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On Local Structural Stability of Di¨erential 1-Forms
and Nonlinear Hypersurface Systems on a Manifold

with Boundary*

Wojciech Domitrzy

Abstract. In this paper we consider smooth di¨erential 1-forms and smooth

nonlinear control-a½ne systems with �nÿ 1�-inputs evolving on an n-dimensional

manifold with boundary. These systems are called hypersurface systems under the

additional assumption that the drift vector ®eld and control vector ®elds span the

tangent space to the manifold. We locally classify all structurally stable di¨eren-

tial 1-forms on a manifold with boundary. We give complete local classi®cation

of structurally stable hypersurface systems on a manifold with boundary under

static state feedback de®ned by di¨eomorphisms, which preserve the manifold

together with its boundary.
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Di¨erential 1-forms, Singularities.

1. Introduction

We consider two smooth nonlinear control-a½ne systems of the form

_q � Vj�q� �
Xm

i�1

uj; iWj; i�q� � Vj�q� �Wj�q�uj ; j � 1; 2; �1�

on a smooth n-dimensional manifold M with smooth boundary qM, where
q A M, _q � dq=dt, Vj is a smooth drift vector ®eld, Wj;1; . . . ;Wj;m are smooth
control vector ®elds, Wj � �Wj;1; . . . ;Wj;m�, and uj � �uj;1; . . . ; uj;m�T A Rm are
controls.

It is natural to use the group of di¨eomorphism-germs

F: �M; qM; p� ! �M; qM; p�
at p A qM, which preserve M, for the local classi®cation problem of such systems.
It is obvious that these di¨eomorphism-germs preserve the boundary qM too. We
denote this group by GM .
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We study local classi®cation of systems of the above type under static state
feedback of the following type:

De®nition 1.1. The two germs of systems (1) at p1 A qM and p2 A qM respec-
tively are feedback GM -equivalent if there exist

1. a di¨eomorphism-germ

F: �M; qM; p1� ! �M; qM; p2�;
2. feedback of the form u1 � A�q� � u2B�q�, where A: M ! Rm and

B: M ! GL�Rm� are germs at p1 A qM of a smooth mapping

such that

V2 � F��V1 �W1AT �; W2 � F��W1B�:
The problem of classi®cation of nonlinear control-a½ne systems (on a manifold

without boundary) was intensively studied by many authors. Planar systems with
one control were classi®ed by Jakubczyk and Respondek [JR1], [JR2]. Respondek
and Zhitomirskii classi®ed such systems on a three-dimensional manifold [RZ]
and simple germs of this systems on an n-dimensional manifold [ZR]. Quadratic
systems were studied by Bonnard [B]. Systems of constant rank were investigated
using Cartan's equivalence method in [G], [GSW], and [W].

It is natural to assume that the number of controls m � nÿ 1, because it was
shown [J] (see also [T] and [RZ]) that if m < nÿ 1, then there are no open orbits
in the space of germs of control systems on an n-dimensional manifold without
boundary, therefore there are no open orbits in the space of germs of control sys-
tems on an n-dimensional manifold with boundary.

We also assume that

dim�spanfVj;Wj;1; . . . ;Wj;nÿ1g�0�� � n; j � 1; 2: �2�
Systems which satisfy condition (2) are called hypersurface systems (see [H]).

Remark 1.1. Under condition (2), for each hypersurface system (1) there exists
the unique germ of a smooth di¨erential 1-form aj such that aj�Wj; i� � 0 for
i � 1; . . . ; nÿ 1 and aj�Vj� � 1 (see [RZ] and [Z2]). We say that aj is a corre-
sponding 1-form to the hypersurface system (1).

There is a natural equivalence relation on a space of germs of smooth di¨eren-
tial 1-forms on a manifold with boundary.

De®nition 1.2. Two germs of smooth di¨erential 1-forms a1 at p1 A qM, a2 at
p2 A qM are GM -equivalent if there exists a di¨eomorphism-germ F, such that

F: �M; qM; p1� ! �M; qM; p2�
and

F�a2 � a1:
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It is easy to prove

Proposition 1.1. The two germs of control systems (1) are feedback GM -equivalent

if the corresponding germs of 1-forms a1 and a2 are GM -equivalent.

We de®ne the notion of local structural stability on the manifold with
boundary.

De®nition 1.3. 1-form a is structurally qM-stable at p A qM if for any neighbor-
hood U of p there is a neighborhood V of a (in Cy topology of 1-forms) such that
if b A V , then there is q A U such that germs of a at p A qM and b at q A qM are
GM -equivalent.

We say that a hypersurface system is structurally qM-stable at p A qM if the
corresponding 1-form is structurally qM-stable at p A qM.

Classi®cation of di¨erential 1-forms is a classical problem (the Darboux theo-
rem). Local classi®cation (on a smooth manifold without boundary) of singular
di¨erential 1-forms was studied by Martinet [M], Golubitsky and Tischler [GT1],
[GT2], Pelletier [P], and Zhitomirskii [Z2]. It was proved that a locally stable
1-form on R2k�1 (resp. R2k) is equivalent to one of the following three models:

dz�
Xk

i�1

xi dyi �Darboux model�;

Gz dz� �1� x1� dy1 �
Xk

i�2

xi dyi �Martinet models�
�

resp: �1� x1� dy1 �
Xk

i�2

xi dyi �Darboux model�;

�1G x2
1� dy1 �

Xk

i�2

xi dyi �Martinet models�
�
:

It is obvious that if 1-form a is structurally qM-stable at p, then it is also struc-
turally stable at p on a manifold without boundary.

In this paper we classi®ed all locally structurally qM-stable smooth 1-forms on
a manifold with boundary. We obtained the following result:

Theorem 1.1. Any germ of a locally structurally qM-stable smooth 1-form on a

manifold with boundary M is GM -equivalent to one and only one of the following

germs at 0 of 1-forms on f�x; y� A R2k: x1 b 0g:

�1� x1� dy1 �
Xk

i�2

xi dyi;

�1ÿ x1� dy1 �
Xk

i�2

xi dyi
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if dim M � 2k or on f�z; x; y� A R2k�1: zb 0g,

dz� dy1 �
Xk

i�1

xi dyi;

ÿdz� dy1 �
Xk

i�1

xi dyi

if dim M � 2k � 1.

By Proposition 1.1 we obtain the complete classi®cation of structurally qM-
stable smooth nonlinear hypersurface systems on a manifold with boundary,
which is the main result of the paper.

Theorem 1.2. Any germ of a locally structurally qM-stable smooth hypersurface

system on a manifold with boundary M is feedback GM -equivalent to one and only

one of the following germs at 0 of hypersurface systems

_q � V�q� �
Xdim Mÿ1

i�1

uiWi�q�

on fq � �x; y� A R2k: x1 b 0g, where

V � 1

1� x1

q

qy1
;

Wi � q

qxi
for i � 1; . . . ; k;

Wj � �1� x1� q

qyjÿk�1
ÿ xjÿk�1

q

qy1
for j � k � 1; . . . ; 2k ÿ 1;

V � 1

1ÿ x1

q

qy1
;

Wi � q

qxi
for i � 1; . . . ; k;

Wj � �1ÿ x1� q

qyjÿk�1
ÿ xjÿk�1

q

qy1
for j � k � 1; . . . ; 2k ÿ 1

if dim M � 2k or on fq � �z; x; y� A R2k�1: zb 0g, where

V � 1

1� x1

q

qy1
;

W1 � �1� x1� q

qz
ÿ q

qy1
;

Wi � q

qxiÿ1
for i � 2; . . . ; k � 1;

Wj � �1� x1� q

qyjÿk
ÿ xjÿk

q

qy1
for j � k � 2; . . . ; 2k;
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V � 1

1� x1

q

qy1
;

W1 � �1� x1� q

qz
� q

qy1
;

Wi � q

qxiÿ1
for i � 2; . . . ; k � 1;

Wj � �1� x1� q

qyjÿk
ÿ xjÿk

q

qy1
for j � k � 2; . . . ; 2k

if dim M � 2k � 1.

Manifolds with boundary appear naturally in control theory problems. We
consider the following example [BC], [Z1].

Example 1.1. We consider a simple model of an electrically heated oven. It con-
sists of a jacket, with a coil directly heating the jacket, and an interior part.

If we assume that, at an arbitrary moment tb 0, temperatures in the jacket and
in the interior part are uniformly distributed and that the ¯ow of heat through a
surface is proportional to the area of the surface and to the di¨erence of tempera-
ture between the separated media, we obtain

c1
dT1

dt
� uÿ �T1 ÿ T2�a1r1 ÿ �T1 ÿ T0�a2r2;

c2
dT2

dt
� �T1 ÿ T2�a1r1;

where T0 denotes the outside temperature, T1�t�, T2�t� denote the temperatures in
the jacket and in the interior part at the moment tb 0, u�t� denotes the intensity
of the heat input produced by the coil at the moment tb 0, a1, a2 denote the area
of exterior and interior surfaces of the jacket, c1; c2 denote the heat capacities of
the jacket and the interior surface of the oven, and r1; r2 denote the radiation
coe½cients of the exterior and the interior surfaces of the jacket.

We want that the temperature in the interior part of the oven should be as close
as possible to T but not greater. It is natural to ask at which points on the
boundary f�T1;T2�: T2 � Tg the system is locally structurally stable on a mani-
fold with boundary f�T1;T2�: T2 aTg. From Propositions 1.1 and 2.1 and The-
orem 1.2 it is locally structurally stable at points on the boundary, which satisfy
T1 0T2 � T .

The paper is organized as follows. In Section 2 we classify 1-forms on a 2k-
dimensional manifold with boundary. We ®nd the normal form for a non-
degenerate 1-form a such that a kernel of a �2k ÿ 1�-form a5�da�kÿ1 is trans-
versal to the boundary. We also ®nd the normal forms of the corresponding
structurally qM-stable hypersurface systems. We prove that the classi®cation of
generic degenerate 1-forms is equivalent to the classi®cation of smooth functions
on the boundary by di¨eomorphisms preserving a contact form on the boundary.
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In Section 3 we classify 1-forms on a �2k � 1�-dimensional manifold with bound-
ary. We ®nd the normal form for a nondegenerate 1-form a such that a kernel of a
2k-form �da�k is transversal to the boundary. We also ®nd the normal forms of
the corresponding structurally qM-stable hypersurface systems. We prove that
the classi®cation of generic degenerate 1-forms is equivalent to the classi®cation
of smooth functions on the boundary by di¨eomorphisms preserving a nondegen-
erate 1-form on the boundary. In Section 4 we prove that degenerate 1-forms are
not structurally qM-stable. We also show that a nondegenerate 1-form is not
structurally qM-stable if the kernel of the corresponding �dim M ÿ 1�-form is not
transversal to the boundary. Then we prove the main theorems on local structural
qM-stability of 1-forms and nonlinear hypersurface systems. In this paper all
objects are smooth �Cy�.

We denote

p: Rn ! fx1 � 0g; p�x1; x2; . . . ; xn� � �0; x2; . . . ; xn�;
i: fx1 � 0g ! Rn; i�x2; . . . ; xn� � �0; x2; . . . ; xn�:

We need two simple lemmas [M] in the following sections.

Lemma 1.1. Let t be a k-form on Rn. If t satis®es the following conditions,
�q=qx1�ct � 0, �q=qx1�c dt � 0, then t � p�i�t.

Lemma 1.2. Let t be a k-form on Rn. If t satis®es the following conditions,
�q=qx1�ct � 0, �q=qx1�c dt � f t, then t � gp�i�t, where f , g are smooth functions

on Rn and gjfx1�0g � 1:

2. 1-Forms and Nonlinear Hypersurface Systems on an Even-Dimensional

Manifold with Boundary

Let �x; y� � �x1; . . . ; xk; y1; . . . ; yk� be a coordinate system on R2k. Throughout
this section, M denotes a germ at 0 of the following set:

f�x; y� A R2k: x1 b 0g:
Let a be a germ of a smooth di¨erential 1-form on R2k at 0. First we prove that
generic nondegenerate 1-forms are structurally qM-stable and we ®nd a normal
form of these 1-forms.

Proposition 2.1. If a satis®es the following conditions:

1. �da�k0 0 0,
2. a0 0 0,
3. a germ of a smooth vector ®eld X at 0, which satis®es the following condition,

Xc�da�k � a5�da�kÿ1;

is transversal to qM at 0,
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then a is GM -equivalent to one and only one of the following two germs of 1-forms

at 0:

aG � �1G x1� dy1 �
Xk

i�2

xi dyi: �3�

Proof. From condition 3 we conclude that

i�qMa5�di�qMa�kÿ1
0 0 0;

where iqM : qM ,! R2k stands for the canonical inclusion. Therefore i�qMa is a
contact form on qM. By the Darboux theorem, a can be reduced to such a form
that

i�qMa � dy1 �
Xk

i�2

xi dyi:

On the other hand, X can be reduced to Gq=qx1 by an element of GM which is the
identity on qM. From condition 3 we have (see [M])

q

qx1

�
a � 0;

q

qx1

�
da � f a;

where f denotes a function-germ on R2k at 0. Therefore,

a � h dy1 �
Xk

i�2

xi dyi

 !
;

where h is a function-germ on R2k at 0 such that hjqM � 1 by Lemma 1.2. We
conclude from condition 1 that �qh=qx1��0�0 0, hence the following map,

C�x; y� � j�qh=qx1��0�j
�qh=qx1��0� �h�x; y� ÿ 1�; h�x; y�x2; . . . ; h�x; y�xk; y1; . . . ; yk

� �
;

is an element of GM , and ®nally C�a � �1G x1� dy1 �
Pk

i�2 xi dyi.
Suppose the germs a� and aÿ are GM -equivalent. It is easily seen that aÿ is GM -

equivalent to �ÿ1� x1� dy1 �
Pk

i�2 xi dyi. Then we could ®nd F A GM such that
F��Xÿ� � X�, which is impossible because XG�0� �G�q=qx1��0�. 9

Now we consider generic degenerate 1-forms.

Proposition 2.2. If a satis®es the following conditions:

1. �da�k0 � 0,
2. a5�da�kÿ1

0 0 0,
3. S � f�x; y� A R2k: �da�k�x;y� � 0g is a germ of a regular hypersurface at

0 A qM,
4. a germ of a smooth vector ®eld X at 0, which satis®es the following,

Xca5�da�kÿ1 � 0; X�0�0 0;

is transversal to qM and S at 0,
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then a is GM -equivalent to a following germ of 1-form at 0,

aG
f �

ÿ
1G 1

2�x1 ÿ f �2� dy1 �
Xk

i�2

xi dyi

 !
; �4�

where f is a function-germ at 0 which does not depend on x1, f �0� � 0.
Germs aG

f and aG
g are GM -equivalent if and only if they have the same index G

(� or ÿ) and there exists a germ of a di¨eomorphism

F: �R2kÿ1; 0� ! �R2kÿ1; 0�;
which preserves the contact form dy1 �

Pk
i�2 xi dyi and

f � g �F:

Proof. By Martinet's results [M], there exists a di¨eomorphism-germ
F: �R2k; 0� ! �R2k; 0�, such that

F�a � 1G
x2

1

2

� �
dy1 �

Xk

i�2

xi dyi:

Hence �Fÿ1��0�X��0� � a�q=qx1��0�, where a A R; a0 0. Therefore F�qM� �
f�x; y� AR2k: x1 � h�x2; . . . ; xn; y1; . . . ; yn�g, where h is a function-germ, h�0� � 0.
Thus, by C �F A GM , where

C�x; y� � �Gx1 � h; �1G 1
2�Gx1 � h�2�x2; . . . ;�1G 1

2�Gx1 � h�2�xn; y1; . . . ; yn�;
a can be reduced to aG

f .
Germs a�f and aÿg are not GM -equivalent, because they are not equivalent on a

manifold without boundary [M].
Assume aG

f � Y�aG
g and Y A GM . XG

f � a�q=qx1� and XG
g � b�q=qx1�, where

a; b are function-germs, a�0�0 0; b�0�0 0. Therefore Y�x; y� � �t�x; y�;
y�x2; . . . ; xn; y��, where t is a function-germ on R2k and y is a di¨eomorphism-
germ of R2kÿ1.

Y�f�x; y� A R2k: x1 � f g� � f�x; y� A R2k: x1 � gg:
Hence y preserves a germ dy1 �

Pk
i�2 xi dyi and �x1 ÿ f �2 � �tÿ g �Y�2.

However,

t�f�x; y� A R2k: x1 � 0g� � 0;

t�f�x; y� A R2k: x1 b 0g�b 0;

because Y A GM . Therefore t�x; y� � x1 and f � g �F. 9

Let q � �x; y� A R2k. From Propositions 1.1 and 2.1 we obtain

Corollary 2.1. The following two hypersurface systems,

_q � VG�q� �WG�q�u;
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where

VG � 1

1G x1

q

qy1
;

WG
i �

q

qxi
for i � 1; . . . ; k;

WG
j � �1G x1� q

qyjÿk�1
ÿ xjÿk�1

q

qy1
for j � k � 1; . . . ; 2k ÿ 1;

are structurally qM-stable at 0 A qM. They are not GM -feedback equivalent.

3. 1-Forms and Nonlinear Hypersurface Systems on an Odd-Dimensional

Manifold with Boundary

Let �z; x; y� � �z; x1; . . . ; xk; y1; . . . ; yk� be a coordinate system on R2k�1.
Throughout this section, M denotes a germ at 0 of the following set:

f�z; x; y� A R2k�1: zb 0g:
Let a be a germ of a smooth di¨erential 1-form on R2k�1 at 0. First we prove that
generic nondegenerate 1-forms are structurally qM-stable and we ®nd a normal
form of these 1-forms.

Proposition 3.1. If a satis®es the following conditions:

1. a5�da�k0 0 0,
2. a germ of a smooth vector ®eld X at 0, which satis®es the following condition,

Xca5�da�k � �da�k;
is transversal to qM at 0,

3. i�qMa0 0 0, where iqM : qM ,! R2k�1 is the canonical inclusion,

then a is GM -equivalent to one and only one of the two germs of 1-forms at 0:

aG �Gdz� dy1 �
Xk

i�1

xi dyi: �5�

Proof. a is a germ of a contact form on R2k�1. Therefore there exists a di¨eo-
morphism-germ F: �R2k�1; 0� ! �R2k�1; 0� such that F�a � dz�Pk

1 xi dyi and
F�qM� � f�z; x; y� A R2k�1: z � f �x; y�g, where f is a function-germ at 0 A R2k.
Then a is GM -equivalent to

Gdz� df �
Xk

i�1

xi dyi:

We consider a germ ~a � aH dz. i�qM ~a0 0 0 and �di�qM ~a�k0 0 0, because i�qM ~a �
i�qMa. Hence there exists C A GM such that C�z; x; y� � �z;c�x; y�� and iqMC�~a �
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dy1 �
Pk

i�1 xi dyi. It is easily seen that

q

qz

�
~a � 0;

q

qz

�
d~a � ~a:

Thus C�~a � dy1 �
Pk

i�1 xi dyi, by Lemma 1.1. Hence C�a � aG.
We suppose for a moment that a� is GM -equivalent to aÿ. Hence there

exists Y A GM such that Y��Xÿ� � X�. However, XG �Gq=qz, which is a
contradiction. 9

Now we consider generic degenerate 1-forms.

Proposition 3.2. If a satis®es the following conditions:

1. a5�da�k0 � 0,

2. �da�k0 0 0,
3. S � f�z; x; y� A R2k: a5�da�k�z;x;y� � 0g is a germ of a regular hypersurface

at 0 A qM,
4. a germ of a smooth vector ®eld X at 0, which satis®es the following,

Xc�da�k � 0; X �0�0 0;

is transversal to qM and S at 0,
5. i�Sa0 0 0, where iS: S ,! R2k�1 is the canonical inclusion,

then a is GM -equivalent to a following germ of 1-form at 0:

aG
f �G�zÿ f � d�zÿ f � � �1� x1� dy1 �

Xk

i�2

xi dyi; �6�

where f is a function-germ at 0 which does not depend on z, f �0� � 0.
Germs aG

f and aG
g are GM -equivalent if and only if they have the same index G

(� or ÿ) and there exists a germ of a di¨eomorphism

F: �R2k; 0� ! �R2k; 0�
which preserves the form �1� x1� dy1 �

Pk
i�2 xi dyi and

f � g �F:

Proof. By Martinet's results [M] there exists a di¨eomorphism-germ
F: �R2k�1; 0� ! �R2k�1; 0�, such that

F�a �Gz dz� �1� x1� dy1 �
Xk

i�2

xi dyi:

Hence �Fÿ1��0�X ��0� � a�q=qz��0�, where a A R, a0 0. Therefore F�qM� �
f�z; x; y� A R2k�1: z � h�x; y�g, where h is a function-germ, h�0� � 0. Thus, by
C �F A GM , where

C�x; y� � �Gz� h; x; y�;
a can be reduced to aG

f .
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Germs a�f and aÿg are not GM -equivalent, because they are not equivalent on a
manifold without boundary [M].

Assume aG
f � Y�aG

g and Y A GM . XG
f � a�q=qz� and XG

g � b�q=qz�, where

a; b are function-germs, a�0�0 0; b�0�0 0. Therefore Y�x; y� � �t�z; x; y�;
y�x; y��, where t is a function-germ on R2k�1 and y is a di¨eomorphism-germ
of R2k.

Y�f�z; x; y� A R2k�1: z � f g� � f�z; x; y� A R2k�1: z � gg:
Hence, y preserves a germ �1� x1� dy1 �

Pk
2 xi dyi and �zÿ f �2 � �tÿ g �Y�2.

However,

t�f�x; y� A R2k: z � 0g� � 0;

t�f�x; y� A R2k: zb 0g�b 0;

because Y A GM . Therefore t�z; x; y� � z and f � g �F. 9

Let q � �z; x; y� A R2k�1. From Propositions 1.1 and 3.1 we obtain

Corollary 3.1. The following two hypersurface systems,

_q � VG�q� �WG�q�u;
where

VG � 1

1� x1

q

qy1
;

WG
1 � �1� x1� q

qz
H

q

qy1
;

WG
i �

q

qxiÿ1
for i � 2; . . . ; k � 1;

WG
j � �1� x1� q

qyjÿk
ÿ xjÿk

q

qy1
for j � k � 2; . . . ; 2k;

are structurally qM-stable at 0 A qM. They are not GM -feedback equivalent.

4. Structural Stability

By the Thom Transversality Theorem [GG], [AVG], which also holds for di¨er-
ential forms, closed di¨erential forms, and distribution of corank 1 [M], a codi-
mension of an orbit of a structurally stable element is greater than the dimension
of the manifold [GT2].

We prove that degenerate 1-forms are not structurally qM-stable.

Proposition 4.1. Germs (4) and (6) are not qM-stable.

Proof. By Propositions 2.2 and 3.2 this problem is equivalent to the problem of
stability of the pair �b; f �, where b is a nondegenerate 1-form on Rn and f is a
function-germ on Rn.
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We use the method described in [GT1] and [GT2]. Let J l�D1�Rn�� be the space
of l-jets of 1-forms and let J l�Rn� be the space of l-jets of smooth functions on Rn

to R. Let Ol
� j l b; j l f � be an orbit of a pair � j lb; j l f � A J l�D1�Rn�� � J l�Rn�, where

j lb is an l-jet of b and j l f is an l-jet of f , under the action of the group of inver-
tible �l � 1�-jets Di¨ l�1

0 �Rn�.
Then

codim Ol
� j l b;J l f � � dim�J l�D1�Rn�� � J l�Rn�� ÿ dim Ol

� j l b; j l f �

b dim�J l�D1�Rn�� � J l�Rn�� ÿ dim Diff l�1
0 �Rn�

� �n� 1� n� l

n

� �
ÿ n

n� l � 1

n

� �
� 1

n!
l n � wnÿ1�l�;

where wnÿ1�l� is a polynomial of degree at most nÿ 1 in l. Therefore
codim Ol

� j l b; j l f � > n for some l large enough and consequently the forms are not
stable. 9

Now we prove that nondegenerate 1-forms which do not satisfy condition 3 of
Proposition 2.1 (condition 2 of Proposition 3.1 respectively) are not structurally
qM-stable. First we need two lemmas.

Lemma 4.1. Let a � dz�Pk
i�1 xi dyi be a germ at 0 of the standard contact form

on R2k�1, and let y �Pk
i�1 xi dyi be a germ of a 1-form on R2k such that dy is the

standard symplectic form on R2k. If F: �R2k�1; 0� ! �R2k�1; 0� is a germ of di¨eo-

morphism such that F?a � a, then

F�z; x; y� � �zÿ h�x; y�;C�x; y��;
where C: �R2k; 0� ! �R2k; 0� is a germ of a symplectomorphism C? dy � dy and h

is a function-germ on R2k such that C?y � y� dh and h�0� � 0.

Proof. Notice that F?�q=qz� � q=qz, because �q=qz�ca5�da�k � �da�k. Thus
F�z; x; y� � �zÿ h�x; y�;C�x; y��. However, da � p? dy, where p: R2k�1 C
�z; x; y� ! �x; y� A R2k. Therefore C? dy � dy and F?a � dzÿ dh� p?C?y �
dz� p?y. 9

Lemma 4.2. Let a � �1� x1��dy1 �
Pk

i�2 xi dyi� be a germ at 0 of 1-form on

R2k, and let y � dy1 �
Pk

i�2 xi dyi be a germ of the contact form on R2kÿ1. If

F: �R2k; 0� ! �R2k; 0� is a germ of di¨eomorphism such that F?a � a, then

F�x; y� � �g�x2; . . . ; xk; y�x1 � g�x2; . . . ; xk; y� ÿ 1;C�x2; . . . ; xk; y��;
where C: �R2kÿ1; 0� ! �R2kÿ1; 0� is a germ of the contactomorphism such that

C?y � hy and g is a function-germ on R2kÿ1 such that g � 1=h and g�0� � 1.

Proof. Notice that F?��1� x1��q=qx1�� � �1� x1��q=qx1�, because �1� x1� �
�q=qx1�ca5�da�k � �da�k. Thus F�x; y� � �g�x; y�x1 � r�x2; . . . ; xn; y�;
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C�x2; . . . ; xn; y��. However,

F?a � �1� gx1 � r�p?C?y � �1� x1�p?y; �7�
where p: R2k C �x; y� ! �x2; . . . ; xk; y� A R2kÿ1. Thus C?y � �1=�1� r��y. Let h �
1=�1� r� then from (7) we have g � 1=h. 9

Now we use the same method as in the proof of Proposition 4.1.

Proposition 4.2. Let a be a germ of 1-form at 0 on R2k and let M be a germ of the

following set:

f�x; y� A R2k: x1 b 0g:
If a satis®es the following conditions:

1. �da�k0 0 0,
2. a0 0 0,
3. a germ of a smooth vector ®eld X at 0, which satis®es the following,

Xc�da�k � a5�da�kÿ1;

is tangent to qM at 0,

then a is not structurally qM-stable at 0.

Proof. From (1) and (2), there exists a di¨eomorphism-germ F: �R2k; 0� !
�R2k; 0� [M] such that

F?a � �1� x1� dy1 �
Xn

i�2

xi dyi

 !
:

F does not have to preserve qM. Let

Fÿ1�qM� � f�x; y� A R2k: f �x; y� � 0g;
where f is a function-germ on R2k at 0, f �0� � 0. From (3), we have �LX f �j0 �
�q f =qx1�j0 � 0. By genericity we may assume that �L2

X f �j0 � �q2 f =qx2
1�j0 0 0. By

the Malgrange Preparation Theorem [AVG], [GG] we get

Fÿ1�qM� � f�x; y� A R2k: x2
1 � p�x; y�x1 � q�x; y� � 0g;

where p; q are function-germs on R2k at 0, which do not depend on x1 and
p�0� � q�0� � 0.

Now we consider the action on Fÿ1�qM� by the group of di¨eomorphism-
germs which preserve F?a. By Lemma 4.2 we reduce the above action to the fol-
lowing action of contactomorphism-germs on R2kÿ1 on smooth mapping-germs
R2kÿ1 ! R2:

C � �p; q� � �h�p �C� � 2�1ÿ h�; h2�q �C� � h�1ÿ h��p �C� � �1ÿ h�2�; �8�
where �p; q�: R2kÿ1 ! R2 is a smooth mapping-germ and C is a contacto-
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morphism-germ such that

C? dx1 �
Xk

i�2

xi dyi

 !
� h dx1 �

Xk

i�2

xi dyi

 !
;

where h is a function-germ on R2kÿ1 at 0, h�0� � 1. So we have to classify a germ
of �2k ÿ 2�-dimensional distribution b � 0 and the mapping-germ �p; q� under the
above action of the group of di¨eomorphism-germs.

Now we use the method described in [GT1] and [GT2].
Let J l�Ph2kÿ2�R2kÿ1�� be the space of l-jets of smooth �2k ÿ 2�-dimensional

distributions on R2kÿ1, let J l�R2kÿ1;R2� be the space of l-jets of smooth mappings
R2kÿ1 ! R2, and let Ol

� j l�b�0�; j l�p;q�� be an orbit of � j l�b � 0�; j l�p; q�� A
J l�Ph2kÿ2�R2kÿ1�� � J l�R2kÿ1;R2�, where j l�b � 0� is an l-jet of a smooth
�2k ÿ 2�-dimensional distribution on R2kÿ1 and j l�p; q� is an l-jet of a mapping
�p; q�, under the action by pullback on j l�b � 0� and the action de®ned by (8) on
j l�p; q� of the group of invertible �l � 1�-jets Di¨ l�1

0 �R2kÿ1�.
Then

dim J l�Ph2kÿ2�R2kÿ1�� � �2k ÿ 2� 2k ÿ 1� l

2k ÿ 1

� �
;

dim Ol
� j l

o; j
l�p;q��a dim l�1

0 �R2kÿ1� � �2k ÿ 1� 2k ÿ 1� l � 1

2k ÿ 1

� �
;Di¨

and

codim Ol
� j l�b�0�; j l�p;q�� � dim J l�Ph2kÿ2�R2kÿ1�� � J l�R2kÿ1;R2�

ÿ dim Ol
� j l�b�0�; j l �p;q��

b �2k ÿ 2� 2k ÿ 1� l

2k ÿ 1

� �
� 2

2k ÿ 1� l

2k ÿ 1

� �
ÿ �2k ÿ 1� 2k � l

2k ÿ 1

� �
� 1

�2k ÿ 1�! �2k ÿ 2� 2ÿ 2k � 1�l2kÿ1 � w2kÿ2�l�

� 1

�2k ÿ 1�! l 2kÿ1 � w2kÿ2�l�;

where w2kÿ2�l� is a polynomial of degree at most 2k ÿ 2 in l. Therefore
codim Ol

� j l�b�0�; j l�p;q�� > 2k ÿ 1 for some l large enough and a is not qM-
stable. 9

Proposition 4.3. Let a be a germ of 1-form at 0 on R2k�1 and let M be a germ of

the following set:

f�z; x; y� A R2k�1: zb 0g:
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If a satis®es the following conditions:

1. a5�da�k0 0 0,
2. a germ of a smooth vector ®eld X at 0, which satis®es the following,

Xca5�da�k � �da�k;
is tangent to qM at 0,

3. i�qMa0 0 0, where iqM : qM ,! R2k�1 is the canonical inclusion,

then a is not structurally qM-stable at 0.

Proof. a is a germ of contact form. By the Darboux theorem there exists a dif-
feomorphism-germ F: �R2k�1; 0� ! �R2k�1; 0� such that

F?a � dz�
Xn

i�1

xi dyi:

F does not have to preserve qM. Let

Fÿ1�qM� � f�z; x; y� A R2k�1: f �z; x; y� � 0g;
where f is a function-germ on R2k�1 at 0, f �0� � 0. From (2), we have �LX f �j0 �
�q f =qz�j0 � 0. By genericity we may assume that �L2

X f �j0 � �q2 f =qz2�j0 0 0. By
the Malgrange Preparation Theorem [AVG], [GG] we get

Fÿ1�qM� � f�z; x; y� A R2k�1: z2 � p�x; y�z� q�x; y� � 0g;
where p, q are function-germs on R2k�1 at 0, which do not depend on z and
p�0� � q�0� � 0. Now we consider the action on Fÿ1�qM� by the group of
di¨eomorphism-germs which preserve F?a. By Lemma 4.1 we reduce the above
action to the following action of symplectomorphism-germs on R2k on smooth
mapping-germs R2k ! R2:

C � �p; q� � �p �Cÿ 2h; q �Cÿ h�p �C� � h2�; �9�
where �p; q�: R2k ! R2 is a smooth mapping-germ and C is a symplecto-
morphism-germ such that

C?o � o �
Xk

i�1

dxi5dyi

and

C?
Xk

i�1

xi dyi

 !
�
Xk

i�1

xi dyi � dh;

h is a function-germ on R2k at 0, h�0� � 0. So we have to classify a germ of the
closed form o and the mapping-germ �p; q� under the above action of the group
of di¨eomorphism-germs.

Now we use the method described in [GT1] and [GT2]. Let J l�CD2�R2k�� be
the space of l-jets of smooth closed 2-forms on R2k, let J l�R2k;R2� be the space
of l-jets of smooth mappings R2n ! R2 and let Ol

� j l o; j l�p;q�� be an orbit of

� j lo; j l�p; q�� A J l�CD2�R2k�� � J l�R2k;R2�, where j lo is an l-jet of a closed 2-
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form o and j l�p; q� is an l-jet of a mapping �p; q�, under the action by pullback
on j lo and the action de®ned by (9) on j l�p; q� of the group of invertible �l � 1�-
jets Di¨ l�1

0 �R2k�.
Then

dim J l�CD2�R2k�� �
X2kÿ2

i�0

�ÿ1� iJ lÿi�D2�i� �
X2kÿ2

i�0

�ÿ1� i 2k

2� i

� �
2k � l ÿ i

2k

� �
(see [GT2] for details), where J l�Di� is a space of l-jets of smooth di¨erential i-
forms,

dim Ol
� j l o; j l�p;q��a dim l�1

0 �R2k� � 2k
2k � l � 1

2k

� �
;Di¨

and

codim Ol
� j l o; j l�p;q�� � dim J l�CD2�R2k�� � J l�R2k;R2� ÿ dim Ol

� j l o; j l�p;q��

b
X2kÿ2

i�0

�ÿ1� i 2k

2� i

� �
2k � l ÿ i

2k

� �
� 2

2k � l

2k

� �

ÿ 2k
2k � l � 1

2k

� �

� 1

�2k�!
X2kÿ2

i�0

�ÿ1� i 2k

2� i

� �
� 2ÿ 2k

 !
l2k � w2kÿ1�l�

� 1

�2k�! �2k ÿ 1� 2ÿ 2k�l2k � w2kÿ1�l�

� 1

�2k�! l 2k � w2kÿ1�l�;

where w2kÿ1�l� is a polynomial of degree at most 2k ÿ 1 in l. Therefore
codim Ol

� j l o; j l�p;q�� > 2k for some l large enough and a is not qM-stable. 9

Now we obtain:

Theorem 4.1. If a is a germ of locally structurally qM-stable 1-form on a manifold

M with boundary, then a satis®es the conditions of Proposition 2.1 (Proposition 3.1
respectively) and a is GM -equivalent to one and only one of the following germs at 0
of 1-forms on f�x; y� A R2k: x1 b 0g�f�z; x; y� A R2k�1: zb 0g respectively�:

�1G x1� dy1 �
Xk

i�2

xi dyi if dim M � 2k;

Gdz� dy1 �
Xk

i�1

xi dyi if dim M � 2k � 1:

Proof. First we assume that dim M � 2k. If a is structurally qM-stable at
p A qM, then it is structurally stable (on R2k-manifold without boundary) at p.
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Then it must be equivalent to the Darboux model or one of the Martinet models
[M], [GT2], [Z2].

If a is equivalent to the Darboux model, then it satis®es the following conditions:
�da�kp 0 0, ap 0 0. If ker a5�da�kÿ1 is transversal to qM at p, then a is GM -
equivalent to �1G x1� dy1 �

Pk
i�2 xi dyi (by Proposition 2.1). If the last condition

is not satis®ed, then a is not locally structurally qM-stable by Proposition 4.2.
If a is equivalent to one of the Martinet models, then it satis®es the following

conditions [M]:

1. �da�kp � 0,

2. a5�da�kÿ1
p 0 0,

3. S � f�x; y� A R2k: �da�k�x;y� � 0g is a germ of a regular hypersurface at
p A qM,

4. a germ of a smooth vector ®eld X at p, which satis®es the following,

Xca5�da�kÿ1 � 0; X �p�0 0;

is transversal to S at p,

and by Proposition 4.1 it is not structurally qM-stable at p A qM.
Therefore if a is locally qM-stable it must satisfy assumptions of Proposition 2.1.
Now we assume that dim M � 2k � 1.
If a is structurally qM-stable at p A qM, then it is structurally stable (on R2k�1-

manifold without boundary) at p. Then it must be equivalent to the Darboux
model or one of the Martinet models [M], [GT2], [Z2].

If a is equivalent to the Darboux model, then it satis®es the following
conditions: a5�da�kp 0 0. If ker�da�k is transversal to qM at p, then a is GM -
equivalent to Gdz� dy1 �

Pk
i�1 xi dyi (by Proposition 3.1). If the last condition is

not satis®ed, then a is not locally structurally qM-stable by Proposition 4.3.
If a is equivalent to one of the Martinet models, then it satis®es the following

conditions [M]:

1. a5�da�kp � 0,

2. �da�kp 0 0,
3. S � f�z; x; y� A R2k�1: a5�da�k�z;x;y� � 0g is a germ of a regular hypersur-

face at p,
4. a germ of a smooth vector ®eld X at p, which satis®es the following,

Xc�da�k � 0; X �p�0 0;

is transversal to S at p,
5. i�Sap 0 0, where iS: S ,! R2k�1 is the canonical inclusion,

and by Proposition 4.1 it is not structurally qM-stable at p A qM.
Therefore if a is locally qM-stable it must satisfy assumptions of Proposition

3.1. 9

From the above theorem and Corollaries 2.1 and 3.1 we obtain the complete
classi®cation of locally structurally qM-stable hypersurface systems on a manifold
with boundary.
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Theorem 4.2. Any germ of a locally structurally qM-stable smooth hypersurface

system on a manifold with boundary M is feedback GM -equivalent to one and only

one of the following germs at 0 of hypersurface systems

_q � V�q� �
Xdim Mÿ1

i�1

uiWi�q�

on fq � �x; y� A R2k: x1 b 0g, where

V � 1

1� x1

q

qy1
;

Wi � q

qxi
for i � 1; . . . ; k;

Wj � �1� x1� q

qyjÿk�1
ÿ xjÿk�1

q

qy1
for j � k � 1; . . . ; 2k ÿ 1;

V � 1

1ÿ x1

q

qy1
;

Wi � q

qxi
for i � 1; . . . ; k;

Wj � �1ÿ x1� q

qyjÿk�1
ÿ xjÿk�1

q

qy1
for j � k � 1; . . . ; 2k ÿ 1

if dim M � 2k or on fq � �z; x; y� A R2k�1: zb 0g, where

V � 1

1� x1

q

qy1
;

W1 � �1� x1� q

qz
ÿ q

qy1
;

Wi � q

qxiÿ1
for i � 2; . . . ; k � 1;

Wj � �1� x1� q

qyjÿk
ÿ xjÿk

q

qy1
for j � k � 2; . . . ; 2k;

V � 1

1� x1

q

qy1
;

W1 � �1� x1� q

qz
� q

qy1
;

Wi � q

qxiÿ1
for i � 2; . . . ; k � 1;

Wj � �1� x1� q

qyjÿk
ÿ xjÿk

q

qy1
for j � k � 2; . . . ; 2k

if dim M � 2k � 1.
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