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NORMAL FORMS OF SYMPLECTIC STRUCTURES

ON THE STRATIFIED SPACES

BY

W. DOMITRZ AND S. JANECZKO (WARSZAWA)

Introduction. In this paper we consider the singular symplectic spaces
defined as follows. Let V be a stratified subspace of R

N . We call it a
singular symplectic space if there exists a differential 2-form ω on R

N such
that the restriction of ω to each stratum is a symplectic form. Spaces of
this type have been extensively studied by several authors [15, 10] in the
context of Marsden–Weinstein singular reduction. An approach to the local
classification of germs of such spaces was introduced in [8]. The germs of
singular symplectic spaces are classified by the corresponding coisotropic
varieties in the extended symplectic space.

One can get a representative example of a singular symplectic space
obtained by symplectic reduction by taking the generating family in the
following form (cf. [8]):

F : R
m × R

n × R
k → R, F (q, α, λ) = f(q, λ) + α2

1q1 + α2q2,

where f is a smooth function such that ∂2f/∂λ2 6= 0. The reduction map

ΦF |ΣF
: (q, α, λ) → (ξ, α) =

(
∂F

∂α
(q, α, λ), α

)

of the corresponding coisotropic variety C ⊂ T ∗
R
m (cf. [8]) defines the

symplectic space of bicharacteristics

W = {(ξ, α) : α1 6= 0} ∪ {(ξ1, α) : ξ1 = 0, α1 = 0}
endowed with the symplectic form

∑n
i=1 dξi ∧ dαi. In what follows, we

shall take one component of W , i.e. {α1 > 0} ∪ {ξ1 = 0, α1 = 0}, as a
local model of stratified symplectic space (we call it a symplectic flag). We
obtain a generalization of this model by taking all pull-backs of this space
by smooth maps which are diffeomorphisms on the maximal strata.

The main results of the paper are Darboux-type theorems for a certain
class of stratified spaces and a general approach to the classification of such
spaces by germs of generating families. The observation that in contrast to
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the singular symplectic reduction theory, symplectic structures on stratified
spaces may be generated by singular symplectic two-forms in an ambient
space, is also the starting point of our paper.

This article is organized in three sections. The first section classifies the
symplectic structures on the flag model. An analogue of the Darboux theo-
rem is proved and the prenormal form of a symplectic structure is derived.
Finally, the stratified symplectic space with singular boundary of the maxi-
mal stratum is discussed. The second section gives a canonical construction
of generating families for singular reduction together with the formulation of
the problem of symplectic reduction from singular hypersurfaces of the sym-
plectic space. The third section gives an example of a singular symplectic
space encountered in classical physics of systems of rays.

1. Local models of singular symplectic structures. A stratified
space each of whose strata is a symplectic manifold is called a stratified

symplectic space. This notion was introduced in [15] (see also [8]) in the
context of standard symplectic reduction. For our purposes we will use
embedded symplectic spaces.

Definition 1.1. Let S be a stratified subset of R
N with each stratum

Si (even-dimensional) endowed with a symplectic structure ωSi
. Assume

that there exists a closed two-form ω on R
N such that ω|Si

= ωSi
. Then

the pair (S, ω) is called a singular symplectic space.

A representative model of a singular symplectic space is a disjoint union
of semialgebraic sets. We consider the elementary symplectic flag

S = S2n ∪ S2n−2 ⊂ R
2n;

S2n = {(x, y) ∈ R
2n : x1 > 0}, S2n−2 = {(x, y) ∈ R

2n : x1 = 0, y1 = 0},
endowed with a symplectic structure ω. By ιk : Sk → R

N we denote the
canonical inclusions of Sk, with S2n−1 = {x ∈ R

2n : x1 = 0}.
Now we have a natural extension problem: Let ω̃ be a symplectic form

on S2n−2; we ask about the existence of a closed smooth two-form on R
2n

such that ω|S2n−2
= ω̃ and ω|S2n

is symplectic.
The first step in approaching this problem is to classify singular sym-

plectic spaces (S, ω), where ω provides a symplectic structure on R
2n.

We denote by GS the group of germs of diffeomorphisms (R2n, 0) →
(R2n, 0) preserving S, i.e. if Φ ∈ GS then Φ(S2n) ⊂ S2n and Φ(S2n−2) ⊂
S2n−2. It is easy to see that

Proposition 1.1. If Φ ∈ GS , then

Φ(x1, y1, . . . , xn, yn)

= (x1φ1(x, y), x1φ12(x, y) + y1φ22(x, y), φ3(x, y), . . . , φ2n(x, y)),
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where φ1, φ12, φ22, φ3, . . . , φ2n are smooth germs of functions on (R2n, 0) and

φ1(0) > 0.

Definition 1.2. Let ω1, ω2 be two symplectic structures on S (closed
two-forms on (R2n, 0)). We say that ω1 and ω2 are equivalent (ω1 ∼ ω2) if
and only if there exists Φ ∈ GS such that Φ∗ω1 = ω2.

Theorem 1.1 (Darboux form). Let ω be a symplectic structure on S.

Assume ω is a symplectic form on R
2n. Then ω is equivalent to the Darboux

form:

ω ∼
n∑

i=1

dxi ∧ dyi.

P r o o f. First we reduce ω to the Darboux form on S2n−2. Let δ =
ι∗2n−1ω. The rank of δ at 0 is 2n− 2, because

(1) ι∗2n−2ω =

n∑

i=2

dxi ∧ dyi.

We define the characteristic distribution on S2n−1 by

D =
⋃

p∈S2n−1

Dp, Dp = {v ∈ TpS2n−1 : δ(v,w)=0 for every w ∈ TpS2n−1}.

Because δ is a closed two-form, D is involutive.

Making use of (1) we can write

δ =
n∑

i=2

dxi ∧ dyi + dy1 ∧
n∑

i=2

(αidxi + βidyi) + y1δ
′,

where αi, βi are smooth function-germs on S2n−1 and δ′ is a closed two-form
on S2n−1 depending on the differentials of x2, y2, . . . , xn, yn. We have

δ(0) =

n∑

i=2

dxi ∧ dyi + dy1 ∧
n∑

i=2

(αi(0)dxi + βi(0)dyi).

Let X0 ∈ D0, i.e. X0⌋δ(0) = 0. Then

X0 = λ
∂

∂y1

∣∣∣∣
0

+
n∑

i=2

(
ai

∂

∂xi

∣∣∣∣
0

+ bi
∂

∂yi

∣∣∣∣
0

)
,

where

ai = −λβi(0), bi = λαi(0), i = 2, . . . , n, λ ∈ R.
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So we can write

D0 = span

{
X0 =

∂

∂y1

∣∣∣∣
0

+

n∑

i=2

(
− βi(0)

∂

∂xi

∣∣∣∣
0

+ αi(0)
∂

∂yi

∣∣∣∣
0

)}
,

T0S2n−1 = span

{
X0,

∂

∂xi

∣∣∣∣
0

,
∂

∂yi

∣∣∣∣
0

}

i=2,...,n

.

We immediately deduce that D is transversal to S2n−2 around 0. We set
δ = δ|S2n−2

=
∑n
i=2 dxi ∧ dyi. Then we extend δ along the integral curves

of D. This means that there is a natural diffeomorphism φ : (S2n−1, 0) →
(S2n−1, 0) preserving S2n−2 such that φ∗δ =

∑n
i=2 dxi ∧ dyi. Now we write

Φ(x, y) = (x1, φ(y1, x2, y2, . . . , xn, yn)), Φ ∈ GS ,

and ω1 = Φ∗ω, ω0 =
∑n
i=1 dxi ∧ dyi. We use Moser’s method [13] to show

the equivalence of ω1 and ω0. We take the homotopy ωt = tω1 + (1 − t)ω0,
t ∈ [0, 1]. One can check that ωt is a nondegenerate form for every t ∈ [0, 1].
We seek for a smooth family t→ Φt such that

(2) Φ∗
tωt = ω0, Φ0 = idR2n .

Differentiating (2) we get

LVt
ωt + ω1 − ω0 = 0,

where LVt
is the Lie derivative along the vector field Vt generated by the

flow Φt. But

LVt
ωt = d(Vt⌋ωt) + Vt⌋dωt = d(Vt⌋ωt).

The differential d(ω0 − ω1) = 0 and ι∗2n−1(ω0 − ω1) = 0. So by the relative
Poincaré Lemma (see e.g. [16]) there exists a one-form α such that dα =
ω0 − ω1 and α vanishes on S2n−1. Thus

(3) Vt⌋ωt = α and α(x,y) = 0 for every (x, y) ∈ S2n−1.

Because ωt is a nondegenerate form, (3) is always solvable with respect to
Vt, and moreover, Vt(x, y) = 0 for every (x, y) ∈ S2n−1. We deduce that Φt
exists, preserves the submanifolds S2n−1 and S2n−2, and by compactness of
the interval [0, 1] we have Φ∗

1ω1 = ω0. If Φ1 preserves S2n then it belongs
to GS , otherwise we take Γ ◦ Φ1 ∈ GS , where Γ is the symplectomorphism

Γ (x, y) = (−x1, x2, . . . , xn,−y1, y2, . . . , yn).
Before we pass to a more detailed classification we recall the basic results

on the standard classification of singularities of differential forms [11].

Let ω be a germ of a closed two-form on R
2n at zero. We set

Σk = {x ∈ R
2n : rankω(x) = 2n− k} for k even.

Let ωn = fΩ, where Ω is the volume form on R
2n.
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(i) If f(0) 6= 0 then ω is a symplectic form (Σ0 in the standard notation)
and by the Darboux theorem we obtain

(4) ω =

n∑

i=1

dxi ∧ dyi

in local coordinates around zero.

(ii) Next we assume f(0) = 0 while (df)(0) 6= 0. We have Σ2 = {f = 0}
and let ι : Σ2 → R

2n be the inclusion. If ι∗ωn−1(0) 6= 0 then in local
coordinates

(5) ω = x1dx1 ∧ dy1 +

n∑

i=2

dxi ∧ dyi

and this type of singular form ω is denoted by Σ2,0 (and called Martinet’s

singular symplectic form).

Both of these types of forms Σ0 and Σ2,0 are locally stable (see [11]) and
we use them in what follows.

Proposition 1.2. Let ω be a symplectic structure on S. Assume f(0) =
0 and df(0) 6= 0. Then ω is a singular form of type Σ2,0 at zero, i.e. ω
belongs to the standard orbit of (5) in (ii).

R e m a r k 1.1. A symplectic form ω on S may be quite singular in general.
The singular set of ω is not visible from S (see Fig. 1). The above proposition
says that typical symplectic forms on S can only have a Σ2,0 type singularity
in the ambient space, i.e. the next two types of stable singular 2-forms,
Σ2,2,0, do not appear in this approach.

Fig. 1
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P r o o f o f P r o p o s i t i o n 1.2. We see that ω is a symplectic form on
S2n−2. Let S̃ = {f = 0}, where ωn = fΩ and Ω is the standard volume

form on R
2n. We have T0S̃ = T0S2n−1, because ω is symplectic on S2n.

Further, S2n−2 ⊂ S2n−1, so T0S2n−2 ⊂ T0S2n−1 and T0S2n−2 ⊂ T0S̃. By
assumption ι∗2n−2ω is symplectic. Thus (ι∗2n−2ω)n−1 6= 0 and this implies

(ι∗ω)n−1 6= 0, where ι : S̃ → R
2n is an embedding.

Let ω be a symplectic form on S, ωn = fΩ, f(0) = 0 and df(0) 6= 0.
Then ∂f

∂xi
(0) = 0 and ∂f

∂yj
(0) = 0 for i = 2, . . . , n, j = 1, . . . , n, so ∂f

∂x1
(0) 6= 0.

Thus

df ∧ dy1 ∧ dx2 ∧ dy2 ∧ . . . ∧ dxn ∧ dyn(0) 6= 0,

so {y1, x2, y2, . . . , xn, yn} defines a coordinate system on S̃ = {f = 0}.
Lemma 1.1. By using elements of GS one can reduce ωn to the following

normal form:

(±x1 + ψ(y1, x2, y2, . . . , xn, yn))Ω.

P r o o f. Since the vector field ∂/∂x1 is transversal to the hypersurface

S̃ at 0, S̃ is the graph of a smooth function φ on S2n−1. Therefore one can
write

f(x1, y1, . . . , xn, yn) = r(x1, y1, . . . , xn, yn)(x1 − φ(y1, x2, y2, . . . , xn, yn)).

The diffeomorphism

Φ(x, y) = (x1 − φ(y1, x2, y2, . . . , xn, yn), y1, x2, y2, . . . , xn, yn)

reduces ωn to the form q(x, y)x1Ω. Define a diffeomorphism

Ψ(x, y) =

(√
2x1

√
|g(0)|
g(0)

g(x, y), y1, x2, y2, . . . , xn, yn

)
,

where g is the smooth function

g(x, y) =
1∫

0

sq(sx1, y1, x2, y2, . . . , xn, yn) ds.

Since

x2
1g(x, y) =

x1∫

0

tq(t, y1, x2, y2, . . . , xn, yn) dt,

we have Ψ∗(ωn) = ±x1Ω. The diffeomorphism

Υ (x, y) =

(
x1 +

√
2φ(y1, . . . , xn, yn)

×
√

|g(0)|
g(0)

g(−φ(y1, . . . , xn, yn), y1, . . . xn, yn), y1, . . . , xn, yn

)

reduces ωn to the form
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ωn = (±x1 + h(y1, . . . , xn, yn))Ω.

The diffeomorphism Υ ◦Ψ ◦Φ preserves the submanifolds S2n−2 and S2n−1.
If it preserves S2n then it belongs to GS , otherwise we take Γ ◦Υ ◦Ψ ◦Φ ∈ GS ,
where Γ is the reflection of x1.

Definition 1.3. Let ψ1, ψ2 be function-germs on (R2n−1, 0). We say
that ψ1, ψ2 are contact equivalent if and only if there exists a diffeomorphism
Φ : (R2n−1, 0) → (R2n−1, 0) and a smooth function-germ g : (R2n−1, 0) → R,
g(0) 6= 0, such that ψ1 = g · (ψ2 ◦ Φ).

Let ω1, ω2 be two symplectic forms on S. Let f1, f2 define their corre-
sponding singular hypersurfaces, ωn1 = f1Ω and ωn2 = f2Ω, and let ψ1, ψ2

be as in Lemma 1.1. By a simple check we obtain the following

Proposition 1.3. If ω1 and ω2 are equivalent , then ψ1 and ψ2 are

contact equivalent.

Proposition 1.4. Let ω be a symplectic form on S such that f(0) = 0,
df(0) 6= 0. Then there exists a symplectic form ω1 on S, equivalent to ω,
such that

ι∗ω1 =

n∑

i=2

dxi ∧ dyi,

where ι : S̃ → R
2n is the embedding.

P r o o f. First we reduce ω to a form such that ι∗2n−2ω is the Darboux
form. Then making use of Lemma 1.1 we have

S̃ = {±x1 + ψ(y1, x2, y2, . . . , xn, yn) = 0}.
The last change of coordinates is the identity on S2n−1, so ι∗2n−2ω is still in
the Darboux form. So we can write

ω =

n∑

i=2

dxi ∧ dyi + dx1 ∧
( n∑

i=2

αidxi +

n∑

i=1

βidyi

)

+ dy1 ∧
( n∑

i=2

γidxi +
n∑

i=2

δidyi

)
+ x1ω̂ + y1ω̃,

where the 2-form ω̂ depends on the differentials of y1, x2, y2, . . . , xn, yn and
ω̃ depends on the differentials of x2, y2, . . . , xn, yn. So the pull-back of ω to
S̃ has the form

n∑

i=2

dxi ∧ dyi ∓ dψ ∧
( n∑

i=2

αidxi +

n∑

i=1

βidyi

)

+dy1 ∧
( n∑

i=2

γidxi +

n∑

i=2

δidyi

)
∓ ψι∗ω̂ + y1ι

∗ω̃
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and

ι∗ω(0) =
n∑

i=2

dxi ∧ dyi + dy1 ∧
( n∑

i=2

γi(0)dxi +
n∑

i=2

δi(0)dyi

)
,

because ψ(0) = 0 and dψ(0) = 0.
Consider the involutive distribution

D =
⋃

p∈S̃

Dp, Dp = {v ∈ TpS̃ : ∀w ∈ TpS̃, ι
∗ω(v,w) = 0}.

One can easily check that

(6) D0 = span

{
∂

∂y1

∣∣∣∣
0

+
n∑

i=2

(
γi(0)

∂

∂yi

∣∣∣∣
0

− δi(0)
∂

∂xi

∣∣∣∣
0

)}
.

We see that S̃ ∩ {y1 = 0} is a (2n − 2)-dimensional submanifold of S̃ and
(x2, y2, . . . , xn, yn) can be taken as coordinates on it. By (6), D is transversal

to S̃∩{y1 = 0} at zero. Let τ denote a pull-back of ι∗ω to S̃∩{y1 = 0}. We
can reduce τ to the Darboux form

∑n
i=2 dxi ∧ dyi. Then we extend τ , along

the leaves of D, onto S̃. Finally, we reduce ι∗ω to the form
∑n
i=2 dxi ∧ dyi

preserving the set S̃ ∩ {y1 = 0}. The diffeomorphism of S̃ constructed in
this way has the form

Ψ(y1, x2, y2, . . . , xn, yn)

= (y1ψ1(y1, x2, y2, . . . , xn, yn), . . . , ψ2n−1(y1, x2, y2, . . . , xn, yn)),

because it preserves the hypersurface {y1 = 0} in S̃. Thus

Φ(x1, y1, x2, y2, . . . , xn, yn) = (x1, Ψ(y1, x2, y2, . . . , xn, yn))

is a diffeomorphism, Φ ∈ GS and

ι∗Φ∗ω =

n∑

i=2

dxi ∧ dyi.

Before we formulate the main theorem concerning the normal form of ω
we prove some necessary facts ([11]).

Lemma 1.2. Let τ be a k-form on R
n satisfying

∂

∂x1
⌋τ = 0,(7)

∂

∂x1
⌋dτ = 0.(8)

Then τ = π∗ι∗τ , where

π : R
n → {x1 = 0}, π(x1, x2, . . . , xn) = (0, x2, . . . , xn),

ι : {x1 = 0} → R
n, ι(x2, . . . , xn) = (0, x2, . . . , xn).
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P r o o f. By (7), τ does not depend on dx1. Equation (8) implies that
the partial differentials of the coefficients of τ with respect to x1 vanish. So
the coefficients do not depend on x1.

Lemma 1.3. Let τ be a k-form on R
n satisfying

∂

∂x1
⌋τ = 0,(9)

∂

∂x1
⌋dτ = ϕτ,(10)

where ϕ is a smooth function on R
n. Then τ = ζπ∗ι∗τ , where ζ is a smooth

function on R
n and ζ|{x1=0} = 1.

P r o o f. We seek for a smooth function η on R
n such that η|{x1=0} = 1

and ητ satisfies the assumptions of Lemma 1.2. Then we have

∂

∂x1
⌋d(ητ) =

∂η

∂x1
τ − dη ∧

(
∂

∂x1
⌋τ

)
+ η

(
∂

∂x1
⌋dτ

)
.

By (9) and (10) we have

(11)
∂η

∂x1
+ ηϕ = 0, η|{x1=0} = 1

and solving this we get

η(x1, . . . , xn) = exp
( x1∫

0

ϕ(s, x2, . . . , xn) ds
)
.

We thus obtained η such that ητ = π∗ι∗(ητ) (by Lemma 1.2). However,
ι∗(ητ) = ι∗τ , because η|{x1=0} = 1. So finally,

τ =
1

η
π∗ι∗τ.

Now we prove the main theorem concerning the normal form of the
symplectic structure on S, the geometrical content of which is illustrated in
Fig. 1.

Theorem 1.2. Let ω be a symplectic structure on S. Assume f(0) = 0
and df(0) 6= 0. Then ω is equivalent to the form

dh ∧
(
dy1 + dg +

n∑

i=2

xidyi

)
+ h

n∑

i=2

dxi ∧ dyi,

where g is a smooth function-germ

(x2, y2, . . . , xn, yn) → g(x2, y2, . . . , xn, yn),
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and h is a smooth function-germ such that

h(x, y) = n

√
±1

2(n− 1)!
(±x1 + ψ(y1, x2, y2, . . . , xn, yn))2 + 1,

where ψ is a germ at zero of a smooth function, ψ(0) = 0, ∂ψ
∂xi

(0) = 0,

i = 2, . . . , n, ∂ψ
∂yi

(0) = 0, i = 1, . . . , n, and S̃ = {(x, y) : ±x1 + ψ = 0}.

P r o o f. By Proposition 1.4 we have S̃ = {(x, y) : ±x1 + ψ = 0}, where
ψ does not depend on x1, and ι∗ω =

∑n
i=2 dxi ∧ dyi. There exists a 1-form

α such that ω = dα. Then

d(ι∗α) = ι∗ω =

n∑

i=2

dxi ∧ dyi

and so

ι∗α = dφ+
n∑

i=2

xidyi.

The form α can be chosen in such a way that ι∗α ∧ (d(ι∗α))n−1 6= 0 ([11]).
Thus

dφ ∧ dx2 ∧ dy2 ∧ . . . ∧ dxn ∧ dyn(0) 6= 0.

In consequence, ∂φ
∂y1

(0) 6= 0. Therefore,

φ(y1, x2, y2, . . . , xn, yn) = y1ζ(y1, x2, y2, . . . , xn, yn) + g(x2, y2, . . . , xn, yn),

where ζ and g are smooth on S̃. Now, by means of Φ ∈ GS , where

Φ(x1, y1, x2, y2, . . . , xn, yn)

= (x1, y1ζ(y1, x2, y2, . . . , xn, yn), x2, y2, . . . , xn, yn),

we reduce ι∗α to the form

ι∗α = dy1 + dg +
n∑

i=2

xidyi

preserving the form of ι∗ω and S̃.

Lemma 1.4. There exists a vector field X transversal to S̃ at 0 and such

that

X⌋α = 0,(12)

X⌋dα = ϕα,(13)

where ϕ : R
2n → R is a smooth function.
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P r o o f o f L em m a 1.4. From the standard classification of 1-forms
we know ([11]) that α may be reduced to the form

α =

(
1 ± x2

1

2

)
dy1 +

n∑

i=2

xidyi.

So d(α) = ±x1dx1 ∧ dy1 +
∑n
i=2 dxi ∧ dyi and

α ∧ (dα)n−1 = (n− 1)((1 ± x2
1/2)dy1 ∧ dx2 ∧ dy2 ∧ . . . ∧ dxn ∧ dyn

± x1x2dy2 ∧ dx1 ∧ dy1 ∧ dx3 ∧ dy3 ∧ . . . ∧ dxn ∧ dyn + . . .

± x1xndyn ∧ dx1 ∧ dy1 ∧ dx2 ∧ dy2 ∧ . . . ∧ dxn−1 ∧ dyn−1).

Consider the vector field X defined by X⌋Ω = α ∧ (dα)n−1. We have

X = (n− 1)

((
1 ± x2

1

2

)
∂

∂x1
± x1

n∑

i=2

xi
∂

∂xi

)
.

We also check that

X⌋α = 0, X⌋dα = ±(n− 1)x1α,

and we see that X is transversal to S̃ at 0, which finishes the proof of
Lemma 1.4.

Lemma 1.5. By using an element of GS one can reduce α to the form

α = h
(
dy1 + dg +

n∑

i=2

xidyi

)
,

where h : R
n → R is a smooth function such that h|S̃ = 1.

P r o o f o f L e m m a 1.5. The diffeomorphism

Φ(x1, y1, . . . , xn, yn) = (x1 ± ψ(y1, . . . , xn, yn), y1, . . . , xn, yn),

transforms S̃ = {x1 = ∓ψ} onto {x1 = 0}. Let X be a vector field in-
troduced in Lemma 1.4. Thus Φ∗X is transversal to {x1 = 0} at 0 and
we can transform Φ∗X into ∂/∂x1 (cf. [2]) by a diffeomorphism Ψ such that
Ψ |{x1=0} = id. However, ∂/∂x1 satisfies the assumptions of Lemma 1.3 ((9),
(10)). So we immediately obtain

(14) ((Ψ ◦ Φ)−1)∗α = ζπ∗
2n−1ι

∗
2n−1((Ψ ◦ Φ)−1)∗α.

One can write Ψ in the form

Ψ(x1, y1, . . . , xn, yn)

= (x1ψ1(x, y), x1ψ12(x, y) + y1ψ22(x, y), ψ3(x, y), . . . , ψ2n(x, y)).

Define

Υ (x1, y1, . . . , xn, yn) = (x1 ∓ ψ1(x, y)ψ(y1, . . . , xn, yn), y1, . . . , xn, yn).
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Then

(Υ ◦ Ψ ◦ Φ)(x1, y1, . . . , xn, yn)

= (x1ψ1(x, y), x1ψ12(x, y) + y1ψ22(x, y), ψ3(x, y), . . . , ψ2n(x, y)).

If ψ1 > 0 then Λ = Υ ◦Ψ ◦Φ ∈ GS , otherwise we take Λ = Γ ◦Υ ◦Ψ ◦Φ ∈ GS
instead, where Γ is the reflection of x1. It is easy to check that

ι∗2n−1((Ψ ◦ Φ)−1)∗α = dy1 + dg +
n∑

i=2

xidyi.

Now using Υ in (14) we obtain the assertion of Lemma 1.5.

By Lemma 1.5 we get

α = h
(
dy1 + dg +

n∑

i=2

xidyi

)
,

where h|S̃ = 1. This implies

ω = dα = dh ∧
(
dy1 + dg +

n∑

i=2

xidyi

)
+ h

n∑

i=2

dxi ∧ dyi.

We also have

(dα)n = n!hn−1 ∂h

∂x1
Ω.

On the other hand, by Lemma 1.1 we have ωn = (±x1 +ψ)Ω preserving the
form of α. Hence

n!hn−1 ∂h

∂x1
= ±x1 + ψ

and
∂hn

∂x1
=

1

(n− 1)!
(±x1 + ψ)

with an extra condition h|{x1=∓ψ} = 1. Solving this equation we get

hn =
1

(n− 1)!

(±x2
1

2
+ ψx1

)
+ η,

where η does not depend on x1. Inserting x1 = ∓ψ to this equation we
obtain

η = 1 ± 1

(n − 1)!

ψ2

2

and finally

h = n

√
±1

2(n− 1)!
(±x1 + ψ)2 + 1.
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R e m a r k 1.2. Consider the semialgebraic set S = S2n ∪ S2n−2 ⊂ R
2n,

where

S2n = {(x, y) ∈ R
2n : x3

1 > y2
1}, S2n−2 = {(x, y) ∈ R

2n : x1 = 0, y1 = 0}.
The difference between this space and the previous space Sn is that in the
above model ∂S2n is a singular set (see Fig. 2).

Fig. 2

We endow S with a symplectic structure ω. As before, GS denotes the
group of diffeomorphisms (R2n, 0) → (R2n, 0) preserving S. Let ω1, ω2 be
two symplectic structures on S. We say that ω1 and ω2 are GS-equivalent

if and only if Φ∗ω1 = ω2 for some Φ ∈ GS . Now we can show the following

Proposition 1.5. Let ω be a symplectic structure on S. Assume f(0) =
0 and df(0) 6= 0. Then ω is a singular form of type Σ2,0 at zero.

P r o o f. By straightforward use of the proof of Proposition 1.2.

An analogous Darboux theorem for the space S is proved by Arnold
([3]). Namely, if ω is a symplectic structure on R

2n then ω is GS-equivalent
to the Darboux form, i.e.

ω ∼
n∑

i=1

dxi ∧ dyi.

2. Generating families for singular reduction. So far we discussed
a concrete model of a singular symplectic space. We now consider the more
general framework enabling us to classify the local types of singular reduced
symplectic spaces.
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Let (M,ω) be a symplectic manifold. Let C ⊂ M be an embedded,
connected, coisotropic submanifold of M , i.e. for every x ∈ C the orthogonal
space C⊥

x = (TxC)⊥, with respect to ω, is contained in TxC (see [16]). Then
dimC⊥

x = codimC and D =
⋃
x∈C C

⊥
x is the characteristic distribution of

ω|C . This distribution is integrable and its maximal connected integral
manifolds are called characteristics. They form the characteristic foliation
of C. Let ̺ : C → Y be the canonical projection along characteristics. If
Y admits a differentiable structure and ̺ is a submersion, then there is a
unique symplectic structure β on Y such that

̺∗β = ω|C .
In analogy to the theory of Morse families, which generate Lagrangian sub-
manifolds, the notion of generating families for coisotropic submanifolds was
introduced in [8]. We recall this construction.

We assume M = T ∗X, Y = T ∗N,X ∼= R
m, N ∼= R

n, and M and Y are
endowed with the Liouville symplectic structures ωX and ωN respectively.

Definition 2.1. A smooth function (germ) F : X × N × R
K → R is

called a C-generating family if the smooth map (q, α, λ) → ∂F
∂λ

(q, α, λ) ∈ R
K

is nonsingular on the stationary set

ΣF =

{
(q, α, λ) :

∂F

∂λ
(q, α, λ) = 0

}

and the smooth map (q, α, λ)|ΣF
→

(
∂F
∂α

(q, α, λ), α
)

is surjective.

In what follows we assume that ΣF is a smooth component of the station-
ary set of dimension m+n. We easily see that the image of ΦF : ΣF → T ∗X,
ΦF (q, α, λ) =

(
∂F
∂q

(q, α, λ), q
)
, provides a coisotropic variety C generated by

F . We have

(15) C =

{
(p, q) ∈ T ∗X : ∃(α,λ)∈N×RK such that pi =

∂F

∂qi
(q, α, λ),

∂F

∂λk
(q, α, λ) = 0, 1 ≤ i ≤ m, 1 ≤ k ≤ K

}
.

The variety C obtained in this way is not necessarily smooth. There is a
class of families F which provides smooth coisotropic submanifolds.

Definition 2.2. Let F : X × N × R
K → R be a C-generating fam-

ily. F is called a C-Morse family if the smooth map ΨF : (q, α, λ) →(
∂F
∂α

(q, α, λ), α
)
∈ T ∗N is regular along the stationary set ΣF .

We can easily see that the variety C, generated by a C-Morse family
via (15), is an immersed submanifold of T ∗X. The immersion is given by
ΦF : ΣF → T ∗X .
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Proposition 2.1 ([8]). For each coisotropic germ (C, 0) ⊂ T ∗X, there

exists a C-Morse family germ F : (X × N × R
K , (0, 0, 0)) → R such that

(C, 0) is defined by (15).

If (C, 0) is the germ of a coisotropic submanifold then the corresponding
C-Morse family generating (C, 0) is not uniquely defined. However, we can
easily show that all C-Morse families generating (C, 0) are equivalent, i.e.
if F1, F2 generate (C, 0) then there exists a diffeomorphism Φ(q, α, λ) =
(q, α,Λ(q, α, λ)) such that F1 = F2 ◦ Φ.

Let C ⊂ T ∗X be a coisotropic variety defined by a C-generating family
F . Then C is a stratifiable variety, C =

⋃
i C

di , d1 > . . . > dk, di = dimCdi .

We write C̃ =
{
(p, q, α, λ) : p = ∂F

∂q
(q, α, λ), ∂F

∂λ
(q, α, λ) = 0

}
⊂ T ∗X × N

× Λ. So we have a corresponding stratification of C̃: C̃ =
⋃
i C̃

ni , C =

πT ∗X(C̃), and of ΣF : ΣF =
⋃
iK

si , ΣF = πX×N×Λ(C̃).

Corollary 2.1. The {ΨF (Ksi)} form a collection of coisotropic vari-

eties of T ∗N if dimΨF (Ksi) > dimN . Their corresponding C-generating

families are defined by the diagram:

ΣF
ΨF ւ ց ΦF

T ∗N −−−−T ∗X

i.e. the q variable in F is replaced by α.

Let V be a hypersurface of X × N × Λ, dimV = 2n + K, transversal
to ΣF . The manifold Ξ = V ∩ ΣF , dim Ξ = 2n, is a parameterizing space
of the reduced symplectic manifold of bicharacteristics in T ∗N . The space
of bicharacteristics intersecting Ξ, say Ξ̃, is endowed with the symplectic
structure Ω = ΨF |∗ΞωN provided ΨF |Ξ is a regular map.

Example 2.1. We consider the stable germ of the C-generating family
(see [8], p. 440)

F : (R3 × R × R, 0) → R, F (q, α, λ) = λ3 + αλ+ (q21 − q22 − q23)λ.

This family generates the coisotropic variety

{(p, q) : q2p1 + q1p2 = 0, q3p1 + q1p3 = 0},
ΨF |ΣF

(q, λ) = (λ, q22 + q23 − q21 − 3λ2) ∈ T ∗
R,

where

ΣF = {(q, α, λ) : 3λ2 + α+ q21 − q22 − q23 = 0}.
Let V = {(q, α, λ) : q1 = 0, q2 = 0}. Then the corresponding variety
Ξ of bicharacteristics is endowed with the singular symplectic structure
Ω = 2q3dλ ∧ dq3.
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Definition 2.3. We say V is a coisotropic hypersurface if and only if
each stratum of XV is a coisotropic or isotropic submanifold of (M,ω).

R e m a r k 2.1. We easily see that a typical hypersurface V defined by a
polynomial equation F (x, y) = 0 is not coisotropic. As an example, consider
the cusp-edge surface V in R

4 endowed with a symplectic form ω in general
position with respect to V . In this case ω|Sing V is a symplectic form. It
is shown in [3] that (V, ω) is diffeomorphic to ({x3

1 − y2
1 = 0}, dx1 ∧ dy1 +

dx2 ∧ dy2) and the reduced symplectic space of V − Sing V is isomorphic to
the singular edge of V .

We conjecture that if SingV is a coisotropic (or Lagrangian) submanifold
then (V, ω) is locally diffeomorphic to ({x3

1 − x2
2 = 0}, ∑n

i=1 dxi ∧ dyi). Let
Φ : R

2n−1 → R
2n be the following parameterization of {x3

1 − x2
2 = 0}:

Φ(s, y1, y2, x3, y3, . . . , xn, yn) = (s2, y1, s
3, y2, x3, y3, . . . , xn, yn).

Then

Φ∗ω = ds ∧ d(3s2y2 + 2sy1) +

n∑

i=2

dxi ∧ dyi.

Let π : R
2n−1 → R

2n−2 be the mapping

π(s, y1, y2, x3, y3, . . . , xn, yn) = (s, 3s2y2 + 2sy1, x3, y3, . . . , xn, yn).

Let S be the image of π. Then

S = {(x, y) ∈ R
2n−2 : x1 6= 0} ∪ {(x, y) ∈ R

2n−2 : x1 = 0, x2 = 0}
and

π∗
( n−1∑

i=1

dxi ∧ dyi
)

= Φ∗ω.

The reduced space S endowed with the Darboux form on R
2n−2 is a singular

symplectic space in the sense of Section 1.

3. Examples of singular symplectic spaces. Let (M,ω) be the sym-
plectic space of oriented lines (optical rays) in Euclidean space. This space
is obtained by reduction from the level set of the free particle Hamiltonian
(see [1]),

(16) C = {(p, q) ∈ T ∗
R
n : ‖p‖ = 1}.

We restrict ourselves to geometrical optics on the plane. We have a standard
optical system illustrated in Fig. 3 with interface refractive index n(q) < 1.

As in the standard construction of the phase space for optical systems
[9], we take the following three copies of the space (M,ω):

(M1, ω1) — space of incoming rays,
(M2, ω2) — space of outgoing refracted rays,
(M3, ω3) — space of outgoing reflected rays.



SYMPLECTIC STRUCTURES 117

Fig. 3

We identify Mi with the chart on M defined by p1, i.e. the rays directed
transversally to the OY -line. The Darboux parameterization of this set of
lines is given by (y, p) where y is the y-coordinate of an intersection point of
the ray with the OY -axis and p is the y-component of the direction of the
ray.

This phase space of rays is a stratified set,

(17) S = S6 ∪ S4,

where

S6 ={((y1, p1), (y2, p2), (y3, p3))∈M1 ×M2 ×M3 : p1 < 0, p2 < 0, p3 > 0},
S4 = {((y1, p1), (y2, p2), (y3, p3)) ∈M1 ×M2 ×M3 :

p1 < 0, p3 > 0, p2 = 0, y2 = 0},
endowed with the canonical symplectic structure

Ω = ω2 ⊕ ω3 ⊖ ω1 = π∗
2ω2 + π∗

3ω3 − π∗
1ω1.

In this structure reflection and refraction are each given by graphs of
symplectomorphisms [8], in the partial symplectic spaces (M1×M3, ω3⊖ω1)
and (M1 ×M2, ω2 ⊖ ω1) respectively.

A suitable phase space for these collected phenomena, including internal
reflection, is the singular symplectic space (S,Ω).

Let (Mi, ωi), i = 1, 2, 3, be three symplectic manifolds, dimMi = 2n.
We consider the product symplectic manifold

(M, Ω) = (M1 ×M2 ×M3, ω3 ⊖ (ω1 ⊖ ω2)).

The wave front evolution or transformation of systems of rays is constructed
as a symplectic image [7] by a class of generalized symplectic relations cor-
responding to concrete optical systems.
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Definition 3.1. A cyclic symplectic relation in (M, Ω) is a smooth sub-
manifold L of M, dimL = 2n, such that the canonical projections π12(L),
π13(L), π23(L) are Lagrangian submanifolds in the corresponding symplectic
structures (M1 ×M2, ω12), (M1 ×M3, ω13), (M2 ×M3, ω23), where

ω12 = ω2 ⊖ ω1, ω13 = ω3 ⊖ ω1, ω23 = ω3 ⊖ ω2.

A straightforward generalization of our 6-dimensional optical example
gives the following physically relevant

Conjecture 3.1. An interface optical system is defined by a cyclic sym-

plectic relation in the singular symplectic space (S6 ∪ S4, Ω).

Example 3.1. We consider refraction and reflection on the plane with
refraction index n > 1 illustrated in Fig. 3. Here we have

ω1 = dy1 ∧ dp1, ω2 = ndy2 ∧ dp2, ω3 = dy3 ∧ dp3

and a cyclic symplectic relation L defining this concrete simple optical sys-
tem is

L =
{
((p1, y1), (p2, y2), (p3, y3)) : p1 = −p3, y1 = −y3,√

1 − p2
1 =

√
1 − p2

2, y2p1 = np2y1
}
.

It is easy to check that πij(L) are Lagrangian submanifolds in the respective
symplectic spaces.
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