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Abstract. We define a procedure of reduction of locally conformal symplectic structures. We

find a necessary and sufficient condition for this reduction to hold in terms of a special kind of

de Rham cohomology class (tangent to the characteristic foliation) of the Lee form.

1. Introduction. Let M be a smooth even-dimensional manifold, dimM = 2n > 2. Let

Ω be a smooth nondegenerate 2-form on M . If there exist an open cover {Ua : a ∈ A} of

M and smooth positive functions fa on Ua such that

(1) Ωa = faΩ|Ua

is a symplectic form on Ua for a ∈ A then Ω is called a locally conformal symplectic form.

Equivalently (see [11]) Ω satisfies the following condition:

(2) dΩ = ω ∧ Ω,

where ω is a closed 1-form. ω is uniquely determined by Ω and is called the Lee form of

Ω. (M, Ω, ω) is called a locally conformal symplectic manifold.

If Ω satisfies (1) then ω|Ua
= d(ln fa) for all a ∈ A. If fa is constant for all a ∈ A then

Ω is a symplectic form on M . The Lee form of the symplectic form is obviously zero.

Locally conformal symplectic manifolds are generalized phase spaces of Hamiltonian

dynamical systems since the form of the Hamiltonian equations is preserved by homoth-

etic canonical transformations [17].
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Two locally conformal symplectic forms Ω1 and Ω2 on M are conformally equivalent

if Ω2 = fΩ1 for some smooth positive function f on M . A conformal equivalence class of

locally conformal symplectic forms on M is a locally conformal symplectic structure on

M ([3]).

Let Q be a smooth submanifold of M . Let ι : Q →֒ M denote the standard inclusion.

We say that two locally conformal symplectic forms Ω1 and Ω2 on M are conformally

equivalent on Q if ι∗Ω2 = fι∗Ω1 for some smooth positive function f on Q.

Clearly the Lee form of a locally conformal symplectic form is exact if and only if Ω is

conformally equivalent to a symplectic form [17]. Then the locally conformal symplectic

structure is globally conformal symplectic.

Locally conformal symplectic forms were introduced by Lee [11]. They have been

intensively studied in [17], [8], [9], [10], [3].

In [18] the symmetry of the Lyapunov spectrum in locally conformal Hamiltonian

systems was studied. It was shown that Gaussian isokinetic dynamics, Nosé-Hoovers

dynamics and other systems can be treated as locally conformal Hamiltonian systems. A

kind of reduction was applied to obtain these results.

In [10] (see Section 3) a reduction procedure of a locally conformal symplectic form is

defined using the general definition of reduction (see [12]). But the conditions for reduc-

tion of locally conformal symplectic form are very restrictive (see Proposition 1 in [10]

and Proposition 4 in Section 4). There are local obstructions, a locally conformal sym-

plectic form on a germ of a generic smooth hypersurface cannot be reduced using this

procedure (see Example 1). The procedure of reduction of a locally conformal symplec-

tic form has no application to reduction of systems with symmetry defined in Section 5

of [10].

In this paper we show a different approach to this problem. We propose to reduce

a locally conformal symplectic structure (the conformal equivalence class of a locally

conformal symplectic form) instead of a locally conformal symplectic form. This procedure

of reduction can be applied to a much wider class of submanifolds. There are no local

obstructions to this procedure. But there are global obstructions. We find a necessary

and sufficient condition for this reduction to hold in terms of a special kind of de Rham

cohomology class (tangent to the characteristic foliation) of the Lee form.

2. De Rham cohomology tangent to a foliation. Let Q be a smooth manifold and

let F be a foliation in Q. We denote by Ωp(Q) the space of differential p-forms on Q. By

Ωp(Q,F) we denote the space of p-forms ω satisfying the following condition:

ω|q(v1, . . . , vp) = 0

for any q ∈ Q and for any vectors v1, . . . , vp tangent to the foliation F at q. It means that

ω ∈ Ωp(Q,F) if and only if ι∗qω = 0 for any q ∈ Q, where iq : Fq →֒ Q is the standard

inclusion of the leaf Fq of the foliation F into Q.

Ωp(Q,F) is a subcomplex of the de Rham complex Ω∗(Q). This follows from the

relation ι∗qdω = dι∗qω.
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We define the factor space

Ωp(F) = Ωp(Q)/Ωp(Q,F).

The operator dp : Ωp(F) → Ωp+1(F), dp(ω) = dω is well defined since dΩp(Q,F) ⊂

Ωp+1(Q,F). Therefore one has the following differential complex

(Ω∗(F), d) : Ω0(F) →d0 Ω1(F) →d1 Ω2(F) →d2 . . .

The cohomology of this complex

Hp(F) = Hp(Ω∗(F), d) = kerdp/imdp−1

is called the de Rham cohomology tangent to foliation F (see [16] for a similar construc-

tion).

Directly from the definition of the cohomology Hp(F) we get the following proposi-

tions.

Proposition 1. Hp(F) = 0 for p greater than the dimension of the leaves of the folia-

tion F .

Proposition 2. Let ω ∈ Ωp(Q) such that dω ∈ Ωp+1(Q,F). If [ω] = 0 in Hp(F) then

[ι∗qω] = 0 in Hp(Fq) for any q ∈ Q.

We define a special kind of contractions along a foliation.

Definition 1. We say that Q is contractible to a submanifold S along the foliation F

if there exists a family of maps Ft : Q → Q, t ∈ [0, 1] which is (piecewise) smooth in t,

such that F1 is the identity map, F0(Q) ⊂ S, F0|S = idS and ∀q ∈ Q Ft(Fq) ⊂ Fq for

all t ∈ [0, 1]. We call the family Ft a (piecewise) smooth contraction of Q to S along the

foliation F .

Using the analog of the homotopy operator for the above contraction we prove the

following theorem.

Theorem 1. Let S be a smooth submanifold of Q transversal to a foliation F . If Q is

contractible to S along the foliation F then the cohomology groups Hp(F) and Hp(F ∩S)

are isomorphic.

Proof. Since F is transversal to S then F ∩ S is a foliation on S. Let Ft be a (piecewise)

smooth contraction of Q to S along the foliation F . Let ω be a p-form on Q such that

dω ∈ Ωp+1(Q,F) and i : S →֒ Q be the standard inclusion of S in Q. Then

ω − (F ∗
0 ◦ ι∗)(ω) =F ∗

1 ω − F ∗
0 ω =

∫ 1

0

d

dt
F ∗

t ω dt =

∫ 1

0

F ∗
t (LVt

ω) dt

=

∫ 1

0

F ∗
t (Vt⌋dω + d(Vt⌋ω)) dt =

∫ 1

0

[F ∗
t (Vt⌋dω) + d(F ∗

t (Vt⌋ω))] dt

where Vt ◦ Ft = dFt

dt
and LVt

is the Lie derivative along the vector field Vt.
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For any q ∈ Q and any (u1, . . . , up) tangent to Fq we have
∫ 1

0

F ∗
t (Vt⌋dω) dt(u1, . . . , up) =

∫ 1

0

F ∗
t (Vt⌋dω)(u1, . . . , up) dt

=

∫ 1

0

dω(Vt ◦ Ft, Ft∗u1, . . . , Ft∗up) dt =

∫ 1

0

dω

(

dFt

dt
, Ft∗u1, . . . , Ft∗up

)

dt = 0,

since Ft(Fq) = Fq and dω ∈ Ωp+1(Q,F). This implies that
∫ 1

0
F ∗

t (Vt⌋dω)dt ∈ Ωp(Q,F).

Finally we obtain

ω − (F ∗
0 ◦ ι∗)(ω) = β + dα,

where β ∈ Ωp(Q,F) and α =
∫ 1

0
F ∗

t (Vt⌋ω)dt. Thus

[ω] = [(F ∗
0 ι∗(ω)] ∈ Hp(F).

This implies that F ∗
0 ◦ ι∗ = idHp(F).

On the other hand, ι∗ ◦ F ∗
0 = idHp(F∩S), since F0 ◦ ι = idS . Thus F ∗

0 is the required

isomorphism between cohomology groups Hp(F ∩ S) and Hp(F).

3. Integrability of a characteristic distribution. Let Q be a submanifold of a locally

conformal symplectic manifold (M, Ω, ω), dimM = 2n. Let ι : Q →֒ M denote the

standard inclusion of Q in M . Let

(TqQ)Ω = {v ∈ TqM |Ω(v, w) = 0 ∀w ∈ TqQ}.

We assume that dim(TqQ)Ω∩TqQ is constant for every q ∈ Q . By (TQ)Ω∩TQ we denote

the characteristic distribution
⋃

q∈Q(TqQ)Ω ∩ TqQ which is a subbundle of the tangent

bundle to Q. Now we prove

Proposition 3. The characteristic distribution (TQ)Ω ∩ TQ is involutive.

Proof. Let X, Y be smooth sections of (TQ)Ω∩TQ. We show that [X, Y ] is also a section

of (TQ)Ω ∩ TQ. By the well-known formula, for a smooth vector field Z on Q we have

dΩ(X, Y, Z) = X(Ω(Y, Z)) − Y (Ω(X, Z)) + Z(Ω(X, Y ))

+ Ω([X, Z], Y ) − Ω([X, Y ], Z) − Ω([Y, Z], X)

= −Ω([X, Y ], Z),

because X, Y are smooth sections of (TQ)Ω ∩ TQ. On the other hand dΩ = ω ∧ Ω.

Therefore

dΩ(X, Y, Z) = ω(X)Ω(Y, Z) + ω(Y )Ω(Z, X) + ω(Z)Ω(X, Y ) = 0.

Thus we obtain Ω([X, Y ], Z) = 0 for every smooth vector field Z on Q. On the other hand

[X, Y ] is a section of TQ, since X, Y are sections of TQ. Therefore [X, Y ] is a smooth

section of (TQ)Ω ∩ TQ.

4. Reduction of locally conformal symplectic forms. By Frobenius’ theorem and

Proposition 3, (TQ)Ω ∩ TQ is integrable and defines a foliation F , which is called a

characteristic foliation. Let N = Q/F be the quotient space obtained by identification

of all points on a leaf. Assume that N = Q/F is a smooth manifold and the canonical
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projection π : Q → N = Q/F is a submersion. If Ω is a symplectic form then there exists

a symplectic structure τ on N such that

(3) π∗τ = ι∗Ω,

where ι : Q →֒ M denotes the standard inclusion of Q in M (see [13], [1], [2], [7], [12],

[15], [4] and many others).

In [10] the reduction procedure for locally conformal symplectic manifolds that satis-

fies condition (3) is proposed.

A necessary and sufficient condition for existence of a conformal symplectic form on

the reduced manifold N = Q/F , which satisfies condition (3), is presented in the following

theorem (see also Section 3 in [10]).

Proposition 4. Let Q be a submanifold of a locally conformal symplectic structure

(M, Ω, ω), let ι : Q →֒ M denote the standard inclusion of Q in M and let F be the

characteristic foliation of the characteristic distribution TQΩ ∩ TQ of constant dimen-

sion. If N = Q/F is a manifold of dimension greater than 2 and the canonical projection

π : Q → N = Q/F is a submersion then there exists a locally conformal symplectic form

τ on N such that π∗τ = ι∗Ω if and only if

(4) ι∗ω(X) = 0

for every smooth section X of TQΩ ∩ TQ.

Proof. Assume that there exists a locally conformal symplectic form τ on N such that

π∗τ = ι∗Ω. Then

π∗dτ = ι∗dΩ = ι∗ω ∧ ι∗Ω.

Therefore, for every smooth section X of TQΩ ∩ TQ we have

X⌋(ι∗ω ∧ ι∗Ω) = X⌋(π∗dτ ) = 0,

because π∗(X) = 0. But ι∗Ω 6= 0 and X⌋ι∗Ω = 0, therefore ι∗ω(X) = 0.

Now assume that ι∗ω(X) = 0 for every smooth section X of TQΩ ∩ TQ. Then

X⌋dι∗Ω = X⌋(ι∗ω ∧ ι∗Ω) = 0.

Hence

LX ι∗Ω = X⌋(dι∗Ω) + d(X⌋ι∗Ω) = 0

for every smooth section X of TQΩ ∩ TQ. Therefore Ω is constant on every leaf of the

characteristic foliation F . Now we define the form τ by the formula

π∗τ = ι∗Ω.

τ is well-defined, because π is a submersion. It is nondegenerate, because the kernel of

ι∗Ω is TQΩ ∩ TQ = kerπ∗. From the definition of τ we obtain

(5) π∗dτ = dι∗Ω = ι∗ω ∧ ι∗Ω = ι∗ω ∧ π∗τ.

We define α by the formula

π∗α = ι∗ω.

α is a well-defined closed 1-form on N , because π is a submersion and ω is closed. From

(5) we have dτ = α ∧ τ .
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Notice that a generic hypersurface on M does not satisfy assumption (4) (even locally).

Example 1. Let H be a smooth hypersurface on a locally conformal symplectic manifold

(M, Ω, ω).

By the Darboux theorem the germs at q of (M, Ω, ω) and H are locally diffeomorphic

to the germs at 0 of (R2n, f
∑n

i=1 dxi ∧ dyi, df) and {(x, y) ∈ R
2n : x1 = 0}, where f is a

smooth function-germ on R at 0 and dimM = 2n.

Then the characteristic distribution T{(x, y) ∈ R
2n : x1 = 0}Ω is spanned by ∂

∂y1

.

The reduced manifold can be locally identified with {(x, y) ∈ R
2n : x1 = y1 = 0}.

There exists a locally conformal symplectic structure τ on the reduced manifold sat-

isfying condition (3) if and only if ∂f
∂y1

|{x1=0} = 0.

In the next section we propose a procedure of reduction of locally conformal symplectic

structures and find a sufficient and necessary condition for this reduction to hold in terms

of a cohomology class of the restriction of ω to the coisotropic submanifold in the first

cohomology group tangent to its characteristic foliation.

5. Reduction of locally conformal symplectic structures. Let (M, Ω, ω) be a lo-

cally conformal symplectic manifold. Let Q be submanifold of M , let ι : Q →֒ M denote

the standard inclusion of Q in M and let F be the characteristic foliation of the charac-

teristic distribution TQΩ ∩ TQ of constant dimension smaller than dimQ.

Proposition 5. If Ω′ is a locally conformal symplectic form conformally equivalent to

Ω on Q then the characteristic foliation F ′ of TQΩ′

∩ TQ coincides with F . If ω′ is the

Lee form of Ω′ then [ι∗ω] = [ι∗ω′] in H1(F).

Proof. If Ω and Ω′ are conformally equivalent on Q then there exists a positive function

f on Q such that

(6) ι∗Ω = fι∗Ω′.

Thus it is obvious that F = F ′, since TQΩ′

∩ TQ = kerι∗Ω′ = kerι∗Ω = TQΩ ∩ TQ.

Differentiating (6) we obtain

ι∗ω ∧ ι∗Ω = fι∗ω′ ∧ ι∗Ω′ + df ∧ ι∗Ω′

Using (6) again we have

(ι∗ω − ι∗ω′ − d(ln f)) ∧ ι∗Ω′ = 0

Let v be a vector tangent to a foliation. Then

v⌋(ι∗ω − ι∗ω′ − d(ln f)) ∧ ι∗Ω′ = 0.

But ι∗Ω′ 6= 0 and v⌋ι∗Ω′ = 0, therefore

ι∗ω(v) − ι∗ω′(v) − d(ln(f))(v) = 0.

This implies that [ι∗ω] = [ι∗ω′] in H1(F).

Proposition 5 means that the cohomology class [ι∗ω] in H1(F) is an invariant of the

restriction of a locally conformal symplectic structure to Q. In the next theorem we use

this class to state a necessary and sufficient condition for a reduced locally conformal

symplectic structure to exist on a reduced manifold.
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Theorem 2. Let Q be a submanifold of a locally conformal symplectic manifold (M, Ω, ω),

let ι : Q →֒ M denote the standard inclusion of Q in M and let F be the characteristic

foliation of the characteristic distribution TQΩ ∩ TQ of constant dimension.

If N = Q/F is a manifold of dimension greater than 2 and the canonical projection

π : Q → N = Q/F is a submersion then there exist a locally conformal symplectic form

τ on N and a smooth positive function f on Q such that

(7) π∗τ = fι∗Ω

if and only if [ι∗ω] = 0 ∈ H1(F).

Proof. Assume that there exists a locally conformal symplectic form τ on N and a positive

smooth function f on Q such that π∗τ = fι∗Ω. Then

π∗dτ = df ∧ ι∗Ω + fι∗dΩ = f(d(ln(f)) + ι∗ω) ∧ ι∗Ω.

Therefore, for any q ∈ Q and any vector v tangent to Fq we have

v⌋((ι∗ω + d(ln(f))) ∧ ι∗Ω) = v⌋

(

π∗dτ

f

)

= 0,

since π∗(v) = 0. But ι∗Ω 6= 0 and v⌋ι∗Ω = 0, therefore

ι∗ω(v) + d(ln(f))(v) = 0

for any v tangent to Fq. This implies that [ι∗ω] = 0 ∈ H1(F).

Now assume that [ι∗ω] = 0 ∈ H1(F). Then there exists a function g on Q such that

ι∗ω(v) = dg(v) for any q ∈ Q and any vector v tangent to Fq. Thus

v⌋d(exp(−g)ι∗Ω) =

exp(−g)(−dg(v) + ι∗ω(v))ι∗Ω − exp(−g)(−dg + ι∗ω) ∧ v⌋ι∗Ω = 0.

Hence

LX exp(−g)ι∗Ω = X⌋d(exp(−g)ι∗Ω) + d(X⌋ exp(−g)ι∗Ω) = 0

for every smooth section X of TQΩ ∩ TQ. Therefore exp(−g)ι∗Ω is constant on every

leaf of the characteristic foliation F . Now we define the form τ by the formula

π∗τ = exp(−g)ι∗Ω.

τ is well-defined, because π is a submersion. It is nondegenerate, because the kernel of

exp(−g)ι∗Ω is TQΩ ∩ TQ = ker π∗. From the definition of τ we obtain

(8) π∗dτ = d(exp(−g)ι∗Ω) = (ι∗ω − dg) ∧ exp(−g)ι∗Ω = (ι∗ω − dg) ∧ π∗τ.

We define α by the formula

π∗α = ι∗ω − dg.

α is a well-defined closed 1-form on N , because π is a submersion and ω is closed. From

(8) we have dτ = α ∧ τ .

By Proposition 5 and Theorem 2 it is easy to see that the reduction does not depend

of the choice of a locally conformal symplectic form from the conformal equivalence class.

Two locally conformal symplectic forms conformally equivalent on Q are reduced to the

same locally conformal symplectic structure on a reduced space. Thus Theorem 2 gives

a procedure of reduction of locally conformal symplectic structures.
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Now we show how this procedure of reduction works. Any germ of a coisotropic sub-

manifold can be reduced using the above procedure, since a locally conformal symplectic

manifold is locally equivalent to a symplectic manifold. The obstruction to existence of

a locally conformal structure on the reduced manifold is only global.

Corollary 1. Let Q be the germ at q of a coisotropic submanifold of a locally conformal

symplectic manifold (M, Ω, ω), let ι : Q →֒ M denote the germ of the inclusion of Q in

M and let F be the characteristic foliation of TQΩ ∩ TQ = TQΩ.

Then there exists a germ of a locally conformal symplectic form τ on the germ of the

reduced manifold N = Q/F and a germ of a smooth positive function f on Q such that

π∗τ = fι∗Ω where π : Q → N = Q/F is the germ of the canonical projection.
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