
Windows API Sample Task
Paweł Aszklar

pawel.aszklar@pw.edu.pl

Warszawa, March 7, 2024

1 Introduction
The purpose of this document is to demonstrate a sample task you might

encounter during Windows API graded laboratories. In the first section it
will guide you step-by-step through the solution of a laboratory part of one
such task. Please note the guide, for the sake of brevity, omits most error-
checking and might not always properly release all resources. In your own
code, however, should always take time to add those parts back. The second
part will introduce an extension to the program which would usually be the
homework part of the task. This you will have to try to solve on your own.

2 Laboratory Task
2.1 Description

The task is to implement an program that can be a basis for a clone
of the game 2048. General requirements are listed below. There is also and
executable 2048.exe provided with this task demonstrates the intended
functionality. In cases unspecified by the description you must match the
behaviour of that program.

General Requirements You must not use any GDI drawing functions
in your implementation. You must also remember about proper resource
management — freeing/destroying any acquired objects that are no longer
needed.

Layout Requirements

• Two windows with the same content,

• Only one of the windows should show up on the taskbar,

• Size of the windows dependent on the board content and unchanging,

1

mailto:pawel.aszklar@pw.edu.pl

• Title set to "2048",

• The taskbar icon and the caption bar icon of at least one of the win-
dows uses 2048_icon.ico provided with the description,

• Window background set to (250, 247, 238),

• In each window a board of 4× 4 tiles,

• Tile background set to (250, 192, 174), size of 60px and a margin of
10px in-between tiles and around the window border.

Application Behaviour

• Moving one window should cause the position of the other to change
symmetrically with respect to the centre of the screen – the centre of
a window should be considered as its position.

• When two windows overlap, one of them (you can choose which) should
turn semitransparent.

Hints Consider the following functions, messages and window attributes
when implementing your program:

• CreateSolidBrush

• AdjustWindowRectEx

• WM_WINDOWPOSCHANGED

• WM_CTLCOLORSTATIC

• DwmGetWindowAttribute

• DWMWA_EXTENDED_FRAME_BOUNDS

• SetWindowLongPtrW

• GetSystemMetrics

• SetWindowPos

Grading Criteria

• Window title, icon, background – 2p.,

• Board layout and colours – 3p.,

• Unresizable windows – 1p.,

2

• Second window:

– Not visible on taskbar – 1p.,
– Same content (board, colours) and title as main window – 1p.,

• Movement symmetric with respect to the screen centre – 2p.,

• Overlapping the windows turns one semitransparent – 2p.

3 Solution
3.1 Creating a Project

First we need to create a Visual Studio project that we will use to im-
plement our solution.

1. Start Visual Studio and click Create a new project.

2. Select Windows Desktop Wizard template and name it something.

3. In the wizard window select Desktop Application (.exe) from the drop
down under Application type and check Empty project in Additional options .

4. Once the project is created, add a new source file main.cpp. Initially
you should only add an empty wWinMain:

#define NOMINMAX
#include <windows.h>

int WINAPI wWinMain(HINSTANCE instance,
HINSTANCE /*prevInstance*/,
LPWSTR /*command_line*/,
int show_command)

{ }

5. Finally, in the project properties, under Configuration Properties General
set the C++ Language Standard to at least ISO C++20 Standard
(/std:c++20).

The project should now compile and run, but the program immediately
exits.

3.2 Application Class, First Window and a Message Loop
Let us first create a custom class that will be responsible for running the

message loop of our program. It will store all the necessary information, for

3

now: application instance handle (HINSTANCE), main window handle (HWND),
and the window class name.

For the window procedure we will use an approach similar to the one
presented in the lecture, where a static window procedure forwards messages
to the non-static variant on our custom class instance. However, since the
windows will not be fully independent, but they will need to cooperate when
it comes to movement, we will not implement the window procedure in a
separate window class. Instead we’ll make the application class handle the
messages as well, since it will have all the necessary information.

It will also include implementation of window class registration and cre-
ation of windows.

1. Add app_2048.h header file and app_2048.cpp source file to the
project.

2. In the header file add the definition of app_2048 class that will repre-
sent our application

#pragma once

#include "board.h"
#include <string>

class app_2048
{
private:

bool register_class();

static std::wstring const s_class_name;

static LRESULT CALLBACK window_proc_static(
HWND window,
UINT message,
WPARAM wparam,
LPARAM lparam);

LRESULT window_proc(
HWND window,
UINT message,
WPARAM wparam,
LPARAM lparam);

HWND create_window();

HINSTANCE m_instance;
HWND m_main;

public:

4

app_2048(HINSTANCE instance);

int run(int show_command);
};

3. In the source file we need to initialize the window class name field:

#include "app_2048.h"
#include <stdexcept>

std::wstring const app_2048::s_class_name{ L"2048 Window" };

4. The lecture and the documentation tell us that before any window
is created one must register its class, using e.g. RegisterClassExW,
passing an address of a structure containing the parameters. For now
we will only set the absolute minimum, mainly: window procedure
address, application instance handle, cursor, and the class name. The
documentation page also mentions GetClassInfoExW which we can use
to see if the window class has not been registered yet.

bool app_2048::register_class()
{

WNDCLASSEXW desc{};
if (GetClassInfoExW(m_instance, s_class_name.c_str(),

&desc) != 0)
return true;

desc = {
.cbSize = sizeof(WNDCLASSEXW),
.lpfnWndProc = window_proc_static,
.hInstance = m_instance,
.hCursor = LoadCursorW(nullptr, L"IDC_ARROW"),
.lpszClassName = s_class_name.c_str()

};
return RegisterClassExW(&desc) != 0;

}

5. Referring again to the lecture and the documentation, windows can
be created using CreateWindowExW. We can leave most parameters
with their usual defaults for now, but we have to pay attention to
the styles. Reading carefully through the list of available options to
match the requirements for our main window we need a top-level
window (WS_OVERLAPPED) with a caption bar and a non-sizing bor-
der (WS_CAPTION), an icon for the system menu and a close button
(WS_SYSMENU). We can include the minimize button (WS_MINIMIZEBOX),
but we should avoid the sizing border (WS_SIZEBOX) and the maximize
button (WS_MAXIMIZEBOX). Lastly similar to the example in the lecture,

5

https://learn.microsoft.com/en-us/windows/win32/winmsg/about-window-classes#registering-a-window-class
https://learn.microsoft.com/en-us/windows/win32/winmsg/about-windows#window-creation
https://learn.microsoft.com/en-us/windows/win32/winmsg/window-styles

we will use the last parameter to pass the address of our application
class object.

HWND app_2048::create_window()
{

return CreateWindowExW(
0,
s_class_name.c_str(),
L"2048",
WS_OVERLAPPED | WS_SYSMENU | WS_CAPTION |

WS_BORDER | WS_MINIMIZEBOX,
CW_USEDEFAULT,
0,
CW_USEDEFAULT,
0,
nullptr,
nullptr,
m_instance,
this);

}

6. Our static window procedure should try to extract the address of
the application instance and forward the message to a non-static ver-
sion. In the messages arriving during window creation, the address can
be taken from CREATESTRUCTW which address is passed as lparam for
WM_NCCREATE and WM_CREATE. The address can be attached to the win-
dow handle via SetWindowLongPtrW as the hints for this task helpfully
suggest.
Assuming the address was stored there during creation, it can be later
retrieved for all other messages arriving for a given window.
If the application instance address cannot be located, messages can be
safely passed to the default window procedure.

LRESULT app_2048::window_proc_static(
HWND window,
UINT message,
WPARAM wparam,
LPARAM lparam)

{
app_2048 *app = nullptr;
if (message == WM_NCCREATE)
{

app = static_cast<app_2048 *>(
reinterpret_cast<LPCREATESTRUCTW>(lparam)

‐>lpCreateParams);
SetWindowLongPtrW(window, GWLP_USERDATA,

reinterpret_cast<LONG_PTR>(app));

6

https://learn.microsoft.com/en-us/windows/win32/winmsg/about-windows#window-creation-messages

}
else

app = reinterpret_cast<app_2048 *>(
GetWindowLongPtrW(window, GWLP_USERDATA));

LRESULT res = app ?
app‐>window_proc(window, message, wparam, lparam) :
DefWindowProcW(window, message, wparam, lparam);

if (message == WM_NCDESTROY)
SetWindowLongPtrW(window, GWLP_USERDATA, 0);

return res;
}

7. The non-static window procedure is where we will put all message
handling. For now we should ensure we can at least close our program.
Referencing the documentation on window destruction we can see that
in response to a window being closed we need to destroy it manually.
And for the message loop to end when main window is destroyed, we
must call PostQuitMessage.

LRESULT app_2048::window_proc(
HWND window,
UINT message,
WPARAM wparam,
LPARAM lparam)

{
switch (message)
{

case WM_CLOSE:
DestroyWindow(m_main);
return 0;

case WM_DESTROY:
if (window == m_main)

PostQuitMessage(EXIT_SUCCESS);
return 0;

}
return DefWindowProcW(window, message, wparam, lparam);

}

8. In the constructor of the application class we should ensure our window
class is registered and the main window created.

app_2048::app_2048(HINSTANCE instance)
: m_instance{ instance }, m_main{}

{
register_class()
m_main = create_window();

}

7

https://learn.microsoft.com/en-us/windows/win32/winmsg/window-features#window-destruction
https://learn.microsoft.com/en-us/windows/win32/winmsg/about-messages-and-message-queues#message-loop

9. The run method should make the window visible and implement the
message loop.

int app_2048::run(int show_command)
{

ShowWindow(m_main, show_command);
MSG msg{};
BOOL result = TRUE;
while ((result = GetMessageW(&msg, nullptr, 0, 0)) != 0)
{

if (result == ‐1)
return EXIT_FAILURE;

TranslateMessage(&msg);
DispatchMessageW(&msg);

}
return EXIT_SUCCESS;

}

10. Finally, back in wWinMain we can create our application instance and
run it.

app_2048 app{ instance };
return app.run(show_command);

We should now be able to run our program and see a singe non-resizeable
window. While this section was rather long, with no way to test much along
the way, it implements the well-known basic steps of any Windows API
application. It will serve as a base-line for more incremental steps to add
individual features required in the task, but can also be reused later for
other projects.

3.3 Second Window
Next step will be to add another window to our program. We have to

ensure that it is not placed on the taskbar. The documentation on taskbar
buttons suggests that owned windows do not get placed on the taskbar by
default. Running the sample executable also demonstrates that the second
window generally stays on top of the main one. This also indicates an owner-
owned relation between them.

1. First we should add another field to app_2048 to store another window
handle:

class app_2048
{

private:
...

8

https://learn.microsoft.com/en-us/windows/win32/winmsg/about-messages-and-message-queues#message-loop
https://learn.microsoft.com/en-us/windows/win32/shell/taskbar#managing-taskbar-buttons
https://learn.microsoft.com/en-us/windows/win32/shell/taskbar#managing-taskbar-buttons
https://learn.microsoft.com/en-us/windows/win32/winmsg/about-windows#parent-or-owner-window-handle
https://learn.microsoft.com/en-us/windows/win32/winmsg/about-windows#parent-or-owner-window-handle

HWND m_main, m_popup;
...

};

2. For the second (pop-up) window we must be able to specify the paren-
t/owner of a window and also tweak the styles a little. But other than
a few minor changes the window will largely have to look and behave
like the main one, so it should use the same window class and be cre-
ated in a similar manner. Let us then first modify the create_window
method of to allow some additional parameters. First the declaration
in the header file:

class app_2048
{

private:
...
HWND create_window(DWORD style, HWND parent = nullptr);
...

};

and then its implementation in the source file:

HWND app_2048::create_window(DWORD style, HWND parent)
{

return CreateWindowExW(
0,
s_class_name.c_str(),
L"2048",
style, //change here
CW_USEDEFAULT,
0,
CW_USEDEFAULT,
0,
parent, //and here
nullptr,
m_instance,
this);

}

3. The constructor must now create both windows. The pop-up window
in the example has no icon, no system menu, no close and no min-
imize button. Referring back to window styles we should then omit
WS_SYSMENU and WS_MINIMIZEBOX compared to the main window.

app_2048::app_2048(HINSTANCE instance)
: m_instance{ instance }, m_main{}, m_popup{}

{
register_class();

9

https://learn.microsoft.com/en-us/windows/win32/winmsg/window-styles

DWORD main_style = WS_OVERLAPPED | WS_SYSMENU |
WS_CAPTION | WS_MINIMIZEBOX;

DWORD popup_style = WS_OVERLAPPED | WS_CAPTION;

m_main = create_window(main_style);
m_popup = create_window(popup_style, m_main);

}

4. Lastly we need the window to appear in the run method. We should
make sure the main window appears first, but however by default
the last window shown will be active which does not match the be-
haviour of the example. Fortunately, if we browse the flags available for
ShowWindow we will see that we can make the window appear without
activating it.

int app_2048::run(int show_command)
{

ShowWindow(m_main, show_command);
ShowWindow(m_popup, SW_SHOWNA);
...

}

3.4 Board Layout and Window Sizes
Both windows of our program will have to visualise the state of the

same game board at the same time. Instead of storing two copies tied to the
windows and trying to keep them in sync, it would be advisable to separate
that state from the rest of the application. This is not strictly necessary
right now, as the board is static. In the homework part though that will not
be the case, and having that separation be there from the start will take
much less effort then trying to retroactively add it later.

The board state will contain all information about the layout: the size
of the board, and positions and sizes of tiles, so that there will be no logic
necessary to convert the state to some visual representation.

1. Add a header file board.h and a source file board.cpp to the project.

2. In the header file add a structure representing a tile. For now it will
only hold the position and the size.

#pragma once
#define NOMINMAX
#include <array>
#include <windows.h>

10

https://learn.microsoft.com/en-us/windows/win32/winmsg/window-features#window-show-state
https://learn.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-showwindow

struct field
{

RECT position;
};

3. Below add the board class. Besides storing the array of fields, it will
have constants for the numerical values taken or derived from the task
description.

class board
{

public:
static constexpr LONG columns = 4;
static constexpr LONG rows = 4;
static constexpr LONG margin = 10;
static constexpr LONG field_count = rows * columns;
static constexpr LONG field_size = 60;
static constexpr LONG width =

columns * (field_size + margin) + margin;
static constexpr LONG height =

rows * (field_size + margin) + margin;

using field_array = std::array<field, field_count>;

board();

field_array const & fields() const { return m_fields; }

private:

field_array m_fields;
};

4. The source file needs only contain the board constructor which initial-
izes the tile fields

#include "board.h"

board::board()
: m_fields{ }

{
for (LONG row = 0; row < rows; ++row)

for (LONG column = 0; column < columns; ++column)
{

auto &f = m_fields[row * columns + column];
f.position.top =

row * (field_size + margin) + margin;

11

f.position.left =
column * (field_size + margin) + margin;

f.position.bottom = f.position.top + field_size;
f.position.right = f.position.left + field_size;

}
}

5. Modify the app_2048 class to add a board member field

class app_2048
{
private:

...
board m_board;
...

};

6. The application can now use some of that layout information to cor-
rectly size the windows. However, the board size should fill the client
area, while the window size must also account for things like border,
caption bar, etc. The size needs to be adjusted by AdjustWindowRectEx,
as hinted in the description. We can do so just before window creation
and use it when calling CreateWindowExW.

HWND app_2048::create_window(DWORD style, HWND parent)
{

RECT size{ 0, 0, board::width, board::height };
AdjustWindowRectEx(&size, style, false, 0);
return CreateWindowExW(

0,
s_class_name.c_str(),
L"2048", style,
CW_USEDEFAULT,
0,
size.right ‐ size.left,
size.bottom ‐ size.top,
parent,
nullptr,
m_instance,
this);

}

3.5 Board Tiles and Colours
Since we cannot use any drawing calls to show the representation of

board tiles within each window, the only other option we have are child
windows which are only visible in the client area of the parent. Reusing the

12

https://learn.microsoft.com/en-us/windows/win32/winmsg/about-windows#parent-or-owner-window-handle
https://learn.microsoft.com/en-us/windows/win32/winmsg/about-windows#parent-or-owner-window-handle

window class of our top-level windows doesn’t seem like a good idea since
there is some logic in their window procedure that we don’t want applied to
the children.

We could create a new window class just for them, but the documentation
hints at some pre-existing system classes. Another clue is the mention of
WM_CTLCOLORSTATIC in the description, which is a notification used by a
static control - a control (child window) which purpose is to show static text
or images.

1. Extend the window creation method in our application class to add a
static control child window for each of the board tiles. Controls often
define some additional styles that can applied during creation.
As a side note, a static control will draw the text of its title within its
bounds, but for now we will leave the title empty.

HWND app_2048::create_window(DWORD style, HWND parent)
{

...
HWND window = CreateWindowExW(...);
for (auto &f : m_board.fields())

CreateWindowExW(
0,
L"STATIC",
nullptr,
WS_CHILD | WS_VISIBLE | SS_CENTER,
f.position.left,
f.position.top,
f.position.right ‐ f.position.left,
f.position.bottom ‐ f.position.top,
window,
nullptr,
m_instance,
nullptr);

return window;
}

2. Running the program after that change should present the board lay-
out in each of the two windows albeit with wrong colours. Fixing the
background is the easiest, since it can be done during window class
registration with the help of CreateSolidBrush function:

bool app_2048::register_class()
{

WNDCLASSEXW desc{};
if (GetClassInfoExW(m_instance, s_class_name.c_str(),

&desc) != 0)
return true;

13

https://learn.microsoft.com/en-us/windows/win32/winmsg/about-window-classes#system-classes
https://learn.microsoft.com/en-us/windows/win32/controls/about-static-controls
https://learn.microsoft.com/en-us/windows/win32/controls/static-control-styles

desc = {
.cbSize = sizeof(WNDCLASSEXW),
.lpfnWndProc = window_proc_static,
.hInstance = m_instance,
.hCursor = LoadCursorW(nullptr, L"IDC_ARROW"),
.hbrBackground =

CreateSolidBrush(RGB(250, 247, 238)),
.lpszClassName = s_class_name.c_str()

};
return RegisterClassExW(&desc) != 0;

}

3. For tiles themselves, since we are not registering that class, we cannot
set the background the same way. On the other hand controls often
communicate with their parent for much of their functionality via no-
tifications, which are just messages send to the parent’s window pro-
cedure. An example of that is the aforementioned WM_CTLCOLORSTATIC
which the parent can use to influence how the control is drawn.
But let us first create a brush that can be reused for all controls. We
should add a field for it in our application class.

class app_2048
{
private:

..
HBRUSH m_field_brush;
..

};

4. It should be initialised in the constructor

app_2048::app_2048(HINSTANCE instance)
: m_instance{ instance }, m_main{}, m_popup{},

m_field_brush{ CreateSolidBrush(RGB(204, 192, 174)) }
{

...
}

5. To set the background of a control, the parent’s window procedure
needs to just return the brush in response to the message we’ve just
discussed.

LRESULT app_2048::window_proc(
HWND window,
UINT message,
WPARAM wparam,
LPARAM lparam)

14

https://learn.microsoft.com/en-us/windows/win32/controls/wm-ctlcolorstatic

{
switch (message)
{

...
case WM_CTLCOLORSTATIC:

return reinterpret_cast<INT_PTR>(m_field_brush);

}
return DefWindowProcW(window, message, wparam, lparam);

}

3.6 Window Movement
The documentation provides plenty of information about setting the ini-

tial size and position of the window and how to affect them and react to
changes later. For this task most of the functionality needed is covered by
SetWindowPos function and WM_WINDOWPOSCHANGED message.

1. Since the positions of windows need to change with relation to the
centre of the screen, we should first find its size. Add a field to our
application class that will store it.

class app_2048
{
private:

...
POINT m_screen_size;
...

};

2. Next, initialize it in the constructor. The GetSystemMetrics reference
page can tell us how to read the resolution of the primary display.

app_2048::app_2048(HINSTANCE instance)
: m_instance{ instance }, m_main{}, m_popup{},

m_field_brush{},
m_screen_size{ GetSystemMetrics(SM_CXSCREEN),
GetSystemMetrics(SM_CYSCREEN) }

{
...

}

For now we will assume the display resolution and configuration does
not change. However, an article in the documentation points us to
WM_DISPLAYCHANGE message we can handle if we’d like to adjust that
dynamically later.

15

https://learn.microsoft.com/en-us/windows/win32/winmsg/about-windows#position
https://learn.microsoft.com/en-us/windows/win32/winmsg/about-windows#position
https://learn.microsoft.com/en-us/windows/win32/winmsg/window-features#window-size-and-position
https://learn.microsoft.com/en-us/windows/win32/winmsg/window-features#window-size-and-position
https://learn.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-getsystemmetrics
https://learn.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-getsystemmetrics
https://learn.microsoft.com/en-us/previous-versions/windows/desktop/ms695534(v=vs.85)

Additionally, if you’d like to consider the desktop composed of multi-
ple monitors, constants SM_CXVIRTUALSCREEN and SM_CYVIRTUALSCREEN
can be used in the code above instead.

3. We don’t need to modify the starting position as WM_WINDOWPOSCHANGED
is received as soon as the window is shown, so we can treat it as any
other window movement. Declare in the application class a method in
which we will encapsulate the symmetric movement logic.

class app_2048
{

private:
...
void on_window_move(HWND window, LPWINDOWPOS params);
...

};

Then add the all to this function in the window procedure.

LRESULT app_2048::window_proc(
HWND window,
UINT message,
WPARAM wparam,
LPARAM lparam)

{
switch (message)
{

...
case WM_WINDOWPOSCHANGED:

on_window_move(window,
reinterpret_cast<LPWINDOWPOS>(lparam));

return 0;

}
return DefWindowProcW(window, message, wparam, lparam);

}

4. We already know the size of the screen Ss (m_screen_size field). For
the window that has just moved, WINDOWPOS structure will contain the
position of its top-left corner Pw (fields x and y) and thse size Sw (fields
cx and cy). Its centre is given by:

Cw = Pw +
Sw

2

Size of the other window So (variable other_size in the snippet below)
can be obtained from GetWindowRect. The centre of that other window

16

should be placed symmetrically to Cw with regards the center of the
screen (Ss

2):

Co =
Ss

2
−

(
Cw − Ss

2

)
= Ss − Cw

Finally the new position of the top-left corner of the other window
Po (variable new_pos in the snipped below) which we need to pass to
SetWindowPos needs to be calculated from the following equation:

Co = Po +
So

2

In the code below the calculations is left as an exercise.

void app_2048::on_window_move(
HWND window,
LPWINDOWPOS params)

{
HWND other = (window == m_main) ? m_popup : m_main;
RECT other_rc;
GetWindowRect(other, &other_rc);
SIZE other_size{

.cx = other_rc.right ‐ other_rc.left,

.cy = other_rc.bottom ‐ other_rc.top };
POINT new_pos{

/*calculate the new position of the other window*/
};
if (new_pos.x == other_rc.left &&

new_pos.y == other_rc.top)
return;

SetWindowPos(
other,
nullptr,
new_pos.x,
new_pos.y,
0,
0,
SWP_NOSIZE | SWP_NOACTIVATE | SWP_NOZORDER);

}

5. You might have noticed that centre of the board is not exactly in the
centre of the window. This is due to the fact that the window size
includes the borders and the caption bar (recall how we adjusted the
window size with AdjustWindowRectEx.) If you’d like the board centres
to be symmetric with regards to the screen centre, the solution from
previous step needs to be modified.
To obtain the center of the board for the window that that has just
moved Cw, you can take the position of the board relative to the

17

board’s top-left corner ({ board::width / 2, board::height / 2})
and convert it to a screen position with ClientToScreen. Please consult
the documentation to see how to use it.
The position of the board centre for the other window Co can be
calculated just like in the previous step. However, the new position
of the other window P0 no longer can be obtained by subtracting So

2
from Co. The solution to that problem as well as the implementation
details are again left as an exercise.

3.7 Semitransparent Window
Windows that can turn transparent are called layered windows and the

feature can be enabled by an extended window style. In the example program
the popup window shows as transparent so we’ll try to match that behaviour.

1. We need to extend create_window method of our application once
again to accept the extended style. First the declaration.

class app_2048
{

private:
...

HWND create_window(
DWORD style,
HWND parent = nullptr,
DWORD ex_style = 0);

...
};

Next the definition.

HWND app_2048::create_window(
DWORD style,
HWND parent,
DWORD ex_style)

{
...
HWND window = CreateWindowExW(

ex_style,
s_class_name.c_str(),
L"2048", style,
CW_USEDEFAULT,
0,
size.right ‐ size.left,
size.bottom ‐ size.top,
parent,
nullptr,

18

https://learn.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-clienttoscreen
https://learn.microsoft.com/en-us/windows/win32/winmsg/window-features#layered-windows

m_instance,
this);

...
}

2. The popup window now should get WS_EX_LAYERED style (the main
window remains unchanged). The window will be completely trans-
parent until we call SetLayeredWindowAttributes. For now we will
make it completely opaque.

app_2048::app_2048(HINSTANCE instance)
: ...

{
...
m_main = create_window(main_style);
m_popup = create_window(

popup_style, m_main, WS_EX_LAYERED);
SetLayeredWindowAttributes(m_popup, 0, 255, LWA_ALPHA);
...

}

3. Add a method to the application which will handle updating the popup
window’s transparency.

class app_2048
{
private:

...
void update_transparency();
...

};

4. In it we can select the transparency level based on the intersection of
the two window rectangles.

void app_2048::update_transparency()
{

RECT main_rc, popup_rc, intersection;
GetWindowRect(m_main, &main_rc);
GetWindowRect(m_popup, &popup_rc);
IntersectRect(&intersection, &main_rc, &popup_rc);
BYTE alpha = IsRectEmpty(&intersection) ?

255 :
255 * 50 / 100;

SetLayeredWindowAttributes(m_popup, 0, alpha, LWA_ALPHA);
}

19

5. This function should be called after each change to windows’ positions:

void app_2048::on_window_move(
HWND window,
LPWINDOWPOS params)

{
...
update_transparency();

}

6. If you try the program now, it should look almost right. However, the
popup window becomes semitransparent even if the two windows do
not visually touch each other quite yet. This is because the invisible
part of the border that serves as the drop shadow is included in the
rectangle obtained from GetWindowRect.
The reference for the function (and also the two last hints from the
description we have yet to use) suggest to use DwmGetWindowAttribute
if we want to avoid that. Reference page for it list it available through
the <dwmapi.h> header which we need to include in app_2048.cpp.
There is also the library dwmapi.lib which we need to add in the
project settings under Configuration Properties Linker Input . Expand the
drop-down for Additional Dependencies , select <Edit...> and input the
library name there.

7. Finally we can replace the calls to GetWindowRect and compare the
result

void app_2048::update_transparency()
{

RECT main_rc, popup_rc, intersection;
DwmGetWindowAttribute(

m_main,
DWMWA_EXTENDED_FRAME_BOUNDS,
&main_rc,
sizeof(RECT));

DwmGetWindowAttribute(
m_popup,
DWMWA_EXTENDED_FRAME_BOUNDS,
&popup_rc,
sizeof(RECT));

IntersectRect(&intersection, &main_rc, &popup_rc);
BYTE a =
IsRectEmpty(&intersection) ? 255 : 255 * 50 / 100;
SetLayeredWindowAttributes(m_popup, 0, a, LWA_ALPHA);

}

20

https://learn.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-getwindowrect
https://learn.microsoft.com/en-us/windows/win32/api/dwmapi/nf-dwmapi-dwmgetwindowattribute

3.8 Program Icon
Setting an icon for the window is as simple as assigning an icon handle

(HICON) to hIcon field of WNDCLASSEXW structure when registering the window
class. However, the icon object must first be created. We could load the icon
from a loose file, but in this example we will store it as resource. Resources
are pieces of data that are embedded in the executable file itself. Icon in
stored in such a way can also show as the icon for the executable when it is
shown in file explorer.

1. First let’s copy the 2048_icon.ico file into your project directory
(the folder, where all your source files for the project are located).

2. To be able to add resources we need to create a Resource File which
describes all data associated with the executable. From the main menu
of Visual Studio select Project Add New Item... , then under Visual C++

Resource select the Resource File (.rc) template and add it to your project
with the name Resource.rc.

3. Find the file in the Solution Explorer under Resource Files and double-
click it. This should open the Resource View window.

4. In there right-click on the resource file and select Add Resource... . In the
dialog window click Import... .

5. Change the file type filter to Icon Files (*.ico), then find and open the
icon file you have copied in the first step.

6. The icon will be added with a some auto-generated identifier, usually
in all caps with an ID‐ prefix. You can change it by clicking on the
identifier and going to the Properties Window and editing the ID field.
If you don’t have that window open, go to the main menu and select
View Other Windows Properties Window . Change the identifier now to
ID_APPICON.

7. Each resource is accessible via a symbolic constant with the same
name as the resource identifier (the one we have just changed). The
symbolic constant is introduced in an auto-generated header file, usu-
ally called resource.h, which we should include in our program. Add
the following line at the top of app_2048.cpp.
#include "resource.h"

8. The same function for loading icons (or images in general) from loose
files can also help us load one from a resource. The MAKEINTRESOURCE
macro will allow us to use the resource identifier in place of a string
with the resource name or a file path. Modify the registration of the
window class as follows.

21

https://learn.microsoft.com/en-us/windows/win32/menurc/about-icons#icon-creation
https://learn.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-loadimagew

bool app_2048::register_class()
{

WNDCLASSEXW desc{};
...
desc = {

.cbSize = sizeof(WNDCLASSEXW),

.lpfnWndProc = window_proc_static,

.hInstance = m_instance,

.hIcon = static_cast<HICON>(LoadImageW(
m_instance,
MAKEINTRESOURCEW(ID_APPICON),
IMAGE_ICON,
0, 0,
LR_SHARED | LR_DEFAULTSIZE)),

/*you can also use:
LoadIconW(m_instance,
MAKEINTRESOURCEW(ID_APPICON)) */

.hCursor = LoadCursorW(nullptr, L"IDC_ARROW"),

.hbrBackground =
CreateSolidBrush(RGB(250, 247, 238)),

.lpszClassName = s_class_name.c_str()
};
return RegisterClassExW(&desc) != 0;

}

The LR_SHARED flag will ensure the icon handle is reused even if we
load it multiple times. It also makes it so the system is responsible for
destroying the handle. Also, instead of specifying the width and height
of the icon, we pass 0 for both and pass the LR_DEFAULTSIZE flag so
the actual resolution of the icon is used.

You should now see it as the icon for the executable in file explorer, on
the caption bar of the application window, on the task bar, and also when
switching between windows using + or Alt +

4 Homework Task
With the laboratory part completed you can attempt to extend the ap-

plication according to the following requirements to finish the implementa-
tion of the game. The requirements are listed below and once again you are
provided with the sample executable 2048_home.exe which demonstrates
the intended functionality. Just like before, in any unspecified cases your
solution should handle in the same manner as the example.

General Requirements

22

• For drawing/creating shapes GDI library can be used instead of child
windows (but not other libraries like GDI+).

• Proper resource management is required. Any and all acquired objects
must be properly freed/destroyed.

Layout Requirements

• Two windows with the same board as content,

• The board contains a score counter

• Each tile can contain a block with a number shown. Colour of the
block should depend on that value, for example:

2 – (238, 228, 198)
4 – (239, 225, 218)
8 – (243, 179, 124)
16 – (246, 153, 100)
32 – (246, 125, 98)
64 – (247, 93, 60)
128 – (237, 206, 116)
256 – (239, 204, 98)
512 – (243, 201, 85)
1024 – (238, 200, 72)
2048 – (239, 192, 47)

• Main menu that allows to:

– Start a new game,
– Select the goal number for the block value that will result in

winning the game (8, 16, 64, 2048)
– See the current goal number indicated in the menu

Game Rules

• The game is played by moving and combining the blocks to achieve a
block with the goal number (8, 16, 64, 2048).

• All block move in the direction indicated by the user.

• When a pair of adjacent blocks with the same number move in the
direction along which they neighbour each other, they are combined
into one block containing the sum of their values.

23

• A block resulting from joining cannot be combined with another in
the same move.

• Each block moves in the direction until it is blocked by another block
or the board edge.

• After each move a new block with a value of 2 appears on one of the
empty tiles.

• The player wins when a pair of blocks combines to achieve the goal
number (8, 16, 64, 2048).

• Game ends with a loss if there are no empty tiles and there is no pair
of neighbouring block that can be combined in the next move.

• Each time a pair of blocks is combined the value of the resulting block
is added to the score.

Board View Logic

• If the goal value of a block is reached, the board should be covered with
a green, semi-transparent surface with a text announcing the player
has won. No further moves should be accepted.

• If there is no more moves to be made, a similar red surface should
cover the board announcing the player has lost. Again, no further
moves should be accepted.

• When a new block is added to an empty tile the program should ani-
mate its size to grow until reaching the size of the tile.

• When block is created by combining two others, its size should be
animated to first grow a bit, then return to the normal size.

• When the program is started it should restore the game from the
moment it was last closed. That should include position and values
of blocks on tiles and the current state of the game (won, lost, in
progress).

Recommended Controls The move direction should be selected with
W , S , A and D keys.

Hints Consider the following functions and messages when implementing
your program:

• CreateSolidBrush

• WM_PAINT

24

• WM_TIMER

• WM_KEYDOWN

• WritePrivateProfileStringW

• GetPrivateProfileStringW

• FillRect

• AlphaBlend

• DrawText

• CheckMenuItem

• RoundRect

Grading Criteria

• Implementation of the game rules – 3p.,

• Block animations – 2p.,

• Saving and restoring the game – 2p.,

• Showing the win or loss condition visualisation – 2p.,

• Selection of the goal number – 1p.,

• Score counter – 1p.,

• Starting a new game – 1p.

25

	Introduction
	Laboratory Task
	Description

	Solution
	Creating a Project
	Application Class, First Window and a Message Loop
	Second Window
	Board Layout and Window Sizes
	Board Tiles and Colours
	Window Movement
	Semitransparent Window
	Program Icon

	Homework Task

