Programming in Graphical Environment Internationalization

Paweł Aszklar pawel.aszklar@pw.edu.pl

Faculty of Mathematics and Information Science Warsaw Univeristy of Technology

Warsaw 2024

Internationalization

Internationalization A.k.a. Globalization, process of designing and implementing software so that it can be easily adapted to other languages and cultures (*i18n. a11n*). Includes:

- Separation of formatting of textual and other data from main logic,
- UI design adaptable to changing text length, layout etc.,
- Ability to handle international scripts,
- Preference for images/icons with or instead of text to convey meaning.

Localization Process of adapting software to particular language and/or culture (110n)

https://www.w3.org/International https://www.unicode.org/

Glossary

Glossarv

Character No single definition:

- Smallest component of a written language (refers to semantic meaning, abstract shape rather than specific rendering of that shape i.e. *alvph*)
- Basic unit of particular character set

Abstract character Smallest unit of information for organization, control and representation of textual data (letters, digits, diacritic marks, control characters. ...)

User perceived character What a person thinks of as a character in their script

Code point Numerical value, might correspond to a character (but doesn't have to)

Coded character set Mapping of abstract characters to code points (a.k.a. character set, character encoding)

Text encoding Method of storing and/or transmitting code points

Glossarv

Grapheme Minimally distinctive unit of writing for a given writing system. Characters are not distinct graphemes if their substitution doesn't change meaning. Grapheme can be represented using multiple code points, or vice versa.

Grapheme cluser Horizontally segmentable unit of text (\approx user perceived character)

Glyph Particular image representing piece of textural data. *Code point* might be rendered using multiple glyphs, or multiple grapheme clusters might be represented by single glyph (e.g. ligatures). Glyphs can have variants (i.e. different image representation of the same data)

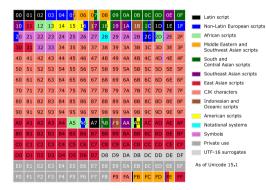
History

ASCII

- No such thing as plain text
- As with any data, values meaningless without proper interpretation
- Many text encodings existed in the past, eg. EBCIDIC
- ASCII one of the more popular early computer text encodings
 - Standards: ISO/IEC 646. ECMA-6, ANSI X3.4
 - 7-bit encoding
 - 128 code-points

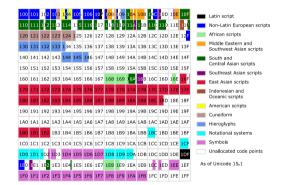
	_0	_1	_2	_3	_4	_5	_6	_7	_8	_9	_A	_B	_c	_D	_E	_F
o_	NUL	SOH	STX	ETX	EOT	ENQ	ACK	BEL	BS	HT	LF	VT	FF	CR	SO	SI
0	0000	0001	0002	0003	0004	0005	0006	0007	0008	0009	000A	000B	0000	0000	000E	000F
1_	DLE	DC1	DC2	DC3	DC4	NAK	SYN	ETB	CAN	EM	SUB	ESC	FS	GS	RS	US
16	0010	0011	0012	0013	0014	0015	0016	0017	0018	0019	001 A	001B	001C	001D	001E	001F
2_	SP	1		#	Ş	÷	&	11	()	*	+		-	1.1	1
32	0020	0021	0022	0023	0024	0025	0026	0027	0028	0029	002A	002B	002C	002D	002E	0025
з_	0	1	2	3	4	5	6	7	8	9	1	1	<	=	>	?
48	0030	0031	0032	0033	0034	0035	0036	0037	0038	0039	0038	0038	0030	003D	OOSE	0035
4_	0	A	в	C	D	Е	F	G	Н	I	J	K	L	М	N	0
64	0040	0041	0042	0043	0044	0045	0046	0047	0048	0049	0048	0048	004C	004D	004E	0045
5_	P	Q	R	s	т	U	v	W	х	Y	Z	[$-X^{-}$	1	^	_
80	0050	0051	0052	0053	0054	0055	0056	0057	0058	0059	005A	0058	005C	005D	005E	0055
6_	×	а	b	C	d	е	f	g	h	i	j	k	1	m	n	0
96	0060	0061	0062	0063	0064	0065	0066	0067	0068	0069	006A	006B	0060	006D	006E	0065
7_	р	q	r	s	t	u	v	w	x	У	z	{	1	}	~	DEL
112	0070	0071	0072	0073	0074	0075	0076	0077	0078	0079	007A	007B	007C	007D	007E	0075
Letter Number Punctuation Symbol Other undefined Changed from 1963																

Code Pages


- Minimum data granularity on most computers is 8-bits
- Extra bit used to encode more characters
- Different approaches often called code pages: ISO-8859-x, Windows-125x, KOI8-R ...
- Various degrees of standardization: ISO/IEC 8859
- Single-byte code pages
 - Additional 128 code points
 - Sufficient for many languages, but also many exceptions: Eastern-Asian scripts, ...
- Double- or multi-byte character sets
 - Usually First byte with highest bit set interpreted together with the next one
 - Over 65 thousand possible code-points
 - GBK, Big5
 - Others use shift states (code pointe sequences switch between character sets): ISO/IEC 2022
 - No way to determine if randomly selected byte is stand-alone, first or second byte of a pair
- Mojibake incorrect text rendering if wrong code page is used

Universal Character Set

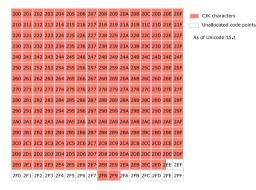
- Two independent attempts to define unified international character set, eventually merged
 - ISO 10646
 - The Unicode Standard
- Current ISO/IEC 10646:2021 defines (\approx Unicode 14.0):
 - Code point space: 0-0x10FFFF of 1 114 112 possible code-points divided into 17 planes
 - Some code points are explicitly disallowed resulting in 1 111 998 usable values
 - Extends ASCII code space
 - Coded character set: currently maps 144 697 characters
 - Several text encodings: UCS2 (deprecated), UCS4/UTF-32, UTF-8, UTF-16
- Unicode Standard (Currently v. 15.1):
 - More frequently updated (now 149 813 assigned code points)
 - Standardizes additional rules for: collation (string ordering), normalization, bi-directional layout rendering
 - Those rules require to assign additional properties and meaning to each character


Code Space Allocation

0 – Basic Multilingual Plane

By Drmccreedy - Self-made using this perl script and information from Unicode., Public Domain

1 – Supplementary Multilingual Plane



By Drmccreedy - Own work

Original text: Self-made using this perl script and information from Unicode.), Public Domain

Code Space Allocation

2 – Supplementary Ideographic Plane

By Drmccreedy - Self-made using this perl script and information from Unicode.. CC BY-SA 4.0

3 – Tertiary Ideographic Plane

300	301	302	303	304	305	306	307	308	309	30A	30B	30C	30D	30E	30F	CJK characters
										_						
310	311	312	313	314	315	316	317	318	319	31A	31B	31C	31D	31E	31F	Unallocated code points
320	321	322	323	324	325	326	327	328	329	32A	32B	32C	32D	32E	32F	As of Unicode 15.1
330	331	332	333	334	335	336	337	338	339	33A	33B	33C	33D	33E	33F	
340	341	342	343	344	345	346	347	348	349	34A	34B	34C	34D	34E	34F	
350	351	352	353	354	355	356	357	358	359	35A	35B	35C	35D	35E	35F	
360	361	362	363	364	365	366	367	368	369	36A	36B	36C	36D	36E	36F	
370	371	372	373	374	375	376	377	378	379	37A	37B	37C	37D	37E	37F	
380	381	382	383	384	385	386	387	388	389	38A	38B	38C	38D	38E	38F	
390	391	392	393	394	395	396	397	398	399	39A	39B	39C	39D	39E	39F	
3A0	3A1	3A2	3A3	3A4	3A5	3A6	3A7	3A8	3A9	заа	3AB	3AC	3AD	3AE	3AF	
380	3B1	3B2	3B3	3B4	3B5	386	3B7	3B8	3B9	зва	3BB	3BC	3BD	3BE	3BF	
3C0	3C1	3C2	3C3	3C4	3C5	3C6	3C7	3C8	3C9	3CA	зсв	3CC	3CD	3CE	3CF	
3D0	3D1	3D2	3D3	3D4	3D5	3D6	3D7	3D8	3D9	3DA	3DB	3DC	3DD	3DE	3DF	
3E0	3E1	3E2	3E3	3E4	3E5	3E6	3E7	3E8	3E9	3EA	3EB	3EC	3ED	3EE	3EF	
3F0	3F1	3F2	3F3	3F4	3F5	3F6	3F7	3F8	3F9	3FA	3FB	3FC	3FD	3FE	3FF	

By Drmccreedy - Self-made using this perl script and information from Unicode... CC BY-SA 4.0

Code Space Allocation

14 – Supplementary Special-purpose Plane

E00 E01 E02 E03 E04 E05 E06 E07 E08 E09 E0A E08 E0C E0D E0E E0F Tags E10 E11 E12 E13 E14 E15 E16 E17 E18 E19 E1A E1B E1C E1D E1E E1F Variation Selectors Unallocated code points E20 E21 E22 E23 E24 E25 E26 E27 E28 E29 E2A E2B E2C E2D E2E E2F F30 F31 F32 F33 F34 F35 F36 F37 F38 F39 F34 F38 F3C F3D F3F F3F As of Unicode 15.1 E40 E41 E42 E43 E44 E45 E46 E47 E48 E49 E4A E4B E4C E4D E4E E4F ES0 ES1 ES2 ES3 ES4 ES5 ES6 ES7 ES8 ES9 ES4 ES8 ESC ESD ESE ES6 E60 E61 E62 E63 E64 E65 E66 E67 E68 E69 E6A E6B E6C E6D E6E E6 E70 E71 E72 E73 E74 E75 E76 E77 E78 E79 E74 E78 E7C E7D E7E E7E ERO ERI ER2 ER3 ER4 ER5 ER6 ER7 ER8 ER9 ERA ERB ERC ERD ERE ERF E90 E91 E92 E93 E94 E95 E96 E97 E98 E99 E9A E9B E9C E9D E9E E9F FAO FA1 FA2 FA3 FA4 FA5 FA6 FA7 FA8 FA9 FAA FAB FAC FAD FAF FAF FRO FR1 FR2 FR3 FR4 FR5 FR6 FR7 FR9 FR9 FR4 FR8 FRC FRD FRF FR EC0 EC1 EC2 EC3 EC4 EC5 EC6 EC7 EC8 EC9 ECA ECB ECC ECD ECE EC7 ED0 ED1 ED2 ED3 ED4 ED5 ED6 ED7 ED8 ED9 ED4 ED8 EDC EDD EDE ED1 FEO FE1 FE2 FE3 FE4 FE5 FE6 FE7 FE8 FE9 FEA FEB FEC FED FEF FEF EFO EF1 EF2 EF3 EF4 EF5 EF6 EF7 EF8 EF9 EFA EFB EFC EFD EFE EFF

By Drmccreedy - Self-made using this perl script and information from Unicode., CC $\mbox{BY-SA}$ 4.0

4-13 – Unassigned Planes 15-16 – Private Use Area Planes

Universal Character Set

Code point properties:

- Basic type (graphic, format and control types are collectively known as Characters):
 - Graphic have visual representation (have a visible glyph or represent visible space)
 - Format modify appearance of other characters, but have no visual of their own
 - Control 65 control codes for ISO/IEC 6429 compatibility (ANSI escape codes)
 - Private-use Will never be assigned specific interpretation
 - Surrogate, non-character disallowed code points
 - Reserved code points not yet assigned

Universal Character Set

Code point properties:

- Major and minor category (all graphic type except last two):
 - Letters: uppercase, lowercase, titlecase (e.g. ligatures of upper- and lowercase letters), modifiers (diacritics), other (ideographs, unicase alphabets)
 - Marks: spacing, non-spacing, enclosing
 - Numbers: decimal, letter (e.g. Roman numerals), other (e.g. fractions, superscripts, subscripts)
 - Punctuation: connectors (e.g. "_"), dashes, opening, closing brackets, quotes, other
 - Symbols: maths, currency, other
 - Separators: white-space characters (graphic type), line, paragraph separators (format type)
 - Other: control, format, surrogate, private-use, non-character, reserved

Universal Character Set

Code point properties:

- Name
- Canonical Combining Class
- Bidirectional Class
- Bidirectional Mirroring
- Decomposition type and mapping
- Simple uppercase, lowercase, titlecase mapping

Normalization

- Not all grapheme clusters have individual code points
- Some require composition: e.g. base letter and few diacritic combination marks
- However, some most common compositions assigned to single code points
- Some ligatures (e.g. "fi") also have their own code points even though they represent multiple graphemes

Normalization

Equivalent text can be represented in multiple ways

- Canonical equivalence, e.g. Å:
 - Latin Capital Letter A with Ring Above U+00C5
 - Angstrom Sign U+212B
 - Latin Capital Letter A U+0041 + Combining Ring Above U+030A
- Compatible equivalence
 - $\frac{1}{4}$ (U+00BC) $\rightarrow \frac{1}{4}$ (U+0031 U+2044 U+0034)
 - x^3 (U+0078 U+00B3) $\rightarrow x3$ (U+0078 U+)
 - \Re (U+211C) \rightarrow R (U+0052 U+0033)

Normalization

Normalization required for text comparison

- Normalization Forms:
 - NFD Decomposed form, Canonical decomposition splitting into base character and combination marks
 - NFC Composed form, Canonical decomposition followed by canonical composition.
 - NFKC, NFKD Compatibility variants of the above, split ligatures, convert subscripts, superscripts, etc. to decimal numbers, ...
- All reorder remaining combination marks: one that go below a character come first
- Canonical forms for strong equality, Compatible forms for string search
- Decomposed forms make it easy to find base character ۲
- May still require case mapping (Uppercase vs lowercase vs titlecase)
- All normalization can cause loss of information

https://www.unicode.org/reports/tr15/

Algorithms

Unicode provides standardized algorithms for various text-related problems, e.g.:

- Normalization Forms (mentioned previously)
- Bidirectional Algorithm character positioning in mixed LTR and RTL flow. https://www.unicode.org/reports/tr9/
- Collation Algorithm string ordering https://www.unicode.org/reports/tr10/
- Line Breaking https://www.unicode.org/reports/tr14/
- Text Segmentation boundaries between "user-perceived characters" (grapheme clusters), words, sentences.

https://www.unicode.org/reports/tr29/

These algorithms are reasonable, but can never be perfect.

Encodings

UCS-2 Deprecated. Stores code point values as two bytes. Doesn't encode entire code space.

- UTF-32 A.k.a. UCS-4, stores code points as 4-byte values. High overhead for most common characters
- UTF-8 A.k.a. one of the greatest programming hacks in history, variable multi-byte encoding
 - Code points encoded as multi-byte sequences:

UTF-8 (binary)	Code point (binary)	Range
Øxxxxxxx	XXXXXXX	U+0000 - U+007F
110xxxxx 10ууууу	хххххуууууу	U+0080 - U+07FF
1110xxxx 10уууууу 10zzzzz	xxxxyyyyyyzzzzz	U+0800 - U+FFFF
11110xxx 10уууууу 10zzzzzz 10wwwwww	xxxyyyyyyzzzzzwwwww	U+10000 - U+10FFFF

- ASCII characters encoded without change (high bit is 0)
- Random byte can be easily determined to be single-byte character, start or continuation of multi-byte sequence
- At most 4 steps needed to find beginning of encoded code point.
- ${\ensuremath{\, \bullet }}$ Extension possible up to 2^{31} values, not just 2^{21} Unicode requires

Encodings

UTF-16 Variable length multi-byte encoding

• Code points encoded as one or two 16-bit code units:

UTF-16 (binary)	Code point (binary)	Range
*****	*****	U+0000 - U+FFFF
110110 xxxxxxxxxx	xxxxxxxxxxyyyyyyyyy + 0x10000	U+10000 - U+10FFFF
110111уууууууууу		

- Compatible with UCS-2 (*high* surrogates, U+D800–U+DBFF, i.e. 2-byte code-points starting with 110110 and *low* surrogates, U+DC00–U+DFFF, i.e. 2-byte code-points starting with 110111 are explicitly marked as invalid)
- Susceptible to corruption when transferring data between system of differing endianness
- Zero-width non-breakable space U+FEFF BOM (byte-order mark) used often (inverting bytes produces invalid code-point U+FFFE indicating endianness change)
- UTF-7 Not standardized, Bas64 encoded UTF-16

Other Capable of representing full code space: GB 18030, UTF-1, BOCU, SCSU

Locale

Locale

- Unicode support simplifies localization, but only for displaying human-generated text.
- (Semi-)Automatic conversions to/from other data types and their textual representation is more difficult
- Different rules apply not only across languages, but also countries, regions, ethnicities and cultures.
- Set of such rules is called locale
- Unicode Common Locale Data Repository: https://cldr.unicode.org

Locale

Locale

Non-exhaustive list of locale conventions

- Language Properties
 - Characters used and keyboard layout
 - Rules for punctuation, capitalization, collation, text segmentation.
 - Plural cases, grammatical genders
 - Formatting of lists
 - etc., etc.
- Numbers
 - Numeral System
 - Number formatting and parsing
 - Currency, units
 - Number spelling

Locale

Locale

Non-exhaustive list of locale conventions

- Date and Time
 - Calendar, week convention, leap years, leap seconds
 - Date and time formatting in different contexts (short, long, relative, absolute, ...)
 - Time zones, daylight savings time
- Translations of names:
 - Languages and scripts
 - Countries, regions, territories, cities, ...
 - Eras, moths, weekdays, day periods, time zones
 - Currencies and other units

The End

End of Internationalization

Thank you for listening! ©