
Programming in Graphical Environment
Internationalization

Paweł Aszklar
pawel.aszklar@pw.edu.pl

Faculty of Mathematics and Information Science
Warsaw Univeristy of Technology

Warsaw 2024

mailto:pawel.aszklar@pw.edu.pl


Internationalization Overview

Internationalization

Internationalization A.k.a. Globalization, process of designing and implementing software so that
it can be easily adapted to other languages and cultures (i18n, g11n).
Includes:

Separation of formatting of textual and other data from main logic,
UI design adaptable to changing text length, layout etc.,
Ability to handle international scripts,
Preference for images/icons with or instead of text to convey meaning.

Localization Process of adapting software to particular language and/or culture (l10n)

https://www.w3.org/International
https://www.unicode.org/

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 2 / 23

https://www.w3.org/International
https://www.unicode.org/


Text encoding Glossary

Glossary
Character No single definition:

Smallest component of a written language (refers to semantic
meaning, abstract shape rather than specific rendering of that
shape i.e. glyph)
Basic unit of particular character set

Abstract character Smallest unit of information for organization, control and
representation of textual data (letters, digits, diacritic marks, control
characters, …)

User perceived character What a person thinks of as a character in their script
Code point Numerical value, might correspond to a character (but doesn’t have to)

Coded character set Mapping of abstract characters to code points (a.k.a. character set,
character encoding)

Text encoding Method of storing and/or transmitting code points

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 3 / 23



Text encoding Glossary

Glossary

Grapheme Minimally distinctive unit of writing for a given writing system. Characters are
not distinct graphemes if their substitution doesn’t change meaning.
Grapheme can be represented using multiple code points, or vice versa.

Grapheme cluser Horizontally segmentable unit of text (≈ user perceived character)
Glyph Particular image representing piece of textural data. Code point might be

rendered using multiple glyphs, or multiple grapheme clusters might be
represented by single glyph (e.g. ligatures). Glyphs can have variants (i.e.
different image representation of the same data)

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 4 / 23



Text encoding History

ASCII

No such thing as plain text
As with any data, values
meaningless without proper
interpretation
Many text encodings existed in
the past, eg. EBCIDIC
ASCII — one of the more popular
early computer text encodings

Standards: ISO/IEC 646,
ECMA‐6, ANSI X3.4
7‐bit encoding
128 code‐points

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 5 / 23



Text encoding History

Code Pages
Minimum data granularity on most computers is 8‐bits
Extra bit used to encode more characters
Different approaches often called code pages: ISO‐8859‐x, Windows‐125x, KOI8‐R …
Various degrees of standardization: ISO/IEC 8859
Single‐byte code pages

Additional 128 code points
Sufficient for many languages, but also many exceptions: Eastern‐Asian scripts, …

Double‐ or multi‐byte character sets
Usually First byte with highest bit set interpreted together with the next one
Over 65 thousand possible code‐points
GBK, Big5
Others use shift states (code pointe sequences switch between character sets): ISO/IEC 2022
No way to determine if randomly selected byte is stand‐alone, first or second byte of a pair

Mojibake ‐ incorrect text rendering if wrong code page is used
Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 6 / 23



Text encoding Unicode

Universal Character Set

Two independent attempts to define unified international character set, eventually merged
ISO 10646
The Unicode Standard

Current ISO/IEC 10646:2021 defines (≈ Unicode 14.0):
Code point space: 0‐0x10FFFF of 1 114 112 possible code‐points divided into 17 planes
Some code points are explicitly disallowed resulting in 1 111 998 usable values
Extends ASCII code space
Coded character set: currently maps 144 697 characters
Several text encodings: UCS2 (deprecated), UCS4/UTF‐32, UTF‐8, UTF‐16

Unicode Standard (Currently v. 15.1):
More frequently updated (now 149 813 assigned code points)
Standardizes additional rules for: collation (string ordering), normalization, bi‐directional layout
rendering
Those rules require to assign additional properties and meaning to each character

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 7 / 23



Text encoding Unicode

Code Space Allocation

0 – Basic Multilingual Plane

By Drmccreedy ‐ Self‐made using this perl script and information from Unicode.,
Public Domain

1 – Supplementary Multilingual Plane

By Drmccreedy ‐ Own work
(Original text: Self‐made using this perl script and information from Unicode.),
Public Domain

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 8 / 23

https://commons.wikimedia.org/w/index.php?curid=3778848
https://commons.wikimedia.org/w/index.php?curid=3778848
https://commons.wikimedia.org/w/index.php?curid=24370834
https://commons.wikimedia.org/w/index.php?curid=24370834
https://commons.wikimedia.org/w/index.php?curid=24370834


Text encoding Unicode

Code Space Allocation

2 – Supplementary Ideographic Plane

By Drmccreedy ‐ Self‐made using this perl script and information from Unicode.,
CC BY‐SA 4.0

3 – Tertiary Ideographic Plane

By Drmccreedy ‐ Self‐made using this perl script and information from Unicode.,
CC BY‐SA 4.0

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 9 / 23

https://commons.wikimedia.org/w/index.php?curid=42272063
https://commons.wikimedia.org/w/index.php?curid=42272063
https://commons.wikimedia.org/w/index.php?curid=81947772
https://commons.wikimedia.org/w/index.php?curid=81947772


Text encoding Unicode

Code Space Allocation

14 – Supplementary Special‐purpose Plane

By Drmccreedy ‐ Self‐made using this perl script and information from Unicode.,
CC BY‐SA 4.0

4‐13 – Unassigned Planes
15‐16 – Private Use Area Planes

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 10 / 23

https://commons.wikimedia.org/w/index.php?curid=42272177
https://commons.wikimedia.org/w/index.php?curid=42272177


Text encoding Unicode

Universal Character Set

Code point properties:
Basic type (graphic, format and control types are collectively known as Characters):

Graphic – have visual representation (have a visible glyph or represent visible space)
Format – modify appearance of other characters, but have no visual of their own
Control – 65 control codes for ISO/IEC 6429 compatibility (ANSI escape codes)
Private‐use – Will never be assigned specific interpretation
Surrogate, non‐character – disallowed code points
Reserved – code points not yet assigned

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 11 / 23



Text encoding Unicode

Universal Character Set

Code point properties:
Major and minor category (all graphic type except last two):

Letters: uppercase, lowercase, titlecase (e.g. ligatures of upper‐ and lowercase letters),
modifiers (diacritics), other (ideographs, unicase alphabets)
Marks: spacing, non‐spacing, enclosing
Numbers: decimal, letter (e.g. Roman numerals), other (e.g. fractions, superscripts, subscripts)
Punctuation: connectors (e.g. ”_”), dashes, opening, closing brackets, quotes, other
Symbols: maths, currency, other
Separators: white‐space characters (graphic type), line, paragraph separators (format type)
Other: control, format, surrogate, private‐use, non‐character, reserved

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 12 / 23



Text encoding Unicode

Universal Character Set

Code point properties:
Name
Canonical Combining Class
Bidirectional Class
Bidirectional Mirroring
Decomposition type and mapping
Simple uppercase, lowercase, titlecase mapping

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 13 / 23



Text encoding Unicode

Normalization

Not all grapheme clusters have individual code points
Some require composition: e.g. base letter and few diacritic combination marks
However, some most common compositions assigned to single code points
Some ligatures (e.g. ”fi”) also have their own code points even though they represent
multiple graphemes

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 14 / 23



Text encoding Unicode

Normalization

Equivalent text can be represented in multiple ways
Canonical equivalence, e.g. Å:

Latin Capital Letter A with Ring Above U+00C5
Angstrom Sign U+212B
Latin Capital Letter A U+0041 + Combining Ring Above U+030A

Compatible equivalence
¼ (U+00BC)→ 1 ⁄ 4 (U+0031 U+2044 U+0034)
x³ (U+0078 U+00B3)→ x3 (U+0078 U+)
ℜ (U+211C)→ R (U+0052 U+0033)

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 15 / 23



Text encoding Unicode

Normalization
Normalization required for text comparison

Normalization Forms:
NFD Decomposed form, Canonical decomposition splitting into base character and

combination marks
NFC Composed form, Canonical decomposition followed by canonical composition.

NFKC, NFKD Compatibility variants of the above, split ligatures, convert subscripts,
superscripts, etc. to decimal numbers, …

All reorder remaining combination marks: one that go below a character come first
Canonical forms for strong equality, Compatible forms for string search
Decomposed forms make it easy to find base character
May still require case mapping (Uppercase vs lowercase vs titlecase)
All normalization can cause loss of information

https://www.unicode.org/reports/tr15/
Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 16 / 23

https://www.unicode.org/reports/tr15/


Text encoding Unicode

Algorithms

Unicode provides standardized algorithms for various text‐related problems, e.g.:
Normalization Forms (mentioned previously)
Bidirectional Algorithm ‐ character positioning in mixed LTR and RTL flow.
https://www.unicode.org/reports/tr9/
Collation Algorithm ‐ string ordering
https://www.unicode.org/reports/tr10/
Line Breaking ‐ https://www.unicode.org/reports/tr14/
Text Segmentation ‐ boundaries between ”user‐perceived characters” (grapheme clusters),
words, sentences.
https://www.unicode.org/reports/tr29/

These algorithms are reasonable, but can never be perfect.

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 17 / 23

https://www.unicode.org/reports/tr9/
https://www.unicode.org/reports/tr10/
https://www.unicode.org/reports/tr14/
https://www.unicode.org/reports/tr29/


Text encoding Unicode

Encodings
UCS‐2 Deprecated. Stores code point values as two bytes. Doesn’t encode entire code space.
UTF‐32 A.k.a. UCS‐4, stores code points as 4‐byte values. High overhead for most common

characters
UTF‐8 A.k.a. one of the greatest programming hacks in history, variable multi‐byte encoding

Code points encoded as multi‐byte sequences:
UTF‐8 (binary) Code point (binary) Range
0xxxxxxx xxxxxxx U+0000 ‐ U+007F
110xxxxx 10yyyyyy xxxxxyyyyyy U+0080 ‐ U+07FF
1110xxxx 10yyyyyy 10zzzzzz xxxxyyyyyyzzzzzz U+0800 ‐ U+FFFF
11110xxx 10yyyyyy 10zzzzzz 10wwwwww xxxyyyyyyzzzzzzwwwwww U+10000 ‐ U+10FFFF

ASCII characters encoded without change (high bit is 0)
Random byte can be easily determined to be single‐byte character, start or
continuation of multi‐byte sequence
At most 4 steps needed to find beginning of encoded code point.
Extension possible up to 231 values, not just 221 Unicode requires

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 18 / 23



Text encoding Unicode

Encodings
UTF‐16 Variable length multi‐byte encoding

Code points encoded as one or two 16‐bit code units:
UTF‐16 (binary) Code point (binary) Range
xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx U+0000 ‐ U+FFFF
110110xxxxxxxxxx xxxxxxxxxxyyyyyyyyyy + 0x10000 U+10000 ‐ U+10FFFF
110111yyyyyyyyyy

Compatible with UCS‐2 (high surrogates, U+D800–U+DBFF, i.e. 2‐byte code‐points
starting with 110110 and low surrogates, U+DC00–U+DFFF, i.e. 2‐byte code‐points
starting with 110111 are explicitly marked as invalid)
Susceptible to corruption when transferring data between system of differing
endianness
Zero‐width non‐breakable space U+FEFF BOM (byte‐order mark) used often
(inverting bytes produces invalid code‐point U+FFFE indicating endianness change)

UTF‐7 Not standardized, Bas64 encoded UTF‐16
Other Capable of representing full code space: GB 18030, UTF‐1, BOCU, SCSU

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 19 / 23



Text encoding Locale

Locale

Unicode support simplifies localization, but only for displaying human‐generated text.
(Semi‐)Automatic conversions to/from other data types and their textual representation is
more difficult.
Different rules apply not only across languages, but also countries, regions, ethnicities and
cultures.
Set of such rules is called locale
Unicode Common Locale Data Repository: https://cldr.unicode.org

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 20 / 23

https://cldr.unicode.org


Text encoding Locale

Locale

Non‐exhaustive list of locale conventions
Language Properties

Characters used and keyboard layout
Rules for punctuation, capitalization, collation, text segmentation.
Plural cases, grammatical genders
Formatting of lists
etc., etc.

Numbers
Numeral System
Number formatting and parsing
Currency, units
Number spelling

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 21 / 23



Text encoding Locale

Locale

Non‐exhaustive list of locale conventions
Date and Time

Calendar, week convention, leap years, leap seconds
Date and time formatting in different contexts (short, long, relative, absolute, . . . )
Time zones, daylight savings time

Translations of names:
Languages and scripts
Countries, regions, territories, cities, . . .
Eras, moths, weekdays, day periods, time zones
Currencies and other units

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 22 / 23



Internationalization The End

End of Internationalization

Thank you for listening! ,

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 23 / 23


	Internationalization
	Overview

	Text encoding
	Glossary
	History
	Unicode
	Locale

	Internationalization
	The End


