
Programming in Graphical Environment
Windows API Lecture 2

Paweł Aszklar
pawel.aszklar@pw.edu.pl

Faculty of Mathematics and Information Science
Warsaw Univeristy of Technology

Warsaw 2024

mailto:pawel.aszklar@pw.edu.pl


Messages Overview

Windows Messages

Windows programming event driven
Events and queries represented as messages
System generates messages in response to user input, changes in the system, etc.
Applications can use the same mechanism for in‐process and interprocess communication
Messages will be either:

placed inmessage queue (queued messages)
passed directly (sent messages) to window’s class message handling callback (window
procedure).

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 2 / 72



Messages Properties

Message Properties

Properties:
HWND hWnd Intended recipient of the message

Note: can be nullptr for messages messages concerning the whole process
UINT message Message type identifier

WPARAM wParam Message‐specific parameter (0 if unused)
LPARAM lParam Message‐specific parameter (0 if unused)

Meaning of lParam, wParam depends on message type (check docs!)
Parameters can be values, bitflags, bitfields, pointer to structures etc.
Optional properties (only queued messages):
DWORD time Time when message was generated (in milliseconds from system start)
POINT pt Mouse position when message was generated (in screen coordinates)

Queued messages retrieved as MSG structure

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 3 / 72



Messages Types

Message Types
Message type ranges:

0 ‐ 0x3FFF System‐defined messages (shouldn’t be used for custom
communication)0 ‐ WM_USER‐1

0x4000 ‐ 0x7FFF For custom communication with private window class
(some used by system control classes, so shouldn’t be used
for custom application‐wide communication)

WM_USER ‐ WM_USER+16383
WM_USER ‐ WM_APP‐1
0x8000 ‐ 0xBFFF For custom communication of any type
WM_APP ‐ WM_APP+20479
0xD000 ‐ 0xFFFF Custom system‐wide messages, identifier provided by

RegisterWindowMessageW (won’t be constant, same string
results in same identifier for every process)

>0xFFFF Reserved
Note: Hundreds system messages defined in docs. Relevant types will be mentioned for each topic.

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 4 / 72



Messages Types

Message Type Examples
Messages sent on window creation
(e.g. during CreateWindowExW, etc.):

WM_NCCREATE, WM_CREATE:
same parameters, similar effect
WM_CREATE after window created, WM_NCCREATE earlier
lParam points to CREATESTRUCTW, containing
parameters of CreateWindowExW.
returning ‐1 from window procedure cancels window
creation (CreateWindowExW returns nullptr) and
destroys the window.

struct CREATESTRUCTW
{

LPVOID lpCreateParams;
HINSTANCE hInstance;
HMENU hMenu;
int cx;
int cy;
int x;
int y;
LONG style;
LPCWSTR lpszName;
LPCWSTR lpszClas;
DWORD dwExStyle;

};

WM_GETMINMAXINFO, WM_NCCALCSIZE: relate to window size and position (discussed later)
Message order undocumented, except WM_NCCREATE before WM_CREATE

In practice: WM_GETMINMAXINFO, WM_NCCREATE, WM_NCCALCSIZE, WM_CREATE
Other messages sent if WS_VISIBLE style set (refer to ShowWindow discussion)

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 5 / 72



Messages Types

Message Type Examples

Messages sent on window destruction (i.e. during DestroyWindow or cancelled window creation):
WM_DESTROY is sent:

after window is hidden
before destruction of child/owned windows
will not be sent if window creation cancelled on WM_NCCREATE

WM_NCDESTROY:
sent after child/owned windows are destroyed
usually the last message window receives

Other messages can be sent before if window was visible, active, had focus etc. (refer to
ShowWindow discussion)

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 6 / 72



Messages Types

Message Type Examples

Other examples:
WM_SYSCOMMAND received when chooses command from system menu, caption buttons, etc.

lParam— command type, e.g. SC_CLOSE to close window
WM_CLOSE received when window is to be closed

source: x button; Close option in system menu, taskbar; program closed from task manager; etc.
can be used to display confirmation window, destroy or hide window etc.
DefWindowProcW destroys window by default, don’t pass the message to prevent it

WM_QUIT queued (posted) message indicating application (thread) should exit
Generated by calling PostQuitMessage with an exit code
Usually posted in response to WM_DESTROY
wParam contains exit code value
no recipient window (hWnd is nullptr)

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 7 / 72



Messages Window procedure

Window Procedure

LRESULT CALLBACK WindowProc(HWND hWnd, UINT msg, WPARAM wParam, LPARAM lParam);

Messages intended for a window will usually be passed to window procedure callback
associated with its class.
Parameters — message properties
Other properties (will only work for queued messages)

GetMessagePos—mouse position
(use GET_X_LPARAM and GET_Y_LPARAM from <windowsx.h> to extract coordinates)
GetMessageTime—message timestamp
GetMessageExtraInfo, SetMessageExtraInfo— access application‐defined message property

Return value depends on message type (check docs!) — usually 0 to indicate message
handled

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 8 / 72



Messages Window procedure

Window Procedure

LRESULT CALLBACK WindowProc(HWND hWnd, UINT msg, WPARAM wParam, LPARAM lParam);

switch statement, some dictionary structure, etc. (or combination thereof) can be used to
associate handler code with specific message type
For unhandled messages, pass parameters to and return result of DefWindowProcW
Some messages need to be forwarded to DefWindowProcW even if processed by application,
e.g. WM_NCACTIVATE (check docs!)
Exception safety: window procedure must not throw exceptions. They will either be
suppressed or terminate the program immediately, without propagating further up the call
stack.

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 8 / 72



Messages Example

Example — Object‐oriented Approach

Win32 is a C API, however, creation of OOP wrapper isn’t difficult
window class will wrap HWND

Common Win32 window class→ staticmember functions
Note: window procedure must be a free function or a staticmember function

Internal Win32 window data contains pointer‐sized field to be used by application
Access: GetWindowLongPtrW, SetWindowLongPtrW with GWLP_USERDATA offset
Can be used to store window instance pointer
static window procedure can retrieve it and call a non‐staticmember function
Some messages will be sent before CreateWindowExW returns HWND
Solution: Pass this as lpParam, retrieve it from WM_NCCREATE

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 9 / 72



Messages Example

Example — Object‐oriented Approach
//window.h
#pragma once
#include <utility>
#include <string>
class window
{

static bool is_class_registered(HINSTANCE, LPCWSTR);
static void register_class(HINSTANCE, LPCWSTR);
HWND m_hWnd;

public:
static LRESULT window_proc(HWND, UINT, WPARAM, LPARAM);
virtual LRESULT window_proc(UINT, WPARAM, LPARAM);
window() : m_hWnd { nullptr } { }
window(const window&) = delete;
window(window&& other) : m_hWnd { nullptr } { *this = std::move(other); }
window(HINSTANCE, const std::wstring&);
window& operator=(const window&) = delete;
window& operator=(window&& other) { std::swap(m_hWnd); return *this; }
operator HWND() const { return m_hWnd; }
virtual ~window();

};

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 10 / 72



Messages Example

Example — Object‐oriented Approach
//window.cpp
#include "window.h"
bool window::is_class_registered(HINSTANCE hInst, LPCWSTR cName)
{

WNDCLASSEXW wcx;
return GetClassInfoExW(hInst, cName, &wcx);

}
void window::register_class(HINSTANCE hInst, LPCWSTR cName)
{

WNDCLASSEXW wcx{};
wcx.cbSize = sizeof(wcx);
wcx.style = CS_VREDRAW|CS_HREDRAW;
wcx.lpfnWndProc = window_proc;
wcx.hCursor = LoadCursorW(nullptr, IDC_ARROW);
wcx.hbrBackground = static_cast<HBRUSH>(GetStockObject(WHITE_BRUSH));
wcx.lpszClassName = cName;
RegisterClassExW(&wcx);

}

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 11 / 72



Messages Example

Example — Object‐oriented Approach
//window.cpp cont'd
window::window(HINSTANCE hInst, const std::wstring& title)

: m_hWnd { nullptr }
{

LPCWSTR className = L"My Window Class";
if (!is_class_registered(hInst, className))

register_class(hInst, className);
CreateWindowExW(0, className, title.c_str(),

WS_OVERLAPPEDWINDOW | WS_VISIBLE,
CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT,
nullptr, nullptr, hInst, reinterpret_cast<LPVOID>(this));

//m_hWnd will be set on WM_NCCREATE
}
window::~window()
{

if (m_hWnd)
DestroyWindow(m_hWnd);

}

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 12 / 72



Messages Example

Example — Object‐oriented Approach
//window.cpp cont'd
LRESULT window::window_proc(HWND hWnd, UINT msg, WPARAM wParam, LPARAM lParam)
{

window *w = nullptr;
if (msg == WM_NCCREATE) {

auto pcs = reinterpret_cast<LPCREATESTRUCTW>(lParam);
w = reinterpret_cast<window*>(pcs‐>lpCreateParams);
SetWindowLongPtrW(hWnd, GWLP_USERDATA, reinterpret_cast<LONG_PTR>(w));
w‐>m_hWnd = hWnd;

} else w = reinterpret_cast<window*>(GetWindowLongPtrW(hWnd, GWLP_USERDATA));
if (w) {

auto r = w‐>window_proc(msg, wParam, lParam);
if (msg == WM_NCDESTROY) {

w‐>m_hWnd = nullptr;
SetWindowLongPtrW(hWnd, GWLP_USERDATA, 0);

}
return r;

}
return DefWindowProcW(hWnd, msg, wParam, lParam);

}

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 13 / 72



Messages Example

Example — Object‐oriented Approach
//window.cpp cont'd
LRESULT window::window_proc(UINT msg, WPARAM wParam, LPARAM lParam)
{

//handle window logic
//Example:
switch (msg)
{
case WM_CLOSE:

DestroyWindow(m_hWnd);
return 0;

case WM_DESTROY:
PostQuitMessage(EXIT_SUCCESS);
return 0;

}
return DefWindowProcW(m_hWnd, msg, wParam, lParam);

}

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 14 / 72



Messages Example

Example — Object‐oriented Approach
Custom window data:

Preferred: static member fields of window or derived class (obvious!)
Inside of internal Win32 window data:

request memory with cbWndExtra when registering class
access with GetWindowLongPtrW, SetWindowLongPtrW with non‐negative offset

Inside of internal Win32 window class data:
request memory with cbClsExtra when registering class
access with GetClassLongPtrW, SetClassLongPtrW with non‐negative offset

Customised behaviour:
Modify non‐static window_proc
Override window_proc in derived class
(remember to forward call to base class for unhandled messages!)

Note: For the sake of brevity error checking, exception safety, etc. were ignored.
Check subject website for an example of a more careful implementation!

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 15 / 72



Message routing Overview

Message Routing

Note: Following discussion only considers routing messages to windows on a single thread that
created them. See Appendix A and Appendix B for more detail.

Sendingmessages:
Refers to calling window procedure directly
Used for messages that need to be processed by window procedure and/or when
system/calling function needs to examine the result

Queued messages:
Refers to messages added to a queue
Used for event notifications, messages that don’t require immediate processing

Order and method in which messages arrive to window procedure should not be relied on

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 16 / 72



Message routing Sent messages

Sent Messages

Certain system messages are sent, e.g. WM_ACTIVATE, WM_SETFOCUS
Some API functions send messages, e.g. WM_CREATE from CreateWindowExW or WM_DESTROY
from DestroyWindow

Explicitly sending messages:
SendMessageW
SendMessageTimeoutW
SendNotifyMessageW
SendMessageCallbackW

When sending messages from thread to associated window, behaviour of all four is the same.
Use InSendMessage, InSendMessageEx (e.g. in window procedure) to check if processing sent
message.

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 17 / 72



Message routing Message Queue

Message Queue
Queue created automatically for any thread that needs it
Messages for windows created by a thread are always added to its message queue
Size of queue limited — messages might be dropped if queue is full
Order of messages in a queue not guaranteed unless clearly documented (check docs!)
However, in practice messages ordered by priority (from highest to lowest)

Posted messages — added by an application directly or indirectly via API function call
Input messages — usually added by the system in response to user input or system internal
events
Low priority messages — of which there are three,
in order of importance: WM_QUIT, WM_PAINT, WM_TIMER

Messages of the same priority are handled in FIFO order. For more details see Appendix A

Multiple instances of some messages (namely WM_MOUSEMOVE, WM_NCMOUSEMOVE, low priority
messages) might be coalesced into one, with properties reflecting the last instance added

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 18 / 72



Message routing Message Queue

Message Queue

Postingmessages:
Adding posted messages to queue explicitly: PostMessageW, PostThreadMessageW
Some API functions post messages as well, e.g. TranslateMessage
Don’t post input and low priority messages:

They will behave like posted messages
Additional operation system performs when normally adding them to queue will not happen
Use functions listed below to synthesise them instead
Application must not post WM_QUIT

Synthesising input and low priority messages:
WM_QUIT— use PostQuitMessage (unfortunately named)
WM_PAINT— use InvalidateRect, InvalidateRgn (discussed later)
input messages — use SendInput (also discussed later, and also unfortunately named)

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 19 / 72



Message Loop Overview

Message Loop

Each thread with a message queue must continuously query for and remove pending
messages (message pumping)
Otherwise system might consider thread hung and replace its windows with ghost windows
Usually each UI thread contains a message loop
Some API functions might pump messages internally, e.g. MessageBoxW, SendMessageW

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 20 / 72



Message Loop Overview

Message Loop — Example

...
window w{ hInst, L"Hello World" };
MSG msg{ };
BOOL gmResult;
while ((gmResult = GetMessageW(&msg, nullptr, 0, 0)) != 0) {

if(gmResult == ‐1)
return EXIT_FAILURE;

TranslateMessage(&msg);
DispatchMessageW(&msg);

}
return msg.wParam;
...

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 21 / 72



Message Loop Retrieving messages

Retrieving Messages

BOOL GetMessageW(LPMSG lpMsg, HWND hWnd, UINT msgMin, UINT msgMax);

Removes and returns a message (matching filters) from thread’s queue
Blocks until such message available
Filtering based on recipient window

if hWnd==0, no filtering;
if hWnd==‐1, only messages whose msg.hWnd==0;
otherwise, only messages for specific window.

Filtering based on message type
if both msgMin and msgMax are 0, no filtering;
otherwise, only messages with type in range [msgMin, msgMax] (inclusive).
WM_KEYFIRST, WM_KEYLAST or WM_MOUSEFIRST, WM_MOUSELAST for keyboard, mouse messages.

Returns:
0 if WM_QUIT was retrieved; ‐1 on error; non‐zero otherwise

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 22 / 72



Message Loop Retrieving messages

Retrieving Messages
BOOL PeekMessageW(LPMSG lpMsg, HWND hWnd, UINT msgMin, UINT msgMax, UINT flags)

Retrieves message (matching filters) from thread’s queue (but doesn’t block)
Filters as in GetMessageW, additional filters via flags.
Message not removed from queue, unless PM_REMOVE flag set.
Returns 0 if no matching messages found, non‐zero otherwise.

BOOL WaitMessage()
Blocks until new message is available in queue, returning 0 on error
Only messages added after last GetMessageW, PeekMessageW, WaitMessage, etc. call are not
considered new.
GetMessageW works as combination of PeekMessageW and WaitMessage

Additional related functions:
GetQueueStatus, MsgWaitForMultipleObjects, MsgWaitForMultipleObjectsEx

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 23 / 72



Message Loop Processing messages

Processing Messages
LRESULT DispatchMessageW(const MSG* msg)

Passes message to appropriate callback (timer callback, window procedure).
Returns callback result.

BOOL TranslateMessage(const MSG* msg)
Translates key messages (WM_KEYDOWN, WM_KEYUP, etc.) to characters, posts WM_CHAR if necessary.
Doesn’t modify message.
Don’t call if virtual keys used for other purpose (TranslateAcceleratorW, IsDialogMessageW).

int TranslateAcceleratorW(HWND hWnd, HACCEL hAccTable, LPMSG msg)
Call if window has accelerator table (list of shortcuts) — accelerators will be discussed later
Translates virtual keys to shortcuts, posts WM_COMMAND, WM_SYSCOMMAND if necessary
If returned value is non‐zero, message is processed — don’t pass it to DispatchMessageW, etc.

BOOL IsDialogMessageW(HWND hDlg, LPMSG msg)
Call for modeless dialogs (can be used with any window containing controls) — controls and
dialog boxes will be discussed later
Processes messages enabling keyboard navigation between controls in a window. Other
messages are translated/dispatched.
If returned value is non‐zero, message is processed — don’t pass it to DispatchMessageW, etc.

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 24 / 72



Message Loop Processing messages

Processing Messages — Example
...
//assuming:
//hDlg ‐ only modeless dialog window
//hMain ‐ only window with accelerator table
//hAT ‐ handle to main window's accelerator table
MSG msg{ };
BOOL gmResult;
while ((gmResult = GetMessageW(&msg, nullptr, 0, 0)) != 0) {

if(gmResult == ‐1)
return EXIT_FAILURE;

if (IsDialogMessageW(hDlg, &msg) == 0)
{

if (TranslateAcceleratorW(hMain, hAT, &msg) == 0)
{

TranslateMessage(&msg);
DispatchMessageW(&msg);

}
}

}
...
return msg.wParam;

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 25 / 72



Animation and timing Long running operations

Long running operations
Messages should not wait more than few seconds in
the queue.
Long running operations should not stall the message
loop.

If waiting for system objects (Processes, Threads,
Mutexes, I/O etc.): MsgWaitForMultipleObjects,
MsgWaitForMultipleObjectsEx

If operation can be paused frequently:
PeekMessageW

In general: move operation to separate thread,
post messages to UI thread (or use other
synchronisation mechanisms) to update
progress, present results (see Appendix B )

...
bool done = false;
MSG msg{ };
while (!done) {

if (PeekMessageW(&msg, nullptr,
0, 0, PM_REMOVE)) {

if(msg.message == WM_QUIT)
done = true;

else {
TranslateMessage(&msg);
DispatchMessageW(&msg);

}
}
else {

//Continue operation
...

}
}
...

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 26 / 72



Animation and timing Timers and time measurement

Timers
UINT_PTR SetTimer(HWND hWnd, UINT_PTR id, UINT timeout, TIMERPROC callback)

Creates a new timer or restarts an existing one
hWnd,id identify a window timer (global timer if hWnd is nullptr). All timers have non‐zero id.
If timer exists, it is restarted with new timeout value and callback.
Otherwise new timer is created. For global timer, new ID is generated and returned (ignoring
id), for window timer ID is id. Pass 0 as id to guarantee a new timer.
timeout in milliseconds before timer elapses (repeated until timer destroyed)
Each time timer elapses, WM_TIMER will be added to the queue (multiples can coalesce).
If callback is not nullptr it will be called (by DispatchMessageW or DefWindowProcW).
Returns ID of the timer or 0 on error.

BOOL KillTimer(HWND hWnd, UINT_PTR id)

Destroys an existing timer
Doesn’t remove WM_TIMER already in the queue.

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 27 / 72



Animation and timing Timers and time measurement

Timers
WM_TIMER

Properties:
wParam— timer ID
lParam— callback address specified in SetTimer call. If not nullptr DispatchMessageW will
call it instead of window procedure.

Inaccurate and unreliable (low priority message, coalescence of duplicates in queue)
Don’t rely on timeout value passed to SetTimer, use timemember of MSG, GetMessageTime,
etc. (see next slide)

void TimerProc(HWND hWnd, UINT msg, UINT_PTR id, DWORD time)

Timer callback prototype
hWnd,id— timer ID and associated window
msg—message type (WM_TIMER)
time— time when message was removed from queue (milliseconds from system start)

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 28 / 72



Animation and timing Timers and time measurement

Timing
At any point current time (from system start) can be acquired:

DWORD GetTickCount()— inms
BOOL QueryPerformanceCounter(LARGE_INTEGER *count)— high resolution (sub‐µs)
BOOL QueryPerformanceFrequency(LARGE_INTEGER *frequency)— resolution of above
timestamp (counts per second)

Other time related functions:
Time in UTC: GetSystemTime, GetSystemTimeAdjustment, SetSystemTime
Time in local time‐zone: GetLocalTime, SetLocalTime
Formatting time: GetTimeFormatEx
Waitable Timers (for use with MsgWaitForMultipleObjects, etc.):
CreateWaitableTimerW, CreateWaitableTimerExW, CloseHandle, etc.
Multimedia timers: timeGetTime, timeSetEvent, timeKillEvent, etc. (events run in separate
thread!)

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 29 / 72



Animation and timing Animations

Animation
Special case of long running operation:

Simple action performed time and again (or at intervals)
Also applies to any short operation repeated over a period of time

Animation using timers
Only for extra animations
Unreliable (due to low message priority) for animation central to program functionality
(playing multimedia, etc.)

Animation using general approach w/ PeekMessageW
Often wasteful if animation update is very short

Little point frequency above monitor refresh‐rate
No visible change due to rounding (e.g. displaying movie frame, position at nearest pixel, etc.)

Can be combined with short Sleep to animate on interval (remember to subtract frame
drawing time)

Other approaches: animation using waitable timers, sending messages from separate thread, etc.
Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 30 / 72



Managing Windows Window relationships

Window Types

Reminder of highly confusing terminology used in documentation:
Overlapped window without WS_POPUP and WS_CHILD styles, can overlap unrelated windows

Pop‐up window with WS_POPUP style, can overlap unrelated windows
Top‐level window Rarely used, overlapped or pop‐up window.

Child window with WS_CHILD style, must have and is contained within parent’s client area
Relationship types (established e.g. by passing hWndParent to CreateWindowExW):
Parent‐Child Only possible if window has WS_CHILD style. Its parent can itself be a child window.

Owner‐Owned Windows without WS_CHILD become owned. Window specified as “parent” is the
owner.

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 31 / 72



Managing Windows Window relationships

Desktop Window

Root of window hierarchy ‐ in certain contexts acts as owner of top‐level windows without
explicit owner.
Retrieved by: GetDesktopWindow
Setting desktop as owner/parent explicitly should be avoided, especially for child windows.
Not actually the thing with wallpaper and icons, use GetShellWindow for that.

Related functions:
SystemParametersInfoW can be used access some desktop properties:

SPI_GETDESKWALLPAPER, SPI_SETDESKWALLPAPER, SPI_SETDESKPATTERN,
SPI_GETWORKAREA, SPI_SETWORKAREA,
etc.

GetThreadDesktop, EnumDesktopsW, etc.

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 32 / 72



Managing Windows Window relationships

Relationships Between Windows

Establishing relationship:
Passing parent/owner as hWndParent to CreateWindowExW

BOOL SetParent(HWND hWndChild, HWND hWndNewParent)
Sets new parent/owner for child/owned window
Pass nullptr as hWndNewParent to break relationship (WS_CHILD style of child needs to be
removed separately)
Re‐parenting generally should be avoided

Child window cannot be set as an owner. If specified as such, its most immediate top‐level
ancestor is used instead.
Avoid relationships between windows from different threads or processes (see Appendix B )
When creating child window, hMenu parameter is instead used to set child ID
Child ID can later be changed by SetWindowLongPtrW with GWLP_ID

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 33 / 72



Managing Windows Window relationships

Relationships Between Windows — Navigation

Navigation up the hierarchy:
HWND GetParent(HWND hWnd), returns:

parent/owner for child and owned pop‐up windows
nullptr for all other windows

HWND GetAncestor(HWND hWnd, UINT flag), depending on flag returns:
GA_PARENT Parent of a child window (or desktop window for others)
GA_ROOT Top‐level (pop‐up/overlapped) windows – window itself (regardless if owned);

Child windows – first top‐level window up the chain of parents
GA_ROOTOWNER Child or owned pop‐up windows – first overlapped or unowned pop‐up window

up the chain
Other windows – window itself.

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 34 / 72



Managing Windows Window relationships

Relationships Between Windows — Navigation

Navigation (mostly) down/sideways in the hierarchy:
HWND GetWindow(HWND hWnd, UINT cmd)

GW_OWNER Owner GW_CHILD First child
GW_HWNDPREV Previous (same type) GW_HWNDNEXT Next (same type)

GW_HWNDFIRST First (same type) GW_HWNDLAST Last (same type)
GW_ENABLEDPOPUP First enabled owned pop‐up window, or the window itself

Types of windows: top‐most; non‐topmost top‐level; siblings with the same parent.
Windows in one type enumerated in Z Order.

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 35 / 72



Managing Windows Window relationships

Relationships Between Windows — Navigation

Navigating relationships:
Retrieving immediate child from point (relative to top‐left corner of parent’s client area):
ChildWindowFromPoint, ChildWindowFromPointEx, RealChildWindowFromPoint
BOOL IsChild(HWND hWndParent, HWND hWndChild)

Checks if window is direct or indirect child of a parent
Checks only up the chain of parent windows (stops at first top‐level window)

BOOL EnumChildWindows(HWND parent, WNDENUMPROC enumProc, LPARAM lParam)
Enumerates child windows of parent (including indirect descendants)
Each, along with param (application‐defined parameter), passed to enumProc
BOOL EnumProc(HWND child, LPARAM param)— return TRUE to continue enumeration.
Preferred over calling GetWindow in a loop.

Other related function: EnumWindows, EnumDesktopWindows, EnumThreadWindows, FindWindowW,
WindowFromPoint etc.

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 36 / 72



Managing Windows Window relationships

Message‐Only Windows

Creating a window with HWND_MESSAGE as parent createsmessage‐only window
Never visible,
Doesn’t receive messages unless explicitly sent/posted to it,
Not considered top‐level (regardless of styles, child of hidden system window),
Thus, doesn’t receive broadcast message, can’t be enumerated with EnumWindows, etc.

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 37 / 72



Managing Windows Window show state

Window Show State — Focus

(Keyboard) Focus:
Only one of thread’s windows can have focus
It will receive keyboard input from thread’s message queue
GetFocus to find it, SetFocus to change (only within thread)
WM_SETFOCUS, WM_KILLFOCUS

Sent to window receiving/losing focus
wParam— handle to the other window (if of the same thread)
Do not activate or disable windows while processing WM_KILLFOCUS— possible deadlocks!

Newly shown top‐level windows by default receive focus

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 38 / 72



Managing Windows Window show state

Window Show State — Active

Active window:
Top‐level window which has focus or whose (direct or indirect) child has focus
GetActiveWindow to find it, SetActiveWindow to change (only within thread)
WM_NCACTIVATE, WM_ACTIVATE sent to deactivated and activated windows
on WM_ACTIVATE, DefWindowProcW sets focus to activated window
Newly shown top‐level windows by default are activated
Activated window receives focus

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 39 / 72



Managing Windows Window show state

Window Show State — Foreground

Foreground window:
Top‐level window user is working with
System passes keyboard input to its thread’s message queue
Process that created foreground window is a foreground process (has higher priority)
GetForegroundWindow to find it.
SetForegroundWindow— activates window and brings it to foreground
Stealing foreground from another process has some restrictions (check docs!)
When foreground status of a process changes, WM_ACTIVATEAPP is sent to each top‐level
window.

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 40 / 72



Managing Windows Window show state

Window Show State — Disabled
Disabled window:

Disabling window
blocks mouse input for it and its children (redirected parent if it itself is a child)
kills its focus (but ignores focus in children – might still receive keyboard input)
does not deactivate window, should be done manually

Controlled by WS_DISABLED window style. Use IsWindowEnabled to check state.
BOOL EnableWindow(HWND hWnd, BOOL enable) to change state

If state changes as a result, sends WM_ENABLE
Additionally if window becomes disabled, sends WM_CANCELMODE

Inactive disabled top‐level window can be activated
Programmatically: SetActiveWindow
From taskbar, through Alt + , etc., make sure it owns another visible window (a.k.a modal
window) to prevent it

If activated, receives focus normally!

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 41 / 72



Managing Windows Window show state

Window Show State — Visible

Window visibility:
Controlled by WS_VISIBLE window style
IsWindowVisible checks windows visibility
WM_SHOWWINDOW if visibility changes (and other — regarding window location, repainting, etc.)
Hiding window hides all children, removes taskbar button (if present), deactivates window,
removes focus, etc.
ShowWindow and number of other functions to change visibility (see next slides).
ShowOwnedPopups can hide all pop‐ups owned by a window, then show them back up

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 42 / 72



Managing Windows Window show state

Window Show State —Minimized, Maximized, Normal
Controlled by styles:

if WS_MINIMIZE set — minimized,
otherwise if WS_MAXIMIZE set — maximized,
otherwise window in normal, tracked size

IsIconic, IsZoomed check if window is minimized, maximized
Minimizing window

Minimizes owned windows first (recursively, )
Moves and resizes to empty client area (off screen if window on taskbar, still technically visible)
Kill focus (window and descendants), deactivates window

Restoring minimized window reverts above, back to normal/maximized state it had before.
WM_QUERYOPEN send to minimized window if it’s about to be restored. Return FALSE to cancel.
Maximized window fills workspace area (if working maximize button present) or entire
screen (otherwise). Window border removed in maximized state.
Restoring maximized window returns it to normal size/position
WM_SYSCOMMAND sent when state changed by user (SC_MINIMIZE, SC_MAXIMIZE, SC_RESTORE)

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 43 / 72



Managing Windows Window show state

Window Show State — ShowWindow Function
BOOL ShowWindow(HWND hWnd, int showCmd)
Modifies visibility, active, maximized, minimized state:

SW_SHOWDEFAULT use showCmd passed to wWinMain
SW_HIDE hide window
SW_SHOW activate and show w/ current size/position

SW_SHOWNA show w/ current size/position (don’t activate)
SW_SHOWNORMAL activate and show w/ normal size/position

SW_SHOWNOACTIVATE show w/ normal size/position (don’t activate)
SW_MINIMIZE minimize window
SW_MAXIMIZE maximize window
SW_RESTORE activate and show, if minimized/maximized, return to normal size/position

SW_SHOWMAXIMIZED activate and show maximized
SW_SHOWMAXIMIZED activate and show minimized

SW_SHOWMINNOACTIVE show minimized (don’t activate)
First time function is called (for what OS determines to be main window) showCmdmight be ignored

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 44 / 72



Managing Windows Window show state

Window Show State —Window Placement
BOOL GetWindowPlacement(HWND hWnd,

WINDOWPLACEMENT *p);
BOOL SetWindowPlacement(HWND hWnd,

const WINDOWPLACEMENT *p);
Can be used to check or set:

Show state (like ShowWindow)
Top‐left window corner when minimized/maximized,
former ignored if minimized to taskbar, can’t set the latter
Normal (tracked) size and position

struct WINDOWPLACEMENT
{

UINT length;
UINT flags;
UINT showCmd;
POINT ptMinPosition;
POINT ptMaxPosition;
RECT rcNormalPosition;
RECT rcDevice;

};

Note: Positions in (see later slides here for definitions)
parent’s client coordinates – child windows
screen coordinates — top‐level windows with WS_EX_TOOLWINDOW style
workspace coordinates – other windows (Warning! Other positioning functions use screen coordinates for those)

Other related functions: SetWindowPos, DeferWindowPos
Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 45 / 72



Managing Windows Window show state

Window Show State — Initial State

State set by CreateWindowExW:
Controlled by WS_VISIBLE, WS_MINIMIZE, WS_MAXIMIZE, WS_DISABLED
If WS_VISIBLE, ShowWindow is called, with showCmd:

If x==CW_USEDEFAULT && y!=CW_USEDEFAULT, value of y is used
SW_SHOW otherwise

Styles of a window can be modified by SetWindowLongPtrW with GWL_STYLE, GWL_EXSTYLE

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 46 / 72



Managing Windows Window size and position

Coordinates
Position as (x, y) pair in device units (usually pixels, but not always — high DPI displays)
x increases left to right, y increases top to bottom
Position depends on coordinates used:

screen coordnates Origin in top‐left corner of main display
client coordinates Origin in top‐left corner of window’s client area

workspace coordinates Origin in top‐left corner of workspace area, i.e. screen area
excluding taskbar and any other desktop toolbars

Top‐level window— position in screen coordinates
Child window— position in parent’s client coordinates
Conversions: ScreenToClient, ClientToScreen
Workspace area:

GetWindowPlacement, SetWindowPlacement
For main display: SystemParametersInfoW with SPI_GETWORKAREA, SPI_SETWORKAREA
For other displays: GetMonitorInfoW

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 47 / 72



Managing Windows Window size and position

Position and Size

Window keeps track of:
Normal (tracking) size and position, i.e. when window is not minimized/maximized
Current size and position — changes between normal, minimized, maximized size/position
depending on current window state.
Z‐Order (order in which windows overlap each other)

Size includes any non‐client elements (border, caption bar, menu, scroll bars)

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 48 / 72



Managing Windows Window size and position

Initial Position and Size

Tracking size set by x, y, nWidth, nHeight passed to CreateWindowExW

Screen coords for top‐level windows, parent’s client coords for child windows.
If x==CW_USEDEFAULT, position selected by OS
If nWidth==CW_USEDEFAULT, size selected by OS
CW_USEDEFAULT only for overlapped windows, otherwise values are 0

To create window with specific client area size:
AdjustWindowRectEx, passing intended window styles
Use GetSystemMetrics with SM_CXVSCROLL, SM_CYHSCROLL to account for scrollbars

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 49 / 72



Managing Windows Window size and position

Z‐Order

Order in which windows are drawn (i.e. which is visible on top of another).
Affected by topmost flag (WS_EX_TOPMOST).

Only top‐level windows can be topmost.
Topmost window can only own topmost windows (inverse not true)
Specifying topmost owner mark window as topmost.
Marking as topmost also marks owned windows (transitive).
Marking as non‐topmost makes owner and owned windows non‐topmost (transitive)

Desktop acts as owner of unowned windows

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 50 / 72



Managing Windows Window size and position

Z‐Order Rules
Top‐level windows:

Owned windows are always above owner
All topmost windows are above non‐topmost
Giving window a topmost owner marks it as topmost
Placing window above/below another moves there all related windows (*), moved group
retains relative order
Placing window above topmost window makes it topmost
Placing window below non‐topmost window makes it non‐topmost

Child windows:
Always on parent’s client area, below any other top‐level window that overlaps it
Can only be positioned relative to siblings

* owner and owned by moved window (transitive) with shared topmost state, up to (but not including) common root
of window being moved and the one it is placed above/below.

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 51 / 72



Managing Windows Window size and position

Z‐Order Functions
Navigation:

GetWindow (see previous slide here ) — navigates in z‐order windows in the same group:
Children of the same parent
Non‐topmost top‐level window
Topmost top‐level windows

GetTopWindow— shortcut for GetWindow w/ GW_CHILD, nullptr handle retrieves top‐level
windows.
GetNextWindow— same as GetWindow

Changing Z‐Order:
Activating window places it to top of it’s group (topmost or non‐topmost)
BringWindowToTop— places window on top of other windows in it’s group, activates it if
top‐level.
SetWindowPos, DeferWindowPos— see next slides.

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 52 / 72



Managing Windows Window size and position

Position and Size Functions
Check window size and position

GetWindowRect— in screen coords (top‐level) or parent’s client coords (child)
GetClientRect— client area rectangle in window’s own client coords (i.e. (x, y) = (0, 0))
GetWindowPlacement— see previous slide here

Set window size and position:
MoveWindow—modify position and size (can also force repaint)
SetWindowPlacement— see previous slide here

SetWindowPos— activate window, change its size, position, z‐order, visibility
BeginDeferWindowPos, DeferWindowPos, EndDeferWindowPos— change multiple windows
simultaneously (avoid flicker)

User change:
Position — dragging caption bar (if present)
Size — dragging sizing border (if present)

Size and position change when minimizing, maximizing, restoring
Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 53 / 72



Managing Windows Window size and position

SetWindowPos

BOOL SetWindowPos(HWND wnd, HWND insAfter, int x, int y, int cx, int cy, UINT flags)

x, y, cx, cy— new position, size
insAfter— new Z‐Order

HWND_BOTTOM Bottom of z‐order (looses top‐most)
HWND_TOP Top of z‐order

HWND_TOPMOST Adds top‐most
HWND_NOTOPMOST Above all non‐topmost windows
window handle Below specified window

Inactive window is by default also activated (which may further change Z‐Order)

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 54 / 72



Managing Windows Window size and position

SetWindowPos

BOOL SetWindowPos(HWND wnd, HWND insAfter, int x, int y, int cx, int cy, UINT flags)

Flags:
SWP_NOMOVE don’t change position, ignores x and y
SWP_NOSIZE don’t resize, ignores cx and cy

SWP_NOZORDER don’t change Z‐Order, ignores insAfter
SWP_NOACTIVATE don’t activate the window

SWP_NOOWNERZORDER Z‐Order change will not affect window’s owner
SWP_HIDEWINDOW change visibility state
SWP_SHOWWINDOW

SWP_FRAMECHANGED applies new styles to window frame (it’s redrawn if needed)
SWP_DRAWFRAME forces a redraw of window’s frame

SWP_NOSENDCHANGING don’t send WM_WINDOWPOSCHANGING

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 55 / 72



Managing Windows Window size and position

Position and Size Messages
WM_WINDOWPOSCHANGING, WM_WINDOWPOSCHANGED

Sent each time size, position, visibility, z‐order changes (regardless of source)
lParam points to WINDOWPOS structure (fields correspond to SetWindowPos parameters)
On WM_WINDOWPOSCHANGING change fields to affect the outcome

WM_MOVE, WM_SIZE
lParam— new position/size of window
wParam (WM_SIZE only) — indicates change in minimized/maximized state
Sent by DefWindowProcW on WM_WINDOWPOSCHANGED (thus can be prevented)
Legacy messages, more efficient to handle WM_WINDOWPOSCHANGED directly

WM_GETMINMAXINFO
Sent before window changes size/position (usually by DefWindowProcW on
WM_WINDOWPOSCHANGING, but not only)
lParam— points to GETMINMAXINFO
Modify it to change window’s maximized position, size and minimum, maximum tracked size

WM_NCCALCSIZE— Sent to calculate window’s client area (see docs!)
Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 56 / 72



Managing Windows Window size and position

Position and Size Messages

User dragging:
WM_SYSCOMMAND w/ SC_MOVE or SC_SIZE sent once at start,
cause DefWindowProcW to enter a modal loop
WM_ENTERSIZEMOVE and WM_EXITSIZEMOVE sent once at the loop’s start and end (respectively)
WM_MOVING, WM_SIZING

Sent periodically while dragging
lParam— points to RECT with window’s new location
Modify to change the outcome
wParam (WM_SIZING only) — edge/corner being dragged

WM_WINDOWPOSCHANGING, WM_WINDOWPOSCHANGED also arrive while dragging, as with any change
to size or position

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 57 / 72



Managing Windows Window and window class data

Window and Window Class Data
Use GetClassLongPtrW, SetClassLongPtrW to access, change any class info passed in
WNDCLASSEXW upon registering, e.g.:

GCL_STYLE class styles
GCLP_HBRBACKGROUND background brush

GCLP_WNDPROC window procedure
Use GetWindowLongPtrW, SetWindowLongPtrW to access, change window data, e.g.:
GWL_STYLE, GWL_EXSTYLE window styles

GWLP_ID child window ID
GWLP_WNDPROC window procedure

Windows might require manual frame redraw on style changes, see previous slide here

Replacing window procedure creates a subclass.
Change in class only affects windows created afterwards.
Change in window only affects that window.
New procedure should pass unhandled messages to the old one using CallWindowProcW

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 58 / 72



Windows API Lecture 2 The End

End of Windows API Lecture 2

Thank you for listening! ,

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 59 / 72



Appendix A Message Routing Revisited

Message Queue

Sent messages behaves differently depending on the owner thread of recipient window:
Sender thread Window procedure called directly
Other thread Message added to it’s incoming message queue
Messages stored in thread’s message queue as (depending on type):
Incoming messages Sent from other threads

Posted messages Posted by any thread
Input messages Generated by system from input devices

Special flags general: quit,mouse moved; each window: repaint; each timer: elapsed

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 60 / 72



Appendix A Message Routing Revisited

Queued Messages
Incoming sent messages:

Never returned by: GetMessageW, PostMessageW, etc.
Processed directly inside calls to API functions (invisibly to the caller):
GetMessageW, PeekMessageW, cross‐thread SendMessageW, etc.
Processing not affected by filters of GetMessageW, PeekMessageW, etc.

Input messages:
Source: mouse, keyboard, raw input (if requested, mouse, keyboard, gamepads, etc.)
Mouse movement only setsmouse moved flag
Appending another input message clears that flag and inserts WM_MOUSEMOVE or
WM_NCMOUSEMOVE before it.
If mouse move message is inserted after another of the same type, they coalesce i.e. older
one removed, parameters combined

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 61 / 72



Appendix A Message Routing Revisited

Retrieving Messages

Messages retrieval functions process them based on priority:
1 Incoming messages

Note: delivered directly (e.g. to window procedure), another lower‐priority message will be returned
2 Posted messages
3 Generated WM_QUIT (quit flag)
4 Input messages (if required andmouse moved flag set, WM_MOUSEMOVE or WM_NCMOUSEMOVE is

generated)
5 Generated WM_PAINT (any window’s repaint flag)
6 Generated WM_TIMER (any timer’s elapsed flag)

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 62 / 72



Appendix A Message Routing Revisited

Generated Messages

Created on demand if:
No other, higher‐priority message exists
Their respective flag is set
They match given message filter
Exception: WM_QUIT disregards filters

If created, but not removed (e.g. no PM_REMOVE in PeekMessageW, input messages list not empty
whenmose movemessages created)

WM_PAINT, WM_TIMER added to posted messages list
WM_NCMOUSEMOVE, WM_MOUSEMOVE added to input messages list
WM_QUIT never added anywhere (ignores lack of PM_REMOVE)

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 63 / 72



Appendix A Message Routing Revisited

PeekMessageW in Pseudocode
Note: error checking and some flags omitted, not entirely inaccurate, but based on observable
behaviour
BOOL PeekMessageW(LPMSG msg, HWND hWnd, UINT msgMin, UINT msgMax, UINT flags)
{

Deliver all pending incoming sent messages;
if (existing posted message matches filter) {

*msg = that message;
if (flags & PM_REMOVE) Remove it from posted messages list;
return TRUE;

}
if (existing input message, excl. last mouse move, matches filter) {

*msg = that message;
if (flags & PM_REMOVE) Remove it from input message list;
return TRUE;

}
...

}

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 64 / 72



Appendix A Message Routing Revisited

PeekMessageW in Pseudocode
BOOL PeekMessageW(LPMSG msg, HWND hWnd, UINT msgMin, UINT msgMax, UINT flags)
{

...
if (quit queue flag set) {

clear quit queue flag;
*msg = a WM_QUIT message;
return TRUE;

}
if (mouse moved queue flag set && mouse move message matches filter) {

append WM_MOUSEMOVE or WM_NCMOUSEMOVE
to the input messages list (with coalescing);

*msg = first mouse move message in the input list
if (flags & PM_REMOVE) Remove it from input message list
return TRUE;

}
...

}

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 65 / 72



Appendix A Message Routing Revisited

PeekMessageW in Pseudocode
BOOL PeekMessageW(LPMSG msg, HWND hWnd, UINT msgMin, UINT msgMax, UINT flags)
{

...
if (thread's window needs repainting && WM_PAINT matches filter) {

//Doesn't clear windows repaint flag
*msg = a WM_PAINT message;
if (!(flags && PM_REMOVE)) append that message to posted messages list
return TRUE;

}
if (thread's timer elapsed && WM_TIMER matches filter) {

clear timer's elapsed flag
*msg = a WM_TIMER message;
if (!(flags && PM_REMOVE)) append that message to posted messages list
return TRUE;

}
return FALSE;

}

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 66 / 72



Appendix B Cross‐Thread Messages

Posting Cross‐Thread Messages

BOOL PostMessageW(HWND hWnd, UINT msg, WPARAM wParam, LPARAM lParam)

Posts message to hWnd’s owner thread’s message queue
BOOL PostThreadMessageW(DWORD threadId, UINT msg, WPARAM wParam)

Posts message to thread’s message queue (GetCurrentThreadId, GetWindowThreadId)
Thread must have a message queue (possible, since no HWND required — in that case, before
posting, call e.g. PeekMessageW once in the recipient thread to force queue creation)

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 67 / 72



Appendix B Cross‐Thread Messages

Sending Cross‐Thread Messages
LRESULT SendMessageTimeoutW(HWND hWnd, UINT msg,WPARAM wParam,

LPARAM lParam, UINT flags, UINT timeout)

Sends message to hWnd (processed on it’s owner thread).
Blocks until message processes or timeout expires.
Some available flags:

SMTO_NORMAL calling thread processes incoming messages while waiting
SMTO_BLOCK prevent calling thread from processing incoming messages

SMTO_ABORTIFHUNG returns early if receiving thread is not responding
SMTO_NOTIMEOUTIFNOTHUNG ignores timeout if receiving thread is responding

If timeout expires before receiving thread starts processing the message, it is remove.
However, it can timeout after message processing started (impossible to cancel message).

LRESULT SendMessageW(HWND hWnd, UINT msg, WPARAM wParam, LPARAM lParam)

Same as SendMessageTimeoutW with INFINITE timeout and SMTO_NORMAL.

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 68 / 72



Appendix B Cross‐Thread Messages

Sending Cross‐Thread Messages

BOOL SendMessageCallbackW(HWND hWnd, UINT msg, WPARAM wParam, LPARAM lParam,
SENDASYNCPROC callback, ULONG_PTR data)

Sends message to hWnd (processed on it’s owner thread).
Returns immediately
When message is processed, callback is executed, passing the result and data
(on sender thread, sender must have a message loop)
Callback prototype:
void SendAsyncProc(HWND hWnd, UINT msg, ULONG_PTR data, LRESULT result)

BOOL SendNotifyMessageW(HWND hWnd, UINT msg, WPARAM wParam, LPARAM lParam)

Same as SendMessageCallbackW with nullptr callback

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 69 / 72



Appendix B Cross‐Thread Messages

Broadcasting Messages

Sending/posting message broadcasts:
Use HWND_BROADCAST as hWnd.
Recipients: all top‐level windows in the system
(including disabled, invisible unowned windows)
Only registered messages should be broadcasted.
In SendMessageTimeoutW timeout applies to each recipient separately
(i.e. function can wait up to timeout times number of recipients.)
In SendMessageCallbackW callback is called for each recipient window.
BroadcastSystemMessageW, BroadcastSystemMessageExW for more options for posting/sending
broadcasted messages.

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 70 / 72



Appendix B Cross‐Thread Messages

Synchronisation

Asynchronous calls (don’t wait): PostMessageW, SendMessageCallbackW, SendNotifyMessageW
Will fail for system‐defined messages whose parameters contain pointers.
For custom messages, program should provide proper marshalling, synchronisation, etc.
SendMessageTimeoutW can timeout while other thread is in the middle of processing, be
careful about freeing resources, etc.

Passing result back to sender:
When window procedure exits on recipient thread, system sends internal message to sender.
Recipient can call ReplyMessage to provide result (and possibly unblock sender) early
On sender thread those internal messages are processed to provide result of SendMessageW,
SendMessageTimeoutW or run callback of SendMessageCallbackW

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 71 / 72



Appendix B Cross‐Thread Messages

Cross‐Thread Input Attachment
Thread group

Threads that share input message queue
Created (or expanded) by:

Establishing cross‐thread parent/child or owner/owned relationships
Calling AttachThreadInput (can also break attachment)

Share input state (keyboard state, active window, focus, etc.)
Input messages are synchronised, thread will not receive input messages if:

First input message belongs to another thread
Another thread has received input message and hasn’t indicated that processing was done (next
call to GetMessageW, PeekMessageW, SendMessageW, etc.)

Can lead to difficult to debug deadlocks due to input synchronisation, thus should be avoided
(see here and here )
Attaching to thread of a non‐cooperating process is a bad idea (see here )

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 72 / 72

https://devblogs.microsoft.com/oldnewthing/?p=4143
https://devblogs.microsoft.com/oldnewthing/20130606-00/?p=4153
https://devblogs.microsoft.com/oldnewthing/20130619-00/?p=4043

	Messages
	Overview
	Properties
	Types
	Window procedure
	Example

	Message routing
	Overview
	Sent messages
	Message Queue

	Message Loop
	Overview
	Retrieving messages
	Processing messages

	Animation and timing
	Long running operations
	Timers and time measurement
	Animations

	Managing Windows
	Window relationships
	Window show state
	Window size and position
	Window and window class data

	Windows API Lecture 2
	The End

	Appendix
	Appendix A
	Message Routing Revisited

	Appendix B
	Cross-Thread Messages



