be a two-parameter family of vector fields,
i.e.

ẋ = y + axr, ẏ = bx2r−1 (2.1)

in the complex space. We assume that (a, b) ∈ C2 \ (0, 0).
Applying the orbital change x → αx, y → βy, dt → γdt, we find a new

system

ẋ =
βγ

α
y + aαr−1γxr, ẏ =

bα2r−1γ

β
x2r−1

and assuming βγ/α = 1, we get a change

(a, b) → (νa, ν2b), ν ∈ C?.

Therefore we shall treat the system (2.1) as parametrized by the elements
[a : b] of the one-dimensional weighted projective line CP 1

w := (C2\(0, 0))/C?

(with the C?-action as above). The representatives of the orbits C? · [ξ : η]
can be chosen, for example, as follows:

(a, b) =

{
(1, η/ξ2) if [ξ : η] 6= [0 : 1],

(0, 1) otherwise
(2.2)

(this section is not continuous at the point [0 : 1]).
Putting z = xr and dividing by xr−1, we get from (2.1) the linear system

ż = raz + ry, ẏ = bz (2.3)

We call (2.3) principal linear system.
Its eigenvalues are equal

λ1,2 =
r

2

(
a±

√
a2 + 4b/r

)

Their ratio

λ =
a−

√
a2 + 4b/r

a +
√

a2 + 4b/r

is an algebraic function on CP 1
w.
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Proposition 2.1
The critical point z = y = 0 of the system (2.3) is:
1. a (k : l)-resonant node (λ = k

l
, k, l ∈ N) iff

[a : b] = [(k + l) : −klr];

2. a (k : −l)-resonant saddle (λ = −k
l
) iff

[a : b] = [(k − l) : klr];

3. a focus (λ 6∈ R) iff

a2

b
∈ C \ (−∞,−4

r
] \ [0,∞);

4. a non-resonant node iff

a2

b
< −4

r
, [a : b] 6= [(µ + 1) : −µr], µ ∈ Q;

5. a non-resonant saddle iff

0 ≤ a2

b
, [a : b] 6= [(µ + 1) : −µr], µ ∈ Q;

6. a saddle-node (λ = 0) iff

[a : b] = [1 : 0].

Note that the case λ = −1 corresponds to a = 0, i.e. the generalized cusp
case; we can treat it as a particular case of a saddle.

Definition
Two germs V, V ′ of analytic vector fields in (C2, 0) are formally (ana-

lytically) orbitally equivalent iff there is a formal (analytic) diffeomorphism
G of (C2, 0) transforming the phase curves of V to the phase curves of V ′.
This means that there is a formal (analytic) function ψ, ψ(0) 6= 0 such that
ψ · V ′ = G−1

? V ◦ G.
In the following theorems there is a classification of vector fields of the

form
V = VH + W (2.4)
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where VH is given in (2.1) (with the parameters a, b defined by the agree-
ment (2.2) and W is of higher order with respect to the quasi-homogeneous

gradation d̃eg defined by

d̃egx = −d̃eg∂x = 1, d̃egy = −d̃eg∂y = r

Thus d̃egVH = r − 1.
Denote also

EH = x∂x + ry∂y (2.5)

the quasi-homogeneous Euler vector field.

Theorem 2.2
Assume that V in (2.4) is such that the principal linear system (2.3)

corresponding to VH is either non-resonant (cases 3, 4 or 5 of Proposition
2.1.) or a (k : l)-resonant node with k, l > 1, gcd(k, l) = 1.

Then it is formally orbitally equivalent to one of the following orbitally
non-equivalent fields:

(i) VH or
(ii) the field

VH + xt(1 + φ(x))∂x (2.6)

where t 6= 0 (mod r), t > r and

φ(x) =
∑

j 6=−t (mod r)

ajx
j (2.7)

is a formal power series, φ(0) = 0.
Two vector fields V and V ′ of the form (2.6) with exponents t, t′ and

series φ, φ′ are orbitally equivalent iff t = t′ and φ′(x) ≡ φ(αx) for some
constant α satisfying αt−r = 1.

Theorem 2.3
Assume that the principal linear system (2.3) is a (k : 1)-resonant node.
Then V is formally orbitally equivalent to one of the following orbitally

non-equivalent fields:
(i) VH or
(ii) the field

V = VH + xkr∂x (2.8)
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for k > 1 or
(iii) the field

V = VH + cxkr∂x + xt(1 + φ(x))∂x (2.9)

where t 6= 0 (mod r), t > r, c = 0 for k = 1 and

φ(x) =
∑

j 6= −t (mod r),
j 6= kr

ajx
j

Two vector fields of the form (2.9) with parameters c, c′, exponents t, t′

and series φ(x), φ′(x) are orbitally equivalent iff t = t′, c′ = α(k−1)rc and
φ′(x) ≡ φ(αx) for some α satisfying αt−r = 1.

The field V with formal orbital forms: VH for k = 1, (2.8) and (2.9) with
c 6= 0 have only one analytic separatrix.

Theorem 2.4
Assume that the principal linear system (2.3) is a (k0 : −l0)-resonant

saddle with gcd(k0, l0) = 1.
Then V is formally orbitally equivalent to one of the following orbitally

non-equivalent fields:
(i) VH or
(ii) the field (2.6) with t 6= 0 (mod r), t > r and

φ(x) =
∑

j + t (mod r) 6= 0,
j + t (mod r0) = r,

j (mod r0) 6= 0

ajx
j

where r0 = (k0 + l0)r or
(iii) the field (2.6) with t = r + n0r0 for some integer n0 and

φ(x) = an0r0x
n0r0

or
(iv) the field (2.6) with t = r + n0r0 and

φ(x) = an0r0x
n0r0 + aj0x

j0 +
∑

j > j0
j (mod r) 6= 0
j 6= j0 + n0r0

ajx
j
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where aj0 6= 0 for some j0 > 0, j0 6= 0 (mod r).

Two vector fields V = VH +xt(1+φ(x))∂x and V ′ = VH +xt′(1+φ′(x))∂x

are orbitally equivalent iff t = t′ and φ′(x) = φ(αx) for some number α
satisfying αt−r = 1.

3 The resolution of the singularity and the

method of the proof

The resolution of the singularity x = y = 0 of the (formal) vector fields
described in Theorems 2.2-2.4 uses the quasi-homogeneous blowing-up, which
means rewriting the vector field V = VH + W (see (2.4)) in the variables
x, u = y/xr and division by xr−1. We get the system

ẋ = x(u + a) + O(x2), u̇ = b− aru− ru2 + O(x) (3.1)

We have the singular points p1,2 : x = 0, u = u1,2 = 1
2
(−a ±

√
a2 + 4b/r).

Since b 6= 0, we have u1,2 6= 0,∞.

The case p1 = p2 occurs when a2 + 4b/r = 0, which corresponds to the
(1 : 1)-resonant node in the principal linear system (2.3). The singular point
p1 = p2 is a saddle-node for the system (3.1). Its center separatrix is x = 0
and its strong separatrix takes the form u = −a

2
+ O(x) and is analytic. It

is known that a saddle-node can have at most two analytic separatrices.

In the case a2 + 4b/r 6= 0 each point p1,2 has the following eigenvalues:

λ1(p1,2) = 1
2
(a±

√
a2 + 4b/r) in the x-direction and λ2(p1,2) = ∓r

√
a2 + 4b/r

in the u-direction. When the principal linear system is non-resonant, the
corresponding ratios λ(p1,2) = (λ2/λ1)(p1,2) are also not rational.

In the resonant cases [a : b] = [(k + l) : −klr], k > |l| and l positive or

negative, we have λ(p1) = (k−l)r
−k

and λ(p2) = (k−l)r
l

.

In the case of resonant saddle of the principal linear system (l < 0) the
points p1,2 are also saddles, each with two analytic separatrices.

In the case of resonant node of the principal linear system (0 < l < k)
the point p1 is a saddle, while p2 is a ((k − l)r : l)-resonant node. When
l = 1 the ratio λ(p2) = (k− 1)r is natural. It turns out that the term cxkr∂x

in the vector field (2.9) gives the resonant term −rcu2x
(k−1)r∂u in the local

expansion of the vector field (3.1) near p2. Its presence causes local non-
linearizability of (3.1) near p2 and absence of separatrices (different from the
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divisor x = 0) of the point p2. More precisely, let us write (3.1) in the form

du

dx
=
−r(u− u1)(u− u2)− rcx(k−1)r + . . .

x(u + a + cx(k−1)r + . . .)

and look for a separatrix in the form u = u2 + dx(k−1)r + . . .. Substituting
it into the above equation gives the following contradiction: d(k − 1)r =
(λ2d−rcu2)/λ1 in the coefficients before x(k−1)r−1 (this explains the statement
about the absence of two separatrices in Theorem 2.3.).

In the other cases of resonant node of the principal linear system there are
two possibilities: either λ(p2) 6∈ N and there exists a separatrix or λ(p2) ∈ N
(e.g. when l|r) and it is not obvious whether the point p2 has non-trivial
analytic separatrix.

In the case of generalized cusp the formal normal form was proved in
[Lo,StZo1] in two different ways. In [St] another, direct, method was used in
the case of generalized saddle-node (i.e. b = 0 in (2.1)). It turns out that
only the method from [StZo1] is general enough to give a unified proof of all
Theorems 2.2-2.4.

The orbital changes rely on an application of conjugations

V → PV (Z) := (Adexp Z)?V

and multiplications
V → (1 + χ)V

Here Z = Z1∂x+Z2∂y is a vector field (formal or analytic), exp Z is the phase
flow diffeomorphism (after time 1) and χ is a function (formal or analytic).

Note that if Z is parallel to V , Z = κ(x, y)V , then the map exp Z pre-
serves the phase portrait of V and the field PV (κV ) is also parallel to V . In
order to avoid this ambiguity, one uses the notion of a bivector field intro-
duced by Bogdanov [Bo].

If V = V1∂x + V2∂y, then define the bivector filed

Z ∧ V = Ω∂x ∧ ∂y

where Ω = V2Z1 − V1Z2. One can say that Ω measures the component of Z
transversal to V . If Ω = 0 and V has isolated singularity, then Z = κV for
some function κ.

This suggests that one should consider the map

Z → PV (Z) ∧ V

∂x ∧ ∂y

(3.2)
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from the space (C[[x, y]])2 of formal vector fields to the space C[[x, y]] of
formal functions. Since the map Z → PV (Z) is non-linear, the map (3.2)
cannot be factorized to a map from C[[x, y]] to C[[x, y]]. But the linear part
of PV (·) is equal to −adV (·) and we a have well defined linear map

LV Ω = −adV Z ∧ V

∂x ∧ ∂y

, Ω = Z ∧ V

In [StZo1] it is shown that

LV Ω = Ω̇− divV · Ω
where Ω̇ = V (Ω) = ∂Ω/∂V .

Theorems 2.2-2.4 can be proved using only the linear operator LV . Of
course, one shall use also the quasi-homogeneous gradation d̃eg and eliminate
recursively the terms of growing quasi-homogeneous degree.

If U = U1∂x + U2∂y is the part of V (”transversal” to V ), which should
be reduced, then we have bivector homological equation

LV Ω + Θ = 0, where Θ =
U ∧ V

∂x ∧ ∂y

(3.3)

Having solved the bivector homological equation, one gets some function
Ω. Having the function Ω, one finds the vector field from the equation Z1V2−
Z2V1 = Ω; assuming V1 = y + axr + . . . , V2 = bx2r−1 + . . . it can be noticed
that the solution exists (provided that the expansion of Ω begins with the

terms of degree d̃eg ≥ r + 2). The application of (Adexp Z)?V eliminates
U , leaving only the terms of the form σ(x, y)V . The latter can be reduced
using the multiplication (1 − σ)V . The terms non-linear in Z are of higher
quasi-homogeneous degree and are eliminated in the further steps of recursive
process.

The above short explanation shows that the key of the orbital normal
form reduction is the solution of bivector homological equation (3.3). The
whole algorithm of reduction is divided into three general steps. The first
is to approximate the homological operator LV by LVH

, determine its kernel
in C[[x, y]] and a subspace complementary to its image. Next, using the
operator LVH+xt∂x to Ω’s from kerLVH

one reduces some additional terms
(here xt∂x is the first term not reduced in the previous step). In the third
and last step one uses the operator LVH+xt∂x+const·xu∂u in a similar way. This
finishes the short sketch of the proof; the complete proof can be found in
[StZo2].
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Surfaces which contain many circles
Nobuko Takeuchi 1

1 Introduction

”A sphere” is a familiar shape. Most people would describe a sphere as a
round object. A sphere always looks round, as we know. But there is a
question whether a shape which appears round from any angle is always a
sphere?

2 Two analyses of shapes which always look

round

Part I: If one standing in any position is able to see the object in question
as a circular form, then one may decide that the object is a sphere.

Circular cones may be used to distinguish whether the object in question
is in fact a circular form. Then the vertex of the cone may be applied at
every point. One may also use circular cylinders, if the object in question is
examined from a distance.

We already know that an object which only looks round from limited
positions may not be called a sphere, such as an ellipsoid of revolution.

1Department of Mathematics, Tokyo Gakugei University, Koganei-shi, Tokyo, 184-
8501, Japan, e-mail: nobuko@u-gakugei.ac.jp
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Professor Shigetake Matsuura dealt with this problem in his 1980-1981
articles published in Japanese in the Tokyo-based Japanese mathematical
journal called Suugaku seminar. He concluded that only shapes which appear
circular from every angle are spheres.

Part II: If a circle in E3 of any given radius can be pasted perfectly in any
position on the object in question, then one may decide that the object is a
sphere.

During the war, the Japanese military used cannon balls. The balls needed
to be perfect spheres, that is objects which may be viewed as circular from
any angle in order to function properly. If they were not perfect spheres,
they would fail to hit their target. Only perfect spheres proved to be useful
weapons. Subsequently, the military developed a methodology for examining
the shapes of the newly made balls. They would paste multiple circles onto
the surface of the ball in question. If a circle could be placed on any part of
the ball’s surface and fit properly, they would conclude that the ball was a
perfect sphere and thus include it in their weaponry supplies.

We know that a sphere in E3 is characterized as a closed surface which
contains an infinite number of circles in E3 through each point. But we do
not know a surface other than a sphere or a plane which contains many circles
through each point of it.

In the following figures, (n) is the number of circles through a point P on
the surface.
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3 Conjectures and theorems

In 1980, Richard Blum found a closed C∞ surface of genus one which contains
six circles through each point, and he gave a conjecture:

Conjecture 1 (R. Blum) A closed C∞ surface in E3 which contains seven
circles through each point is a sphere.

However he did not produce original affirmative theorems for this conjec-
ture.

In 1984, Koichi Ogiue and Ryoichi Takagi showed that
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Theorem 3.1 (K. Ogiue and R. Takagi). A C∞ surface in E3 is (a part
of) a plane or a sphere if it contains two circles through each point which are
tangent to each other.

Additionally, drawing from the fact that an ellipsoid contains two circles
through each point except only at four points, they postulated that

Conjecture 2 (K. Ogiue and R. Takagi) A simply connected complete
C∞ surface in E3 is a plane or a sphere if it contains two circles through
each point.

We have the following partial affirmative results toward conjectures 1 and
2:

Theorem 3.2. A simply connected complete C∞ surface in E3 is a plane or
a sphere, if it contains three circles through each point.

Theorem 3.3. A C∞ surface in E3 is (a part of) a plane or a sphere if
it contains three circles through each point, any two of which are tangent to
each other or have two points in common.

Theorem 3.4. A closed C∞ surface of genus one in E3 cannot contain seven
circles through each point.

Our next theorem usefully demonstrates the theories of our forefathers in
their testing of the functionality of cannon balls used during the war.

Theorem 3.5 (K. Ogiue and N. Takeuchi). A smooth ovaloid in E3 is a
sphere if the surface contains a circle of an arbitrary but fixed radius through
each point.

4 Examples of surfaces which contain many

circles

Example 1 (Hulahoop surfaces) A hulahoop surface is a smooth surface
obtained by revolving a circle around a suitable axis.
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Let γ(a, b, r), r > 0 be a circle on the xy-plane defined by

(x− a)2 + (y − b)2 = r2

and let γ(a, b, r, α) be the circle obtained by tilting γ(a, b, r) around the dia-
meter parallel to the x-axis by the angle α,−π

2
< α ≤ π

2
. It is easily seen

that γ(a, b, r, α) is given by

x = a + r cos θ

y = b + r cos α sin θ

z = r sin α sin θ

Let H(a, b, r, α) be the surface obtained by rotating γ(a, b, r, α) around the
z-axis. Then it is easily seen that H(a, b, r, α) is a smooth surface if and
only if a = b = 0 and α = π

2
or a 6= 0 and (a2 − r2) cos2 α + b2 6= 0. We

see that H(0, 0, r, π
2
) is a sphere and otherwise H(a, b, r, α) is topologically a

torus. Note that H(a, b, r, α) contains at least two circles through each point,
one is latitudinal circle and the other is a rotated γ(a, b, r, α). We denote
γ(a, b, r, α) ∼ γ(a, b, r, α) when two circles are congruent under the rotation
around the z-axis. For example, γ(a, b, r, α) ∼ γ(−a,−b, r,−α). It is clear
that if γ(a, b, r, α) ∼ γ(a, b, r, α), then H(a, b, r, α) = H(a, b, r, α). We see
that H(a, b, r, α) is obtained by revolving the curve on the xz-plane defined
by

x =
√

(a + r cos θ)2 + (b + r cos α sin θ)2

y = 0

z = r sin α sin θ
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and hence that H(a, b, r, α) is defined by the equation

(x2 + y2 + z2)2 − 4b cos α

sin α
(x2 + y2 + z2)z − 2(a2 + b2 + r2)(x2 + y2)

−2(a2 + b2 + r2 − 2a2 + 2b2 cos2 α

sin2 α
)z2 +

4b cos α

sin α
(a2 + b2 + r2)z

+(a2 + b2 + r2)2 − 4a2r2 = 0

Then, we can see a hulahoop surface which is not a sphere contains exactly
four or five circles through each point.

Theorem 4.1. A compact smooth surface of revolution which contains at
least two circles through each point is a hulahoop surface.

Corollary 4.2. There exists no compact smooth surface of revolution which
contains exactly k circles through each point for k = 2, 3, 6, 7.

Corollary 4.3. A compact smooth surface of revolution which contains ex-
actly four circles through each point is an ordinary torus.

Example 2 (Blum’s surface) R. Blum’s surfaces are defined by a quartic
equation of the form:

(x2
1 + x2

2 + x2
3)

2 − 2a1x
2
1 − 2a2x

2
2 − 2a3x

2
3 + a = 0, (a1 ≥ a2 > 0, a3 < −√a)

They contain exactly four (if a1 = a2, a3 = −√a), five (if a1 = a2, a3 6=
−√a,or if a1 6= a2, a3 = −√a) or six (if a1 6= a2, a3 6= −√a) circles through
each point.
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Furthermore, we must recognize the fact that cyclides contain many cir-
cles.

Example 3 (Cyclides) A cyclide is a surface in E3 defined by a quartic
equation of the form:

(x2
1 + x2

2 + x2
3)

2 + 2(x2
1 + x2

2 + x2
3)

3∑
i=1

bixi +
3∑

i,j=1

aijxixj + 2
3∑

i=1

aixi + a = 0

An ordinary torus gives a typical example and quadratic surfaces are con-
sidered as singular examples. A closed C∞ surface of genus one which con-
tains six circles through each point, found by R. Blum, is also one of cyclides.

Subsequently we developed the following theorems.

Theorem 4.4. A non-singular cyclide is conformally equivalent to a cyclide
of the form:

(x2
1 + x2

2 + x2
3)

2 − 2a1x
2
1 − 2a2x

2
2 − 2a3x

2
3 + a = 0 (a 6= 0)

which is topologically a torus, a sphere or two spheres. A cyclide with singu-
larities is conformally equivalent to a quadratic surface.

Theorem 4.5. A cyclide contains n circles through each non-umbilic point
and n− 1 circles through each isolated umbilic point unless it is a sphere or
a pair of two spheres, where n = 1, 2, 3, 4, 5 or 6.
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The Euler number of the normalization of a certain
hypersurface with quasi-ordinary singularities
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Abstract

In [T2] and [T3] we have proved a numerical formula which gives
the Euler number of the (non-singular) normalization X of an alge-
braic threefold with ordinary singularities X in P 4(C). In the proof
of this formula, we have used a Lefschetz pencil of hyperplane sections
on X, and calculated the Segre classes of the singular subscheme of
X in order to compute the class (number) of X, i.e. the degree of
the top Mather class of X in P 4(C). In this article we will show that
this method also works for a wider class of hypersurfaces in P 4(C) to
compute the Euler number of their normalizations.

1 An example of a hypersurface with quasi-ordinary

singularities in P 4(C)

Let Hi (1<i<3) be non-singular hypersurfaces of degrees ri (1<i<3), re-
spectively, in the complex projective 4-space P4(C) such that they are in
general position at every point where they intersect. Let fi (1<i<3) be the
homogeneous polynomial of degree ri which defines the hypersurface Hi. We
may assume r1 ≥ r2 ≥ r3 because of symmetry. We choose and fix a positive
integer n with n ≥ 2r1 + 2r2. Let X be a hypersurface in P4(C) defined by
the equation

F := Af1f2f3 + B(f1f2)
2 + C(f2f3)

2 + D(f3f1)
2 = 0, (1.1)

where A,B, C and D are homogeneous polynomials of five variables of re-
spective degrees n−r1−r2−r3, n−2r1−2r2, n−2r2−2r3 and n−2r3−2r1.

1Department of Mathematics and Computer Science, Kagoshima University, Kourimoto
1-21-35, 890-0065 Kagoshima, Japan, e-mail: tsuboi@sci.kagoshima-u.ac.jp
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We put D
(ij)

X
:= Hi ∩ Hj (1<i < j<3) and DX :=

⋃
1<i<j<3 D

(ij)

X
. Then,

by Bertini’s theorem, X is non-singular outside DX if we choose sufficiently
generic A,B,C and D.

Proposition 1.1. If the homogeneous polynomials A,B, C and D are chosen
sufficiently generic, then X is locally isomorphic to one of the following germs
of three-dimensional hypersurface singularities at the origin of C4 at every
point of X:

(i) w = 0 (simple point),
(ii) zw = 0 (ordinary double point),
(iii) yzw = 0 (ordinary triple point),
(iv) xy2 − z2 = 0 (cuspidal point),
(v) (xy)2 + (yz)2 + (zx)2 + xyzw = 0 (degenerate ordinary triple point),

where (x, y, z, w) are the coordinates on C4.

For the proof we refer to [T1].

2 The singularity (xy)2 + (yz)2 + (zx)2 + xyzw = 0

We consider the following affine threefold:

C4 ⊃ T : f := (xy)2 + (yz)2 + (zx)2 + xyzw = 0 (2.1)

where (x, y, z, w) are the coordinates on C4. As shown in [T1], T has an
ordinary triple point at (0, 0, 0, w) if w 6= 0. Hence, we may think of the
singularity (T, 0) of T at the origin of C4 as a degenerate ordinary triple
point .

Normalization: Let

P 3(C) ⊃ S : f := (xy)2 + (yz)2 + (zx)2 + xyzw = 0 (2.2)

be the hypersurface in P 3(C), defined by the same polynomial f that defines
T . This surface S is classically known as the Steiner surface. The surface S
is obtained by projecting P 2(C) embedded in P 5(C) by the 2-fold Veronese
map to P 3(C). Indeed, if we denote by V the image of P2(C) in P5(C) by
the map v : P2(C) → P5(C) defined by

(ξ0 : ξ1 : ξ2) ∈ P2(C) 7→ (ξ2
0 : ξ2

1 : ξ2
2 : ξ0ξ1 : ξ0ξ2 : ξ1ξ2)

= (x0 : x1 : x2 : y0 : y1 : y2) ∈ P5(C),
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then the surface S coincides with the image of V by the linear projection
p : P5(C) → P3(C) defined by

(x0 : x1 : x2 : y0 : y1 : y2) ∈ P5(C) 7→ (y0 : y1 : y2 : −(x0 + x1 + x2))

= (x : y : z : w) ∈ P3(C). (2.3)

Applying the calculation similar to that in [T1], we can see that S is an
algebraic surface with ordinary singularities , whose singular locus DS is {x =
y = 0} ∪ {y = z = 0} ∪ {z = x = 0}, and that S has one ordinary triple
point at [0 : 0 : 0 : 1], six cuspidal points at [0 : 0 : ±2 : 1], [0 : ±2 : 0 :
1], [±2 : 0 : 0 : 1], and ordinary double points at other points of DS. We
denote by CS the cone over S, which is nothing but T . We denote by CV

the cone over V . Since V is a non-singular, projectively normal subvariety in
P5(C), (CV , 0) is a normal singular point (cf. [H], Exercise 3.4 (e), p.394).
Hence, if we denote by p : C6 → C4 the linear projection induced by p :
P5(C) → P3(C) in (2.3), and by n : CV → CS (= T ) the restriction of
p to CV , then n : CV → CS gives the normalization of (T, 0). (CV , 0)
becomes non-singular after a single blowing-up. Indeed, if we denote by τ̂

the blowing-up Ĉ6 → C6 at the origin of C6, Ĉ6 can be identified with
[HP5(C)]

−1, where [HP5(C)] denotes the line bundle on P5(C) determined by

a hyperplane HP5(C) in P5(C). Furthermore, the proper inverse image ĈV of
CV by τ (resp. the exceptional divisor E := τ−1(0)) can be identified with
[HP5(C)]

−1
|V ' [HP2(C)]

−2 (resp. the zero cross-section of the line bundle L :=

[HP2(C)]
−2 on P2(C)), where [HP5(C)]

−1
|V denotes the restriction of [HP5(C)]

−1

to V . From this fact, it follows that E2 = −2HP2(C), where HP2(C) denotes
a hyperplane in P2(C).

Theorem 2.1. (CV , 0) is

(i) rational, and so Cohen-Macaulay,

(ii) “rigid” under small deformations,

(iii) Gorenstein of index two,

(iv) terminal, and so canonical,

(v) quasi-ordinary, that is there is a finite morphism (CV , 0) → C3 whose
branching locus is contained in the hypersurface of C3 defined by x1x2x3

= 0, where (x1, x2, x3) denote the coordinates on C3
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Proof: Here we give only the proof of the assertion (v). For the proofs
of the rest of the assertions, we refer to [T1] and [T4]. Let X(n, k) := Cn/µk,
where µk is the cyclic group of k−th root of 1, acting by ε : (x1, · · · , xn) →
(εx1, · · · , εxn). Then the affine cone over the k−fold Veronese embedding of
Pn−1(C) is isomorphic to X(n, k). The map

Cn 3 (x1, · · · , xn) → (xk
1, · · · , xk

n) ∈ Cn

factors through X(n, k) and induces a quasi-ordinary projection X(n, k) →
Cn. Since (CV , 0) is isomorphic to X(3, 2), it is quasi-ordinary. 2

Hypersurface section: Let

C4 ⊃ H : w = f(x, y, z),

C6 ⊃ p∗H : x0 + x1 + x2 + f(y0, y1, y2) = 0,

where f is a sufficiently generic holomorphic function defined in a small open
neighborhood of the origin with f(0, 0, 0) = 0, and p is the linear projection
C6 → C4 induced by p : P5(C) → P3(C) as before. Let

T ∩H : (xy)2 + (yz)2 + (zx)2 + xyzf(x, y, z) = 0,

CV ∩ p∗H : the intersection of CV with p∗H.

Proposition 2.2. (CV ∩p∗H, 0) is normal, and so p|CV ∩p∗H : (CV ∩p∗H, 0) →
(T ∩H, 0) gives the normalization of (T ∩H, 0).

Proof: Since x0 + x1 + x2 + f(y0, y1, y2) is a non-zero divisor in OCV ,0,
Prof OCV ∩p∗H,0 = Prof OCV ,0 − 1 = 2. Hence (CV ∩ p∗H, 0) is normal. 2

Proposition 2.3. (T ∩ H, 0) becomes a surface with only ordinary double
points by the blowing-up at the origin, and a generic hypersurface section of
(T ∩H, 0) is an ordinary quadruple point of a curve.

Proof: The tangent cone C0(T ∩ H) to T ∩ H at the origin 0 of C4 is
given by

(xy)2 + (yz)2 + (zx)2 + xyz(ax + by + cz) = 0, (2.4)

where a, b, c are sufficiently generic complex numbers. We denote by C the
curve in P2(C) defined by the equation (2.4). By Bertini’s theorem, the curve
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C is singular only at the three points [1 : 0 : 0], [0 : 1 : 0] and [0 : 0 : 1], if
we take sufficiently generic complex numbers a, b, c. Furthermore, we may
assume that these are ordinary double points. Therefore, since C0(T ∩H) is
the cone over C, the assertion follows. 2

Proposition 2.4. CV ∩ p∗C0(H) is isomorphic to the cone over the twisted
rational curve of degree 4 in P4(C).

Proof: Since the defining equation of p∗C0(H) in C6 is x0 + x1 + x2 +
ay0 +by1 +cy1 = 0, the tangent cone C0(CV ∩p∗H) to CV ∩p∗H at the origin
0 of C6 is given by

CV ∩ p∗C0(H) = CV ∩p∗C0(H), (2.5)

where C0(H) denotes the hyperplane in P3(C) defined by C0(H). Note that
p∗C0(H) is nothing but the hyperplane in P5(C) defined by p∗C0(H). The
pull-back of V ∩C0(H) by the 2-fold Veronese embedding v : P3(C) → P5(C)
is

CQ : Q(ξ0, ξ1, ξ2) = ξ0 + ξ1 + ξ2 + aξ0ξ1 + bξ0ξ2 + cξ1ξ2 = 0.

We may assume that the quadric CQ is non-singular, since the complex
numbers a, b, c are sufficiently generic. Then there exist quadratic forms
p0(s, t), p1(s, t), p2(s, t) of two variables s, t so that if we define the 2-fold
Veronese map u from P1(C) to P2(C) by

(s : t) ∈ P1(C) 7→ (p0(s, t) : p1(s, t) : p2(s, t)) = (ξ0 : ξ1 : ξ2) ∈ P2(C), (2.6)

then the image of P1(C) by the map u coincides with the quadric CQ. The
quadratic forms pi (0<i<2) satisfy

p2
0 + p2

1 + p2
2 + ap0p1 + bp0p2 + cp1p2 = 0, (2.7)

and the composite map v ◦ u : P1(C) → P5(C) gives rise to an isomor-
phism between P1(C) and V ∩ p∗C0(H) in P5(C). The relation among pipj’s
(0<i<j<2) in (2.7) is the only one linear relation among pipj’s, because the
existence of another linear relation among pipj’s linearly independent of (2.7)
would contradict the fact that the map u in (2.6) is an embedding. Therefore
V ∩ p∗C0(H) is isomorphic to the image of P1(C) into P4(C) by the 4-fold
Veronese map. Then we are done because of (2.5). 2
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3 Lefschetz pencil on X and Euler number of the nor-

malization of X

Lefschetz pencil on X: Throughout this section we denote by X an irre-

ducible hypersurface in P4(C), which is defined locally at every point of X
by one of the equations from (i) through (vi) in Proposition 1.1 with respect
to a suitable local holomorphic coordinate system (x, y, z, w). We denote by
D the double point locus (surface) of X, i.e. the singular locus of X, by T
the triple point locus (curve) of X, by C the cuspidal point locus (curve) of
X, and by Σq the quadruple point locus of X. Let P∞ be a 2-dimensional
linear subspace of P 4(C) such that C∞ := P∞ ∩ X is an irreducible curve
with ordinary double points in P∞ ' P 2(C). Let P be a 1-dimensional linear
subspace of P 4(C) situated in twisted position with respect to P∞, i.e. the
linear subspace L(P∞, P ) generated by P∞ and P coincides with P 4(C). Let
π : X \C∞ → P be the linear projection with center C∞, i.e., π(x) := Hx∩P
for x ∈ X \C∞, where Hx = L(x, P∞) is the hyperplane generated by x and
P∞. We put Xλ := Hλ ∩ X for λ ∈ P and put L : =

⋃
λ∈P Xλ, which is a

linear pencil on X with the base point locus Bs(L) = C∞. Let nX : X → X
be the normalization map, and L :=

⋃
λ∈P Xλ the pull-back of L to X by nX .

By use of the argument similar to that in [T2], we obtained the following:

Proposition 3.1. If we take P∞ sufficiently general, then there exists a finite
set of points Q := {λ1, · · · , λq} of P such that:

(i) Xλi
contains only one quadruple point of X, which we denote by qλi

,

and Xλi
:= n−1

X
(Xλi

) is non-singular outside n−1

X
(qλi

) for any i with
1<i<q.

(ii) Xλ contains no quadruple point of X for any point λ ∈ P\Q.

(iii) There exists a finite set of points {µ1, · · · , µc} of P\Q such that:

(a) Xλ := n−1

X
(Xλ) is non-singular for λ ∈ P\Q with λ 6= µi (1<i<c),

and

(b) Xµi
is a surface with only one isolated ordinary double point which

is contained in X \ n−1(C∞) for any i with 1<i<c, where c is the
class (number) of X in P 4(C), i.e. the degree of the top polar
class [M3] of X in P 4(C).
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In the sequel we assume that the linear pencil L :=
⋃

λ∈P Xλ is such as in

Proposition 3.1. Then the linear pencil L :=
⋃

λ∈P Xλ, the pull-back of L :=⋃
λ∈P Xλ to X by the normalization map nX : X → X, has C∞ := n−1(C∞)

as its base point locus. Let σ : X̂ → X be the blowing-up along C∞, and
L̂ :=

⋃
λ∈P X̂λ, the proper inverse of L :=

⋃
λ∈P Xλ. Then L̂ gives a fibering

of X̂ over P ' P 1(C). Therefore the Euler number χ(X̂) of X̂ is given by

χ(X̂) = χ(P 1(C))χ(X̂λ) +

q∑
i=1

(χ(X̂λi
)− χ(X̂λ)) +

c∑
j=1

(χ(X̂µj
)− χ(X̂λ))

= 2χ(X̂λ)− c +

q∑
i=1

(χ(X̂λi
)− χ(X̂λ))

= 2χ(Xλ)− c +

q∑
i=1

(χ(Xλi
)− χ(Xλ)),

where X̂λ and Xλ denote generic members of L̂ and L respectively. Here
the second equality above follows from the fact that a topological 2-cycle
vanishes when λ → µj for j = 1, · · · , c. We put Ê := σ−1(C∞). Then, since

X̂ \ Ê ' X \ C∞,

χ(X̂)− χ(X) = χ(Ê)− χ(C∞)

= χ(P 1(C))χ(C∞)− χ(C∞)

= χ(C∞)

Hence,

χ(X) = 2χ(Xλ)− χ(C∞)− c +

q∑
i=1

(χ(Xλi
)− χ(Xλ)). (3.1)

Since Xλ is the normalization of a surface with ordinary singularities Xλ in
P 3(C), by the classical formula,

χ(Xλ) = n(n2 − 4n + 6)− (3n− 8)m + 3t− 2γ,

and, since C∞ is the normalization of the plane curve C∞ whose degree is
equal to n and has m ordinary double points,

χ(C∞) = 2− 2g(C∞) = 2− (n− 1)(n− 2) + 2m,
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where n := deg X, m := deg D, t := deg T and γ := deg C.

Lefschetz pencil on S: In the sequel we denote by S one of Xλj
, (j =

1, · · · , q), i.e. an irreducible hypersurface in P 3(C) which is locally isomor-
phic to one of the following germs of two dimensional hypersurface singular-
ities at the origin of C3 at every point of S:

(i) z = 0 (simple point),
(ii) yz = 0 (ordinary double point),
(iii) xyz = 0 (ordinary triple point),
(iv) xy2 − z2 = 0 (cuspidal point),
(v) (xy)2 + (yz)2 + (zx)2 + xyzφ(x, y, z) = 0 (confluence of three ordinary
double points),

where (x, y, z) are the coordinates on C3, and φ is a sufficiently generic
holomorphic function defined in a small open neighborhood of the origin
with φ(0, 0, 0) = 0. Furthermore, S has the singularity (v) at just one point.
We denote by nS : S → S the normalization of S. Similarly as in the case of
X, we have the following:

Proposition 3.2. There exists a linear pencil of hyperplane sections LS :=⋃
λ∈P Sλ (P ' P 1(C)) on S, satisfying the following conditions:

(i) The base point locus Bs(LS) is n distinct points (n := deg X).

(ii) There exists just one point λ0 ∈ P such that:

(a) Sλ0 is a plane curve of degree n, having only one ordinary quadru-
ple point, which we denote by qλ0

, and m−4 ordinary double points

(m := deg D) as singularities, and

(b) Sλ0 := n−1

S
(Sλ0) is non-singular outside n−1

S
(qλ0

).

(iii) There exists a finite set of points {µ1, · · · , µcS
} of P − {λ0} such that:

(c) Sλ := n−1

S
(Sλ) is non-singular for any λ ∈ P − {λ0} with λ 6= µi

(1<i<cS), and

(d) Sµi
(1<i<cS) is a curve with only one ordinary double point which

is not contained in S\n−1

S
(Bs(LS)), where cS is the class (number)

of S in P 3(C), i.e. the degree of the top polar class [M2] of S in
P 3(C).
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By the same argument as in the case of X, we have

χ(S) = 2χ(Sλ) + cS − n + (χ(Sλ0)− χ(Sλ)), (3.2)

where Sλ denotes a generic member of LS :=
⋃

λ∈P Sλ, the pull-back of

LS :=
⋃

λ∈P Sλ to S by the normalization map nS : S → S.

Lemma 3.3.

χ(Sλ0)− χ(Sλ) = 1.

Proof: We denote by n0 : S∗λ0
→ Sλ0 the normalization of Sλ0 , and by

qλ0
the quadruple point of Sλ0 . Since Sλ0 is a plane curve of degree n with

one ordinary quadruple point and m − 4 ordinary double points, the genus
g(S∗λ0

) of the normalization S∗λ0
of Sλ0 is given by

g(S∗λ0
) =

1

2
(n− 1)(n− 2)−m− 2. (3.3)

Hence,

χ(S∗λ0
) = 2− 2g(S∗λ0

) = 2− (n− 1)(n− 2) + 2(m + 2). (3.4)

Since Sλ0 is obtained by pushing forward the four distinct points n−1
0 (qλ0

) on
S∗λ0

to the one point n−1

S|Sλ0

(qλ0
),

χ(S∗λ0
)− χ(Sλ0) = 3. (3.5)

Hence, by (3.3), (3.4) and (3.5),

χ(Sλ0) = 2− (n− 1)(n− 2) + 2m + 1. (3.6)

On the other hand, since Sλ is a plane curve of degree n with m ordinary
double points,

χ(Sλ) = 2− (n− 1)(n− 2) + 2m. (3.7)

Therefore, by (3.6) and (3.7), we have χ(Sλ0)− χ(Sλ) = 1. 2

178



4 Calculation of Segre classes of singular subschemes

Throughout this section X and S are the same as in the previous section. In
the sequel we will calculate the Segre classes of the singular subscheme of X
in P 4(C) (resp. S in P 3(C)) to know the class (number) c of X in P 4(C)
(resp. the class (number) cS of S in P 3(C)). By Piene’s formula ([P]), the
polar classes of X (resp. S) are described by use of its Segre classes. For the
definition of Segre classes and their basic properties we refer to [T2].

Segre classes of the singular subscheme of X in P 4(C): Throughout this
section we fix the notation as follows:

Y := P 4(C) : the complex projective 4-space,
J : the singular subscheme of X defined by the Jacobian ideal of X,
D : the double point locus (surface) of X, i.e. the singular locus of X,
T : the triple point locus (curve) of X, which is equal to the singular locus
of D,
C : the cuspidal point locus (curve) of X,
Σq : the quadruple point locus of X,
nX : X → X : the normalization of X,
f : X → Y : the composition of the normalization map nX and the inclusion
ι : X ↪→ Y ,
J : the scheme-theoretic inverse of J by f ,
D, T and C: the inverse images of D, T and C by f , respectively,
Σq : the inverse image of Σq by f .

We consider the following diagram:

X ′ f ′−−−→ Y ′yτ
yσ

X −−−→
f

Y,

(4.1)

where:

σ : Y ′ → Y : the blowing-up of Y along the quadruple point locus Σq of X,
τ : X ′ → X : the blowing-up of X along Σq,
f ′ : X ′ → Y ′ : the map which makes the diagram above commute.

We put

X
′
: the proper inverse image of X by σ, which is nothing but f ′(X ′),
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J
′
: the singular subscheme of X

′
defined by the Jacobian ideal of X

′
,

D
′
, T

′
and C

′
: the proper inverse images of D, T and C

′
by σ, respectively,

E := σ−1(Σq) = ΣqEq: the exceptional divisor of the blowing-up σ, where
Eq denotes the exceptional divisor corresponding to a quadruple point q,
D′, T ′ and C ′: the inverse images of D, T and C by τ , respectively, which
are nothing but the inverse images of D

′
, T

′
and C

′
by f ′, respectively.

Note that X
′
is a threefold with ordinary singularities. We denote by J

′′
the

scheme-theoretic inverse of J by the map σ|X′ : X
′ → X, the restriction of σ

to X
′
. Calculating directly by use of local coordinates, we have

J
′′

= J
′
+ 3X

′ · E.

We denote by J ′′ the scheme-theoretic inverse of J
′′
by the map f ′. Then we

have
J ′′ = D′ + 3E + C ′,

which also comes from a direct calculation, using the concrete description of
the map f ′ in terms of local coordinates. If we put D′′ := D′ + 3E, then by
the formula (3.1) in [T2] (p. 284), we have the following equalities concerning
the Segre classes of J ′′ in X ′:





s(J ′′, X ′)2 = [D′′]
s(J ′′, X′)1 = −[D′′]2 + [C ′]
s(J ′′, X ′)0 = [D′′]3 − c1(NC′/X′) ∩ [C ′]− 3D′′ · C ′

(4.2)

Since

[D′′]2 = [D′]2 + 6D′ · E + 9[E]2,
[D′′]3 = [D′]3 + 9[D′]2 · E + 27D′ · [E]2 + 27[E]3,
D′′ · C ′ = D′ · C ′ + 3E · C ′,

and since



f ′∗[D
′]2 = X

′ ·D′
+ 3T

′ − C
′
,

f ′∗[D
′]3 = [X

′
]2 · [D′

]− 2[D
′
]2 + 5X

′ · T ′ −X
′ · C ′

,

f ′∗(c1(NC′/X′) ∩ [C ′]) = −KY ′ · C ′ −X
′ · C ′

+ kC
′ ,

f ′∗(D
′ · C ′) = 0,

which are the results in [T2], pushing forward the Segre classes s(J ′′, X ′)i

(0<i<2) in (4.2), we have the following:
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Proposition 4.1. The Segre classes of the subscheme J
′′

in X
′

are given as
follows:

(i) s(J
′′
, X

′
)2 = 2D

′
+ 3X

′ · E,

(ii) s(J
′′
, X

′
)1 = −X

′ ·D′ − 3T
′
+ 2C

′ − 12D
′ · E − 9X

′ · [E]2,

(iii) s(J
′′
, X

′
)0 = [X

′
]2 ·D′ − 2[D

′
]2 + 5X

′ · T ′
+ KY ′ · C ′ − [kC

′ ]

+9X
′ ·D′ ·E +27T

′ ·E−18C
′ ·E +54D

′ · [E]2 +27X
′ · [E]3,

where KY ′ is the canonical divisor of Y ′, and kC
′ is that of C

′
.

Lemma 4.2.

(i) X
′ · E = 4j∗(Σq[Hq]), (ii) D

′ · E = 3j∗(Σq[Hq]
2),

(iii) T
′ · E = j∗(Σq[Hq]

3), (iv) C
′ · E = 6j∗(Σq[Hq]

3),

where Hq denotes a hyperplane in Eq, the exceptional divisor corresponding
to a quadruple point q of X, and j : E ↪→ Y ′ the inclusion map.

Proof: X is locally isomorphic to the cone over the Steiner surface S at
a quadruple point q, and so the assertions follows. 2

Since the multiplicity of X at each quadruple point q is four, we have

σ∗[X] = X
′
+ 4E,

and since the multiplicity of D at each quadruple point q is 3, by the blow-up
formula ([F], Theorem 6.7, p.116 and Corollary 6.7, p.117), we have

σ∗[D] = D
′
+ 3j∗[ΣqHq].

Calculating push-forward of the Segre classes s(J
′′
, X

′
)i (0<i<2) in Propo-

sition 4.1 by σ, using the facts above and Lemma 4.2, we have the following:

Proposition 4.3. The Segre classes of the singular subscheme J of X are
given as follows:

(i) s(J, X)2 = 2D,

(ii) s(J, X)1 = −X ·D − 3T + 2C,
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(iii) s(J, X)0 = [X]2 ·D − 2[D]2 + 5X · T + KY · C − σ∗[kC
′ ]− 59[Σq],

where KY is the canonical divisor of Y , and σ∗[kC
′ ] is the direct image of the

canonical divisor kC
′ of C

′
by the map σ|C′ : C

′ → C.

Corollary 4.4. Let X0 be a hypersurface in P 4(C) whose degrees of the
various singular loci are the same as those of X we are considering in this
article, but without quadruple points. Then:

c− c0 = deg [kC
′ ]− deg [kC0

] + 59#[Σq],

where c (resp. c0) denotes the class (number) of X (resp. X0) in P 4(C), C0

the cuspidal point locus (curve) of X0, and kC0
the canonical divisor of C0.

Proof: By Piene’s formula,

c = (n− 1)3deg X − 3(n− 1)2deg s2 − 3(n− 1)deg s1 − deg s0

Hence, by Proposition 4.3 above and Proposition 3.6 in [T2], the assertion
follows. 2

Segre classes of the singular subscheme of S in P 3(C): To calculate the

Segre classes of the singular subscheme of S, we consider the following dia-
gram instead of the diagram (4.1):

S ′
g′−−−→ Z ′yτS

yσS

S −−−→
g

Z,

(4.3)

where:

Z := P 3(C),
g : S → Z : the composite of the normalization map nS : S → S and the
inclusion ι : S ↪→ Z,
σS : Z ′ → Z : the blowing-up of Z at the quadruple point q of S,
τS : S ′ → S : the blowing-up of S at q := g−1(q),
g′ : S ′ → Z ′ : the map which makes the diagram (4.3) commute.

We put

DS : the double point locus (curve) of S, i.e. the singular locus of S,
Σt : the triple point locus of S, which is equal to the singular locus of DS,
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Σc : the cuspidal point locus of S,

S
′
: the proper inverse image of S by σS, which is nothing but g′(S ′),

D
′
S, Σt

′
and Σc′: the proper inverse images of DS, Σt and Σc by σS, respec-

tively,

DS, Σt and Σc: the proper inverse images of DS, Σt and Σc by g, respectively,

D′
S, Σt′ and Σc′: the proper inverse images of DS, Σt and Σc by τS, respec-

tively, which is nothing but the proper inverse images of D
′
S, Σt

′
and Σc′ by

g′, respectively.

J , J
′
, J , J ′, E and E for S are similarly defined as in the case of X.

Note that S
′
is an algebraic surface with ordinary singularities. In the sequel

we assume that S is defined by the equation in (2.4) at each quadruple point
of S. We are allowed to do this, because the Segre classes of a singular
subscheme depend only on its tangent cone. We denote by J

′′
the scheme-

theoretic inverse of J by the map σS|S′ : S
′ → S, the restriction of σS to S

′
.

Calculating directly by use of local coordinates, we have

J
′′

= J
′
+ 3S

′ · E.

We denote by J ′′ the scheme-theoretic inverse of J
′′
by the map g′. Then we

have

J ′′ = D′
S + 3E + Σc′,

which also comes from a direct calculation, using the concrete description of
the map g′ in terms of local coordinates. If we put D′′

S := D′
S + 3E, then by

Proposition 3.2 in [T2] (p. 284) ([F], Proposition 9.2, p.161), we have the
following equalities concerning the Segre classes of J ′′ in S ′:

{
s(J ′′, S ′)1 = [D′′

S]
s(J ′′, S ′)0 = −[D′′

S]2 + [Σc′]
(4.4)

Proposition 4.5. The Segre classes of the subscheme J
′′

in S
′

are given as
follows:

(i) s(J
′′
, S

′
)1 = 2[D

′
S] + 3S

′ · E,

(ii) s(J
′′
, S

′
)0 = −S

′ ·D′
S − 3[Σt

′
] + 2[Σc′]− 12D

′
S · E − 9S

′ · [E]2.
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Proof:

s(J
′
, S

′
)1 = g′∗s(J

′′
, S

′
)1

= g′∗[D
′′
s ] = g′∗[D

′
s] + 3g′∗[E]

= 2[D
′
S] + 3S

′ · E.

This proves the assertion (i). Since S
′
is an algebraic surface with ordinary

singularities, we have

g′∗[D
′
s]

2 = S
′ ·D′

S − [Σc′S] + 3[Σt
′
S]

(cf. [F], Example 9.3.7, p.168). Hence

g′∗[D
′′
s ]

2 = g′∗[D
′
S + 3E]2

= g′∗[D
′
s]

2 + 6g′∗[D
′
S] + 9g′∗[E]2

= S
′ ·D′

S − [Σc′S] + 3[Σt
′
S] + 12D

′
S · E + 9S

′ · [E]2.

Therefore, calculating push-forward of s(J
′′
, S

′
)0 in (4.4) by g′, we have the

assertion (ii). 2

Lemma 4.6.

(i) S
′ · E = 4k∗[H], (ii) D

′
S · E = 3k∗[H]2,

where H denotes a hyperplane in E, the exceptional divisor corresponding to
the quadruple point q of S, and k : E ↪→ Z ′ the inclusion map.

Proof: S can be considered to be locally isomorphic to the cone over a
plane curve C of degree four which has three ordinary double points at the
quadruple point q (cf. Proposition 2.3), and so the assertions follow. 2

Since the multiplicity of S at the quadruple point q is four, we have

σ∗[S] = S
′
+ 4E.

Calculating push-forward of the Segre classes s(J
′
, S

′
)i (0<i<1) in Proposi-

tion 4.5 by σ, using the fact above and Lemma 4.6, we have the following:

Proposition 4.7. The Segre classes of the singular subscheme J of S are
given as follows:
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(i) s(J, S)1 = 2DS,

(ii) s(J, S)0 = −S ·DS − 3[Σt] + 2[Σc] + 12[q].

Corollary 4.8. The effect of the existence of the quadruple point q to the
class (number) cS of S in P 3(C) is −12.

Proof: By Piene’s formula,

cS = (n− 1)2deg S − 2(n− 1)deg s1 − deg s0

Therefore, by Proposition 4.7 the assertion follows. 2

Corollary 4.9. Let Xλi
be a member of the linear system L : =

⋃
λ∈P Xλ for

which Xλi
containing a quadruple point of X, and Xλ a generic member of

L. Then

χ(Xλi
)− χ(Xλ) = −11

Proof: We set S := Xλi
, S := Xλi

, S0 := Xλ and S0 := Xλ. Then by
(3.2),

χ(S)− χ(S0) = cS − cS0
+ χ(Sλ0)− χ(Sλ),

where cS, cS0
are the class numbers of S and S0 in P 3(C), respectively, Sλ0

is the member of the linear pencil LS :=
⋃

λ∈P Sλ for which Sλ0 containing

the quadruple point of S, and Sλ is a generic member of LS. Therefore, by
Corollary 4.8 and Lemma 3.3, we obtain the assertion. 2

5 A conclusion

Theorem 5.1. Let X0 be a hypersurface in P 4(C) whose degrees of the
various singular loci are the same as those of X we are considering in this
article, but without quadruple points, and let X0 be the normal model of X0.
Then:

χ(X)− χ(X0) = deg kC0
− deg kC

′ − 70#[Σq],

where kC0
is the canonical divisor of the cuspidal point locus (curve) C0 of

X0, and kC
′ is that of the normal model C

′
of the cuspidal point locus (curve)

C of X.
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Proof: By (3.1), Corollary 4.4 and Corollary 4.9,

χ(X)− χ(X0) = −(c− c0) + Σq
i=1(χ(Xλi

)− χ(Xλ))

= −(deg kC
′ − deg kC0

+ 59#[Σq])− 11#[Σq]

where c and c0 are the class numbers of X and X0 in P 4(C) respectively. 2
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A new projective invariant associated to the special
parabolic points of surfaces and to swallowtails

Ricardo Uribe-Vargas 1 2

Abstract. We show some generic (robust) properties of smooth surfaces immersed in
the real 3-space (Euclidean, affine or projective), in the neighbourhood of a godron: an
isolated parabolic point at which the (unique) asymptotic direction is tangent to the
parabolic curve. With the help of these properties and a projective invariant that we
associate to each godron we present all possible local configurations of the flecnodal curve
at a generic swallowtail in R3. We present some global results, for instance: In a hyperbolic
disc of a generic smooth surface, the flecnodal curve has an odd number of transverse self-
intersections.

1 Introduction

A generic smooth surface in R3 has three (possibly empty) parts: an open
hyperbolic domain at which the Gaussian curvature K is negative, an open
elliptic domain at which K is positive and a parabolic curve at which K
vanishes. A godron is a parabolic point at which the (unique) asymptotic
direction is tangent to the parabolic curve. We present various robust geo-
metric properties of generic surfaces, associated to the godrons. For example
(Theorem 2):

Any smooth curve of a surface of R3 tangent to the parabolic curve at a
godron g has at least 4-point contact with the tangent plane of the surface at
g.

The line formed by the inflection points of the asymptotic curves in the
hyperbolic domain is called flecnodal curve. The next theorem is well known.

Theorem 1. ([14, 10, 13, 7, 9, 5]) At a godron of a generic smooth surface
the flecnodal curve is (simply) tangent to the parabolic curve.

1Collège de France, 11 Pl. Marcelin-Berthelot, 75005 Paris.
e-mail: uribe@math.jussieu.fr, web: www.math.jussieu.fr/∼uribe

2Partially supported by EU Centre of Excellence, IMPAN-Banach Centre, ICA1-CT-
2000-70024.
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For a generic smooth surface we have the following global result (Propo-
sition 5 and Theorem 6):

A closed parabolic curve bounding a hyperbolic disc has a positive even number
of godrons, and the flecnodal curve lying in that disc has an odd number of
transverse self-intersections.

The conodal curve of a surface S is the closure of the locus of points of
contact of S with its bitangent planes (planes which are tangent to S at least
at two distinct points). It is well known ([14, 10]) that:

At a godron of a generic smooth surface the conodal curve is (simply) tangent
to the parabolic curve.

So the parabolic, flecnodal and conodal curves of a surface are mutually
tangent at the godrons. At each godron, these three tangent curves determine
a projective invariant ρ, as a cross-ratio (see the cr-invariant below). We show
all possible configurations of these curves at a godron, according to the value
of ρ (Theorem 4). There are six generic configurations, see Fig. 2.

The invariant ρ and the geometric properties of the godrons presented
here are useful for the study of the local affine (projective) differential pro-
perties of swallowtails. So, for example, we present all generic configurations
of the flecnodal curve in the neighbourhood of a swallowtail point of a surface
of R3 in general position (see Theorem 8 and Fig. 7).

The paper is organised as follows. In Section 2, we recall the classification
of points of a generic smooth surface in terms of the order of contact of the
surface with its tangent lines. In Section 3, we give some definitions and
present our results. Finally, in Section 4, we give the proofs of the theorems.

Acknowledgements. I would like to thank S. Janeczko, W. Domitrz and the Banach
Centre for their hospitality and for the nice environment to do mathematics, to F. Aicardi
and D. Meyer for useful comments and to E. Ghys and D. Serre for the references [10, 11,
12].

2 Projective properties of smooth surfaces

The points of a generic smooth surface in the real 3-space (projective, affine or
Euclidean) are classified in terms of the contact of the surface with its tangent
lines. In this section, we recall this classification and some terminology.

A generic smooth surface S is divided in three (possibly empty) parts:
(E) An open domain of elliptic points: there is no real tangent line exceeding
2-point contact with S;
(H) An open domain of hyperbolic points: there are two such lines, called
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asymptotic lines (their directions at the point of tangency are called asymp-
totic directions); and
(P) A smooth curve of parabolic points: a unique, but double, asymptotic
line.

The parabolic curve, divides S into the elliptic and hyperbolic domains.

In the closure of the hyperbolic domain there is:
(F) A smooth immersed flecnodal curve: it is formed by the points at which
an asymptotic tangent line exceeds 3-point contact with S.

One may also encounter isolated points of the following four types: (g)
A godron is a parabolic point at which the (unique) asymptotic direction is
tangent to the parabolic curve; (sh) A special hyperbolic point is a point of
the simplest self-intersection of the flecnodal curve; (b) A biinflection point
is a point of the flecnodal curve at which one asymptotic tangent exceeds 4-
point contact with S; (se) A special elliptic point is a real point in the elliptic
domain of the simplest self-intersection of the complex conjugate flecnodal
curves associated to the complex conjugate asymptotic lines. In Fig. 1 the
hyperbolic domain is represented in gray colour and the elliptic one in white.
The flecnodal curve has a left branch Fl (white) and a right branch Fr (black).
These branches will be defined in the next section.

H

P

E

sh

g

se

b

b

P

Fl
Fr

Figure 1: The 8 tangential singularities of a generic smooth surface.

The term “godron” is due to R. Thom [9]. In other papers one can find
the terms “special parabolic point” or “cusp of the Gauss map”. We keep
Thom’s terminology since it is shorter. Here we will study the local projective
differential properties of the godrons.

The above 8 classes of tangential singularities, Theorem 1 and all the
theorems presented in this paper are projectively invariant and are robust
features of a smooth surface, that is, they are stable in the sense that under
a sufficiently small perturbation (taking derivatives into account) they do
not vanish but only deform slightly. Seven of these classes were known at
the end of the 19th century in the context of the enumerative geometry of
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complex algebraic surfaces, with prominent works of Cayley, Zeuthen and
Salmon, see [14]. For these seven classes, the normal forms of surfaces at
such points up to the 5-jet, under the group of projective transformations,
were independently found by E.E. Landis ([7]) and O.A. Platonova ([13]).
The special elliptic points were found by D. Panov ([8]).

For surfaces in R3, these tangential singularities depend only on the affine
structure of R3 (because they depend only on the contact with lines), that
is, they are independent of any Euclidean structure defined on R3 and of the
Gaussian curvature of the surface which could be induced by such a Euclidean
structure.

Besides the smooth surfaces, we also consider surfaces admitting wave
front singularities (Section 3.6) and we study the behaviour of the flecnodal
curve near the swallowtail points.

3 Statement of results

Consider the pair of fields of asymptotic directions in the hyperbolic domain.
An asymptotic curve is an integral curve of a field of asymptotic directions.

Left and right asymptotic and flecnodal curves. Fix an orientation
in the 3-space RP 3 (or in R3). The two asymptotic curves passing through
a point of the hyperbolic domain of a generic smooth surface can be distin-
guished in a natural geometric way: One twists like a left screw and the other
like a right screw. More precisely, a regularly parametrised smooth curve is
said to be a left (right) curve if its first three derivatives at each point form
a negative (resp. a positive) frame.

Proposition 1. At a hyperbolic point of a surface one asymptotic curve is
left and the other one is right.

A proof is given (for generic surfaces) in Euclidean Remark below.
The hyperbolic domain is therefore foliated by a family of left asymptotic

curves and by a family of right asymptotic curves. The corresponding asymp-
totic tangent lines are called respectively left and right asymptotic lines.

Definition 1. The left (right) flecnodal curve Fl (resp. Fr) of a surface
S consists of the points of the flecnodal curve of S whose asymptotic line,
having higher order of contact with S, is a left (resp. right) asymptotic line.

The following statement (complement to Theorem 1) is used and implic-
itly proved (almost explicitly) in [16, 18]. A proof is given in Section 4, see
Fig. 1:

Proposition 2. A godron separates locally the flecnodal curve into its right
and left branches.
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Definition 2. A flattening of a generic curve is a point at which the first
three derivatives are linearly dependent. Equivalently, a flattening is a point
at which the curve has at least 4-point contact with its osculating plane.

The flattenings of a generic curve are isolated points separating the right
and left intervals of that curve.

Euclidean Remark. If we fix an arbitrary Euclidean structure in the affine
oriented space R3, then the lengths of the vectors and the angles between
vectors are defined. Therefore, for such Euclidean structure, the torsion τ
of a curve and the Gaussian curvature K of a surface are defined. In this
case a point of a curve is right, left or flattening if the torsion at that point
satisfies τ > 0, τ < 0 or τ = 0, respectively. The Gaussian curvature K on
the hyperbolic domain of a smooth surface is negative. The Beltrami-Enepper
Theorem states that the values of the torsion of the two asymptotic curves
passing through a hyperbolic point with Gaussian curvature K are given by
τ = ±√−K. This proves Proposition 1.

Definition 3. An inflection of a (regularly parametrised) smooth curve is a
point at which the first two derivatives are linearly dependent. Equivalently,
an inflection is a point at which the curve has at least 3-point contact with
its tangent line.

A generic curve in the affine space R3 has no inflection. However, a
generic 1-parameter family of curves can have isolated parameter values for
which the corresponding curve has one isolated inflection.

Theorem 2. Let S be a generic smooth surface. All smooth curves of S which
are tangent to the parabolic curve at a godron g have either a flattening or
an inflection at g, and their osculating plane is the tangent plane of S at g.

The proof of Theorem 2 is given in Section 4.

Corollary 1. The godrons of a generic smooth surface are flattenings of its
parabolic and flecnodal curves.

Remark 1. The converse is not true: A flattening of the parabolic curve is
not necessarily a godron.

3.1 The cr-invariant and classification of godrons

The conodal curve. Let S be a smooth generic surface. A bitangent
plane of S is a plane which is tangent to S at least at two distinct points.
The conodal curve D of a surface S is the closure of the locus of points of
contact of S with its bitangent planes.
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At a godron of S, the curve D is simply tangent to the curves P (parabolic)
and F (flecnodal). This fact will be clear from our calculation of D for
Platonova’s normal forms of godrons.

The projective invariant. At any godron g, there are three tangent
smooth curves F , P and D, to which we will associate a projective invariant:

Consider the Legendrian curves LF , LP , LD and Lg (of the 3-manifold
of contact elements of S, PT ∗S) consisting of the contact elements of S
tangent to F , P , D and to the point g, respectively (the contact elements
of S tangent to a point are just the contact elements of S at that point,
that is, Lg is the fibre over g of the natural projection PT ∗S → S). These
four Legendrian curves are tangent to the same contact plane Π of PT ∗S.
The tangent directions of these curves determine four lines lF , lP , lD and lg,
through the origin of Π.

Definition 4. The cr-invariant ρ(g) of a godron g is defined as the cross-
ratio of the lines lF , lP , lD and lg of Π:

ρ(g) = (lF , lP , lD, lg).

Platonova’s normal form. According to Platonova’s Theorem [13], in
the neighbourhood of a godron, a surface can be sent by projective transfor-
mations to the normal form

z =
y2

2
− x2y + λx4 + ϕ(x, y) (for some λ 6= 0, 1

2
) (G1)

where ϕ is the sum of homogeneous polynomials in x and y of degree greater
than 4 and (possibly) of flat functions.

Theorem 3. Let g be a godron, with cr-invariant value ρ, of a generic smooth
surface S. Put S (after projective transformations) in Platonova’s normal
form (G1). Then the coefficient λ equals ρ/2.

It turns out that among the 2-jets of the curves in S, tangent to P at a
godron, there is a special 2-jet at which “something happens”. We introduce
it in the following lemma.

Tangential Map and Separating 2-jet. Let g be a godron of a generic
smooth surface S. The tangential map of S, τS : S → (RP 3)∨, associates to
each point of S its tangent plane at that point. The image S∨ of τS is called
the dual surface of S.

Write J2(g) for the set of all 2-jets of curves of S tangent to P at g. By
the image of a 2-jet γ in J2(g) under the tangential map τS we mean the
image, under τS, of any curve of S whose 2-jet is γ. By Theorem 2, all the
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2-jets of J2(g) (and also the 3-jets of curves on S tangent to P at g) are
curves lying in the tangent plane of S at g. In suitable affine coordinates,
the elements of J2(g) can be identified with the curves t 7→ (t, ct2, 0), c ∈ R.

Separating 2-jet Lemma. There exists a unique 2-jet σ in J2(g) (which
we call the separating 2-jet at g) satisfying the following properties:

(a) The images, under τS, of all elements of J2(g) different from σ are cusps
of S∨ sharing the same tangent line l∨g , at τS(g).

(b) The image of σ under τS is a singular curve of S∨ whose tangent line at
τS(g) is different from l∨g .

(c) (separating property): The images under τS of any two elements of J2(g),
separated by σ, are cusps pointing in opposite directions.

Remark 2. Once a godron with cr-invariant ρ of a smooth surface is sent
(by projective transformations) to the normal form z = y2/2−x2y +ρx4/2+
ϕ(x, y), the separating 2-jet is independent of ρ: It is given by the equation
y = x2, in the (x, y)-plane.

For generic values of ρ the curves F , P and D are simply tangent to each
other. However, for isolated values of ρ two of these curves may have higher
order of tangency and then some bifurcation occurs. We will look for the
values of ρ at which ‘something happens’.

Theorem 4. Let g be a godron of a generic smooth surface S. There are
six possible generic configurations of the curves F , P and D with respect to
the separating 2-jet and to the asymptotic line at g. They are represented in
Fig. 2. The actual configuration at g depends on which of the following six
open intervals the cr-invariant ρ(g) belongs to, respectively: (1,∞), (2

3
, 1),

(1
2
, 2

3
), (0, 1

2
), (−1

2
, 0) or (−∞,−1

2
).

3.2 The index of a godron

Definition 5. A godron is said to be positive or of index +1 (resp. negative
or of index −1) if at the neighbouring parabolic points the half-asymptotic
lines, directed to the hyperbolic domain, point towards (resp. away from) the
godron. See Fig. 3.

The asymptotic double of the hyperbolic domain. A godron g
can be positive or negative, depending on the index of the direction field,
which is naturally associated to g, on the asymptotic double A of S: The
asymptotic double of S is the surface A in the manifold of contact elements
of S, PT ∗S, consisting of the field of asymptotic directions. It doubly covers
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1 < ρ 2
3 < ρ < 1 1

2 < ρ < 2
3

0 < ρ < 1
2 − 1

2 < ρ < 0 ρ < − 1
2

Figure 2: The configurations of the curves F (half-white half-black curves), P (boundary
between white and gray domains), D (thick curves), the separating 2-jet (broken curves)
and the asymptotic line (horizontal segments) at generic godrons.

(+) (−)

Figure 3: A positive godron and a negative godron.

the hyperbolic domain, and its projection to S has a fold singularity over the
parabolic curve. There is an asymptotic lifted field of directions on the surface
A, constructed in the following way. At each point of the contact manifold
PT ∗S a contact plane is applied, in particular at each point of A. Consider
a point of the smooth surface A and assume that the tangent plane of A at
this point does not coincide with the contact plane. Then these two planes
intersect along a straight line tangent to A. The same holds at all nearby
points in A. This defines a smooth direction field on A which vanishes only
at the points where those planes coincide: over the godrons.

If g is a positive godron, then the index of this direction field at its singular
point equals +1, the point being a node or a focus; if g is negative, the index
equals −1 and the point is a saddle. See Fig. 4.

Proposition 3. A godron g is positive (negative) if and only if the value of
its cr-invariant ρ satisfies: ρ(g) > 1 (resp. ρ(g) < 1).

Corollary of Proposition 3 and Theorem 4.
(a) In the neighbourhood of a positive godron the hyperbolic domain is locally
convex.

(b) There exist negative godrons for which the neighbouring hyperbolic domain
is locally convex.
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(+) (+) (−)

Figure 4: The asymptotic double of the hyperbolic domain near a godron.

(c) In case of item (b), the flecnodal curve lies locally between P and D (see
Fig. 2). Moreover, we have: 2

3
< ρ < 1.

Items (a) and (b) of this corollary are due to F. Aicardi [1].

Corollary 2. All godrons of a cubic surface in RP 3 are negative.

Proof. By the definitions of asymptotic curve and of flecnodal curve, any
straight line contained in a smooth surface is both an asymptotic curve and
a connected component of the flecnodal curve of that surface.

Let S be a generic algebraic surface of degree 3. At a point of the flecnodal
curve, an asymptotic line has at least 4-point contact with S. Since S is a
cubic surface, this line must lie completely in S. So the flecnodal curve of S
consists of straight lines.

At a godron g of S, the tangent line to the parabolic curve (that is, the
flecnodal curve) lies in the hyperbolic domain. Thus the neighbouring elliptic
domain is locally convex. Therefore, by the above corollary, g is negative.

3.3 Locating the left and right branches of F

Remark on the co-orientation of the elliptic domain. Each connected
component of the elliptic domain is ‘naturally’ co-oriented: At each elliptic
point the surface lies locally in one of the two half-spaces determined by its
tangent plane at that point. This half-space, which we name the positive half-
space, determines a natural co-orientation on each connected component of
the elliptic domain. By continuity, the natural co-orientation extends to the
parabolic points. At the parabolic points a positive half-space is therefore also
defined.

This simple observation has strong topological consequences. For exam-
ple:
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Proposition 4. The elliptic domain of any smooth surface in the 3-space
(Euclidean, affine or projective) can not contain a Möbius strip.

In the neighbourhood of a godron g of a smooth surface S, we can distin-
guish explicitly which branch of the flecnodal curve is the right branch and
which is the left one. For this, we need only to know the index of g and the
co-orientation of S given by the positive half-space at g:

Let g be a godron of a generic smooth surface S. Take an affine coordinate
system x, y, z such that the (x, y)-plane is tangent to S at g, and the x-axis
is tangent to the parabolic curve at g (thus also tangent to F at g). Direct
the positive z-axis to the positive half-space at g. Direct the positive y-axis
towards the neighbouring hyperbolic domain. Finally, direct the positive x-
axis in such way that any basis (ex, ey, ez) of x, y, z form a positive frame for
the fixed orientation of R3 (or of RP 3).

So one can locally parametrise the flecnodal curve at g by projecting it
to the x-axis.

Theorem 5. Under the above parametrisation, the left and right branches of
the flecnodal curve at g correspond locally to the negative and positive semi-
axes of the x-axis, respectively, if and only if g is a positive godron. The
opposite correspondence holds for a negative godron.

In other words, if you stand on the tangent plane of S at g in the positive
half-space and you are looking from the elliptic domain to the hyperbolic
one, then you see the right (left) branch of the flecnodal curve on your right
hand side if and only if g is a positive (resp. negative) godron. So the index
of g determines and is determined by the side on which the right branch of
F is located.

Remark 3. Proposition 2 and Theorem 5 (which are local theorems) together
with the natural co-orientation of the elliptic domain, are the key elements
to prove the global theorem (Theorem 6) of Section 3.5. They imply that
some (global) configurations of the flecnodal curve are forbidden. So, for
example, there is no surface having a hyperbolic disc in which the left and
right branches of the flecnodal curve do not intersect.

3.4 Degenerated godrons: ρ = 0 and ρ = 1

After the preceding sections, a natural question arises: What happens if the
cr-invariant equals 0 or 1?

The godrons for which the cr-invariant equals 0 or 1 are degenerated
godrons. We will explain the meaning of these degeneracies and describe
the behaviour of such degenerated godrons under a small perturbation of the
surface inside a generic one-parameter family of smooth surfaces.
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The case ρ = 0. If ρ = 0 then the normal form that we have used above
defines just a cubic surface, which is absolutely not generic: the asymptotic
line at that godron has ‘infinite point-contact’ with the surface and coincides
with the flecnodal curve. In order to understand the behaviour of the flec-
nodal curve at the godrons with ρ = 0, we need to add some terms of degree
5, which become important and break the symmetry. In fact, one can prove
that at a generic godron with ρ = 0 the asymptotic line has 5-point contact
with the surface. We name such a point a flec-godron.

The godron of the surface z = y2

2
− x2y + x5 is a generic flec-godron.

To understand better the geometry of a flec-godron, we will perturb this
surface inside a generic one-parameter family of smooth surfaces in which
the parameter is the cr-invariant ρ:

z =
y2

2
− x2y +

ρ

2
x4 + x5.

ρ < 0 ρ = 0 ρ > 0
Figure 5: The transition at a flex-godron: ρ = 0.

The flecnodal and parabolic curves of this surface are depicted in Figure 5
for ρ < 0, ρ = 0 and ρ > 0.

Let St, t ∈ R, a generic one-parameter family of smooth surfaces such that
for t = 0 the surface S0 has a godron with cr-invariant ρ = 0 (for instance
the above family). Then, for t < 0, there is a biinflection point bt which lies,
say, in the right branch of the flecnodal curve of St and, as t goes to 0, the
point bt is ‘approaching’ the godron of St. At t = 0 the biinflection point b0

coincides with the godron of S0. For t > 0, the biinflection point bt reappears
but in the left branch and, as t is increasing, the point bt is ‘going away’ from
the godron of St. Moreover, at t = 0 the flecnodal curve has an inflection.
See Fig.5. Note that the index of the godron of St, for |t| sufficiently small,
is negative.

The case ρ = 1. If ρ = 1, then we also have a degenerate godron, which
we name bigodron: it is the collapse (or the birth) of two godrons of opposite
indices. When ρ = 1 the normal form that we used above is not convenient
since it is degenerate: z = 1

2
(y − x2)2. For this reason the parabolic and

flecnodal curves coincide with the curve y = x2 in the (x, y)-plane (this
curve is sent to a point under the tangential map of S). In order to have a
generic polynomial of degree four, one must add another term of degree four:
z = 1

2
(y − x2)2 ± x3y. Now, the bigodron obtained is generic (among the

197



bigodrons: ρ = 1): the parabolic and flecnodal curves have 4-point contact
and the whole flecnodal curve is either left or right, according to the sign
+ or − of the term ±x3y, respectively (see the central part of Fig. 6). To
understand better the geometry of a bigodron, we will perturb this surface
inside a generic one-parameter family of smooth surfaces:

z =
1

2
(y − x2)2 ± x3y + εx3.

ε < 0 ε = 0 ε > 0
Figure 6: The transition at bigodron: ρ = 1.

The flecnodal and parabolic curves of this surface are depicted in Figure 6
for ε < 0, ε = 0 and ε > 0. When the parameter ε is negative the flecnodal
curve is left and does not touch the parabolic curve, while when ε is positive
the flecnodal curve touches the parabolic curve at two neighbouring godrons
of opposite index, and a small segment of the right flecnodal has appeared
between these godrons.

So there are two types of bigodrons: a bigodron is said to be left (right)
if it corresponds to a bifurcation in which a small segment of the left branch
of the flecnodal curve is born or vanishes.

3.5 Elliptic discs and hyperbolic discs of surfaces

The following global theorem holds for any generic smooth surface:

Theorem 6. In any hyperbolic disc (bounded by a Jordan parabolic curve),
there is an odd number of special hyperbolic points (transverse crossings of
the left and right branches of the flecnodal curve).

The cubic surfaces in RP 3 provide examples of surfaces having elliptic
discs whose bounding parabolic curves have 0, 1, 2 or 3 negative godrons:
According to Segre [15], a generic cubic surface diffeomorphic to the projec-
tive plane contains four parabolic curves (each one bounding an elliptic disc)
and six godrons. According to [4], Shustin had proved that the distribution
of the godrons among the four parabolic curves is 6 = 0 + 1 + 2 + 3. By
Corollary 3.5, all these godrons are negative.

There exist smooth surfaces having an elliptic disc whose bounding pa-
rabolic curve has 4 negative godrons:
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Example 1. The algebraic surface given by the equation

z = (x2 − 1)(y2 − 1)

has an elliptic disc whose bounding parabolic curve contains 4 godrons, all
negative.

For a parabolic curve bounding a hyperbolic disc the situation is quite
different:

Proposition 5. The sum of the indices of the godrons on the parabolic curve
bounding a hyperbolic disc (of a generic surface) equals two. In particular,
such parabolic curve contains a positive even number of godrons.

Proof. Write H for the closure of the hyperbolic disc. The asymptotic double
A is a sphere. Its Euler characteristic equals 2. By Poincaré Theorem, the
sum of indices of all singular points of the direction field on A equals 2.

In fact, Proposition 2 implies the following propositions:

Proposition 6. At each connected component of the hyperbolic domain the
flecnodal curve consists of closed curves, each of them having an even number
(possibly zero) of godrons (that is, of contact points with the boundary of
that domain). The godrons decompose these closed curves into left and right
segments.

Corollary 3. The boundary of each connected component of the hyperbolic
domain of a generic surface has an even number of godrons.

Corollary 3 is the main result of [6]. Unfortunately the proof given in
[6] is not correct since it is based in the following statement: the Euler
characteristic of a connected component H of the hyperbolic domain equals
the number of godrons in ∂H at which the hyperbolic domain is locally convex
(the asymptotic line has contact with ∂H exterior to H) minus the number of
godrons in ∂H at which the elliptic domain is locally convex (the asymptotic
line has contact with ∂H interior to H). This statement is wrong: 1) In the
bigodron bifurcation (see Section 3.4) two godrons are born (or killed); 2)
At both godrons the contact of the asymptotic line with ∂H is exterior to H
and 3) This bifurcation does not change the Euler characteristic of H.

3.6 Godrons and Swallowtails

Tangential Map and Swallowtails. It is well known (c.f. [14]) that under
the tangential map of S the parabolic curve of S corresponds to the cuspidal
edge of S∨, the conodal curve of S corresponds to the self-intersection line of
S∨ (this follows from the definitions of dual surface and conodal curve) and
a godron corresponds to a swallowtail point.
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Legendrian Remark. The most natural approach to the singularities of the
tangential map is via Arnold’s theory of Legendrian singularities [3]. The im-
age of a Legendrian map is called the front of that map. The tangential map
of a surface is a Legendre map, and so it can be expected to have only Legen-
dre singularities. Thus for a surface in general position, the only singularities
of its dual surface (i.e. of its front) can be: self-intersection lines, cuspidal
edges and swallowtails. So the godrons are the most complicated singularities
of the tangential map of a generic surface.

Definition of Front. In this paper, a front in general position is a surface
whose singularities, and the singularities of its dual surface, are at most:
self-intersection lines, cuspidal edges and swallowtails. Moreover, we require
that the parabolic curve never passes through a swallowtail point (the same
requirement for the dual front).

The invariant of a swallowtail. We can associate a projective invariant
(a number) to a swallowtail point s of a front S: We apply the tangential
map of S (in a neghbourhood of s) to obtain a locally smooth surface S∨

having a godron with cr-invariant ρ. The number ρ(s) := ρ is associated to
the swallowtail s.

The tangential map of S sends the elliptic (hyperbolic) domain of S to the
elliptic (resp. hyperbolic) domain of S∨. Thus the hyperbolic and elliptic
domains of a front in general position are separated by the cuspidal edge (and
by the parabolic curve). This implies that there are two types of swallowtails:

Definition 6. A swallowtail point of a generic front is said to be hyperbolic
(elliptic) if, locally, the self-intersection line of that front is contained in the
hyperbolic (resp. elliptic) domain.

The proofs of the following theorems show that the configurations of
the curves F , P and D at a godron have a relevant meaning for the local
(projective, affine or Euclidean) differential properties of the swallowtails.

Theorem 7. The dual of a surface at a positive godron is an elliptic swal-
lowtail. The dual of a surface at a negative godron is a hyperbolic swallowtail.

Proof. By Proposition 3, a godron g is positive (negative) if and only if its
cr-invariant satisfies ρ(g) > 1 (resp. ρ(g) < 1).

By Theorem 4, ρ(g) > 1 (resp. ρ(g) < 1) if and only if the conodal curve
at g lies locally in the elliptic (hyperbolic) domain.

Finally, since the tangential map sends the elliptic (hyperbolic) domain
to the elliptic (resp. hyperbolic) domain of the dual surface, it is evident
that the conodal curve at g lies locally in the elliptic (hyperbolic) domain if
and only if the dual surface is an elliptic (resp. hyperbolic) swallowtail.
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Theorem 8. In the neighbourhood of a swallowtail point s of a front in
general position, the flecnodal curve F has a cusp whose tangent direction
coincides with that of the cuspidal edge. The point s separates F locally into
its left and right branches. There are four possible generic configurations of
F in the neighbourhood of s (see Fig. 7):

(e) For an elliptic swallowtail the flecnodal curve is a cusp lying in the small
domain bounded by the cuspidal edge (ρ(s) ∈ (0, 1)).

There are 3 different generic types of hyperbolic swallowtails.

(h1) Each branch of the cuspidal edge is separated from the self-intersection
line by one branch of the flecnodal curve (ρ(s) ∈ (−1

2
, 0)).

(h2) The self-intersection line lies between the two branches of the flecnodal
curve and separates them from branches of the cuspidal edge. The cusp of
the flecnodal curve points in the same direction as the cusp of the cuspidal
edge (ρ(s) ∈ (−1

2
, 0)).

(h3) The cusp of the flecnodal curve and the cusp of the cuspidal edge are
pointing in opposite directions (ρ(s) ∈ (−∞,−1

2
)).

(h1) (h2) (h3) (e)

− +

ρ ∈ (0, 1) ρ ∈ (−1
2
, 0) ρ ∈ (−∞,−1

2
) ρ ∈ (1,∞)

Figure 7: A godron of a smooth surface and its dual surface: a swallowtail.

4 The proofs of the theorems

Preparatory conventions and results. In the sequel, we will consider
the surface S as the graph of a smooth function z = f(x, y), where x, y, z form
an affine coordinate system. The asymptotic directions satisfy the equation:

fxx(dx)2 + 2fxydxdy + fyy(dy)2 = 0.

For dy = pdx, this equation takes the form

Af (x, y, p) = fxx + 2fxyp + fyyp
2 = 0. (1)
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Equation (1) is called the asymptote-equation of f .

In what follows, we will assume without loss of generality that the point
under consideration in the (x, y, p)-space is the origin: by a translation and a
rotation in the (x, y)-plane, we can take (x, y) = (0, 0) and p = 0, respectively.

Moreover, we will take an affine coordinate system x, y, z such that the
(x, y)-plane is tangent to S at the point under consideration. Thus we will
have the conditions

f(0, 0) = fx(0, 0) = fy(0, 0) = 0. (2)

The parabolic curve of the surface z = f(x, y) is the restriction of the
graph of f to the discriminant curve (in the (x, y)-plane) of equation (1).
That is, the parabolic curve is determined by the equations

Af (x, y, p) = 0 and Af
p(x, y, p) = 0. (∗)

The fact that a godron is a folded singularity of (1) implies that

Af
x(0, 0, 0) = 0. (∗∗)

The conditions (∗) and (∗∗), at the origin in the (x, y, p)-space, imply
that

fxx = fxy = fxxx = 0 (3)

at the origin in the (x, y)-plane.

The choice of a coordinate system such that the x-axis is an asymptotic
direction of S at the origin is equivalent to our assumption that the point
under consideration in the (x, y, p)-space is the origin.

So the x-axis is tangent to the parabolic curve at the godron.

4.1 Proof of Theorem 2

Let γ(t) = (x(t), y(t), z(t)) be a curve on S, where z(t) = f(x(t), y(t)), which
is tangent to the parabolic curve at the origin, that is,

ẏ(0) = 0. (4)

Since all our calculations and considerations take place at the origin
(x, y) = (0, 0) and at t = 0, we will omit to write this explicitly.

Evidently conditions (2) imply ż = fxẋ + fyẏ = 0. The equality

z̈ = fxẍ + fyÿ + (fxxẋ
2 + 2fxyẋẏ + fyyẏ

2)

together with conditions (2), (3) and (4) imply that z̈ = 0. This proves that
the plane z = 0 is osculating.
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Finally, the equality

...
z = fx

...
x + fy

...
y + 3(fxxẋẍ + fxy(ẋÿ + ẍẏ) + fyyẏÿ)

+ fxxxẋ
3 + 3fxxyẋ

2ẏ + 3fxyyẋẏ2 + fyyyẏ
3

together with conditions (2), (3) and (4), imply that
...
z = 0, proving that

the first three derivatives of γ at t = 0 are linearly dependent (all of them
lie in the (x, y)-plane). So γ has a flattening or an inflection at the origin,
according to the linear independence or dependence, respectively, of its first
two derivatives at t = 0. ¤

4.2 Preliminary remarks and computations

We recall that Platonova’s Theorem [13] implies that at a godron of a generic
smooth surface S, there is an affine coordinate system such that S is locally
given by

z =
y2

2
− x2y + λx4 + ϕ(x, y) (for some λ 6= 1

2
, 0) (G1)

where ϕ is the sum of homogeneous polynomials in x and y of degree greater
than 4 and (possibly) of flat functions.

The information we need about S (for the proofs of our theorems) is
contained in its 4-jet. The term ϕ in (G1) only breaks slightly the symmetry,
but it does not contain additional information. Thus, in the proofs of our
theorems, we will systematically use Platonova’s normal form of the the 4-jet
of S. The reader can easily verify that the term ϕ has no influence on our
arguments.

First we need to calculate the curves F , P and D. For that we need the
second partial derivatives of the functions f(x, y; λ) = y2

2
− x2y + λx4:

fxx = −2y + 12λx2, fxy = −2x, fyy = 1. (H)

The asymptote-equations of the surfaces z = y2

2
−x2y +λx4 are therefore

given by

Af (x, y, p; λ) = (12λx2 − 2y)− 4xp + p2 = 0. (5)

We are interested in the configurations of the curves F , P and D at the
godron g. According to Theorem 2, these curves have at least 4-point contact
with the (x, y)-plane. We will thus consider the curves F̄ , P̄ and D̄ on the
(x, y)-plane, whose images by f are F , P and D, respectively. These plane
curves have the same 2-jets as F , P and D, respectively.
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The parabolic curve. The equations (∗) of 4.1 imply that P̄ is given
by the Hessian of f , f 2

xy − fxxfyy = 0. From (H) one obtains that P̄ is the
parabola

y = 2(3λ− 1)x2.

The flecnodal curve. According to [16, 18], the curve F̄ associated to
the surface z = f(x, y) is obtained from the intersection of the surfaces

Af (x, y, p) = 0 and IAf

(x, y, p) := (Af
x + pAf

y)(x, y, p) = 0,

in the (x, y, p)-space, by the projection of this intersection to the (x, y)-plane,
along the p-direction. From (5) one obtains

IAf

(x, y, p) = 6(4λx− p).

Combining the equation p = 4λx with (5) one obtains that F̄ is the parabola

y = 2λ(4λ− 1)x2.

The conodal curve. Since Platonova’s normal form is symmetric with
respect to the x-direction, the bitangent planes in the neighbourhood of g
are invariant under the reflection (x, y, z) 7→ (−x, y, z). Thus the points of
the conodal curve satisfy fx(x, y; λ) = 0. That is, −2x(y − 2λx2) = 0. Thus
the curve D̄ is the parabola

y = 2λx2.

4.3 Proof of Theorem 3

We consider the parabolas F̄ , P̄ and D̄ as graphs of functions y = y(x). The
Legendrian curves LF , LP and LD in the (x, y, p)-space J1(R,R) (which is
the space of 1-jets of the real functions y(x) of one real variable) are tangent
to the contact plane Π at the origin (parallel to the plane y = 0). The slope
of the tangent line at the origin, of each of these Legendrian curves, equals
twice the second derivative at zero of the function y = y(x) associated to the
corresponding parabola, that is, equals twice the coefficient of that parabola
(note that the term ϕ in (G1) will contribute with higher order terms which
will have no influence on these coefficients).

The Legendrian curve consisting of the contact elements tangent to the
origin is vertical. Write lg for its tangent line. The cross-ratio of the tangent
lines lF , lP , lD and lg is given in terms of the coefficients c of the parabolas
F̄ , P̄ and D̄ by

ρ(g) = (lF , lP , lD, lg) =
c(F )− c(D)

c(P )− c(D)
=

2λ(4λ− 1)− 2λ

2(3λ− 1)− 2λ
= 2λ.
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This proves Theorem 3. ¤

Rewriting the equations in terms of ρ. After Theorem 3, we rewrite
Platonova’s normal forms of the 4-jet of S at a godron and the equations of
the curves F̄ , P̄ and D̄ in terms of the cr-invariant ρ:

z =
y2

2
− x2y + ρ

x4

2
(ρ 6= 1, 0). (R)

y = (3ρ− 2)x2; (P )

y = ρ(2ρ− 1)x2; (F )

y = ρx2. (D)

4.4 Proof of Separating 2-jet Lemma

An easy way to compute (and to see) the dual surface of S ⊂ RP 3, viewed as a
surface lying in the same space RP 3, is by the ‘polar duality map’ with respect
to a quadric. With this map, the calculations are simpler if the considered
quadric is a paraboloid of revolution (see [17]). Moreover, if the surface
S is the graph of a function z = f(x, y), then the polar duality map with
respect to the paraboloid z = 1

2
(x2+y2) coincides with the classical Legendre

transform of f . So the dual surface has the following parametrisation:

τf : (x, y) 7→ (fx(x, y), fy(x, y), xfx(x, y) + yfy(x, y)− f(x, y)).

In the case of the surfaces Sρ given in (R), one obtains

τρ : (x, y) 7→
(
−2xy + 2ρx3, y − x2,

y2

2
− 2x2y + 3ρ

x4

2

)
.

The images of our plane curves F̄ , P̄ and D̄, under τρ, are exactly the
flecnodal curve, the cuspidal edge and the self-intersection line of the dual
surface S∨ρ , respectively. Since F̄ , P̄ and D̄ are parabolas, we state the
proposition:

Lemma 1. The image of the parametrised parabola t 7→ (t, ct2), under τρ, is
the parametrised space curve (lying on S∨):

αc
ρ : t 7→

(
2(ρ− c)t3, (c− 1)t2,

(
c2

2
− 2c +

3

2
ρ

)
t4

)
.

Proof. This is a direct application of the above Legendre duality map τρ.
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The above parametrisation implies that the curves αc
ρ have at least 4-

point contact with the (x, y)-plane at t = 0. In order to study the behaviour
of the curves αc

ρ for different values of c (for a fixed value of the cr-invariant
ρ), we will consider their projection to the (x, y)-plane along the z-direction:

γc
ρ : t 7→ (

2(ρ− c)t3, (c− 1)t2
)
. (6)

Clearly, γc
ρ(t)− αc

ρ(t) = O(t4).

Lemma 2. Fix a value of the godron invariant ρ. The images of all parabolas
y = cx2, c 6= 1, under the composition of τρ with the projection (x, y, z) 7→
(x, y), are cusps pointing down if c > 1 and pointing up if c < 1. These cusps
are semi-cubic if c 6= ρ and (very) degenerate if c = ρ.

The image of the parabola y = x2 (c = 1) under the above composition is
the x-axis if ρ 6= 1 and it is the origin if ρ = 1.

Proof. Lemma 2 and Separating Lemma follow from parametrisation (6).

Remark 4. It is clear from Lemma 2 that the behaviour of the curve τρ(F̄ ),
τρ(P̄ ) or τρ(D̄) in S∨ρ , changes drastically when the coefficient cF (ρ), cP (ρ)
or cD(ρ), respectively, passes through the value 1.

4.5 Proof of Theorem 4

The projection of Sρ to the (x, y)-plane, along the z-axis, is a local diffeo-
morphism. So the configuration of the curves F , P and D with respect to
the asymptotic line and the separating 2-jet at g, on the surface S, is equi-
valent to the configuration of the parabolas F̄ , P̄ and D̄ with respect to the
parabolas y = 0 · x2 = 0 and y = 1 · x2 (see Remark 2), on the (x, y)-plane.

Given a value of ρ, this configuration is determined by the order, on the
real line, of the coefficients of these five parabolas:

cF = ρ(2ρ− 1), cP = 3ρ− 2, cD = ρ, cal = 0, cσ = 1.

The graphs of these coefficients, as functions of ρ, are depicted in Fig. 8.
Using the formulas of the coefficients cF , cP and cD (or from Fig. 8) one

obtains by straightforward and elementary calculations that:

ρ ∈ (1,∞) ⇐⇒ 0 < 1 < cD < cP < cF ;
ρ ∈ (2

3
, 1) ⇐⇒ 0 < cP < cF < cD < 1;

ρ ∈ (1
2
, 2

3
) ⇐⇒ cP < 0 < cF < cD < 1;

ρ ∈ (0, 1
2
) ⇐⇒ cP < cF < 0 < cD < 1;

ρ ∈ (−1
2
, 0) ⇐⇒ cP < cD < 0 < cF < 1;

ρ ∈ (−∞,−1
2
) ⇐⇒ cP < cD < 0 < 1 < cF .

This proves Theorem 4. ¤
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ρ

c

cD

cF

cP

cσ = 1

Figure 8: The coefficients cF , cP and cD as functions of the invariant ρ.

4.6 Proof of Proposition 3

Consider the family of surfaces Sρ given by (R). By (P ), the slope m of the
tangent lines of the curve P̄ is given by:

m(x) = 2(3ρ− 2)x.

The slope p of the (double) asymptotic lines on the parabolic curve, projected
to the (x, y)-plane, is given by the equation Af

p(x, y, p; ρ
2
) = 0, that is,

p(x) = 2x.

The points of the positive y-axis, near the origin, are hyperbolic points
of the surface Sρ of (R). So the hyperbolic domain of Sρ lies locally in the
upper side of the parabolic curve. Therefore g is a positive (negative) godron
if and only if the difference of slopes (p−m) is a decreasing (resp. increasing)
function of x, at x = 0.

Consequently, the equation (p − m)′(0) = −6(ρ − 1) implies that the
godron g is positive for ρ > 1 and negative for ρ < 1, proving Proposition 3.

¤

4.7 Proof of Proposition 2 and of Theorem 5

Preliminary remarks on the asymptotic-double (see Section 3.2).
The asymptotic double A of the surface S is foliated by the integral curves
of the asymptotic lifted field of directions. By definition of the lifted field,
the asymptotic curves of S are the images of these integral curves under the
natural projection PT ∗S → S (sending each contact element to its point of
contact) and, under this projection, the asymptotic double A (of S) doubly
covers the hyperbolic domain with a fold singularity over the parabolic curve.
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Write P̃ for the curve ofA which projects over P (that is, the curve formed
by the fold points in A of the above projection). The surface A \ P̃ , has
two (not necessarily connected) components, noted by Al and Ar, separated
by P̃ . The integral curves on the component Al, are projected over the left
asymptotic curves and the integral curves on the component Ar are projected
over the right ones. We call these components the left component and the
right component, respectively, of A \ P̃ .

Now, consider the surface S as the graph of a function f : R2 → R,
z = f(x, y), and take the projection π : (x, y, z) → (x, y), along the z-axis.
The derivative of π sends the contact elements of S onto the contact elements
of π(S) ⊂ R2 and it induces a contactomorphism PT ∗S → PT ∗R2 sending A
to a surface Ã in PT ∗R2, which doubly covers (under the natural projection
PT ∗R2 → R2) the image in R2 of the hyperbolic domain. We still call the
surface Ã ⊂ PT ∗R2 the asymptotic-double of S. This surface consists of the
contact elements of the (x, y)-plane satisfying the following equation:

fxxdx2 + 2fxydxdy + fyydy2 = 0. (∗)

In order to handle the the asymptotic double Ã, we take an ‘affine’ chart of
PT ∗R2. The space of 1-jets of the real functions of one real variable J1(R,R)
(with coordinates x, y, p) has a natural contact structure (defined by the 1-
form α = dy − pdx) and it parametrises almost all contact elements of R2:
The contact element with slope p0 6= ∞ at the point (x0, y0) of the plane of
the variables (x, y) is represented by the point (x0, y0, p0) in J1(R,R). The
asymptotic-double Ã is the surface in J1(R,R) given by the equation

Af (x, y, p) := fxx + 2fxyp + fyyp
2 = 0, (7)

(obtained from (∗) by taking p = dy/dx). Moreover, the solutions of the
implicit differential equation (7) are the images (by π) of the asymptotic
curves of S. Equation (7) is called the asymptote-equation of f .

The curve P̃ is the criminant curve (see c.f. [2]) of the implicit differen-
tial equation Af (x, y, p) = 0 and it is determined by the pair of equations
Af (x, y, p) = 0 and Af

p(x, y, p) = 0.
Below, the images on the plane, under the map π : (x, y, z) 7→ (x, y), of the

parabolic and flecnodal curves, of the godrons and of the special hyperbolic
and special elliptic points of S, will be called the same, that is, parabolic
curves, etc. One obtains the original objects by applying the function f and
taking the graph.

Proof of Proposition 2. Write F̃ for the intersection of Ã (Af (x, y, p) = 0)
with the surface given by the equation IAf

(x, y, p) = 0. As we mentioned in
4.2 the flecnodal curve in the (x, y)-plane is the image of the curve F̃ under
the projection (x, y, p) 7→ (x, y). The points of (transverse) intersection of
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the curves F̃ and P̃ project over the godrons of S. So, over a godron the
curve P̃ locally separates F̃ (see Fig. 9).

� �� �

� �� �

F̃

P̃Al

Ar

singular point of the lifted field

Fr

Fl
P

asymptotic line
godron

J1(R,R) ⊃ Ã

R2

Figure 9: The projection π : A → S, the curves P̃ , F̃ , P and F .

That is, F̃ has one branch on the left component of Ã and other branch
on the right component. This implies that a godron separates locally the left
and right branches of the flecnodal curve, proving Proposition 2. ¤

Proof of Theorem 5. Consider a godron g with cr-invariant ρ of a smooth
surface. To prove Theorem 5 we need to know the values of ρ for which the
curves P̃ and F̃ are tangent. Of course, such non-generic values correspond
to godrons of non-generic surfaces. To found these values we only need to
know the tangent directions of these curves over g. The tangent lines of
these curves belong to the tangent plane of Ã at g̃ (the point over g in the
(x, y, p)-space), which is also the contact plane at g̃. So it suffices to take the
4-jet of S at g.

Take the normal form considered above:

z =
y2

2
− x2y + ρ

x4

2
. (R)

The coordinates (x, y, z) of this normal form satisfy the conditions considered
in Theorem 5.

Since the point g̃ is the origin, the tangent lines to the curves P̃ and F̃
belong to the (x, p)-plane. The surface Af

p(x, y, p) = 0 is the plane given by

the equation p = 2x, which is independent of ρ. The surface IAf
(x, y, p) = 0

is the plane given by the equation p = 2ρx. So the curves P̃ and F̃ are
tangent only for ρ = 1 (in this case we have the collapse of two godrons).

By Proposition 3, this implies that the side on which the right branch of
the flecnodal curve will lie depends only on the index of the godron.
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To see explicitly on which side of the x-axis the right branch of the flecno-
dal curve lies for a negative godron, it is enough to look at an example. We
will take a godron of a cubic surface (whose index is −1, after Corollary 3.5).

The osculating plane of an asymptotic curve at a point of a surface is the
tangent plane to the surface at that point. Using this fact, one defines the
“osculating plane” of a straight line lying in a surface.

In this way, a segment of a straight line lying in a surface is said to be
a left (right) curve, if the tangent plane to the surface along that segment
twists like a left (resp. right) screw.

The x-axis is an asymptotic (and flecnodal) curve of the cubic surface z =
y2/2−x2y. One easily verifies that the positive half-axis is a left asymptotic
curve. This proves Theorem 5. ¤

4.8 Proof of Theorem 6

First, we will prove Theorem 6 for the case in which the parabolic curve
bounding the hyperbolic disc has only two godrons.

Lemma 3. If the parabolic curve bounding a hyperbolic disc H (of a generic
smooth surface) has exactly two godrons, then the disc H contains an odd
number of special hyperbolic points.

Write g1 and g2 for the godrons lying on ∂H. By Proposition 5, both g1

and g2 are positive godrons.

Claim 1. If two vectors v1 and v2 are tangent to F at g1 and g2, respectively,
and both are pointing from Fl to Fr, then v1 and v2 orient the parabolic curve
∂H in the same way.

Proof. Since all neighbouring elliptic points of the parabolic curve ∂H belong
to the same connected component of the elliptic domain, they have the same
“natural” co-orientation (given by the tangent plane). Since both godrons
are positive, Claim 1 follows from Theorem 5.

Proof of Lemma 3. Write fr for the connected component of Fr which starts
at g1. Since there are only two godrons on ∂H, fr is a segment ending in
g2. This segment separates H into two parts, which we name A and B. The
connected component of Fl starting in g1, fl, is also a segment ending in g2.
Claim 1 implies that if in the neighbourhood of g1 the segment fl lies in A,
then, in the neighbourhood of g2, it lies in B. Thus fl crosses fr an odd
number of times.

If H contains other connected components of Fl and Fr, then there are
(possibly) additional special hyperbolic points in H. Apart from fl and
fr, the only connected components of Fl and Fr in H are closed curves
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(possibly empty). But the number of intersection points of a closed curve of
Fr (lying H) with fl, or with a closed curve of Fl, is even. Thus the number
of intersection points of Fl with Fr is odd. ¤
Proof of Theorem 6. To prove the general case of Theorem 6, we will
consider the closure of the hyperbolic disc, the parabolic curve ∂H and the
connected components of Fl and Fr lying in H as a diagram ∆. We will prove
in a purely combinatorial manner that the number of intersection points of Fl

with Fr is odd. For this, we will transform the diagram ∆ using two “moves”,
which are elementary changes (of two types) of local diagrams, that preserve
the number of intersection points of Fl with Fr:

(I)

(II)

Figure 10: The two elementary moves of diagrams. The moves with opposite choice of
colours of the flecnodal curve are also possible.

These moves are depicted in Fig. 10, where an intermediate singular dia-
gram is marked by a dotted box.

Write G+ and G− for the number of positive and negative godrons on ∂H,
respectively. Since the asymptotic covering of H̄ is a sphere, G+ −G− = 2.

If G− = 0, the theorem is proved in Lemma 3. So suppose G− > 0.
Consider a pair of godrons g+ and g− of opposite index, which are con-

secutive on ∂H. Two vectors tangent to ∂H and pointing from Fl to Fr, one
at g+ and the other at g−, provide different orientations of ∂H (see Claim 1).

Consider the segment of parabolic curve joining g+ to g−, and which does
not contain other godrons. The local diagram in the tubular neighbourhood
of this segment of the parabolic curve is depicted in the left side of Fig. 11.

Step 1. In this tubular neighbourhood we deform the black curves starting
in g+ and g−, in order to approach one to the other (the central diagram of
Fig. 11). Now we apply a move of type I to this diagram in order to obtain
a new diagram in which the connected component of Fr starting in g+ will
be a segment ending in g− and lying in the tubular neighbourhood of the
considered segment of the parabolic curve.
Step 2. Applying a move of type II to the local diagram obtained in Step 1,
one obtains a new diagram without the pair of godrons g+ and g−.

Applying G− times the above process, one obtains a final diagram having
only two positive godrons. Theorem 6 is proved by applying Lemma 3 to
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g+ g− g+ g− g+ g−

Figure 11: A deformation of Fr and a move if type I.

this final diagram (note that also the proof of Lemma 3 depends only on the
combinatorial properties of the initial diagram). ¤

4.9 Proof of Theorem 8

To prove Theorem 8 we will use the fact that the tangential map of S sends
the flecnodal curve of S onto the flecnodal curve of S∨.

The dual of a front S̃ in general position at a swallowtail point s is a
godron of a generic (locally) smooth surface. So Theorem 1 and Separating
Lemma imply that the flecnodal curve of S̃ has a cusp at s having the same
tangent line that the cuspidal edge of S̃. Now, by Proposition 2, the swal-
lowtail point separates the flecnodal curve into its left and right branches.

The configuration formed by the flecnodal curve, the cuspidal edge and
the self-intersection line of S̃ at the swallowtail point s, is determined by the
configuration formed by the curves F , P , D and the separating 2-jet on the
(locally smooth) dual surface S̃∨, at its godron g = s∨.

Since the asymptotic line is not considered in the concerned configura-
tions, we can eliminate the number 0 (corresponding to the asymptotic line)
from the six inequalities of the proof of Theorem 4. One obtains four distinct
inequalities, corresponding to four open intervals for the values of ρ :

ρ ∈ (1,∞) ⇐⇒ 1 < cD < cP < cF ;
ρ ∈ (0, 1) ⇐⇒ cP < cF < cD < 1;

ρ ∈ (−1
2
, 0) ⇐⇒ cP < cD < cF < 1;

ρ ∈ (−∞,−1
2
) ⇐⇒ cP < cD < 1 < cF .

Using Separating Lemma and the configurations of Theorem 4 (not consider-
ing the asymptotic line) one obtains that these four configurations correspond
to the four configurations (of Theorem 8) for the flecnodal curve, the cuspi-
dal edge and the self-intersection line in the neighbourhood of a swallowtail
point of a front in general position. ¤

Remark 5. When this paper was almost finished, I visited l’École Normale
Supérieure de Lyon to give a talk about the results of [18] and of this paper.
Few days before my talk, E. Ghys and D. Serre have found the book [12] on the
history of thermodynamics in Netherlands. It describes a part of Korteweg’s
work ([10, 11]) about the godrons (called plaits in [12]), the parabolic curve
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and the conodal curve. According to [12], Korteweg had also described the
bifurcations of the parabolic and conodal curves when two godrons are born
or disappear, for an evolving surface. His mathematical work on the theory
of surfaces was motivated by thermodynamical problems.

References

[1] Aicardi F., Geometrical Properties of Generic Real surfaces at the Special Parabolic
Points, Preprint.

[2] Arnol’d V.I., Geometrical Methods in the Theory of Ordinary Differential Equa-
tions, Springer-Verlag, New York Heidelberg Berlin, 1983. (Russian version: Nauka,
1978.)

[3] Arnol’d V.I., Varchenko A.N., Gussein–Zade S.M., Singularities of Differen-
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Centre symmetry sets and other invariants of algebraic
sets

Mariusz Zaja̧c 1

The aim of the present note is to reformulate some classical concepts of
the theory of planar curves in the language of algebraic geometry. In Sec.
1 we shall present the definitions and several basic properties of the centre
symmetry sets of a closed planar curve. Sec. 2 recalls other classical notions,
namely that of the centre of curvature, and the evolute, i.e. the locus of the
centres of curvature, and shows how they can be expressed in purely algebro-
geometric terms. Finally, in Sec. 3 we shall indicate the way of combining the
methods, namely the algebraic definition of the centre symmetry set and the
anti-centre symmetry set. In particular we shall study the ACSS of a cubic
curve. We shall suggest some possibilities for future research and mention
some difficulties that are likely to appear.

The author wishes to thank the CIRM at Luminy for the hospitality and
Peter Giblin for discussions and clarifying some points.

1 The centre symmetry sets

Let us consider a smooth curve C ∈ R2. If C is an oval, i.e. a closed curve
without inflection points, we can say that a point O is the centre of symmetry
of C if it is the midpoint of all chords passing through O. This is, obviously,
a very restrictive property and a generic oval has no centre of symmetry.
One can, however, generalize this notion and replace the classical centre of
symmetry by a certain set that can be defined for any oval C and reduces
to a single point if C is centrally symmetric. The main idea is to draw
the segments joining those pairs of points on C at which the tangents are
parallel. This one-parameter family of chords is depicted in Fig. 1 for the
bounded connected component of the cubic curve x2 = y3 − y (this is the
first interesting case, as obviously all closed conics, i.e. ellipses, are centrally
symmetric).

1Faculty of Mathematics and Information Science, Warsaw University of Technology,
Plac Politechniki 1, 00-661 Warszawa, Poland. e-mail: zajac@mini.pw.edu.pl
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Figure 1: Symmetry sets of an oval

We see that the following two definitions seem natural:

• the envelope of the above-mentioned family of chords (the larger curve
with three cusps in Fig. 1) will be called the centre symmetry set (CSS);

• the set of midpoints of the chords considered (the smaller curve with
three cusps in Fig. 1) will be called the anti-centre symmetry set
(ACSS).

Of course if C has a centre of symmetry O then both the CSS and the
ACSS reduce to the point O. These sets are also invariant under the affine
transformations of R2 because we only use the notions of tangency, parallel
lines and the midpoint of a segment.
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The differential properties of these sets were studied in [4], [1] and [2],
and in the case of a generic oval they can be summarized as follows:

• apart from a finite number of cusps both sets are smooth curves with
no inflection points;

• the CSS and the ACSS have the same odd number of cusps;

• the cusps of the ACSS are the midpoints of the chords joining those
pairs of points at which the curvatures of C are equal;

• the cusps of the CSS lie on the chords joining a point of large curvature
with a point of small curvature (more precisely the ratio of curvatures
must have a critical point).

2 Focal loci

In this section we shall recall the concept of the focal locus of a curve (tra-
ditionally referred to as the evolute of the curve), which is the locus of the
centres of curvature of this curve. We shall generally follow the exposition
of [5], restricting ourselves, however, to the case of algebraic curves in the
(affine or projective) plane.

There are several equivalent ways of defining the centre of curvature of a
curve in elementary differential geometry. We choose one of them because it
can easily be rewritten in purely algebraic terms.

Let γ : (a, b) → R2 be a smooth curve parametrized by the arclength,
and let T (t) and N(t) be the unit vectors tangent and normal to γ at γ(t),
respectively. If we now define the following function:

e : (a, b)×R → R2; : (t, r) 7→ γ(t) + rN(t),

i.e. the endpoint map associating to every normal vector of length r beginning
at γ(t) its end, then using the well-known Frenet formulae:

γ′(t) = T (t), : T ′(t) = k(t)N(t), : N ′(t) = −k(t)T (t),

where k(t) is the curvature, we can easily prove the following

Proposition 1. The evolute of a planar curve is equal to the set of critical
values of the endpoint mapping.

It should be mentioned here that the notions of critical and regular values
are invariant under any diffeomorphic change of coordinates in the domain.
Therefore the above proposition will remain equally valid if we take any
smooth parametrization t instead of the arclength or any smooth normal
vector field N(t) instead of the vectors of length 1. However, the evolute is
invariant under isometries only, and not all affine transformations, because
we always require that N(t) should be orthogonal to the tangent.
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Focal loci of algebraic curves

As usual, the most natural setting for dealing with algebraic curves is the
(complex) projective plane. If we consider a polynomial f(x, y) of degree d
and its homogeneous counterpart F (X, Y, Z) = Zdf(X/Z, Y/Z) then instead
of the affine normal line to C = {F (x, y) = 0} at a regular point P =
(x0, y0) ∈ C with the equation

Fx(x0, y0) · (y − y0)− Fy(x0, y0) · (x− x0) = 0

we can talk of its projectivization: the line in P2 joining P = (x0 : y0 : 1)
with the point at infinity P∞ = (FX(P ) : FY (P ) : 0).

The projectivization of the endpoint mapping e is now

E : C ×P1 → P2;

((X : Y : Z), (λ : µ)) 7→ (λX + µFX(X, Y, Z) : λY + µFY (X,Y, Z) : λZ).

In this setting the focal locus is the critical value set of an explicitly defined
rational mapping defined on a smooth algebraic variety. Therefore the evolute
of an algebraic curve is also an algebraic set. More detailed analysis of this
set, which can be found in [5], leads for instance to the following

Theorem 1. Let X ⊂ P2
C be a general algebraic curve of degree d > 1 and

Z its focal locus. Then deg Z = 3d(d− 1).

Note that the degree of the real affine view of the focal locus can be equal
to 3d(d − 1) or lower, e.g. for an ellipse the algebraic degree of the evolute
equals 3d(d− 1) = 6 but for a parabola it is 3.

3 Algebraic approach to centre symmetry sets

Let C ⊂ R2 be a smooth curve. As we see from the very definition of CSS
and ACSS, the most important objects are pairs of points on C with parallel
tangents. Let us define

S = {(P,Q) ∈ C × C : the tangents to C at P and Q are parallel}.

If the projectivized equation of C is F = 0, this amounts to saying that these
tangents meet at a point with Z = 0, or equivalently

S = {(P,Q) ∈ C × C : FX(P )FY (Q) = FX(Q)FY (P )}.

The set S can be rather complicated in the general (nonconvex) case, but
if C is an oval then S is the sum of the diagonal {(P, P )} and the set of
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pairs of opposite points {(P, P ′)}. Thus topologically S has two components
isomorphic to C itself, but they cannot be distinguished algebraically, which
is a serious drawback (see below).

Once we have defined S we can define both CSS and ACSS in algebraic
terms.

Proposition 2. The ACSS of a convex algebraic curve is (a connected com-
ponent of) the image of S under the ’midpoint mapping’

m((X1 : Y1 : 1), (X2 : Y2 : 1)) = (X1 + X2 : Y1 + Y2 : 2),

whereas the CSS is (a connected component of) the set of critical values of
the restriction j|S×P1 , where j is the ’chord mapping’

j((X1 : Y1 : 1), (X2 : Y2 : 1), (λ : µ)) = (λX1 + µX2 : λY1 + µY2 : λ + µ).

Prop. 2 can be proved analogously to Prop. 1.

3.1 ACSS of an algebraic curve – cubic case

In the affine setting we are tempted to say that the point (x, y) belongs to
the ACSS of the curve C = {f(x, y) = 0} if the following equations hold for
some x1, y1, x2, y2 :





f(x1, y1) = 0
f(x2, y2) = 0
fx(x1, y1)fy(x2, y2) = fx(x2, y2)fy(x1, y1)
x = x1+x2

2

y = y1+y2

2

(3.1)

If we eliminate x1, y1, x2, y2 from the above system, we should in princi-
ple obtain the equation defining the ACSS. However, as mentioned before, if
(x, y) = (x1, y1) = (x2, y2) ∈ C then the parallel tangents condition is tauto-
logically fulfilled, so in fact the system (3.1) defines the union of the ACSS
and the curve C itself. There are also other interesting phenomena, which
will be visible in the example.

Let f(x, y) = x3 − 3x − y2. The elimination of x1, y1, x2 and y2 from
(3.1), performed with the Singular package, gives the following 12-th degree
equation for x and y :

(x3 − 3x− y2)(8x9 − 12x6y2 − 30x7 + 6x3y4 + 3x4y2 − y6 +

+42x5 + 6xy4 + 6x2y2 − 26x3 − y2 + 6x) = 0

The divisibility of this equation by f(x, y) agrees with our previous analysis,
and the zero set of the second factor is shown in Fig. 2 as a thin line together
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Figure 2: ACSS of x3 − 3x− y2 = 0

with the original (thick) curve consisting of an oval and an unbounded branch
with two inflection points.

Let us make some observations:

• First and foremost, what we see is the real picture of the complex
ACSS, i.e. x and y are real, but x1, y1, x2 and y2 need not be.

• Beside the ACSS of the oval we can see three unbounded branches.
Their appearance is easy to understand: for a fixed point (x, y) ∈ C
with large coordinates x, y and almost vertical tangent line there are
three other points where the tangents are parallel, and they are approx-
imately (−√3, 0), (0, 0), (

√
3, 0). Therefore as (x, y) goes to infinity, the

three respective midpoints tend asymptotically to three ’parallel’ cubic
curves.

• From the equation of the ACSS one can directly compute its singular
points. It turns out that in the complex domain there are ten of them,
four of which have real coordinates, namely the three cusps of the
ACSS of the oval: (−1, 0) and (−0.8475,±0.153036) (hardly visible
in Fig. 2, but cf. Fig. 1) plus the point (1, 0), whose appearance
is confusing at first sight, as it does not seem to be the midpoint of
any chord of C. However, in precisely the same way as (−1, 0) is the
midpoint of the chord joining the points (−1,±√2), the cusp (1, 0)
is the midpoint of the chord between (1,

√
2i) and (1,−√2i). Indeed,
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apart from the obvious symmetry (x, y) 7→ (x,−y) there is also another
one: (x, y) 7→ (−x, iy).

• In fact, the segments of the rightmost branch between its cusp (1, 0)
and the inflection points of C consist of real points that are midpoints
of pairs of conjugate complex points. Let us discuss it in detail.

In order to find a point on C with tangent parallel to a given line
y = ax + b we have to solve the system of equations

{
x3 − 3x− y2 = 0
3(x2−1)

2y
= a

(3.2)

Substituting y from the second equation to the first one we get an
equation of order 4, which can have 2,3 or 4 real solutions, depending
on a. Geometrically speaking, the two limiting values of a are just the
slopes of the tangents at the inflection points of C : there are four
parallel tangents going in ’more vertical’ directions but only two in
’more horizontal’ ones. Nevertheless, even if there are only two real
solutions to the system (3.2), there are also two such points (x, y) with
complex conjugate coordinates, and their midpoint is real.

For a general cubic curve, however, the degree of the ACSS can be higher.

Theorem 2. Let X ⊂ R2 be a general algebraic curve of degree 3 and Z its
ACSS. Then deg Z = 12.

This means that performing the procedure of eliminating x1, y1, x2, y2

from the system (3.1) for a general cubic polynomial f(x, y) gives G(x, y) = 0,
where G is a divisible by f polynomial of degree 15, so the degree of G/f is
12.

Before sketching a proof of this result, let us show why the curve x3 −
3x − y2 = 0 is not general for this problem. One can easily see that the
system (3.2) for a general cubic leads to an equation of degree 6, not 4, and
indeed, a cubic can have as much as six parallel tangents. This is not the
case for x3− 3x− y2 = 0 because its projectivization X3− 3XZ2− Y 2Z = 0
has at infinity an inflection point (0 : 1 : 0) with the tangent Z = 0. Then
(0 : 1 : 0) is a double solution of the projectivization of (3.2) for any a. One
could also say informally that the line at infinity Z = 0 is parallel to any line
Y = aX +bZ because two lines are called parallel whenever their intersection
lies at infinity.

In Fig. 3 and 4 we see more examples of the ACSS of cubic curves. Please
pay attention to the neighbourhoods of the inflection points. As a rule only
one branch consists of midpoints of visible (real) chords.
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Figure 4: ACSS of x3 + y3 − 3xy − 3x + y + 1 = 0

3.2 ACSS of an algebraic curve – another approach

We intend to derive an algebraic condition for an arbitrary point P = (x0, y0)
to belong to the ACSS of the curve C = {f(x, y) = 0}. By translation
invariance this happens whenever (0, 0) belongs to the ACSS of the shifted
curve fP (x, y) = f(x+x0, y + y0) = 0. The coefficients of fP are polynomials
in x0 and y0, therefore it suffices to find a condition for (0, 0) to belong to
the ACSS of the curve C = {f(x, y) = 0} algebraic in the coefficients of f.

However, the origin (0, 0) belongs to the ACSS of C if and only if:

for some x and y both points (x, y) and (−x,−y) belong to C and the
respective tangents are parallel, or equivalently:

for some x and y the point (x, y) belongs both to C and to the symmetric

221



curve −C = {f(−x,−y) = 0} and the respective tangents coincide, which
means exactly:

the curves C and −C have at least one nontransversal intersection point.
We can also observe that the system{

f(x, y) = 0
f(−x,−y) = 0

(3.3)

is equivalent to {
fe(x, y) = f(x,y)+f(−x,−y)

2
= 0

fo(x, y) = f(x,y)−f(−x,−y)
2

= 0
(3.4)

where fe and fo denote the sums of monomials of even (respectively odd)
degrees included in f.

In particular for a cubic equation f =
∑

i+j≤3 aijx
iyj we obtain

{
a20x

2 + a11xy + a02y
2 + a00 = 0

a30x
3 + a21x

2y + a12xy2 + a03y
3 + a10x + a01y = 0

We solve this system in the following steps:
We complete the square in the first equation, i.e. perform a linear change

of coordinates in order to have a11 = 0. By abuse of notation the new x and
y will have unchanged names.

We solve the first equation for y2 obtaining y2 = Ax2 + B and substitute
Ax2 + B for y2 and (Ax2 + B)y for y3 in the second equation, obtaining

{
y2 = Ax2 + B
Cx3 + Dx2y + Ex + Fy = 0

(here A, . . . , F are some rational functions of the aij’s).
The second equation gives now

y = −Cx2 + E

Dx2 + F
x

and from the first equation we have
(

Cx2 + E

Dx2 + F

)2

x2 = Ax2 + B (3.5)

which, when multiplied by the denominator, becomes a cubic equation in x2.
This equation has a multiple root if and only if its discriminant is 0, and that
imposes a polynomial condition on A, . . . , F, hence also on the aij’s.

The preceding sketch omits some details, but it shows in principle that
we can derive not only the algebraic equation of the ACSS of any fixed cubic
curve, but also the general formula transforming any set of 10 coefficients aij

into the equation of the ACSS. Computations using Maple showed that this
equation has in fact degree 12.
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3.3 Critical points of the ACSS

From the above considerations it is clear that the ACSS has a critical point
if and only if the system (3.3), or equivalently (3.4), has a solution of mul-
tiplicity at least 3, which gives an extra algebraic condition that the cubic
equation in x2, obtained from (3.5) should have a triple root rather than only
a double one.

It is worth pointing out that the ACSS appeared in [3] under the name
MPTL (mid-parallel-tangents locus) as an auxiliary set for studying one of
generalizations of the axis of symmetry, namely the AESS (affine envelope
symmetry set), which is the set of the centres of conics having two points of
(at least) triple contact with the given curve (so called 3+3 conics). Accord-
ing to Propositions 2.4.7 and 2.4.9 of [3] the critical points of the ACSS are
simultaneously critical points of the AESS and they are the centres of 3+3
conics with parallel tangents.

3.4 CSS of an algebraic curve – preliminary remarks

In this part we shall skip the details of computation and show only the
general idea that one can treat the CSS in the same way as the ACSS in
3.2 and try to derive a condition for (0, 0) to belong to the CSS of the curve
C = {f(x, y) = 0}.

According to [4] and [1], any point on the CSS of C divides its respective
chord in the ratio equal to the ratio of the curvatures of C at the ends
of this chord. In other words the origin (0, 0) belongs to the CSS of C
if and only if there exists such a negative real k that the curves C and
kC = {f(kx, ky) = 0} have an intersection point with common tangents and
curvatures, i.e. a triple intersection point (side remark: in the oval case there
can be no such positive real k 6= 1).

This amounts to considering the system of equations:

{
f(x, y) = 0
f(kx, ky) = 0,

(3.6)

which unfortunately cannot be transformed to such a special form as (3.4)
because of the existence of k. However if deg f = n, then the following
equivalent system

{
knf(x, y)− f(kx, ky) = 0
f(x, y)− f(kx, ky) = 0

(3.7)

is simpler than (3.6) because the first equation has now degree n− 1 and the
second one has no constant term.
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Generally speaking, there are several ways of checking whether two given
plane curves have a triple intersection point. One of them requires equat-
ing the derivatives y′(x) and y′′(x) for both curves computed by the Im-
plicit Function Theorem; another method can be applied when one of the
curves has a rational parametrization (this is the case for (3.7) when n = 3,
since then the first equation has degree 2) – it involves substituting this
parametrization to the equation to the other curve and writing the discrim-
inant conditions in order to check if the resulting polynomial has a triple
root.

Quite obviously, although we could in principle write the corresponding
algebraic equations explicitly, they are much more complicated than in the
ACSS case. Last but not least, we still have to eliminate k from these equa-
tions, and remember that there may exist nonreal numbers k for which the
system (3.6) has a triple real solution (x, y).

It should be hoped, however, that for some special classes of curves the
computations could simplify considerably – e.g. for the curves of constant
width the ACSS coincides with the focal locus. These aspects will be dealt
with in the further research.

3.5 Final remarks

• A single point on the evolute corresponds to (a neighbourhood of) a
single point on the original curve C, while one point on the CSS or
ACSS reflects properties of two points on C.

• One algebraic equation usually defines a sum of several disjoint ovals,
some of which may be convex and some nonconvex. The maximal
number of ovals grows proportionally to the square of the degree of C,
and therefore the maximal number of components of CSS and ACSS is
asymptotically proportional to the fourth power of this degree.

• Finally, though the classical methods of algebraic geometry were used
successfully in [5], one must be aware that some extra structure on P2

is necessary. For instance, in order to define parallel tangents and the
midpoint of a segment we must fix a projective line Z = 0, and the
evolute requires some notion of distance or orthogonality (in fact there
exist also so called affine normals and affine evolutes, but we do not
address them here).

The above remarks suggest that, although various types of symmetry sets
arise quite naturally and find various applications e.g. in image recognition
and processing, their detailed algebraic study encounters serious obstacles.
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