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Introduction. Let V be a stratified subspace of RN . We call it symplectic if there

exists a differential 2-form ω on RN such that the restriction of ω to each stratum is a

symplectic form. In the Marsden-Weinstein singular reduction theory these spaces were

studied by several authors [5, 4, 9, 1]. In this paper we classify the symplectic spaces

modelled on the so-called symplectic flag S. First we prove the corresponding Darboux

theorem and then we show that the only reasonable symplectic structures on S are those

with underlying Martinet’s singular symplectic structure of type Σ2,0. Finally we find the

normal form for this structure and show the similar result for an example of a stratified

symplectic space with singular boundary of the maximal stratum.

1. Singular symplectic spaces. A stratified differential space with each stratum

being a symplectic manifold is called a stratified symplectic space. This notion was in-

troduced in [9] (see also [4]) in the context of standard symplectic reduction. For our

purpose, in the first step we need embedded symplectic spaces.

Defintion 1.1. Let S be a stratified subset of RN with each stratum Si (even di-

mensional) endowed with a symplectic structure ωSi
. We assume that there exists a

closed two-form ω on RN such that ω|Si
= ωSi

. Then the pair (S, ω) is called a singular

symplectic space.

A representative model of a singular symplectic space is a disjoint union of semialge-

braic sets. We consider the following elementary symplectic flag:

S = S2n ∪ S2n−2 ⊂ R2n;

S2n = {(x, y) ∈ R2n : x1 > 0}, S2n−2 = {(x, y) ∈ R2n : x1 = 0, y1 = 0}

endowed with a symplectic structure ω. By ιk : Si → RN we denote the canonical

inclusions of S2n−k. Here S2n−1 = {x ∈ R2n : x1 = 0}.
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Example 1.1. Let V ⊂ (M,ω) be an algebraic hypersurface. Let XV be its Whitney

stratification. By V d we denote an element of XV , V d ∈ XV , of dimension d. We say

V is a coisotropic hypersurface if and only if each stratum of XV is a coisotropic or an

isotropic submanifold of (M,ω). We easily see that a typical hypersurface V defined by

the polynomial equation F (p) = 0 is not coisotropic. As an example let us consider the

cusp-edge surface V in R2n endowed with a symplectic form ω in general position with

respect to V . In this case ω|SingV is a symplectic form. It is shown in [2] that (V, ω)

is diffeomorphic to ({x3
1 − y2

1 = 0},
∑n
i=1 dxi ∧ dyi) and the reduced symplectic space of

V − Sing V is isomorphic to the singular edge of V (cf. [4]).

We conjecture that if Sing V is a coisotropic submanifold of (R2n, ω), then (V, ω) is

diffeomorphic to ({x3
1 − x2

2 = 0},
∑n

i=1 dxi ∧ dyi). Let Φ : R2n−1 → R2n be the parame-

terization of {x3
1 − x2

2 = 0},

Φ(s, y1, y2, x3, y3, . . . , xn, yn) = (s2, y1, s
3, y2, x3, y3, . . . , xn, yn).

Then

Φ∗ω = ds ∧ d(3s2y2 + 2sy1) +
n∑

i=3

dxi ∧ dyi.

Let π : R2n−1 → R2n−2 be the mapping

π(s, y1, y2, x3, y3, . . . , xn, yn) = (s, 3s2y2 + 2sy1, x3, y3, . . . , xn, yn).

Let S be the image of π. Then

S =
{
(x, y) ∈ R2n−2 : x1 6= 0

}
∪
{
(x, y) ∈ R2n−2 : x1 = 0, x2 = 0

}

and

π∗
( n−1∑

i=1

dxi ∧ dyi

)
= Φ∗ω.

The reduced space S endowed with the Darboux form on R2n−2 is a singular symplectic

space.

Now we have a natural extension problem: let ω̃ be a symplectic form on S2n−2, we

ask for the existence of the closed two-form on RN such that ω|S2n−2
= ω̃ and ω|S2n

is

symplectic. The first step in approaching this problem is to classify singular symplectic

spaces (S, ω), where ω provides a symplectic structure on R2n.

By GS we denote the group of germs of diffeomorphisms (R2n, 0) → (R2n, 0) preserv-

ing S, i.e. if Φ ∈ GS then Φ(S2n) ⊂ S2n, and Φ(S2n−2) ⊂ S2n−2.

Let Φ ∈ GS . Then using the standard setting of singularity theory (cf. [7]) we have

Φ(x1, y1, . . . , xn, yn) = (x1φ1(x, y), x1φ12(x, y) + y1φ22(x, y), φ3(x, y), . . . , φ2n(x, y)),

where φ1, φ12, φ22, φ3, . . . , φ2n are smooth germs of functions on (R2n, 0).

Let ω1, ω2 be two symplectic structures on S (closed two-forms on (R2n, 0)).

Definition 1.2. We say that ω1 and ω2 are S-equivalent (ω1 ∼S ω2) if and only if

there exists Φ ∈ GS such that Φ∗ω1 = ω2.
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Theorem 1.1 (Darboux form). Let ω be a symplectic structure on S. Assume ω is a

symplectic form on R2n. Then ω is S-equivalent to the Darboux form:

ω ∼S

n∑

i=1

dxi ∧ dyi.

P r o o f. We take the homotopy (cf. [8]) ωt = tω1 +(1− t)ω0, t ∈ [0, 1]. One can check

that ωt is a nondegenerate form for every t ∈ [0, 1]. We seek for a smooth family t→ Φt
such that

(1) Φ∗
tωt = ω0, Φ0 = idR2n .

Differentiating (1) we have

LVt
ωt + ω1 − ω0 = 0,

where LVt
is the Lie derivative along the vector field Vt generated by the flow Φt. But

LVt
ωt = d(Vt⌋ωt) + Vt⌋dωt = d(Vt⌋ωt).

We have d(ω0 −ω1) = 0 and ι∗2n−1(ω0 −ω1)=0. So by the relative Poincaré Lemma (see

e.g. [11]) there exists a one-form α such that dα = ω0 − ω1 and α vanishes on S2n−1.

Thus we have

(2) Vt⌋ωt = α and α |(x,y)= 0 for every (x, y) ∈ S2n−1.

Because ωt is a nondegenerate form, (2) is always solvable with respect to Vt and moreover

Vt(x, y) = 0 for every (x, y) ∈ S2n−1. We deduce Φt exists, Φt ∈ GS and by compactness

of the interval [0, 1] we have Φ∗ω1 = ω0.

2. Martinet’s singular symplectic spaces. Before we pass to the more detailed

analysis of the degenerate case we recall the basic results on the standard classification

of singularities of differential forms [6].

Let ω be a germ of a closed two-form on R2n at zero. We denote

Σk(ω) = {x ∈ R2n : rankω(x) = 2n− k}, k is even.

Let ωn = fΩ, where Ω is the volume form on R2n.

(i) If f(0) 6= 0 then ω is a symplectic form (according to the standard notation denoted

by Σ0) and by the Darboux theorem we obtain

(3) ω =
n∑

i=1

dxi ∧ dyi

in local coordinates around zero.

(ii) Next we assume f(0) = 0 while (df)(0) 6= 0. We have Σ2(ω) = {f = 0} and let

ι : Σ2(ω) → R2n be the inclusion. If ι∗ωn−1(0) 6= 0 then in local coordinates

(4) ω = x1dx1 ∧ dy1 +
n∑

i=2

dxi ∧ dyi

and this type of singular form ω is denoted by Σ2,0 (and called Martinet’s singular form).

Both types of forms Σ0, Σ2,0 are locally stable (see [6]) and this is why we use them

in what follows.
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Proposition 2.1. Let ω be a symplectic structure on S. Assume f(0) = 0 and df0 6= 0

(stability conditions), then ω is a singular form of type Σ2,0 at zero, i.e. ω belongs to the

standard orbit of (ii) (4).

R e ma r k 2.1. We see that the symplectic form ω on S may be very singular in

general. The singular set of ω is not visible from S (see Fig. 1). The above proposition

says that the typical symplectic forms on S can only have Σ2,0 or Σ0 type singularities

in the ambient space. Thus the two remaining stable cases Σ2,2,0 are naturally excluded

from our approach (cf. [3]).

P r o o f o f P r o p o s i t i o n 2.1. We see that ω is a symplectic form on S2n−2. Let

S̃ = Σ2(ω) = {f = 0},

where ωn = fΩ and Ω is the standard volume form on R2n. We have T0S̃ = T0S2n−1, be-

cause ω is symplectic on S2n. S2n−2 ⊂ S2n−1 so T0S2n−2 ⊂ T0S2n−1 and T0S2n−2 ⊂ T0S̃.

By assumption ι∗2n−2ω is symplectic. Thus (ι∗2n−2ω)n−1 6= 0 and this implies (ι∗ω)n−1 6=

0, where ι : S̃ → R2n is the embedding of S̃.

Lemma 2.1. By means of a diffeomorphism Φ ∈ GS of the form

Φ(x, y) = (φ(x, y), x2, . . . , xn, y1, . . . , yn)

one can reduce f to the following normal form:

f(x1, y1, . . . , xn, yn) = ±(x1 − ψ(y1, x2, y2, . . . , xn, yn)).

Definition 2.1. We say that ψ1, ψ2 are contact equivalent if and only if there exists a

diffeomorphism Φ : (R2n−1, 0) → (R2n−1, 0) and a smooth function-germ g : (R2n−1, 0) →

R, g(0) 6= 0, such that

ψ1 = g · (ψ2 ◦ Φ).

Let ω1, ω2 be two symplectic forms on S. Let f1, f2 define their corresponding sin-

gular hypersurfaces, ωn1 = f1Ω and ωn2 = f2Ω and ψ1, ψ2 are as in Lemma 2.1. By

straightforward check we obtain the following

Proposition 2.2. If ω1 and ω2 are S-equivalent then ψ1 and ψ2 are contact equivalent.

Let ω be a symplectic form on S, ωn = fΩ, f(0) = 0 and df0 6= 0. We see that
∂f
∂xi

(0) = 0 and ∂f
∂yj

(0) = 0 for i = 2, . . . , n, j = 1, . . . , n, so ∂f
∂x1

(0) 6= 0. Thus

df ∧ dy1 ∧ dx2 ∧ dy2 ∧ . . . ∧ dxn ∧ dyn(0) 6= 0,

so {y1, x2, y2, . . . , xn, yn} defines a coordinate system on

S̃ = {f = 0} .

Before we formulate the main theorem concerning the normal form of ω we need some

necessary facts ([6]).

Lemma 2.2. Let τ be a k-form on Rn satisfying

(5)
∂

∂x1
⌋τ = 0,

∂

∂x1
⌋dτ = 0.
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Fig. 1

Then τ = π∗ι∗τ , where

π : Rn → {x1 = 0}, π(x1, x2, . . . , xn) = (0, x2, . . . , xn),

ι : {x1 = 0} → Rn, ι(x2, . . . , xn) = (0, x2, . . . , xn).

Lemma 2.3. Let τ be a k-form on Rn satisfying

(6)
∂

∂x1
⌋τ = 0,

∂

∂x1
⌋dτ = ϕτ,

where ϕ is a smooth function on Rn. Then

τ = ζπ∗ι∗τ,

where ζ is a smooth function on Rn, and ζ|{x1=0} = 1.

It is easy to prove the following lemmas.

Lemma 2.4. Let α be a germ of a closed (n−1)-form on Rn at 0 satisfying the following

conditions :

1. α0 6= 0,

2. a germ of a vector field X at 0 such that X⌋α = 0 and X(0) 6= 0 meets {x1 = 0}

transversally at 0.

Then there exists a germ of diffeomorphism Φ : (Rn, 0) → (Rn, 0), which preserves

{x1 = 0} and

Φ∗α = dx2 ∧ . . . ∧ dxn,

where (x1, . . . , xn) is a coordinate system on Rn.

Lemma 2.5. Let α be a germ of a 1-form on R2k+1 at 0 satisfying the following

conditions :

1. α ∧ (dα)k0 6= 0,

2. a germ of a vector field X at 0 such that

X⌋α ∧ (dα)k = (dα)k
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meets {z = 0} transversally at 0,

3. ι∗α0 6= 0, where ι : {z = 0} →֒ R2k+1 is the canonical inclusion.

Then there exists a germ of diffeomorphism Φ : (R2k+1, 0) → (R2k+1, 0), which pre-

serves {z = 0} and

Φ∗α = dz + dy1 +

k∑

i=1

xidyi,

where (z, x1, . . . , xn, y1, . . . , yn) is a coordinate system on Rn.

Now we prove the main theorem obtaining the normal form (with moduli) of the

symplectic structure on S. The geometrical contents of this theorem is illustrated in

Fig. 1.

Theorem 2.1. Let ω be a symplectic structure on S. Assume f(0) = 0 and df0 6= 0.

Then ω is S-equivalent to the form

(7) (x1 − ψ(x2, . . . , xn, y1, . . . , yn))d(x1 − ψ(x2, . . . , xn, y1, . . . , yn)) ∧ dy1

+

n∑

i=2

dxi ∧ dyi,

where ψ is a germ at 0 of a smooth function, ψ(0) = 0, ∂ψ
∂xi

(0) = 0, i = 2, . . . , n,
∂ψ
∂yi

(0) = 0, i = 1, . . . , n.

P r o o f. By Lemma 2.1 we have f = ±(x1 − q), where q does not depend on x1. We

are searching for a 1-form α satisfying the following conditions:

1. dα = ω,

2. ι∗α ∧ (dι∗α)n−1
0 6= 0, where ι : S̃ →֒ R2n is the canonical inclusion,

3. ι̃∗α0 6= 0, where ι̃ : S̃ ∩ {y1 = 0} →֒ R2n is the canonical inclusion.

ω is closed, then there exists a 1-form α such that dα = ω. If α fails to satisfy condition 3

then we replace it by the 1-form α+ dy2, which satisfies conditions 1 and 3.

Since S2n−2 is symplectic and T0S2n−2 = T0(S̃ ∩ {y1 = 0}), we have (ι̃∗dα)n−1
0 =

(ι̃∗ω)n−1
0 6= 0. Hence by Lemma 2.4, we obtain

δ∗ι∗(dα)n−1 = dx2 ∧ . . . ∧ dxn ∧ dy1 ∧ . . . ∧ dyn,

where δ : (S̃, 0) → (S̃, 0) is a diffeomorphism which preserves S̃ ∩ {y1 = 0}. Therefore

ι∗d(∆∗α)n−1 = dx2 ∧ . . . ∧ dxn ∧ dy1 ∧ . . . ∧ dyn,

where ∆ ∈ GS and

∆(x, y) = (x1, δ(x2, . . . , xn, y1, . . . , yn)).

If ∆∗α fails to satisfy condition 2, then we replace it by the 1-form ∆∗α + dy1, which

satifies all the conditions.

From condition 2 it follows that a vector field X which satisfies the conditions

X⌋α ∧ (dα)n−1 = 0, X(0) 6= 0,

meets S̃ transversally at 0. Hence X also meets S2n−1 transversally at 0. Therefore by

means of elements from GS one can reduce X to the form ± ∂
∂x1

. Thus S̃ is locally a graph



SINGULAR SYMPLECTIC STRUCTURES 57

of a smooth function θ : (S2n−1, 0) → (R, 0). Hence (x2, . . . , xn, . . . , y1, . . . , yn) define a

coordinate system on S̃. From 2 and 3 it follows that ι∗α satisfies the assumptions of

Lemma 2.5. Therefore we have

φ∗ι∗α = dy1 + dy2 +

n∑

i=2

xidyi,

where φ : (S̃, 0) → (S̃, 0) is a diffeomorphism which preserves S̃ ∩ {y1 = 0}. Let Φ ∈ GS
be such that

Φ(x, y) = (x1, φ(x2, . . . , xn, y1, . . . , yn)).

Hence we obtain

ι∗Φ∗α = dy1 + dy2 +

n∑

i=2

xidyi.

It is easy to check that the vector field X satisfies the following conditions:

(8) X⌋α = 0 and X⌋dα = ϕα,

where ϕ : R2n → R is a smooth function. Thus by Lemma 2.3, we obtain

α = h
(
dy1 + dy2 +

n∑

i=2

xidyi

)
,

where h : Rn → R is a smooth function such that h|S̃ = 1. We have

(dα)n = n!hn−1 ∂h

∂x1
Ω.

On the other hand, by Lemma 2.1, ωn = ±(x1 − g)Ω. Hence n!hn−1 ∂h
∂x1

= ±(x1 − g),

and
∂hn

∂x1
= ±

1

(n− 1)!
(x1 − g)

with an extra condition h|{x1=g} = 1. Solving this equation we get

h = n

√
±1

2(n− 1)!
(x1 − g)2 + 1.

By the diffeomorphism Λ−1 ∈ GΣ , where

Λ(x, y) = (x1, h(x, y)x2, . . . , h(x, y)xn, y1, . . . , yn),

we reduce α to

α = h(dy1 + dy2) +

n∑

i=2

xidyi,

The diffeomorphism

Υ(x, y) =

(
(x1 − ζ)

√√√√(n− 1)!

n−1∑

i=0

(
n

i+ 1

)(±(x1 − ζ)2

2

)i
− g, y1, . . . , xn, yn

)
,

where ζ is a function which does not depend on x1 and satisfies

n

√
±1

2(n− 1)!
g2 + 1 = ±

ζ2

2
+ 1,
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preserves the sets S2n−1, S2n−2 and

Υ∗α =

(
±

(x1 − ζ)2

2
+ 1

)
(dy1 + dy2) +

n∑

i=2

xidyi.

If Υ does not belong to GΣ then we replace it by Θ ◦ Υ, where

Θ(x, y) = (−x1, x2, . . . , xn, y1, . . . , yn).

Hence we obtain

α =

(
1 ±

1

2
(x1 − ψ)2

)
(dy1 + dy2) +

n∑

i=2

xidyi.

Therefore

ω = dα = ±(x1 − ψ)d(x1 − ψ) ∧ dy1 + d

(
x2 ±

1

2
(x1 − ψ)2

)
∧ dy2 +

n∑

i=3

dxi ∧ dyi.

Finally, by means of Ξ ∈ GΣ , where

Ξ(x, y) =

(
x1, x2 ±

1

2
(x1 − ψ)2, x3, . . . , xn,±y1, y2, y3, . . . , yn

)
,

we reduce ω to the form 7.

Now we pass to the investigation of stability properties of symplectic structures on S.

Definition 2.2. Let ω be a symplectic form on S. Then ω is stable at p ∈ S2n−2 if for

any neighbourhood U of p in S2n−2 there is a neighbourhood V of ω (in the C∞ topology

on closed 2-forms) such that if β is in V , then there is a point q ∈ U and a germ of a

diffeomorphism Φ : (R2n, q) → (R2n, p) which preserves S and Φ∗β = ω.

It is easy to see that the Darboux form on S is stable.

Proposition 2.3. Let ω be a symplectic structure on S. Assume f(0) = 0 and df0 6= 0.

Then ω is not stable at 0.

P r o o f. From Theorem 2.1 it follows that ω can be reduced to the form

(x1 − ψ)d(x1 − ψ) ∧ dy1 +

n∑

i=2

dxi ∧ dyi.

Suppose the proposition is false. Let U be a neigbourhood of 0 ∈ R2n. ψ(0) = 0 ∈ R is

a critical value of ψ|U . From the Sard theorem we see that there is ǫ ∈ R which is not a

critical value of ψ|U , in any neighbourhood of 0 ∈ R. Let β = α+ ǫd(x1 −ψ)∧dy1. Then

we can find a diffeomorphism Φ which preserves S and Φ∗β = ω. Hence

Φ∗βn = Φ∗((x1 − ψ + ǫ)Ω) = ωn = (x1 − ψ)Ω.

Since Σ2(ω) is tangent to S2n−1 at 0, Σ2(β) is tangent to S2n−1 at q = Φ(0) ∈ S2n−2.

Therefore, we obtain

ψ(q) = ǫ, dψq = 0,

which contradicts the fact that ǫ is not a critical value of ψ|U .
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2.1. R e ma r k. Let us consider the following semialgebraic set:

S = S2n ∪ S2n−2 ⊂ R2n;

S2n = {(x, y) ∈ R2n : x3
1 > y2

1}, S2n−2 = {(x, y) ∈ R2n : x1 = 0, y1 = 0}.

We notice the difference with the previous space: ∂S2n is a singular set.

We endow S with a symplectic structure ω. As before GS denotes the group of dif-

feomorphisms (R2n, 0) → (R2n, 0) preserving S. Let ω1, ω2 be two symplectic structures

on S. We say that ω1 and ω2 are S-equivalent if and only if Φ∗ω1 = ω2 for some Φ ∈ GS .

Now we can show the following

Proposition 2.4. Let ω be a symplectic structure on S. Assume f(0) = 0 and df0 6= 0.

Then ω is a singular form of type Σ2,0 at zero.

P r o o f. By straightforward use of the proof of Proposition 2.1.

An analogous Darboux theorem for the space S is proved by Arnold ([2]): Let ω be a

symplectic structure on R2n. Then ω is S-equivalent with respect to formal equivalence

to the Darboux form:

ω ∼

n∑

i=1

dxi ∧ dyi.
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