
Journal of Singularities
Volume 6 (2012), 19-26
DOI: 10.5427/jsing.2012.6c

Singularities in Geometry
and Appl., Będlewo, 2011

ZERO-DIMENSIONAL SYMPLECTIC ISOLATED COMPLETE
INTERSECTION SINGULARITIES

WOJCIECH DOMITRZ

Abstract. We study the local symplectic algebra of the 0-dimensional isolated complete in-
tersection singularities. We use the method of algebraic restrictions to classify these symplectic
singularities. We show that there are non-trivial symplectic invariants in this classification.

1. Introduction

The problem of symplectic classification of singular varieties was introduced by V. I. Arnold
in [A1]. Arnold showed that the A2k singularity of a planar curve (the orbit with respect to the
standard A-equivalence of parameterized curves) split into exactly 2k+1 symplectic singularities
(orbits with respect to the symplectic equivalence of parameterized curves). He distinguished
different symplectic singularities by different orders of tangency of the parameterized curve with
the nearest smooth Lagrangian submanifold. Arnold posed a problem of expressing these new
symplectic invariants in terms of the local algebra’s interaction with the symplectic structure and
he proposed to call this interaction the local symplectic algebra. This problem was studied
by many authors mainly in the case of singular curves.

In [IJ1] G. Ishikawa and S. Janeczko classified symplectic singularities of curves in the 2-
dimensional symplectic space. A symplectic form on a 2-dimensional manifold is a special case of
a volume form on a smooth manifold. The generalization of results in [IJ1] to volume-preserving
classification of singular varieties and maps in arbitrary dimensions was obtained in [DR]. The
orbit of the action of all diffeomorphism-germs agrees with the volume-preserving orbit in the
C-analytic category for germs which satisfy a special weak form of quasi-homogeneity e.g. the
weak quasi-homogeneity of varieties is a quasi-homogeneity with non-negative weights λi ≥ 0
and

∑
i λi > 0.

P. A. Kolgushkin classified stably simple symplectic singularities of parameterized curves in
the C-analytic category ([K]).

In [DJZ2] the local symplectic algebra of singular quasi-homogeneous subsets of a symplectic
space was explained by the algebraic restrictions of the symplectic form to these subsets. The
generalization of the Darboux-Givental theorem ([AG]) to germs of arbitrary subsets of the
symplectic space obtained in [DJZ2] reduces the problem of symplectic classification of germs of
quasi-homogeneous subsets to the problem of classification of algebraic restrictions of symplectic
forms to these subsets. For non-quasi-homogeneous subsets there is one more cohomological
invariant apart of the algebraic restriction ([DJZ2], [DJZ1]). The method of algebraic restrictions
is a very powerful tool to study the local symplectic algebra of 1-dimensional singular analytic
varieties since the space of algebraic restrictions of closed 2-forms to a 1-dimensional singular
analytic variety is finite-dimensional ([D]). By this method complete symplectic classifications
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of the A−D −E singularities of planar curves and the S5 singularity were obtained in [DJZ2].
These results were generalized to other 1-dimensional isolated complete intersection singularities:
the Sµ symplectic singularities for µ > 5 in [DT1], the T7 − T8 symplectic singularities in [DT2]
and the W8 −W9 symplectic singularities in [T].

In this paper we show that some non-trivial symplectic invariants appear not only in the case
of singular curves but also in the case of multiple points. We consider the symplectic classification
of the 0-dimensional isolated complete intersection singularities (ICISs) in the symplectic space
(C2n, ω). We need to introduce a symplectic V -equivalence to study this problem since we
consider the ideals of function-germs that have not got the property of zeros.

We recall that ω is a C-analytic symplectic form on C2n if ω is a C-analytic nondegenerate
closed 2-form, and Φ : C2n → C2n is a symplectomorphism if Φ is a C-analytic diffeomorphism
and Φ∗ω = ω.

Definition 1.1. Let f, g : (C2n, 0)→ (Ck, 0) be C-analytic map-germs on the symplectic space
(C2n, ω). f, g are symplectically V -equivalent if there exist a symplectomorphism-germ Φ :
(C2n, 0, ω) → (C2n, 0, ω) and a C-analytic map-germ M : (C2n, 0) → GL(k,C) such that such
that f ◦ Φ = M · g.

If Φ : (Cn, 0) → (Cm, 0) is a C-analytic map-germ then for an ideal I in the ring of C-
analytic function-germs on Cm we denote by Φ∗I the following ideal {f ◦ Φ : f ∈ I} in the
ring of C-analytic function-germs on Cn. The (symplectic) V -equivalence of map-germs f =
(f1, · · · , fk), g = (g1, · · · , gk) : (C2n, 0) → (Ck, 0) corresponds to the following (symplectic)
equivalence of finitely-generated ideals < f1, · · · , fk > and < g1, · · · , gk > (see [AVG]).

Definition 1.2. Ideals < f1, · · · , fk > and < g1, · · · , gk > of C-analytic function-germs at 0
on the symplectic space (C2n, ω) are symplectically equivalent if there exists a symplecto-
morphism-germ Φ : (C2n, 0, ω)→ (C2n, 0, ω) such that Φ∗ < f1, · · · , fk >=< g1, · · · , gk >.

In this paper we present the complete symplectic classification of the Ia,b, I2a+1, I2a+4, Ia+5,
I∗10 singularities. For n = 1 all V -orbits coincide with symplectic V -orbits. The situation for
n ≥ 2 is different: the Ia,b singularities split into two symplectic V -orbits, the I2a+1, I2a+4,
Ia+5 singularities split into three symplectic orbits and finally I∗10 singularity splits into four
symplectic V -orbits. The symplectic V -orbits of a map f = (f1, · · · , f2n) are distinguished by
the order of vanishing of a pullback of the germ of the symplectic form to a C-analytic non-
singular submanifold M of the minimal dimension such that the ideal of C-analytic function-
germs vanishing M is contained in the ideal < f1, · · · , f2n > (see Definition 3.2).

To obtain these results we need some reformulation and modification of the method of alge-
braic restrictions. We present it in Section 2. In Section 3 we give the definitions of discrete
symplectic invariants which completely distinguish symplectic V -singularities considered in this
paper. We recall basic facts on the classification of V -simple maps in Section 4. In Section 5 we
prove the symplectic V -classification theorem for 0-dimensional ICISs (Theorem 5.1).

2. The method of algebraic restrictions for the symplectic V -equivalence.

In this section we present basic facts on the method of algebraic restrictions adapted to the
case of the symplectic V -equivalence. The proofs of all results are small modifications of the
proofs of analogous results in [DJZ2].

Given a germ at 0 of a non-singular C-analytic submanifold M of Cm denote by Λp(M) the
space of all germs at 0 of C-analytic differential p-forms on M . By O(M) denote the ring of
C-analytic function-germs onM at 0. Given an ideal I in O(M) introduce the following subspace
of Λp(M):

Ap0(I,M) = {α+ dβ : α ∈ IΛp(M), β ∈ IΛp−1(M).}
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The relation ω ∈ IΛp(M) means that ω =
∑k
i=1 fiαi, where αi ∈ Λp(M) and fi ∈ I for

i = 1, ..., k.

Definition 2.1. Let I be an ideal of O(M) and let ω ∈ Λp(M). The algebraic restriction of
ω to I is the equivalence class of ω in Λp(M), where the equivalence is as follows: ω is equivalent
to ω̃ if ω − ω̃ ∈ Ap0(I,M).

Notation. The algebraic restriction of the germ of a p-form ω on M to the ideal I in O(M)
will be denoted by [ω]I . Writing [ω]I = 0 (or saying that ω has zero algebraic restriction to I)
we mean that [ω]I = [0]I , i.e. ω ∈ Ap0(I,M).

Definition 2.2. Two algebraic restrictions [ω]I and [ω̃]Ĩ are called diffeomorphic if there exists
the germ of a diffeomorphism Φ : M → M̃ such that Φ∗(Ĩ) = I and [Φ∗ω̃]I = [ω]I .

Definition 2.3. The germ of a function, a differential k-form, or a vector field α on (Cm, 0)
is quasi-homogeneous in a coordinate system (x1, · · · , xm) on (Cm, 0) with positive integer
weights (λ1, · · · , λm) if LEα = δα, where E =

∑m
i=1 λixi

∂
∂xi

is the germ of the Euler vector
field on (Cm, 0) and the integer δ is called the quasi-degree.

It is easy to show that α is quasi-homogeneous in a coordinate system (x1, · · · , xm) with
weights (λ1, · · · , λm) if and only if F ∗t α = tδα, where

(2.1) Ft(x1, · · · , xm) = (tλ1x1, · · · , tλmxm).

Definition 2.4. A finitely generated ideal I of O(Cm) is quasi-homogeneous if there exist
generators of I which are quasi-homogeneous in the same coordinate system (x1, · · · , xm) on Cm
with the same positive integer weights (λ1, · · · , λm).

A map-germ f = (f1, · · · , fk) : (Cm, 0) → (Ck, 0) is quasi-homogeneous if function-germs
f1, · · · , fk are quasi-homogeneous in the same coordinate system (x1, · · · , xm) on Cm with the
same positive integer weights (λ1, · · · , λm).

To prove the generalization of Darboux-Givental theorem suitable for the symplectic V -
equivalence of maps or the symplectic equivalence of ideals of function-germs we need the fol-
lowing version of the Relative Poincaré Lemma.

Lemma 2.5. Let I be a finitely generated quasi-homogeneous ideal in O(Cm). If ω ∈ IΛp(Cm)
is closed than there exists α ∈ IΛp−1(Cm) such that ω = dα.

Proof. We use the method described in [DJZ1]. We can find a coordinate system (x1, · · · , xm)
on (Cm, 0) and positive integer weights (λ1, · · · , λm) and quasi-homogeneous function-germs
f1, · · · , fk ∈ O(Cm) (in this coordinate systems with these weights) such that I =< f1, · · · , fk >.
Let δi be a quasi-degree of fi for i = 1, · · · , k.

Let Ft be a map defined in (2.1) and let Vt be a vector field along Ft for t ∈ [0; 1] such that
Vt ◦ Ft = F ′t .

Then we have F ∗0 ω = 0 and it implies that

ω = F ∗1 ω − F ∗0 ω =

∫ 1

0

(F ∗t ω)′dt =

∫ 1

0

F ∗t d(Vtcω)dt = d

(∫ 1

0

F ∗t (Vtcω)dt

)
.

Let α =
∫ 1

0
F ∗t (Vtcω)dt, then ω = dα. But ω belongs to IΛp(Cm). It implies that there exist

germs of p-forms βi in Λp(Cm) for i = 1, · · · , k such that ω =
∑k
i=1 fiβi. So we have that

α =

∫ 1

0

F ∗t (Vtc
k∑
i=1

fiβi)dt =

k∑
i=1

fi

∫ 1

0

tδiF ∗t (Vtcβi)dt.

Thus α belongs to IΛp−1(Cm). �
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The method of algebraic restrictions applied to finitely-generated quasi-homogeneous ideals
is based on the following theorem.

Theorem 2.6 (a modification of Theorem A in [DJZ2]). Let I be a finitely generated quasi-
homogeneous ideal in O(C2n).

(1) If ω0, ω1 are germs at 0 of symplectic forms on C2n with the same algebraic restriction
to I then there exists a C-analytic diffeomorphism-germ Φ of C2n at 0 of the form
Φ(x) = (x1 + φ1(x), · · · , x2n + φ2n(x)), where φi ∈ I for i = 1, · · · , 2n, such that
Φ∗ω1 = ω0.

(2) C-analytic quasi-homogeneous map-germs f = (f1, · · · , fk), g = (g1, · · · , gk) : (C2n, 0)→
(Ck, 0) on the symplectic space (C2n, ω) are symplectically V -equivalent if and only if
algebraic restrictions [ω]<f1,··· ,fk> and [ω]<g1,··· ,gk> are diffeomorphic.

Remark 2.7. It is obvious that if Φ(x) = (x1 + φ1(x), · · · , x2n + φ2n(x)) where φi ∈ I for
i = 1, · · · , 2n then Φ∗I = I

A proof of Theorem 2.6 can be obtain by a small modification of the proof of Theorem A in
[DJZ2]. One only needs Lemma 2.5 and the following fact.

Lemma 2.8. Let I be a finitely generated ideal in O(Cm). Let Xt =
∑m
i=1 fi,t

∂
∂xi

for t ∈ [0; 1]
be a family of germs of C-analytic vector fields on Cm such that fi,t ∈ I for i = 1, · · · ,m.

If Φt for t ∈ [0, 1] is a family of diffeomorphism-germs of (Cm, 0) such that

(2.2)
d

dt
Φt = Xt ◦ Φt

then

(2.3) Φt(x) = (x1 + φ1,t(x), · · · , x2n + φ2n,t(x)),

where φi,t ∈ I for i = 1, · · · , 2n.

A sketch of the proof. The map t 7→ Φt(x) is a solution of ODE dy
dt = Xt(y) with the initial

condition y(0) = x. So Φt(x) can be obtained as a limit limn→∞ TnΨ where Ψ(t, x) ≡ x and
(TΨ)(t, x) = x +

∫ t
0
Xs(Ψ(s, x))ds is the Picard’s operator. It is easy to see that if Ψ has the

form (2.3) then TΨ has the form (2.3) too. The ideal I is finitely generated. Thus Φt has also
this form. �

Theorem 2.6 reduces the problem of symplectic classification of quasi-homogeneous ideals to
the problem of classification of the algebraic restrictions of the germ of the symplectic form to
quasi-homogeneous ideals.

The meaning of the zero algebraic restriction is explained by the following theorem.

Theorem 2.9 (a modification of Theorem B in [DJZ2]). A finitely generated quasi-homogeneous
ideal I of O(C2n) contains the ideal of C-analytic function-germs vanishing on the germ of a non-
singular Lagrangian submanifold of the symplectic space (C2n, ω) if and only if the symplectic
form ω has zero algebraic restriction to I.

We now formulate the modifications of basic properties of algebraic restrictions ([DJZ2]).
First we can reduce the dimension of the manifold due to the following propositions.

If the ideal I in O(Cm) contains an ideal I(M) of function-germs vanishing on a non-singular
submanifold M ⊂ Cm then the classification of the algebraic restrictions to I of p-forms on Cm
reduces to the classification of the algebraic restrictions to I|M = {f |M : f ∈ I} of p-forms on
M . At first note that the algebraic restrictions [ω]I and [ω|TM ]I|M can be identified:
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Proposition 2.10. Let I be an ideal in O(Cm) which contains an ideal of function-germs
vanishing on a non-singular submanifold M ⊂ Cm and let ω1, ω2 be germs of p-forms on Cm.
Then [ω1]I = [ω2]I if and only if

[
ω1|TM

]
I|M

=
[
ω2|TM

]
I|M

.

The following, less obvious statement, means that the orbits of the algebraic restrictions [ω]I
and [ω|TM ]I|M also can be identified.

Proposition 2.11. Let I1, I2 be ideals in the ring O(Cm), which contain I(M1) and I(M2)
respectively, where M1,M2 are equal-dimensional non-singular submanifolds. Let ω1, ω2 be two
germs of p-forms. The algebraic restrictions [ω1]I1 and [ω2]I2 are diffeomorphic if and only if
the algebraic restrictions

[
ω1|TM1

]
I1|M1

and
[
ω2|TM2

]
I2|M2

are diffeomorphic.

To calculate the space of algebraic restrictions of germs of 2-forms we will use the following
obvious properties.

Proposition 2.12. If ω ∈ Ak0(I,C2n) then dω ∈ Ak+1
0 (I,C2n) and ω ∧ α ∈ Ak+p0 (I,C2n) for

any germ of C-analytic p-form α on C2n.

Then we need to determine which algebraic restrictions of closed 2-forms are realizable by
symplectic forms. This is possible due to the following fact.

Proposition 2.13. Let I be an ideal of O(C2n). Let r be the minimal dimension of non-singular
submanifolds M of C2n such that I contains the ideal I(M). The algebraic restriction [θ]I of the
germ of a closed 2-form θ is realizable by the germ of a symplectic form on C2n if and only if
rank(θ|T0M ) ≥ 2r − 2n.

3. Discrete symplectic invariants.

We use discrete symplectic invariants to distinguish symplectic singularity classes. We modify
definitions of these invariants introduced in [DJZ2] for the symplectic V -equivalence.

The first invariant is a symplectic multiplicity ([DJZ2]) introduced in [IJ1] as a symplectic
defect of a curve.

Let f : (C2n, 0)→ (Ck, 0) be the germ of a C-analytic map on the symplectic space (C2n, ω).

Definition 3.1. The symplectic multiplicity µsympl(f) of f is the codimension of the sym-
plectic V -orbit of f in the V -orbit of f .

The second invariant is the index of isotropy [DJZ2].

Definition 3.2. The index of isotropy ι(f) of f = (f1, · · · , fk) is the maximal order of
vanishing of the 2-forms ω|TM over all smooth submanifoldsM such that the ideal < f1, · · · , fk >
contains I(M).

These invariants can be described in terms of algebraic restrictions.

Proposition 3.3 ([DJZ2]). The symplectic multiplicity of the germ of a quasi-homogeneous
map f = (f1, · · · , fk) on the symplectic space (C2n, ω) is equal to the codimension of the orbit
of the algebraic restriction [ω]<f1,··· ,fk> with respect to the group of diffeomorphism-germs pre-
serving the ideal < f1, · · · , fk > in the space of the algebraic restrictions of closed 2-forms to
< f1, · · · , fk >.

Proposition 3.4 ([DJZ2]). The index of isotropy of the germ of a quasi-homogeneous map
f = (f1, · · · , fk) on the symplectic space (C2n, ω) is equal to the maximal order of vanishing of
closed 2-forms representing the algebraic restriction [ω]<f1,··· ,fk>.

We will use these invariants to distinguish symplectic singularities.
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4. V -simple maps

We recall some results on classification of V -simple germs (for details see [AVG]).

Definition 4.1. The germ f : (Cm, 0) → (Cn, 0) is said be V -simple if its k-jet, for any k,
has a neighborhood in the small jet space Jk0,0(Cm,Cn) that intersects only a finite number of
V -equivalence classes (bounded by a constant independent of k).

Definition 4.2. The p-parameter suspension of the map-germ f : (Cm, 0) → (Cn, 0) is
the map germ

F : (Cm × Cp, 0) 3 (y, z) 7→ (f(y), z) ∈ (Cn × Cp, 0).

Theorem 4.3 (see [AVG]). The V-simple map-germs (Cm, 0)→ (Cn, 0) with m ≥ n belong, up
to V -equivalence and suspension, to one of the three lists: the A−D − E singularities of map-
germs Cm → C (hypersurfaces with an isolated singularity), S − T − U −W − Z singularities
of map-germs C3 → C2 (1-dimensional ICISs) and singularities of map-germs C2 → C2 (0-
dimensional ICISs) presented in Table 1.

Notation Normal form Restrictions
Ia,b (yz, ya + zb) a ≥ b ≥ 2

I2a+1 (y2 + z3, za) a ≥ 3

I2a+4 (y2 + z3, yza) a ≥ 2

Ia+5 (y2 + za, yz2) a ≥ 4

I∗10 (y2, z4) -

Table 1. V-simple map-germs C2 → C2.

The normal forms in Table 1 were obtained in [G] by M. Giusti.

5. Symplectic 0-dimensional ICISs

We use the method of algebraic restrictions to obtain a complete classification of singularities
presented in Table 1.

Theorem 5.1. Any map-germ (C2n, 0) → (C2n, 0) from the symplectic space (C2n,
∑n
i=1 dpi ∧

dqi) which is V -equivalent (up to a suitable suspension) to one of the normal forms in Table 1
is symplectically V -equivalent to one and only one of the following normal forms presented in
Table 2

Proof. In the case n = 1 the proof follows from results in [DR] where it was proved that for quasi-
homogeneous singularities in the C-analytic category V -orbits coincide with volume-preserving
V -orbits. For general n we present the proof in the case of the I∗10 singularity where there are
4 different symplectic singularity classes, and in the case of the Ia+5 singularity. The proofs in
other cases are very similar.

For the I∗10 singularity we calculate the space of algebraic restrictions of 2-forms to the ideal
I =< y2, z4, x1, · · · , x2n−2 >. The ideal generated by x1, · · · , x2n−2 is contained in I. So by
Proposition 2.10 we may consider the following ideal J = I|{x1=···=x2n−2=0} =< y2, z4 > in
the ring O(C2). By Proposition 2.12 germs of 1-forms d(1/2y2) = ydy, d(1/4z4) = z3dz and
germs of 2-forms ydy ∧ dz, z3dy ∧ dz have zero algebraic restriction to J . So any algebraic
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Symplectic class Normal forms cod µsympl i
I0a,b, (n ≥ 1) (p1q1, p

a
1 + qb1, p2, q2, · · · , pn, qn) 0 0 0

I1a,b, (n ≥ 2) (p1p2, p
a
1 + pb2, q1, q2, p3, q3, · · · , pn, qn) 1 1 ∞

I02a+1, (n ≥ 1) (p21 + q31 , q
a
1 , p2, q2, · · · , pn, qn) 0 0 0

I12a+1, (n ≥ 2) (p21 + p32, p
a
2 , q1, q2 + p1p2, p3, q3, · · · , pn, qn) 1 1 1

I22a+1, (n ≥ 2) (p21 + p32, p
a
2 , q1, q2, p3, q3, · · · , pn, qn) 2 2 ∞

I02a+4, (n ≥ 1) (p21 + q31 , p1q
a
1 , p2, q2, · · · , pn, qn) 0 0 0

I12a+4, (n ≥ 2) (p21 + p32, p1p
a
2 , q1, q2 + p1p2, p3, q3, · · · , pn, qn) 1 1 1

I22a+4, (n ≥ 2) (p21 + p32, p1p
a
2 , q1, q2, p3, q3, · · · , pn, qn) 2 2 ∞

I0a+5, (n ≥ 1) (p21 + qa1 , p1q
2
1 , p2, q2, · · · , pn, qn) 0 0 0

I1a+5, (n ≥ 2) (p21 + pa2 , p1p
2
2, q1, q2 + p1p2, p3, q3, · · · , pn, qn) 1 1 1

I1a+5, (n ≥ 2) (p21 + pa2 , p1p
2
2, q1, q2, p3, q3, · · · , pn, qn) 2 2 ∞

I∗010 , (n ≥ 1) (p21, q
4
1 , p2, q2, · · · , pn, qn) 0 0 0

I∗110 , (n ≥ 2) (p21, p
4
2, q1, q2 + p1p2, p3, q3, · · · , pn, qn) 1 1 1

I∗210 , (n ≥ 2) (p21, p
4
2, q1, q2 + p1p

2
2, p3, q3, · · · , pn, qn) 2 2 2

I∗310 , (n ≥ 2) (p21, p
4
2, q1, q2, p3, q3, · · · , pn, qn) 3 3 ∞

Table 2. Classification of symplectic 0-dimensional isolated complete intersection
singularities, cod – codimension of the classes; µsympl– symplectic multiplicity; i –
index of isotropy.

restriction of the germ of a closed 2-forms to J can be presented in the following form [ω]J =
A[dy ∧ dz]J +B[zdy ∧ dz]J + C[z2dy ∧ dz]J , where A,B,C ∈ C.

If A 6= 0 then we obtain Φ∗[ω]J = [dy∧dz]J by the diffeomorphism-germ of the form Φ(y, z) =
(y, z(A + 1/2Bz + 1/3Cz2)). If A = 0 and B 6= 0 then we obtain Φ∗[ω]J = [zdy ∧ dz]J by the
diffeomorphism-germ of the form Φ(y, z) = (y, zφ(z)), where φ2(z) = B + 2/3Cz. If A = B = 0
and C 6= 0 then we obtain Φ∗[ω]J = [z2dy ∧ dz]J by the diffeomorphism-germ of the form
Φ(y, z) = (Cy, z).

Since the minimal dimension r of the germ of a non-singular submanifoldM such that I(M) ⊂
I is 2 then by Proposition 2.13 for n = 1 only the algebraic restriction [dy ∧ dz]I is realizable by
the germ of a symplectic form.

For n > 1 all algebraic restrictions are realizable by the following symplectic forms:

(5.1) dy ∧ dz +

n−1∑
i=1

dx2i−1 ∧ dx2i,

(5.2) zdy ∧ dz + dy ∧ dx1 + dz ∧ dx2 +

n−1∑
i=2

dx2i−1 ∧ dx2i,

(5.3) z2dy ∧ dz + dy ∧ dx1 + dz ∧ dx2 +

n−1∑
i=2

dx2i−1 ∧ dx2i,

(5.4) dy ∧ dx1 + dz ∧ dx2 +

n−1∑
i=2

dx2i−1 ∧ dx2i.

By a simple change of coordinates we obtain the normal forms in Table 2.
For the Ia+5 singularity the space algebraic restrictions of germs of closed 2-forms to the

ideal I =< y2 + za, yz2, x1, · · · , x2n−2 > can calculated in the same way. We obtain that any
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algebraic restriction of the germs of a closed 2-forms on C2 = {x1 = · · · = x2n−2 = 0} to
J = I|{x1=···=x2n−2=0} =< y2 + za, yz2 > can be presented in the following form

(5.5) [ω]J = A[dy ∧ dz]J +B[zdy ∧ dz]J ,
where A,B ∈ C.

First assume that A 6= 0. Let E denote the germ of the Euler vector field ay ∂
∂y + 2z ∂

∂y .
Then it is easy to check that a flow Φt of the germ of a vector field X = B

(a+4)AzE preserves J ,
LX(Ady ∧ dz) = Bzdy ∧ dz, [LX(Bzdy ∧ dz)]J = 0. Therefore Φ∗t [Ady ∧ dz + tBzdy ∧ dz]J =
[Ady ∧ dz]J for t ∈ [0; 1] (see [D]). Finally by a linear change of coordinates of the form
(y, z) 7→ (Cy,Dz), where for C,D ∈ C such that C2 = Da and CD = A we show that if
A 6= 0 then the algebraic restriction (5.5) is diffeomorphic to [dy ∧ dz]J . By a similar change of
coordinates preserving J we show that if A = 0 and B 6= 0 then the algebraic restriction (5.5) is
diffeomorphic to [zdy ∧ dz]J . As in the previous case, for n = 1 only [dy ∧ dz]I can be realizable
by the germ of a symplectic form . For n ≥ 2 algebraic restrictions are realizable by (5.1), (5.2)
and (5.4). Normal forms in Table 2 are obtained by an obvious change of coordinates. �
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