
Programming in Graphical Environment
Windows API Lecture 4

Paweł Aszklar
pawel.aszklar@pw.edu.pl

Faculty of Mathematics and Information Science
Warsaw Univeristy of Technology

Warsaw 2024

mailto:pawel.aszklar@pw.edu.pl

GDI Introduction Overview

Graphics Device Interface

Abstract interface for producing graphics and text on: displays, bitmaps, printers, …
Core system component, integrates well with message‐driven GUI paradigm
Stateful

Prefers modifying state before drawing over drawing function parameters
Simpler function calls, but harder to reason about

Limited resource pools, difficult management make accidental leaks easier and more severe
Limitations:

Hardware acceleration only for bit‐block transfers
Far below Direct2D/DirectWrite capabilities
Still superior to GDI+ (which is entirely in software)

Anti‐aliasing only for text, bitmap stretching
Transparency: Alpha blending available only for selected operations

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 2 / 93

GDI Introduction Device Context

Device Context

Core of GDI abstraction
HDC— handle to opaque device context object
Stores state, links drawing to particular surface
Provides way to query capabilities of a device
Device context types:

Display, printer — tied to a given device
Memory — allow drawing on bitmaps
Information context — context of a display, printer, which can retrieve device properties and
capabilities, but cannot draw.

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 3 / 93

GDI Introduction Device Context

Device Context State
Context stores various states, drawing modes and bound (selected) objects used for all relevant
drawing operations:

Selected objects (one of each type)
Pen, Brush, Font
optional: Palette, Clip Region, Path
for memory context: Bitmap

Modes:
graphics mode, layout, text alignment
drawing modes: polygon filling, arc direction
mixing modes: foreground, background, stretch

Positioning:
Current position — where certain drawing operations start
Transformations — map logical points to screen (world→page→device→screen)

Other properties:
colors used for: background, text, DC Pen, DC Brush
brush origin, pen miter limit, arc direction, text spacing, LTR/RTL layout, halftone stretching color
adjustment …

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 4 / 93

GDI Introduction Device Context

Obtaining Display Device Context

Device context can be obtained for any window, primary display or entire virtual screen.
Usually reused contexts from a common pool with state reset upon retrieval.
Private context obtained only if window’s class styles includes:

CS_OWNDC— each window has its own private context, or
CS_CLASSDC— all windows of a class share a private context (should be avoided!)

Context’s visible region, drawings outside are invisible, e.g.:
Window’s client area
Entire window including frame
WS_CLIPCHILDREN— for parent, excludes areas covered by children
WS_CLIPSIBLINGS— for child, excludes areas covered by siblings

Child window can request to use parent’s context

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 5 / 93

GDI Introduction Device Context

Obtaining Display Context
window’s client area: HDC GetDC(HWND hWnd) (pass nullptr for entire screen)
window area (incl. frame): HDC GetWindowDC(HWND hWnd) (pass nullptr for primary display)
window’s (client) area: HDC GetDCEx(HWND hWnd, HRGN clip, DWORD flags)
(pass nullptr for entire screen), depending on flags:

DCX_INTERSECTRGN, DCX_EXCLUDERGN— visible region intersected with/excludes clip
DCX_CLIPCHILDREN, DCX_CLIPSIBLINGS— as if WS_CLIPCHILDREN, WS_CLIPSIBLINGS styles
were used
DCX_PARENTCLIP— uses parent’s visible region (similar to CS_PARENTDC)
DCX_CACHE— common context (overrides CS_OWNDC, CS_CLASSDC)
DCX_WINDOW— entire window’s visible area instead of just client

Releasing context:
Contexts acquired by above function released by ReleaseDC
Common contexts need to be freed as soon as possible
Private context don’t need to be released immediately (unless shared by whole class), but it’s
recommended for consistency (they can always be retrieved again unchanged)

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 6 / 93

GDI Introduction Device Context

Creating Device Context
Display (any display, entire screen), printer context:

CreateDCW— drawing context
CreateICW— information context (no drawing)

Memory context:
HDC CreateCompatibleDC(HDC hdc)

Context created with default attribute
Compatible with hdc’s device, but with default attributes
Bound to monochrome 1× 1 bitmap (needs to be rebound)

Destroying contexts
Functions above create context owned by calling thread
Must be destroyed by calling DestroyDC when no longer needed
Bitmap bound to memory context isn’t released with it!
(Although the default bitmap memory context is created with doesn’t need releasing)

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 7 / 93

GDI Introduction When to Draw

Where to Draw
Parts of a window need to be redrawn, e.g. when windows move/resize/change z‐order.
Any such areas are automatically marked for update
Manually mark parts of client area with (changes are cumulative):
BOOL InvalidateRect(HWND hWnd, const RECT *rc, BOOL erase)
BOOL InvalidateRgn (HWND hWnd, HRGN rgn, BOOL erase)

Pass nullptr as rc/rgn to mark the whole client area
erase controls if background should be erased

Manually unmark parts of client area:
BOOL ValidateRect(HWND hWnd, const RECT *rc)
BOOL ValidateRgn (HWND hWnd, HRGN rgn)
Passing nullptr as rc/rgn validates the whole client area
Check current update region or its bounding box:
BOOL GetUpdateRect(HWND hWnd, LPRECT rc, BOOL erase)
Pass nullptr as rc to just check if it’s not empty
int GetUpdateRgn(HWND hWnd, HRGN rgn, BOOL erase)

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 8 / 93

GDI Introduction When to Draw

When to Draw

You can draw anytime and anywhere w/ GetDC, GetWindowDC, GetDCEx, however,
Drawing should generally be done in response to messages:

WM_PAINT generated by message queue if update region not empty (low priority)
WM_NCPAINT sent if any part of window frame needs to be redrawn
WM_ERASEBKGND sent if any part of client area background needs to be erased

Beware of fragmentation of painting logic!
If you need to paint something immediately, invalidate an area (see previous slide), then
send WM_PAINTmessage with:
BOOL UpdateWindow(HWND hwnd)

Related messages that might affect painting: any window positioning message,
WM_SYSCOLORCHANGE, WM_DISPLAYCHANGE, WM_DPICHANGED, WM_DWMCOLORIZATIONCOLORCHANGED

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 9 / 93

GDI Introduction When to Draw

When and Where to Draw
BOOL RedrawWindow(HWND hWnd, const RECT *rc, HRGN rgn, UINT flags)

Offers functionality of all Invalidate‐, Validate‐, Update‐ functions and more
rc or rgn (if used) specify the part of a window affected, only one can be non‐nullptr
if both are nullptr, entire window is affected
flags control the behavior:

RDW_INVALIDATE— invalidate affected client area
RDW_ERASE— also mark the area for erasure (must be used w/ RDW_INVALIDATE)
RDW_FRAME— also invalidate affected non‐client area (must be used w/ RDW_INVALIDATE)
RDW_VALIDATE— validate affected client area
RDW_NOFRAME— also suppress pending WM_NCPAINTmessages (must be used w/ RDW_VALIDATE)
RDW_NOERASE— suppress pending WM_ERASEBKGNDmessages
RDW_ERASENOW— immediately sends pending WM_NCPAINT, WM_ERASEBKGND
RDW_UPDATENOW— immediately sends pending WM_PAINT
RDW_ALLCHILDREN, RDW_NOCHILDREN— control if child windows are included in the operation
RDW_INTERNALPAINT, RDW_NOINTERNALPAINT— control the internal flag, that causes WM_PAINT
to be pending even if invalid area is empty.

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 10 / 93

GDI Introduction When to Draw

WM_PAINT
HDC BeginPaint(HWND hWnd, LPPAINTSTRUCT ps)

Should be called before any painting
Can only be called in response to WM_PAINT
Sends WM_NCPAINT, WM_ERASEBKGND if they are still pending
Obtains device context for client area
Limits drawing to the update region and validates it
Hides caret (if one’s present)

struct PAINTSTRUCT {
HDC hdc;
BOOL fErase;
RECT rcPaint;
BOOL fRestore;
BOOL fIncUpdate;
BYTE rgbReserved[32];

};
Afterwards PAINTSTRUCT contains

hdc— device context that should be used for painting, the same that BeginPaint returns
fErase— true if attempts to erase background failed,
e.g. window class’s background brush was nullptr or custom WM_ERASEBKGND returned 0
rcPaint— bounding box of the update area
other fields are reserved for internal system use

BOOL EndPaint(HWND hWnd, const PAINTSTRUCT *ps)
Must be called after drawing before the end of WM_PAINT handler
Releases the device context, restores caret (if it was hidden)

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 11 / 93

GDI Introduction When to Draw

WM_ERASEBKGND

Received when window’s background needs repainting
wParam is the device context, you should not release it here
Return 1 or 0 to indicate if background was erased (fErase of PAINTSTRUCT)
DefWindowProcW will erase with class background brush if it’s not nullptr

Reminder: background brush hbrBackground is set when registering a class
Use GetClassLongPtrW, SetClassLongPtrW w/ GCLP_HBRBACKGROUND to retrieve or change it
Instead of HBRUSH handle, can be a color constant incremented by 1, e.g.:
reinterpret_cast<HBRUSH>(COLOR_WINDOW + 1)

If custom erasing needed, it’s often more convenient to just return 0 and erase background
in WM_PAINT handler.

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 12 / 93

GDI Introduction When to Draw

WM_NCPAINT

Received when window frame needs repainting
wParam is update region (HRGN handle, always rectangular)
To obtain device context and limit drawing to the update region, call:
GetDCEx(hwnd, reinterpret_cast<HRGN>(wParam), DCX_WINDOW | DCX_INTERSECTRGN)

Pass to DefWindowProcW if you want the regular frame to be drawn first
Nowadays frame usually hidden for top‐level windows, covered by a frame created by
Desktop Window Manager

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 13 / 93

GDI Introduction When to Draw

Flicker‐Free Drawing
All drawing operations are immediately reflected on the window
If whole window is erased and repainted often, the area might flicker
To avoid it, block background erasure
(set class background brush to nullptr, intercept WM_ERASEBKGND and return 0)
When painting use so called double‐buffering
(hdc ‐ original device context; x, y, width, height ‐ update area bounding box)
//Create in‐memory buffer and an associated memory device context
HDC memDC = CreateCompatibleDC(hdc);
HBITMAP memBmp = CreateCompatibleBitmap(hdc, width, height);
HBITMAP oldBmp = reinterpret_cast<HBITMAP>(SelectObject(memDC, memBmp));
//Fill background and draw on memDC, offset positions if (x,y) not (0,0)
...

//Clean‐up
BitBlt(hdc, x, y, width, height, memDC, 0, 0, SRCCOPY);
DeleteObject(SelectObject(memDC, oldBmp));
DestroyDC(memDC);

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 14 / 93

GDI Introduction Basic Types

Basic Types
COLORREF— RGB color

From lowest byte: blue, green, red channels
High byte unused (sometimes alpha channel)
RGB(r, g, b)— combine channel values
GetRValue(c), GetGValue(c), GetBValue(c)— extract

POINT— 2D integer coordinate

typedef DWORD COLORREF;
struct POINT {

LONG x, y;
};
struct RECT {

LONG left;
LONG top;
LONG right;
LONG bottom;

};
RECT—Upright (axis‐aligned) rectangle

Coordinates: X of left and right, and Y of top and bottom edge
BOOL SetRectEmpty(RECT *rc)— all coordinates set to 0
BOOL SetRect(RECT* rc, int left, int top, int right, int bottom)
BOOL IsRectEmpty(const RECT *rc)— if width and height are 0
BOOL InflateRect(RECT *rc, int dx, int dy)— increase width by 2dx and height by 2dy
(dx subtracted from left and added to right, dy subtracted from top and added to bottom coordinates)
BOOL OffsetRect(RECT *rc, int dx, int dy)—moves rectangle
(dx added to left and right, dy added to top and bottom coordinates)
BOOL CopyRect(RECT *dst, const RECT *src)— copies coordinates

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 15 / 93

GDI Introduction Basic Types

Basic Types
RECT—Upright (axis‐aligned) rectangle

BOOL EqualRect(const RECT *rc1, const RECT rc2)— checks if coordinates are equal
BOOL PtInRect(const RECT *rc, POINT pt)— checks if pt is inside rc
(left, top egde or interior only, rc height and width must not be negative)
Bounding box of set intersection of rectangle areas:
BOOL IntersectRect(RECT *dst, const RECT *src1, const RECT *src2)
Bounding box of set union of rectangle areas:
BOOL UnionRect(RECT *dst, const RECT src1, const RECT *src2)
Bounding box of set difference of rectangle areas:
BOOL SubtractRect(RECT *dst, const RECT src1, const RECT *src2)

Set Union: Set Difference:

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 16 / 93

Drawing with GDI Lines and Curves

Lines and Curves

Straight or curved line segments
Outlined using selected pen (stock black pen by default)
Shapes are not filled
One set of functions uses context’s current position

All ‐To functions, PolyDraw, AngleArc
Drawing starts at current position
Current position changed to shape’s last point
Get current position:
BOOL GetCurrentPositionEx(HDC hdc, LPPOINT ppt)
Set current position:
BOOL MoveToEx(HDC hdc, int x, int y, LPPOINT ppt)
ppt receives previous value, pass nullptr to ignore

Other functions ignore current position entirely

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 17 / 93

Drawing with GDI Lines and Curves

Lines To

BOOL LineTo(HDC hdc, int x, int y)
Line segment from current position to specified point.
MoveToEx(hdc, 50, 50, nullptr);
LineTo(hdc, 150, 100);
LineTo(hdc, 100, 0);

BOOL PolylineTo(HDC hdc, const POINT *apt, DWORD cpt)
Polyline from current position through cpt points from array apt.
POINT pts[2] = { {150, 100}, {100, 0} };
MoveToEx(hdc, 50, 50, nullptr);
PolylineTo(hdc, pts, 2);

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 18 / 93

Drawing with GDI Lines and Curves

Curves To
BOOL PolyBezierTo(HDC hdc, const POINT *apt, int cpt)

Draws n Bézier segments
cptmust be 3n, where n ‐ number of Bézier curve segments
Current position and first 3 points control first segment
Last point of the previous segment and next 3 points control
each subsequent one

auto oldp = SelectObject(hdc,
CreatePen(PS_DASHDOT, 1, RGB(255, 100, 100)));

POINT pts[3] = { {50, 0}, {100, 100}, {150, 0} };
MoveToEx(hdc, 0, 100, nullptr);
PolylineTo(hdc, pts, 3);
DeleteObject(SelectObject(hdc, oldp));
MoveToEx(hdc, 0, 100, nullptr);
PolyBezierTo(hdc, pts, 3);

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 19 / 93

Drawing with GDI Lines and Curves

Lines and Curves To

BOOL PolyDraw(HDC hdc, const POINT *apt, BYTE *aj, int cpt)

Combines multiple MoveToEx, PolylineTo and PolyBezierTo calls
apt stores point positions, aj their annotations, both with cpt elements
Each point annotated as PT_MOVETO, PT_LINETO, or PT_BEZIERTO
PT_BEZIERTO points must come in sequences of 3
Combine with PT_CLOSEFIGURE to also draw a line segment from the point to the start of
current shape — even if closed, shape is not filled.
PT_MOVETO begins a new shape

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 20 / 93

Drawing with GDI Lines and Curves

Lines and Curves To
BOOL PolyDraw(HDC hdc, const POINT *apt, BYTE *aj, int cpt)

POINT pts[10] = {
{160, 80}, {160, 0}, { 0, 0}, //Rectangle
{ 60, 40}, { 10, 5}, {150, 5}, {100, 40}, //Top curve
{ 10, 75}, {150, 75}, {100, 40} }; //Bottom curve

BYTE types[10] = {
PT_LINETO, PT_LINETO, PT_LINETO | PT_CLOSEFIGURE,
PT_MOVETO, PT_BEZIERTO, PT_BEZIERTO, PT_BEZIERTO | PT_CLOSEFIGURE,
PT_BEZIERTO, PT_BEZIERTO, PT_BEZIERTO

};
MoveToEx(hdc, 0, 80, nullptr);
PolyDraw(hdc, pts, types, 10);

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 21 / 93

Drawing with GDI Lines and Curves

Elliptic Arcs To

BOOL ArcTo(HDC hdc, int l, int t, int r, int b, int xr1, int yr1, int xr2, int yr2)

Draws arc of ellipsis inscribed in [l, r]× [t, b] rectangle
Delimited by two radials (half‐lines from center) through (xr1, yr1) and (xr2, yr2)
Direction controlled by context’s arc direction:

int GetArcDirection(HDC hdc)— to get current
int SetArcDirection(HDC hdc, int dir)— to change it (returns old direction)
can be: AD_COUNTERCLOCKWISE (default) or AD_CLOCKWISE

Additional line drawn from context’s current position to the start of the arc.

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 22 / 93

Drawing with GDI Lines and Curves

Elliptic Arcs To
BOOL ArcTo(HDC hdc, int l, int t, int r, int b, int xr1, int yr1, int xr2, int yr2)

//Draw radials of the first arc in red
auto old = SelectObject(hdc, CreatePen(PS_SOLID, 1, RGB(255, 160, 160)));
MoveToEx(hdc, 0, 200, nullptr);
LineTo(hdc, 150, 100);
LineTo(hdc, 100, 50);
DeleteObject(SelectObject(hdc, old));

//Draw first arc counter‐clockwise
ArcTo(hdc, 0, 0, 300, 200,

100, 50, 0, 200);
SetArcDirection(hdc, AD_CLOCKWISE);
MoveToEx(hdc, 300, 100, nullptr);
//Draw second arc clockwise
ArcTo(hdc, 0, 0, 300, 200,

300, 100, 200, 200);

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 23 / 93

Drawing with GDI Lines and Curves

Circular Arcs To
BOOL AngleArc(HDC hdc, int x, int y, DWORD r, FLOAT a_start, FLOAT a_sweep)

Draws circular arc centred at (x, y) with radius r
a_start— angle in degrees counter‐clockwise from circle’s x‐axis
a_sweep— angle in degrees, determines arc length
Ignores context’s arc direction — negative angles for clockwise arcs
Additional line drawn from context’s current position to arc start

//Move to center
MoveToEx(hdc, 100, 100, nullptr);
//Line from center and left, CCW arc
AngleArc(hdc, 100, 100, 100, 135, 90);
//Line back to center
LineTo(hdc, 100, 100);
//Line from center and right, CW arc
AngleArc(hdc, 100, 100, 100, 45, ‐90);
//Line back to center
LineTo(hdc, 100, 100);

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 24 / 93

Drawing with GDI Lines and Curves

Lines and Curves From–To
Context’s current position isn’t used and doesn’t change
Polyline, PolyBezier— same as ‐To variants, but with additional element at the beginning
of arrays for the start point.
Arc— Same as ArcTo but no line drawn to arc’s starting point
No counterparts to LineTo, AngleArc, PolyDraw
BOOL PolyPolyline(HDC hdc, const POINT *apt, const DWORD *asz, DWORD csz)
Draws a number of disjointed polylines.

csz— number of polylines
asz— number of points in each polyline (needs csz elements, each> 1)
apt— points forming all polylines (size must be the sum of asz values)

POINT pt[6] = { {0, 0}, {100, 100}, {200, 0},
{0, 100}, {100, 0}, {200, 100} };

DWORD pl[2] = { 3, 3 };
PolyPolyline(hdc, pt, pl, 2);

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 25 / 93

Drawing with GDI Closed Figures

Closed Figures

Drawing:
polygons,
rectangles, rounded rectangles, ellipses
elliptic segments and sectors

Shapes outlined with context’s current pen
(stock black pen by default, use NULL_PEN to omit)
Interior filled with context’s current brush
(stock white brush by default, use NULL_BRUSH to omit)

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 26 / 93

Drawing with GDI Closed Figures

Rectangles, Ellipses

BOOL Rectangle(HDC hdc, int left, int top, int right, int bottom)
Draws a [left, right]× [top, bottom] rectangle
BOOL Ellipse(HDC hdc, int left, int top, int right, int bottom)
Draws an ellipse inscribed in a [left, right]× [top, bottom] rectangle
BOOL RoundRect(HDC hdc, int l, int t, int r, int b, int w, int h)

Draws a [l, r]× [t, b] rectangle with rounded corners
Quarters of ellipse with height h and width w used for corners
h and w clamped to rectangle’s width and height
h and w equal to rectangle’s width and height results in an ellipse

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 27 / 93

Drawing with GDI Closed Figures

Rectangles, Ellipses
BOOL Rectangle(HDC hdc, int left, int top, int right, int bottom)
BOOL Ellipse(HDC hdc, int left, int top, int right, int bottom)
BOOL RoundRect(HDC hdc, int l, int t, int r, int b, int w, int h)

auto oldbr = SelectObject(hdc, CreateSolidBrush(RGB(0, 162, 232)));
auto oldpn = SelectObject(hdc, CreatePen(PS_SOLID, 3, RGB(0, 16, 25)));
Rectangle(hdc, 10, 120, 160, 220);
Ellipse (hdc, 170, 10, 320, 110);
RoundRect(hdc, 170, 120, 320, 220, 30, 60);
DeleteObject(SelectObject(hdc, oldpn));
DeleteObject(SelectObject(hdc, oldbr));

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 28 / 93

Drawing with GDI Closed Figures

Elliptic Segments & Sectors

BOOL Chord(HDC hdc, int l, int t, int r, int b, int xr1, int yr1, int xr2, int yr2)
BOOL Pie(HDC hdc, int l, int t, int r, int b, int xr1, int yr1, int xr2, int yr2)

Draw elliptical segment (Chord) or sector (Pie).
Segment/Sector of ellipse inscribed in a [l, r]× [t, b] rectangle
Arc delimited by intersections with two radials through (xr1, yr1) and (xr2, yr2)
Direction controlled by context’s arc direction
Arc start, length and direction work just like with Arc and ArcTo

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 29 / 93

Drawing with GDI Closed Figures

Elliptic Segments & Sectors
BOOL Chord(HDC hdc, int l, int t, int r, int b, int xr1, int yr1, int xr2, int yr2)
BOOL Pie(HDC hdc, int l, int t, int r, int b, int xr1, int yr1, int xr2, int yr2)

//Top part of the image show segments (chords)
//Bottom part shows sectors (pies)
auto oldbr = SelectObject(hdc,

CreateSolidBrush(RGB(0, 162, 232)));
auto oldpn = SelectObject(hdc,

CreatePen(PS_SOLID, 3, RGB(0, 16, 25)));
//Top, CCW segment & sector
Chord(hdc, 10, 10, 160, 110, 160, 10, 10, 10);
Pie (hdc, 10, 130, 160, 230, 160, 130, 10, 130);
SetArcDirection(hdc, AD_CLOCKWISE);
//Bottom, CW segment & sector
Chord(hdc, 10, 20, 160, 120, 160, 20, 10, 20);
Pie (hdc, 10, 140, 160, 240, 160, 140, 10, 140);
DeleteObject(SelectObject(hdc, oldpn));
DeleteObject(SelectObject(hdc, oldbr));

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 30 / 93

Drawing with GDI Closed Figures

Polygons

BOOL Polygon(HDC hdc, const POINT *apt, int cpt)
Draws a polygon with cpt corners stored in array apt
BOOL PolyPolygon(HDC hdc, const POINT *apt, const INT *asz, int csz)

Draws csz polygons
asz contains number of vertices for each polygon (csz elements)
apt contains vertex positions for all polygons (size equal to sum of asz elements)

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 31 / 93

Drawing with GDI Closed Figures

Polygons
Interior of self‐intersecting boundary or shapes w/ holes determined by context’s fill mode:

int GetPolyFillMode(HDC hdc)— check current fill mode
int SetPolyFillMode(HDC hdc, int mode)— change it (returns previous)
ALTERNATE— crossing outline flips from outside to inside and v.v.
WINDING— influenced by direction of the outline. Crossing outline drawn relatively clockwise
adds 1, counter‐clockwise subtracts 1. Outside is 0, non‐zero is inside.

SetPolyFillMode(hdc, ALTERNATE) SetPolyFillMode(hdc, WINDING)

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 32 / 93

Drawing with GDI Closed Figures

Polygons
All polygons drawn in one PolyPolygon call are treated as outline of a single shape
SelectObject(hdc, CreateSolidBrush(RGB(0, 162, 232)));
SelectObject(hdc, CreatePen(PS_SOLID, 3, RGB(0, 16, 25)));
POINT p1[3] = { {110, 10}, {210, 150}, { 10, 150} };
//Outer triangle filled blue
Polygon(hdc, p1, 3);
DeleteObject(SelectObject(hdc,

CreateSolidBrush(RGB(162, 128, 242))));
POINT p2[10] = {

{110, 30}, { 150, 86}, {70, 86}, //Small upper triangle
{63, 98}, {158, 98}, {187, 138}, {33, 138}, //Lower trapezoid
{110, 50}, {56, 126}, {164, 126} }; //Inner triangle

INT c2[3] = { 3, 4, 3 };
//Shape with three outlines filled purple
PolyPolygon(hdc, p2, c2, 3);
//Test swapping last two points in p2 w/ different fill modes

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 33 / 93

Drawing with GDI Paths and Regions

Drawing Paths

Paths store a collection of lines, curves and closed shapes, their creation is discussed below.
BOOL StrokePath(HDC hdc)
Outlines figures contained in current path with current pen
BOOL FillPath(HDC hdc)

Closes any open figures in current path with a straight line segment.
Fills path interior with current brush and fill‐mode
All figures treated as outline of one shape. (see PolyPolygon example above)
Path discarded afterwards!

BOOL StrokeAndFillPath(HDC hdc)
Closes figures, fills and outlines them, then discards the path.
Same as StrokePath followed by FillPath, but the outline is drawn on top.

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 34 / 93

Drawing with GDI Paths and Regions

Drawing Regions

Regions represent an area (union of a bunch of rectangles), their creation is discussed below.
BOOL PaintRgn(HDC hdc, HRGN rgn)
BOOL FillRgn (HDC hdc, HRGN rgn, HBRUSH brush)
Fill region w/ current or supplied brush
BOOL FrameRgn(HDC hdc, HRGN rgn, HBRUSH brush, int w, int h)
Outline region w/ supplied brush
w and h specify width and height of vertical and horizontal brush strokes
Similar function:
int FrameRect(HDC hdc, const RECT *prc, HBRUSH brush)
Outlines rectangle w/ supplied brush (outline thickness is 1)
BOOL InvertRgn(HDC hdc, HRGN rgn)
Bitwise invert colors within region

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 35 / 93

Drawing with GDI Filling

Filling

BOOL FloodFill(HDC hdc, int x, int y, COLORREF color)
BOOL ExtFloodFill(HDC hdc, int x, int y, COLORREF color, UINT type)
Perform flood‐fill (think: bucket tool from MS Paint) from point (x,y), using color as:

for FloodFill or if type is FLOODFILLBORDER— boundary blocking filling
if type is FLOODFILLSURFACE— color of the surface that should be filled

GdiGradientFill— fills area with a gradient (see docs for this one)
The same function is also available as GradientFillmsimg32.dll (not linked by default)

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 36 / 93

https://learn.microsoft.com/en-us/windows/win32/api/wingdi/nf-wingdi-gdigradientfill

Drawing with GDI Block Transfers

Pattern Block Transfer

BOOL PatBlt(HDC hdc, int x, int y, int w, int h, DWORD rop)

Fills a rectangle with top‐left corner in (x,y) and size w×h

rop (binary raster‐operation code) determines the result based on initial colors of pixels in
the destination area and the current brush

WHITENESS— Fill white (more specifically, 0th palette color)
BLACKNESS— Fill black (more specifically, 1st palette color)
DSTINVERT— Bitwise inversion of existing colors
PATCOPY— Fill with context’s current brush
PATINVERT— Bitwise XOR of existing colors and context’s current brush

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 37 / 93

Drawing with GDI Block Transfers

Pattern Block Transfer
BOOL PatBlt(HDC hdc, int x, int y, int w, int h, DWORD rop)

//Fills with (0,0,0)
PatBlt(hdc, 0, 0, 300, 200, BLACKNESS);
//Fills with (255,255,255)
PatBlt(hdc, 20, 20, 260, 160, WHITENESS);
auto old_br = SelectObject(hdc,

CreateSolidBrush(RGB(255, 0, 100)));
//Fills with (255,0,100)
PatBlt(hdc, 40, 40, 220, 120, PATCOPY);
//Inverts to (0,255,155)
PatBlt(hdc, 60, 60, 180, 80, DSTINVERT);
DeleteObject(SelectObject(hdc,

CreateSolidBrush(RGB(255, 155, 155))));
//XORs to (255,100,0)
PatBlt(hdc, 80, 80, 140, 40, PATINVERT);
DeleteObject(SelectObject(hdc, old_br));

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 38 / 93

Drawing with GDI Block Transfers

Bit Block Transfer

BOOL BitBlt(HDC dst, int xd, int yd, int w, int h, HDC src, int xs, int ys, DWORD rop)

Fills a rectangle in dst which top‐left corner in (xd,yd) and size w×h

Source area in src is a rectangle with top‐left corner in (xs,ys) and size w×h

rop (ternary raster‐operation code) determines the result based on initial colors of pixels in
the source and destination area, and the current brush:

values listed for PatBlt achieve the same result here (source area is ignored)
SRCCOPY— Copies the source area to the destination
SRCAND— Bitwise ANDs source and destination
SRCPAINT— Bitwise ORs source and destination
SRCINVERT— Bitwise XORS source and destination
MERGECOPY— Bitwise ANDs source and brush
More named codes in the docs
Not all codes have names, see appendix to see how they are constructed

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 39 / 93

Drawing with GDI Block Transfers

Masked Block Transfer

BOOL MaskBlt(HDC dst, int xd, int yd, int w, int h,
HDC src, int xs, int ys,
HBITMAP mask, int xm, int ym, DWORD rop)

Fills a rectangle in dst which top‐left corner in (xd,yd) and size w×h

Source area in src is a rectangle with top‐left corner in (xs,ys) and size w×h

mask is an optional monochrome (black‐and‐white) bitmap
Mask area in mask is a rectangle with top‐left corner in (xm,ym) and size w×h

rop (quaternary raster‐operation code) determines the result based on initial colors of pixels
in the source, destination, and mask area, and the current brush:

use MAKEROP4(fore, back) to combine two ternary raster‐operation codes
fore— operation code under the mask (where mask values are non‐zero)
back— operation code outside of the mask

If mask is nullptr, works as BitBlt with fore raster‐operation code.

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 40 / 93

Drawing with GDI Block Transfers

Stretched Block Transfer
BOOL StretchBlt(HDC dst, int xd, int yd, int wd, int hd,

HDC src, int xs, int ys, int ws, int hs, DWORD rop)

Fills a rectangle in dst which top‐left corner in (xd,yd) and size wd×hd

Source area in src from (xs,ys) and size ws×hs stretched over the destination
Enlarging always duplicates rows and/or columns of pixels
Compressing controlled by dst’s stretching mode:

int GetStretchBltMode(HDC hdc)— check the current mode
int SetStretchBltMode(HDC hdc, int mode)— change it (returns previous)
STRETCH_DELETESCANS— removes some rows/columns
STRETCH_ANDSCANS— bitwise ANDs removed rows/columns with remaining ones
STRETCH_ORSCANS— bitwise ORs removed rows/columns with remaining ones
STRETCH_HALFTONE— resizes with averaging (often best result)

rop determines the result (same as BitBlt), colors are mixed after the stretch
StretchDIBits— similar function for stretching a bitmap

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 41 / 93

Drawing with GDI Block Transfers

Stretched Block Transfer
BOOL StretchBlt(HDC dst, int xd, int yd, int wd, int hd,

HDC src, int xs, int ys, int ws, int hs, DWORD rop)

STRETCH_ANDSCANS

STRETCH_ORSCANS

STRETCH_DELETESCANS

STRETCH_HALFTONE

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 42 / 93

Drawing with GDI Block Transfers

Parallelogram Block Transfer

BOOL PlgBlt(HDC dst, const POINT *dstPts,
HDC src, int xs, int ys, int ws, int hs,
HBITMAP mask, int xm, int ym)

dstPtsmust contain 3 POINTs for upper‐left, upper‐right and lower‐left corner of a
parallelogram which is the destination area in dst.
Source area in src is a rectangle with top‐left corner in (xs,ys) and size ws×hs

mask is an optional monochrome (black‐and‐white) bitmap
Mask area in mask starts from (xm,ym), if mask is to small to cover source area, it is repeated.
Source area is stretched, compressed, sheared and/or rotated to fit the destination.
No parameter for raster‐operation code
Pixels under mask (all pixels if mask is nullptr) overwrite the destination (compare to MaskBlt)
Reshaping governed by dst’s current stretch mode (see StretchBlt)

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 43 / 93

Drawing with GDI Block Transfers

Transparent Block Transfer

BOOL GdiTransparentBlt(HDC dst, int xd, int yd, int wd, int hd,
HDC src, int xs, int ys, int ws, int hs,
UINT crTransparent)

First 10 parameters describe the source and destination areas, just like StretchBlt

Stretches the source over the destination, just like StretchBlt

No parameter for raster‐operation code
Pixels which color is different than crTransparent overwrite the destination
Stretching controlled by dst’s stretch mode, but STRETCH_ANDSCANS and STRETCH_ORSCANS
treated as STRETCH_DELETESCANS.
Newer function, supports 32bpp colors, but alpha (opacity) value is simply copied over.

The same function is also available as TransparentBlt in msimg32.dll (not linked by default).

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 44 / 93

Drawing with GDI Block Transfers

Block Transfer
BOOL GdiAlphaBlend(HDC dst, int xd, int yd, int wd, int hd

HDC src, int xs, int ys, int ws, int hs, BLENDFUNCTION fn)

Almost the same as GdiTransparentBlt (see prev. slide)
src and dst colors combined instead of overwriting

struct BLENDFUNCTION {
BYTE BlendOp;
BYTE BlendFlags;
BYTE SourceConstantAlpha;
BYTE AlphaFormat;

};

Controlled by fn:
BlendOpmust be AC_SRC_OVER, BlendFlagsmust be 0
AlphaFormat— set to AC_SRC_ALPHA if source has 32bpp
and the alpha channel should be used for per‐pixel opacity
SourceConstantAlpha— additional opacity used for entire source (set to 255 to ignore)

Red channel of dst rd updated with red and alpha channels (rs, as) of the source color
(as = 255 if no per‐pixel opacity) and the constant opacity ac:

rd = rs ∗
as

255.0
∗ ac
255.0

+ rd ∗
ac

255.0

(
1− as

255.0
∗ ac
255.0

)
Green and blue channels (and alpha if it exists in dst) handled accordingly

The same function is also available as AlphaBlend in msimg32.dll (not linked by default)
Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 45 / 93

Drawing with GDI Drawing Text

Drawing Text

Text and font handling is the most complex part of GDI, we’ll only cover some basics
Text drawn using context’s current text color:

COLORREF GetTextColor(HDC hdc)— check current
COLORREF SetTextColor(HDC hdc, COLORREF color)— change it (returns previous)

Context’s current text alignment flags used to align text against a reference point
UINT GetTextAlign(HDC hdc)— check current flags
UINT SetTextAlign(HDC hdc, UINT align)— change them (returns previous)
TA_TOP, TA_BOTTOM, TA_BASELINE— vertical alignment (default: TA_TOP),
reference point will be on the top, bottom of text bounding box or on text’s baseline
TA_LEFT, TA_CENTER, TA_RIGHT— horizontal alignment (default: TA_LEFT),
reference point will be on the left, in the middle or on the right of text bounding box
TA_UPDATECP— if set, current position used as reference and is updated when drawing text
For flags related to RTL and vertical scripts, check the docs

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 46 / 93

Drawing with GDI Drawing Text

Drawing Text
BOOL TextOutW(HDC hdc, int x, int y, LPCWSTR text, int c)

(x,y)— reference point for alignment (ignored if TA_UPDATECP is set)
text and it’s length c— string to be drawn (doesn’t need to be zero‐terminated)

BOOL ExtTextOutW(HDC hdc, int x, int y, UINT opt, const RECT *rc,
LPCWSTR text UINT c, const INT *dx)|

(x,y)— reference point for alignment (ignored if TA_UPDATECP is set)
text and it’s length c— string to be drawn (doesn’t need to be zero‐terminated)
opt flags control behaviour, incl. if and how rc is used:

ETO_CLIPPED— text is clipped to rc
ETO_OPAQUE— fill rc with context’s current background color (see below)
contrary to TextOutW, here text background is transparent by default regardless of current
background color.
For other flags, check the docs

dx— used for character spacing (check docs), pass nullptr for default spacing.
Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 47 / 93

Drawing with GDI Drawing Text

Drawing Text
int DrawTextW(HDC hdc, LPCWSTR text, int c, LPRECT rc, UINT format)

Current text alignment must be TA_LEFT and TA_TOP without TA_UPDATECP
text and it’s length c (can pass−1 for c if text zero‐terminated)
rc— rectangle in which the text is laid out
format flags control the output:

DT_LEFT, DT_RIGHT, DT_CENTER— align text horizontally to the left, right or in the center of rc
DT_SINGLELINE— outputs text in a single line, ignoring new‐lines and carriage‐returns
DT_TOP, DT_BOTTOM, DT_VCENTER— align text vertically to the top, bottom or in the center of rc
(only for DT_SINGLELINE)
DT_WORDBREAK— automatically brakes lines before words that do not fit in rc
DT_CALCRECT – used to measure the text output without drawing (see docs)
Many other options, check the docs!

int DrawTextExW(HDC hdc, LPWSTR text, int c, LPRECT rc,
UINT format, LPDRAWTEXTPARAMS params)

Additional parameters controlling margins, tab‐stops, etc.
Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 48 / 93

Drawing with GDI Drawing Text

Measuring Text

BOOL GetTextExtentPoint32W(HDC hdc, LPCWSTR text, int c, LPSIZE size)
text and its length c
stores in size width and height of the text, as if drawn by TextOutW

DrawTextW can measure text as well (see previous slide)

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 49 / 93

GDI Objects Brushes

Brushes
Used to fill interiors of closed figures: polygons, ellipses, paths, …
Represent a pattern used for filling
Pattern is repeated (tiled)
Tiling origin defined by context’s brush origin: SetBrushOrgEx, GetBrushOrgEx
Note: that means pattern will not move if object is drawn in different position

Brush origin in device coordinates (default: (0,0), i.e. top‐left corner of drawing area)
Pattern position and size will not change with context’s coordinate mapping/transformations
Obtaining stock brushes: GetStockObject

WHITE_BRUSH, LTGRAY_BRUSH, GRAY_BRUSH, DKGRAY_BRUSH, BLACK_BRUSH— grayscale, solid
DC_BRUSH— solid brush, uses context’s current DC brush color
GetDCBrushColor, SetDCBrushColor, can be changed while selected
NULL_BRUSH— draws nothing

Obtaining stock system color brushes: GetSysColorBrush
any symbolic constant with COLOR_ prefix
colors used by system for drawing different parts of a window

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 50 / 93

GDI Objects Brushes

Brushes
Creating solid brush — fills with constant color: HBRUSH CreateSolidBrush(COLORREF color)
Creating hatch pattern brush — fills with tiling hatches

Type: HS_HORIZONTAL, HS_VERTICAL, HS_FDIAGONAL, HS_BDIAGONAL, HS_CROSS, HS_DIAGCROSS
Hatches use constant color, gaps use background (depends background mixing mode)
HBRUSH CreateHatchBrush(int hatch, COLORREF color)

Creating bitmap pattern brush — fills with tiling bitmap
HBRUSH CreatePatternBrush(HBITMAP bmp)— from DDB or DIB handle
HBRUSH CreateDIBPatternBrushPt(const void *packedDIB, int usage):
packedDIB pointer to packed device‐independent bitmap

usage color table type (see CreateDIBSection here)
HBRUSH CreateBrushIndirect(const LOGBRUSH *br)
lbStyle lbHatch lbColor type
BS_NULL ignored ignored empty brush
BS_SOLID ignored color solid brush
BS_HATCHED hatch color hatch pattern
BS_PATTERN bmp ignored bitmap pattern
BS_DIBPATTERNPT packedDIB usage bitmap pattern

struct LOGBRUSH {
UINT lbStyle;
COLORREF lbColor;
ULONG_PTR lbHatch;

};

Delete brush: DeleteObject (not necessary for stock brushes, but not harmful either)
Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 51 / 93

GDI Objects Pens

Pens

Used for drawing lines, curves, outlines of filled shapes
Attributes:

Width
Brush (sometimes only color — equivalent to using solid brush)
Join and end cap styles
Dash pattern

Simple pens: CreatePen, CreatePenIndirect
Extended — cosmetic and geometric pens: ExtCreatePen
Stock pens: GetStockObject

WHITE_PEN, BLACK_PEN— solid white/black cosmetic pen
DC_PEN— solid cosmetic pen, uses context’s current DC pen color
GetDCPenColor, SetDCPenColor, can be changed while selected
NULL_PEN— draws nothing

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 52 / 93

GDI Objects Pens

Simple Pens

HPEN CreatePen(int lopnStyle, int lopnWidth,
COLORREF lopnColor)

HPEN CreatePenIndirect(LOGPEN *pen)

struct LOGPEN{
UINT lopnStyle;
POINT lopnWidth; //y unused
COLORREF lopnColor;

};
lopnWidth

pen width in world units
effective width (in pixels) depends on all transformations
if 0, effective width always 1px

lopnStyle— line style, one of:
PS_SOLID, PS_DASH, PS_DOT, PS_DASHDOT, PS_DASHDOTDOT
if effective width> 1px pen always solid (transformations change pen’s appearance)
PS_NULL— draws nothing
PS_INSIDEFRAME— solid pen, entire width inside the shape (only some closed figures)

lopnColor— pen color
Simple pens have round caps and joins

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 53 / 93

GDI Objects Pens

Cosmetic and Geometric Pens
HPEN ExtCreatePen(DWORD style, DWORD width, const LOGBRUSH *brush,

DWORD dashCount, const DWORD *dashes)
style— combination of:

pen type – PS_COSMETIC or PS_GEOMETRIC
line style — one of simple pen styles,
PS_ALTERNATE (draws every other pixel) or
PS_USERSTYLE (user defined dash style)
join style (geometric pens only) — one of:
PS_JOIN_ROUND round
PS_JOIN_MITER sharp (mitered) if within context’s

miter limit, otherwise beveled
PS_JOIN_BEVEL flat (beveled)

cap style (geometric pens only) — one of:
PS_ENDCAP_ROUND round

PS_ENDCAP_SQUARE square (extended half
the width past the end)

PS_ENDCAP_FLAT flat
Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 54 / 93

GDI Objects Pens

Cosmetic and Geometric Pens
HPEN ExtCreatePen(DWORD style, DWORD width, const LOGBRUSH *brush,

DWORD dashCount, const DWORD *dashes)
width:

Geometric — pen width in world units (undergoes transformations), must be> 0
Cosmetic — must be 1, effective width always 1px

brush:
Geometric — describes brush pattern used to draw lines
Cosmetic — describes line color (i.e. brushmust describe solid brush)

dashCount, dashes— custom dash style array and it’s count
Only for PS_USERSTYLE pens, otherwise both must be 0
First value — first dash length; second value — first space length, …
Geometric — lengths in world units
Cosmetic — lengths in device dependant style units (unit length of 3px on my screen)
Max count 16, pattern repeats for even counts or is reversed for odd

Extended pens ignore background color
(Draw as if with transparent background mixing mode, regardless of actual mode of the context)

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 55 / 93

GDI Objects Pens

Pens — Summary
Simple pens with 0 width almost like cosmetic extended pens, except:

Ones with dash pattern use context’s background mixing mode for gaps
(gaps always transparent for extended pens)
Must use solid color

Simple pens with width≥ 1 behave almost like extended geometric pens, except:
Dash pattern used only if effective width is 1 (geometric pens always use dash pattern)
Dash pattern uses context’s background mixing mode for gaps
(gaps always transparent for extended pens)
Must use solid color, can’t change join and end cap styles

Sharp joins appearance controlled by miter limit:
Miter length — distance between intersection of line walls on the inside and outside of a join
Miter limit — maximum ratio between miter length and pen width, above which join is beveled
GetMiterLimit, SetMiterLimit— check/set context’s miter limit (default: 10.0)

Created pens need to be released: DeleteObject
(not necessary for stock pens, but not harmful either)

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 56 / 93

GDI Objects Bitmaps

Bitmaps
Image stored as continuous binary data
Additional information needed to interpret and display image data
How to extract a pixel values:

Image resolution: width w, height h
Bits per pixel count bpp (usually 24 or 32bpp)
(e.g. 4bpp – one byte describes two pixels; 24bpp— 3 bytes describe one pixel)

Optionally:
Scan‐line (row of pixels) byte width — not always w ∗ bpp because of alignment requirements
Compression type — image data might need to be decompressed before accessing pixels
Row order — bottom‐up (default) or top‐down

How to interpret pixel values (pixel format):
Indexed colors — values indicate an index in a color table
RGB colors — value is a bitfield of three channel intensities

How to reproduce the image (optional):
Intended physical dimensions
Color table (RGB values or indices in device’s current palette)
Color profile image was created with, preferred color profile matching technique

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 57 / 93

GDI Objects Bitmaps

Device‐Dependent (Compatible) Bitmaps (DDB)

Bottom‐up, uncompressed
Only describes how to extract pixel values
Interpretation, reproduction depends on device context
HBITMAP CreateCompatibleBitmap(

HDC hdc, int cx, int cy)
By default creates a compatible bitmap w/ given resolution
For memory context hdc bound to device‐independent
bitmap (next slide), creates DIB with the same attributes.
Bpp, row alignment matches hdc’s surface
If cx or cy is 0, creates 1×1 monochrome bitmap (1bpp)

struct BITMAP{
LONG bmType; //always 0
LONG bmWidth; //cx
LONG bmHeight; //cy
LONG bmWidthBytes;
WORD bmPlanes; //always 1
WORD bmBitsPixel; //bpp
LPVOID bmBits; //bits

};

HBITMAP CreateBitmap(int cx, iny cy, UINT planes, UINT bpp, const void *bits)
HBITMAP CreateBitmapIndirect(const BITMAP *bmp)

As above, but bpp specified directly, row always aligned to 2 bytes
If bits not nullptr, must point to bitmap data (including row padding)

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 58 / 93

GDI Objects Bitmaps

Device‐Independent Bitmaps (DIB)
Attributes described by bitmap header (Note! Header doesn’t point to pixel data):
BITMAPCOREHEADER, BITMAPINFOHEADER, BITMAPV4HEADER, BITMAPV5HEADER
Negative height indicated top‐down bitmap
Variable‐length color table follows header immediately, if it is needed
Note! Check docs to see: when needed, required size and layout!
In packed bitmaps, pixel data immediately follows header (and color table, if present)
HBITMAP CreateDIBSection(HDC hdc, const BITMAPINFO *info, UINT usage,

void **pbits, HANDLE hSection, DWORD offset)
info— despite stated type, can point to memory containing header of any type followed by
color table (if needed)
usage— contents of color table: DIB_RGB_COLORS for RGB values; DIB_PAL_COLORS for WORD
indices into hdc current palette (rarely used).
handle, offset— handle to and offset into memory‐mapped bitmap file, pass nullptr to
allocate new bitmap instead
pbits— output parameter, receives pointer to pixel data (can be nullptr)

GetDIBits, SetDIBits—Device‐Dependent to/from Device‐Independent Bitmap conversion
Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 59 / 93

GDI Objects Bitmaps

Device‐Independent Bitmap Headers

struct BITMAPHEADER { /*Note: exact field names and types vary between header structs*/
/*BITMAPCOREHEADER ‐ basic pixel data layout*/
DWORD size; // Header struct size in bytes
LONG width, height; // Image width and height (WORD in CORE header, LONG in others)
WORD planes; // Number of color planes (always 1)
WORD bits; // Bits per pixel
/*BITMAPINFOHEADER ‐ pixel data interpretation parameters*/
DWORD compression; // Compression type (BI_RGB ‐ uncompressed)
DWORD imagesize; // Pixel data size, can be 0 if uncompressed
LONG xppm, yppm; // Pixels per meter (for physical size)
DWORD ncolours; // Number of entries in color table (can be 0 if color table unused)
DWORD importantcolours; // Number of significant color table entries (can be 0)
/*BITMAPV4HEADER ‐ color profile attributes (ICM 1.0)*/
DWORD rMask, bMask, gMask, aMask; // Channel masks (BI_BITFIELDS compression)
DWORD colorSpaceType; // Indicates if Color Space is provided
CIEXYZTRIPLE endpoints; // 2.30 Fixed‐point CIEXYZ coordinates of RGB primary colors
DWORD gammaR, gammaG, gammaB; // 16.16 Fixed‐point gamma coefficients
/*BITMAPV5HEADER ‐ additional/alternative color profile attributes (ICM 2.0)*/
DWORD intent; // Intended color space conversion method
DWORD profileData; // Offset in bytes to color profile data
DWORD profileSize; // Size in bytes of color profile data
DWORD reserved; // Unused, always 0

};

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 60 / 93

GDI Objects Palettes

Palettes

Array of colors that can drawn/displayed on a device
Most devices don’t support palettes any more.
Used mostly for memory contexts operating on bitmaps with indexed colors
Creating logical palette: CreatePalette
Modification: ResizePalette, SetPaletteEntries
Applying palette to context: SelectPalette→RealizePalette

If realized palette is modified: UnrealizeObject→RealizePalette

Freeing palette: DeleteObject

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 61 / 93

GDI Objects Regions

Regions

Represents arbitrary area
Stored as set of axis‐aligned rectangles
All coordinates as 27‐bit signed integers
Referred to by HRGN handle
When created, usually represent the interior of given shape
When passed to a function, handle must be a valid region, even if it’s used as output
Contrary to other GDI objects, all region handles need to be destroyed (DeleteObject)
Operations such as selecting a region into device context create copies instead of assuming ownership like with
other objects

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 62 / 93

GDI Objects Regions

Creating Regions
Rectangular Region:
HRGN CreateRectRgn(int x1, int y1, int x2, int y2)
HRGN CreateRectRgnIndirect(const RECT * rect)

x1, y1— Top‐left corner
x2, y2 – Bottom‐right corner
rect— RECT structure specifying upper‐left and lower‐right corners

Rounded Rectangle Region:
HRGN CreateRoundedRectRgn(int x1, int y1, int x2, int y2, int w, int h)

x1, y1— Top‐left corner
x2, y2— Bottom‐left corner
w, h—Width and height of ellipse used to round the corners

Elliptical Region:
HRGN CreateEllipticRgn(int x1, int y1, int x2, int y2)
HRGN CreateEllipticRgnIndirect(const RECT * rect)

rect— Bounding rectangle of the ellipse
x1, y1—Upper‐left corner of ellipse’s bounding rectangle
x2, y2— Lower‐left corner of ellipse’s bounding rectangle

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 63 / 93

GDI Objects Regions

Creating Regions

Polygonal Region:
HRGN CreatePolygonRgn(const POINT * ptList, int ptCount, int mode);
HRGN CreatePolyPolygonRgn(const POINT * ptList, const INT * ptCounts,

int polyCounts, int mode);

ptList— array of vertex coordinates of the polygon(s)
ptCount— number of vertices in a polygon
ptCounts— array with number of vertices in each polygon (ptList contains flat list of points,
last vertex of a polygon is immediately followed by first vertex of the next)
mode— Fill mode:
ALTERNATE alternate mode (odd‐even)

WINDING winding mode (non‐zero winding value)
See slides below

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 64 / 93

GDI Objects Regions

Recreating Regions
DWORD GetRegionData(HRGN rgn, DWORD size,

RGNDATA * data)
rgn— region handle
size— size of data buffer in bytes
data— output buffer for region data
If data is nullptr, returns required data buffer size
On failure (e.g. size too small) returns 0
Otherwise returns size

HRGN ExtCreateRegion(const XFORM * mtx,
DWORD size,
const RGNDATA * data)

mtx— region transformation (see slides below)
size— size of data buffer in bytes
data— region data

struct RGNDATA {
struct RGNDATAHEADER {

//header size in bytes
DWORD dwSize;
//must be RDH_RECTANGLES
DWORD iType;
//number of rectangle
DWORD nCount;
//size of Buffer
DWORD nRgnSize;
//bounding rectangle
RECT rcBound;

} rdh;
char Buffer[];

};

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 65 / 93

GDI Objects Regions

Region Operations
Comparing regions: BOOL EqualRgn(HRGN rgn1, HRGN rgn2)
Replace with rectangular region (rgnmust be valid):
BOOL SetRect(HRGN rgn, int x1, int y1, int x2, int y2)
Combining regions:
int CombineRgn(HRGN dst, HRGN src1, HRGN src2, int mode)

dst—must already exist, area replaced with te result
mode:
RGN_COPY Copy of src1

RGN_OR Set union (src1∩src2)
RGN_AND Set intersection (src1∪src2)

RGN_DIFF Set difference (src1\src2)
RGN_XOR Set symmetric difference ((src1\src2)∪(src2\src1))

Move region area: int OffsetRgn(HRGN rgn, int x, int y)
Retrieve region bounding box: int GetRgnBox(HRGN rgn, RECT * rc)
Hit‐testing: BOOL PtInRegion(HRGN rgn, int x, int y)
BOOL RectInRegion(HRGN rgh, const RECT *rc)

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 66 / 93

GDI Objects Paths

Paths

Path is a collection of lines, shapes and close figures (text included)
Always tied to a device context, no separate handle type
BOOL BeginPath(HDC hdc) creates a new path and binds it to the context, discarding any
previous path
Afterwards, any call to line, curve, closed shape, and text drawing function adds those
shapes to the path instead of drawing them
BOOL CloseFigure(HDC hdc)
Closes the latest figure, usually straight line segment from current position to the most
recent MoveToEx destination (compare to PolyDraw)
BOOL EndPath(HDC hdc) closes the path, all drawing functions return to normal
BOOL AbortPath(HDC hdc) discards any existing path (closed or not)

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 67 / 93

GDI Objects Paths

Path Modifications

BOOL FlattenPath(HDC hdc)
Converts curves in current path to series of line segments
BOOL WidenPath(HDC hdc)

Converts the path to be the boundary of the area that would be painted over if the path was
outlined with current pen.
Current pen must be a simple pen with width> 1 or a geometric pen.
Path is flattened in the process

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 68 / 93

GDI Objects Paths

Using Paths

Filling and outlining: FillPath, StrokePath, StrokeAndFillPath (see above).
Remember! Filling a path discards it.
HRGN PathToRegion(HDC hdc)
Converts the current path to a region and discards it.
int GetPath(HDC hdc, LPPOINT apt, LPBYTE aj, int cpt)

Retrieves the path as a sequence of annotated points — same format that PolyDraw uses as
input (see above)
If cpt is 0, returns the required size of apt and aj arrays

Path can be used to limit the drawing area (SelectClipPath, see below)

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 69 / 93

GDI Objects Fonts

Fonts

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 70 / 93

Device Context State Outline Drawing State

Lines and Curves State

Shapes not filled, only outlined. Outline drawn using context’s current pen.
HGDIOBJ GetCurrentObject(HDC hdc, UINT type)
Pass OBJ_PEN as type to obtain HPEN of current pen (default: stock black pen)
HGDIOBJ SelectObject(HDC hdc, HGDIOBJ h)

Pass HPEN handle as h to change current pen.
Previously selected pen returned as a result.
Old pen must be destroyed or (preferably) restored once you are done using the new one.

For simple dashed pens, gaps between dashes filled based on context’s background mode
GetBkMode, SetBkMode— check/select background mix mode
TRANSPARENT— background remains unchanged
OPAQUE— default, gaps filled with context’s background color (not background brush!)
GetBkColor, SetBkColor— check/select background color (default: white)

Other properties: pen type and style, GetMiterLimit, SetMiterLimit

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 71 / 93

Device Context State Outline Drawing State

Lines and Curves State
New color of a pixel mixed with the old one based on context’s foreground mixing mode:

GetROP2, SetROP2— check/select foreground mixing mode (default: R2_COPYPEN)
Combination of source (pen), destination (screen) colors using bitwise operations

//Background brush: RGB(0, 0XBF, 0XBF)
auto oldpn = SelectObject(hdc,
CreatePen(PS_DASH, 1, RGB(0X7F, 0, 0X7F)));
SetBkColor(hdc, RGB(0X7F, 0X7F, 0));
int rop2[16] = { R2_BLACK, R2_NOTMERGEPEN

R2_MASKNOTPEN, R2_NOTCOPYPEN, R2_MASKPENNOT,
R2_NOT, R2_XORPEN, R2_NOTMASKPEN,
R2_MASKPEN, R2_NOTXORPEN, R2_NOP,
R2_MERGENOTPEN, R2_COPYPEN, R2_MERGEPENNOT,
R2_MERGEPEN, R2_WHITE };

for(int i = 0; i < 16; ++i) {
SetROP2(hdc, rop2[i]);
MoveToEx(hdc, 2, i * 3 + 1, nullptr);
LineTo(hdc, 38, i * 3 + 1);

} DeleteObject(SelectObject(hdc, oldpn));
Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 72 / 93

Device Context State Outline Drawing State

Lines and Curves State
Background brush (D): #00bfbf
Pen (Dash) color (S): #7f007f

Background (Gap) color (S): #7f7f00

Mix Mode Dash Gap BitOp
R2_BLACK #000000 #000000 D ^ D
R2_NOTMERGEPEN #804000 #800040 ~S & ~D
R2_MASKNOTPEN #00bf80 #0080bf ~S & D
R2_NOTCOPYPEN #80ff80 #8080ff ~S
R2_MASKPENNOT #7f0040 #7f4000 S & ~D
R2_NOT #ff4040 #ff4040 ~D
R2_XORPEN #7fbfc0 #7fc0bf S ^ D
R2_NOTMASKPEN #ffffc0 #ffc0ff ~S | ~D
R2_MASKPEN #00003f #003f00 S & D
R2_NOTXORPEN #80403f #803f40 ~S ^ D
R2_NOP #00bfbf #00bfbf D
R2_MERGENOTPEN #80ffbf #80bfff ~S | D
R2_COPYPEN #7f007f #7f7f00 S
R2_MERGEPENNOT #ff407f #ff7f40 S | ~D
R2_MERGEPEN #7fbfff #7fffbf S | D
R2_WHITE #ffffff #ffffff D | ~D

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 73 / 93

Device Context State Filled Shape Drawing State

Closed Figures State

All functions outline and fill closed shapes
Context’s current position not used or modified
Outline drawn with context’s current pen (see prev. slides)
Use GetStockObject(NULL_PEN) to omit the outline
Interior filled with context’s current brush
HGDIOBJ GetCurrentObject(HDC hdc, UINT type)
Pass OBJ_BRUSH to obtain HBRUSH of current pen (default: stock white brush)
HGDIOBJ SelectObject(HDC hdc, HGDIOBJ h)

Pass HBRUSH handle as h to change current brush.
Previously selected brush returned as a result.
Old brush must be destroyed or (preferably) restored once you are done using the new one.
Use GetStockObject(NULL_BRUSH) to omit filling the shape

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 74 / 93

Device Context State Filled Shape Drawing State

Closed Figures State
Fill properties: brush type and style, GetBrushOrgEx, SetBrushOrgEx
HBITMAP bmp = (HBITMAP)LoadImageW(

GetModuleHandleW(nullptr),
MAKEINTRESOURCEW(IDB_BMPHELLO),
IMAGE_BITMAP, 0, 0, LR_SHARED);

auto oldbr = SelectObject(hdc,
CreatePatternBrush(bmp));

auto oldpn = SelectObject(hdc,
GetStockObject(NULL_PEN));
SetBrushOrgEx(hdc, 25, 25, nullptr);
Rectangle(hdc, 25, 25, 225, 125);
DeleteObject(SelectObject(hdc, oldpn));
DeleteObject(SelectObject(hdc, oldbr));
DeleteObject(bmp);

Result:

Result w/o SetBrushOrgEx:

Foreground mix mode used for both outline and interior (GetROP2, SetROP2)
Background mix mode and color used for gaps between lines in hatched brushes and simple
dashed pens (GetBkMode, SetBkMode, GetBkColor, SetBkColor)

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 75 / 93

Device Context State Filled Shape Drawing State

Text Drawing State

GetTextColor, SetTextColor, GetBkColor, SetBkColor, GetTextAlign, SetTextAlign,
GetTextCharacterExtra, SetTextCharacterExtra, GetTextExtentPoint32W, GetTextMetricsW,
SetTextJustification

GetGraphicsMode, SetGraphicsMode ‐ under advanced mode vector/truetype fonts fully
transformed

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 76 / 93

Device Context State Transformations

Coordinate Spaces

All positions and sizes used for drawing are expressed in logical units in a more‐or‐less
abstract World Space coordinate system.
Before any actual pixels are modified a series of transformations must be performed:

World → Page Space
Page → Device (Context) Space
Device → Physical Device space

Most of them are one‐to‐one by default

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 77 / 93

Device Context State Transformations

World to Page Space Transformations
Default is an identity transformation
Can only be changed in advance graphics mode

int GetGraphicsMode(HDC hdc)— check current
int SetGraphicsMode(HDC hdc, int mode)— change it (returns previous)
mode ‐ one of: GM_COMPATIBLE, GM_ADVANCED

Described as (affine) transformation matrix, that converts
world space points (xw, yw) to page space points (xp, yp)xpyp

1

 =

eM11 eM21 eDx
eM12 eM22 eDy
0 0 1

xwyw
1

(eM11, eM12) —X‐axis unit vector of World space in Page space
(eM21, eM22) — Y‐axis unit vector of World space in Page space
(eDx, eDy) — origin of World space in Page space

struct XFORM {
FLOAT eM11;
FLOAT eM12;
FLOAT eM21;
FLOAT eM22;
FLOAT eDx;
FLOAT eDy;

};

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 78 / 93

Device Context State Transformations

World to Page Space Transformation

Basic transformations

Translation (offset by dx, dy):1 0 dx
0 1 dx
0 0 1

Scaling by factors sx, sy (enlarge w/> 1,
shrink w/ ∈ (0, 1), reflect w/< 0)sx 0 0

0 sy 0
0 0 1

Rotation around the origin by angle αcos (α) − sin (α) 0
sin (α) cos (α) 0

0 0 1

Shear by factors sx, sy (use 0 to avoid
shearing in a direction)1 sx 0

sy 1 0
0 0 1

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 79 / 93

Device Context State Transformations

World to Page Space Transformation

BOOL CombineTransform(LPXFORM xfOut, const XFORM *xf1, const XFORM xf2)
Combines two transformation
Result stored in xfOut
xfOut same as transforming with xf1 first, followed by xf2

BOOL GetWorldTransform(HDC hdc, LPXFORM xf)— obtains context’s current transform
BOOL SetWorldTransform(HDC hdc, const XFORM *xf)— replaces it
BOOL ModifyWorldTransform(HDC hdc, const XFORM *xf, DWORD mode)

Modifes context’s current world transform
mode controls the behaviour
MWT_IDENTITY— resets current transform to an identity (xf ignored)
MWT_LEFTMULTIPLY— combines current with xf (xf first, followed by current)
MWT_RIGHTMULTIPLY— combines current with xf (current first, followed xf)

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 80 / 93

Device Context State Transformations

Page to Device Space Transformation

Specifies units used in Page space and their size in device context’s pixels
Can only perform translations and scaling (including flipping axes direction)
Unit scaling, axes direction controlled by context’s mapping mode
int GetMapMode(HDC hdc)— check current mode
int SetMapMode(HDC hdc, int mode)— change it (returns previous)
Available modes:

MM_TEXT— 1 page unit = 1 pixel, X axis →, Y axis ↓(default)
MM_LOMETRIC— 1 page unit = 0.1mm, X axis →, Y axis ↑
MM_HIMETRIC— 1 page unit = 0.01mm, X axis →, Y axis ↑
MM_LOENGLISH— 1 page unit = 0.01in, X axis →, Y axis ↑
MM_HIENGLISH— 1 page unit = 0.001in, X axis →, Y axis ↑
MM_TWIPS— 1 page unit = 1pt (1/1440in), X axis →, Y axis ↑
MM_ISOTROPIC, MM_ANISOTROPIC— custom mappings (see next slide)

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 81 / 93

Device Context State Transformations

Page to Device Space Transformation

Translation and custom mappings controlled by viewport
Two complementary sets of functions (usually you only use one set)
‐Window‐ functions specify mapping from window area to page space
GetWindowExtEx, GetWindowOrgEx, OffsetWindowOrgEx, ScaleWindowExtEx, SetWindowExtEx,
SetWindowOrgEx

‐Viewport‐ functions specify mapping from page space to the window area
GetViewportExtEx, GetViewportOrgEx, OffsetViewportOrgEx, ScaleViewportExtEx,
SetViewportExtEx, SetViewportOrgEx

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 82 / 93

Device Context State Transformations

Device to Physical Device Transformation

Purely automatic, no way to change it
Offsets positions so they appear in correct positions depending on the physical device

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 83 / 93

Device Context State Clipping

Clipping Regions
System Region

Window rectangle (CreateWindow,SetWindowPos,GetWindowPos,etc.)
Window region (SetWindowRgn,GetWindowRgn,GetWindowRgnBox) ‐ don’t set on windows
with any frame (caption bar, border)
Window visibility (Minimized, WS_CLIPCHILDREN,WS_CLIPSIBLINGS)
Client area (WM_PAINT, WM_ERASEBKGND)
Update region (InvalidateRect, InvalidateRgn, ValidateRect, ValidateRgn, GetUpdateRect,
GetUpdateRgn, ExcludeUpdateRgn)

Meta region
SetMetaRgn (calculates intersection clip/existing meta, replaces meta, clears clip, no way to
expand w/o resetting DC), GetMetaRgn

Clip region: ExtSelectClipRgn, GetClipRgn, SelectClipRgn(same‐ish as SelectObject w/
region), SelectClipPath, OffsetClipRgn, ExcludeClipRect, IntersetClipRect, GetClipBox
GetRandomRgn ‐ Random access to System (4, SYSRGN); Meta (2); Clip (1); and API (3,
clip∩meta) regions

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 84 / 93

Device Context State Summary

Device Context Attributes

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 85 / 93

Windows API Lecture 4 The End

End of Windows API Lecture 4

Thank you for listening! ,

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 86 / 93

Appendix A Raster operations

Raster Operations
Various GDI functions perform bitwise operations on inputs to determine output color

Inputs include:
D— destination color, i.e. color initially stored in a output pixel of the destination bitmap,
S— source color obtained from the source bitmap that corresponds to the output pixel,
P— pattern color, i.e. color obtained from the pen, brush or background color corresponding to
the output pixel when filling or outlining,
M—mask bit, obtained from a monochrome mask bitmap (same 0 or 1 bit is used for all bits of
the output pixel).

Functions grouped by inputs used:
Binary raster operations — use D and P— line, curve and closed shape functions (any affected
by SetROP2)
Ternary raster operations — use S, D and P— block transfer functions BitBlt and StretchBlt
Quaternary raster operations — use S, D, P and M—masked block transfer function MaskBlt

Boolean function used to determine an output bit based on corresponding input bits
described by raster operation code

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 87 / 93

Appendix A Binary raster operations

Binary Raster Operations

Functions {0, 1} × {0, 1} → {0, 1}
4 possible combinations for input bits D, P
Function uniquely described by the outputs
for those 4 combinations
Total of 24 = 16 unique functions possible
GDI code for each function: sequence of
output values as a binary number + 1
Many equivalent boolean expressions exist
for each function
GDI code symbolic constant names based
on canonical boolean representation in
Reverse Polish Notation

P 1 1 0 0
D 1 0 1 0 RPN

R2_BLACK 1 0 0 0 0 0
R2_NOTMERGEPEN 2 0 0 0 1 DP|~
R2_MASKNOTPEN 3 0 0 1 0 DP~&
R2_NOTCOPYPEN 4 0 0 1 1 P~
R2_MASKPENNOT 5 0 1 0 0 PD~&
R2_NOT 6 0 1 0 1 D~
R2_XORPEN 7 0 1 1 0 DP^
R2_NOTMASKPEN 8 0 1 1 1 DP&~
R2_MASKPEN 9 1 0 0 0 DP&
R2_NOTXORPEN 10 1 0 0 1 DP^~
R2_NOP 11 1 0 1 0 D
R2_MERGENOTPEN 12 1 0 1 1 DP~|
R2_COPYPEN 13 1 1 0 0 P
R2_MERGEPENNOT 14 1 1 0 1 PD~|
R2_MERGEPEN 15 1 1 1 0 DP|
R2_WHITE 16 1 1 1 1 1

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 88 / 93

Appendix A Ternary raster operations

Ternary Raster Operations

Functions {0, 1} × {0, 1} × {0, 1} → {0, 1}
8 possible combinations of input bits S, P and D

Function uniquely described by the outputs for those 8 combinations
Total of 28 = 256 unique functions possible
Raster operation — 4 byte value:

3 2 1 0
Zero Function Index Operation Code

Raster Operation Code encodes procedure to calculate the function:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Op5 Op4 Op3 Op2 Op1 ~ Parse String Offset

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 89 / 93

Appendix A Ternary raster operations

Ternary Raster Operations
Raster operation bytes (3 – highest; 0 – lowest):

Byte 3 equals 0 — allows for combinations with additional flags:
CAPTUREBLT, NOMIRRORBITMAP
Byte 2 — function index, sequence of output values for each input
combination as binary number
Byte 1 and 0 — raster operation code, encodes equivalent boolean
expression in RPN:

Bits 15‐6 — 5 boolean operator indices, 2 bits per,
Bit 5 — flag indicating if ~ (NOT) used as additional (sixth) operator,
Bits 4‐2 — input parameter string (aka. parse string) index
+ and ‐ indicate pushing to and pulling values from a temporary stack. Most
expression: sequence of inputs followed by sequence of operators. In few
cases an operator needed in between operands — in such instance an
intermediate value needs to be temporarily stored on a stack (see examples)
Bit 1‐0 — offset into parameter string

Index Bool Op.
0 ~ (NOT)
1 ^ (XOR)
2 | (OR)
3 & (AND)

Index Parse String
0 SPDDDDDD
1 SPDSPDSP
2 SDPSDPSD
3 DDDDDDDD
4 DDDDDDDD
5 S+SP‐DSS
6 S+SP‐PDS
7 S+SD‐PDS

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 90 / 93

Appendix A Ternary raster operations

Ternary Raster Operations Examples
PATPAINT 0X00FB0A09

Function index: 0XFB
P 1 1 1 1 0 0 0 0
S 1 1 0 0 1 1 0 0
D 1 0 1 0 1 0 1 0

Output 1 1 1 1 1 0 1 1
F B

Raster Operation Code: 0X0A09
0 A 0 9

0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 1

~ ~ | | ~ 0 2: SDPSDPSD 1
Op5 Op4 Op3 Op2 Op1 ~ Parse String Offset
2 binary operators, so 3 input parameters from parse string 2 starting at offset 1: DPS
RPN expression: DPS~||~~≡ DPS~||
Infix expression: ((~S)|P)|D

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 91 / 93

Appendix A Ternary raster operations

Ternary Raster Operations Examples
0X002916CA

Function index: 0X29
P 1 1 1 1 0 0 0 0
S 1 1 0 0 1 1 0 0
D 1 0 1 0 1 0 1 0

Output 0 0 1 0 1 0 0 1
2 9

Raster Operation Code: 0X16CA
1 6 C A

0 0 0 1 0 1 1 0 1 1 0 0 1 0 1 0

~ ^ ^ | & 0 2: SDPSDPSD 2
Op5 Op4 Op3 Op2 Op1 ~ Parse String Offset
4 binary operators, so 5 input parameters from parse string 2 starting at offset 2: PSDPS
RPN expression: PSDPS&|^^~
Infix expression: ~((((S&P)|D)^S)^P)

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 92 / 93

Appendix A Ternary raster operations

Ternary Raster Operations Examples
0X00420D5D

Function index: 0X42
P 1 1 1 1 0 0 0 0
S 1 1 0 0 1 1 0 0
D 1 0 1 0 1 0 1 0

Output 0 1 0 0 0 0 1 0
4 2

Raster Operation Code: 0X0D5D
0 D 5 D

0 0 0 0 1 1 0 1 0 1 0 1 1 1 0 1

~ ~ & ^ ^ 0 7: S+SD‐PDS 1
Op5 Op4 Op3 Op2 Op1 ~ Parse String Offset
3 binary operators, so 4 input parameters from parse string 7 starting at offset 1 (+ and ‐ don’t
count): +SD‐PD
expression: +SD‐PD^^&
Infix expression: ~((((S&P)|D)^S)^P)

Paweł Aszklar (MiNI PW) PiGE Warsaw 2024 93 / 93

	GDI Introduction
	Overview
	Device Context
	When to Draw
	Basic Types

	Drawing with GDI
	Lines and Curves
	Closed Figures
	Paths and Regions
	Filling
	Block Transfers
	Drawing Text

	GDI Objects
	Brushes
	Pens
	Bitmaps
	Palettes
	Regions
	Paths
	Fonts

	Device Context State
	Outline Drawing State
	Filled Shape Drawing State
	Transformations
	Clipping
	Summary

	Windows API Lecture 4
	The End

	Appendix
	Appendix A
	Raster operations
	Binary raster operations
	Ternary raster operations

