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Abstract. We study the Wigner caustic on shell of a Lagrangian
submanifold L of affine symplectic space. We present the physical
motivation for studying singularities of the Wigner caustic on shell
and present its mathematical definition in terms of a generating
family. Because such a generating family is an odd deformation
of an odd function, we study simple singularities in the category
of odd functions and their odd versal deformations, applying these
results to classify the singularities of the Wigner caustic on shell,
interpreting these singularities in terms of the local geometry of L.

1. Introduction

The Wigner caustic of a smooth convex closed curve L on affine sym-
plectic plane was first introduced by Berry, in his celebrated 1977 paper
[3] on the semiclassical limit of Wigner’s phase-space representation of
quantum states. Thus, when L is the classical correspondence of a pure
quantum state, the Wigner function of this state takes on high values,
in the semiclassical limit, at points in a neighborhood of L and also
in a neighborhood of a singular closed curve in its interior, generically
formed by an odd number of cusps: the Wigner caustic of L.

Some years later, Ozorio de Almeida and Hannay studied the Wigner
caustic of a smooth Lagrangian torus L on affine symplectic 4-space
[13]. Since their main object of study was the geometrical place where
the amplitude of the Wigner function of the pure quantum state corre-
sponding to L rises considerably, in the semiclassical limit, they consid-
ered L itself as part of the Wigner caustic and focused some attention
on the part of the Wigner caustic that is close to and contains L.
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From a purely geometrical point of view, the Wigner caustic of L,
hereby denoted by E1/2(L), is defined as the locus of midpoints of seg-
ments connecting pairs of points on L with “parallel” affine tangent
spaces. Here, parallelism is taken in a broad sense, also allowing for
weak parallelism, when the direct sum of the tangent spaces of L at
the two points do not span the whole R2m. However, as mentioned
above, from the perspective of applications of Wigner caustics in quan-
tum physics, it is interesting to consider an even broader definition of
parallelism, when a single point of L is identified as a pair of points
with parallel affine tangent spaces (in this case strongly parallel spaces).
Then, with this extended notion in the geometrical definition, the sub-
manifold L itself is a subset of E1/2(L). The part of E1/2(L) that is
close to L and that contains L is called the Wigner caustic on shell.

In this paper, we study the Wigner caustic on shell of a smooth
Lagrangian submanifold L of the affine symplectic space (R2m, ω), fo-
cusing on its Lagrangian-stable singularities when L is a curve or a
surface. Its definition in terms of a generating family reveals the fact
that the Wigner caustic on shell has a (hidden) symmetry under the
action of Z2, because its generating family is an odd deformation of
an odd function of the variables. No such symmetry exists for the
part of the Wigner caustic that is away from L, whose simple stable
Lagrangian singularities have been studied in a previous paper [7].

Now, our interest in studying singularities of the Wigner caustic
stems from semiclassical dynamics. Because the amplitude of the
Wigner function rises sharply along the Wigner caustic, in the semiclas-
sical limit, there is where uniform asymptotic expressions must be used.
However, the kind of uniform asymptotic expression for the semiclas-
sical Wigner function in a neighborhood of a point varies according to
the kind of singularity of the Wigner caustic at that point [3]. Thus, for
a finer treatment of the dynamics of the semiclassical Wigner function
of a pure quantum state [15], it is important to classify the singularities
of the Wigner caustic (off and on shell) of a Lagrangian submanifold,
which are stable under the group of symplectomorphisms of (R2m, ω).

Because such singularities are described by generating families, here
we focus attention on simple singularities of function-germs (simple
here in the classical notion of absence of modal parameters [1]) and
their versal deformations. Thus, for the Wigner caustic on shell, our
first aim is to obtain the list of all simple singularities in the category
of odd-functions. This paper is, therefore, divided in three parts.

The first part, Section 2, presents the motivation and definition of
the Wigner caustic on shell of a Lagrangian submanifold.
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The second part, Section 3, is independent of the other sections and
is devoted to the classification of simple singularities of odd functions
and their odd deformations. By odd function-germs at 0 ∈ Rm we
mean Z2-equivariant smooth function-germs, with Z2 action on the
source: (x1, · · · , xm) 7→ (−x1, · · · ,−xm) and on the target: y 7→ −y.
We classify odd function-germs using classical R-equivalence (compo-
sition with germs of diffeomorphisms on the source) restricted to the
subgroup of odd diffeomorphism-germs, which is natural in this con-
text. We prove there are no simple odd singularities if the dimension
of the source is greater than two and classify all simple odd function-
germs in dimensions one and two, presenting their odd mini-versal de-
formations. Although this could be considered as a classical subject in
singularity theory, surprisingly no such classification list of simple odd
singularities has been found by the authors in the literature.

In one variable the simple odd singularities are of type that we shall
denote A2k/2, which have codimension k in the category of odd function-
germs and which coincide with an intersection of the classical R-orbit
of A2k singularities of codimension 2k with the module of odd function-
germs. In two variables, the simple odd singularities are divided in two
groups: the first one of types hereby denoted D±

2k/2 and E8/2, of odd

codimensions k and 4 respectively, which are the intersections of classi-
calR-orbits of typesD±

2k and E8, of codimensions 2k and 8 respectively,
with the module of odd function-germs. The second group consists of
the singularities of types hereby denoted J±

10/2 and E12/2, of respective

odd codimensions 5 and 6, these notations chosen because they are
R-equivalent to singularities J10 and E12 of respective codimensions 10
and 12, these later being unimodal in Arnold’s classification.

The third part, Section 4, applies the results of Section 3. For La-
grangian curves, we give the conditions for realizing the odd deforma-
tions of singularities A2/2 and A4/2 as generating families for simple
stable Lagrangian singularities of the Wigner caustic on shell, and de-
scribe these singularities. For Lagrangian surfaces, we present the re-
alization conditions for the singularities of the Wigner caustic on shell
of types D±

2k/2, k = 2, 3, 4, and E8/2. Because the odd codimension in

this context can be at most 4, these are all the simple singularities that
can be realized as simple stable Lagrangian singularities of the Wigner
caustic on shell. Finally, we also interpret the realization condition of
each of these singularities of the Wigner caustic on shell in terms of
the local geometry of the Lagrangian curve or the Lagrangian surface.

While working on this paper, we benefitted from discussions with F.
Tari and specially with M. A. S. Ruas, to whom both we are grateful.
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2. The Wigner caustic on shell

2.1. Physical origins of the Wigner caustic on shell. The fol-
lowing presentation is sketchy and can be found expanded in various
textbooks and research papers (see [3, 13, 15], for instance).

We recall that, in non-relativistic quantum mechanics, a pure state of
the system is usually defined as a normalized vector Ψ in a Hilbert space
H. In many simple cases, H = L2

C(Rm), the space of complex-valued
square-integrable functions on Rm. Here, Rm is commonly interpreted
either as the configuration-space Q or the momentum-space P and m ∈
N is the number of degrees of freedom of the system.

The Fourier transform F : L2
C(Rm) → L2

C(Rm) relates configuration-
space and momentum-space representations of a state Ψ, by

ψ(q) 7→ Fψ(p) =
1

(2π~)m

∫
Rm

ψ(q) exp (ipq/~) dq ,

where i =
√
−1 and ~ is a positive constant, called Planck’s constant,

which provides a scale for comparing quantum to classical phenomena.
On the other hand, in classical conservative dynamics, the concept

of a phase-space Π is predominant. In the simple cases when Q =
P = Rm, Π = P × Q = R2m, endowed with the symplectic form
ω =

∑m
i=1 dpi ∧ dqi, is an affine-symplectic space.

The Wigner transform W : L2
C(Rm) → L1

R(R2m, ω) defines a phase-
space representation of a pure state Ψ, called its Wigner function, from
the configuration-space representation of Ψ, by

ψ(q) 7→ Wψ(p, q) =
1

(π~)m

∫
Rm

ψ∗(q − ζ)ψ(q + ζ) exp (2ipζ/~) dζ .

The Wigner function satisfies reality and Liouville-normalization,

Wψ(p, q) = W∗
ψ(p, q) ,

∫
R2m

Wψ(p, q)dpdq = 1 , dpdq = ωm/m!

and, although Wψ(p, q) can be negative, its partial integrals are not,∫
Rm

Wψ(p, q)dp = |ψ(q)|2 ≥ 0 ,

∫
Rm

Wψ(p, q)dq = |Fψ(p)|2 ≥ 0 ,

so that Wψ can be seen as a pseudo probability distribution on phase-
space (R2m, ω), while |ψ|2 and |Fψ|2 are actual probability distributions
on configuration-space and momentum-space, respectively.

In various instances, one is mostly interested in a pure state Ψ which
is eigenstate of one or more self-adjoint operators on H = L2

C(Rm). If
F is a bounded self-adjoint operator on H, its classical correspondence
is a real function f ∈ C∞

R (R2m, ω) so that, if F (Ψ) = αΨ, α ∈ R, then
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Ψ corresponds classically to the level set Λ = {x = (p, q) ∈ R2m :
f(x) = α}, which for many values of α is a smooth hypersurface in
phase-space (a smooth Lagrangian curve Λ = L for systems with one
degree of freedom).

For systems with m > 1 degrees of freedom, two linearly inde-
pendent functions f1, f2 ∈ C∞

R (R2m, ω) are said to be in involution if
Xf1(f2) = Xf2(f1) = 0, where Xfj is the vector field defined by Hamil-
ton’s equation dfj +Xfjyω = 0. If there exist m linearly independent
functions fj in mutual involution, the classic dynamical system is inte-
grable and each level set L = {x ∈ R2m : fj(x) = αj ∈ R, j = 1, . . . ,m}
is a Lagrangian submanifold of (R2m, ω). Such L may correspond to a
pure state Ψ which is eigenstate of m linearly independent commuting
bounded self-adjoint operators Fj on H, [Fi, Fj] = 0, Fj(Ψ) = αjΨ.

The semiclassical approximation of Ψ can be formally seen as the
asymptotic expansion on ~ << 1 of some representation of Ψ. Let’s
start with the crude expression for the semiclassical approximation of
the Wigner function of a pure state in one degree of freedom [3]:

(2.1) Wψ(x) ≈
∑
k

A~
k(x) cos (Sk(x)/~− π/4) ,

where Sk(x) is the symplectic area enclosed by the curve L = {x′ ∈
R2 : f(x′) = α} and the k-th chord connecting two points x+k and x−k on
L, whose midpoint is x (for x close to L, such a chord is often unique,
or does not exist). Each amplitude function A~

k(x) in (2.1) satisfies

(2.2) A~
k(x) ∝

1

|ω(X+k
f (x), X−k

f (x))|1/2
,

where X±k
f (x) is the Hamiltonian vector field Xf evaluated at the end-

point x±k ∈ L of the k-th chord, parallel translated to its centre x.
The number of chords centered on x connecting pairs of points on L

varies, as x varies, and its bifurcation set is given by

(2.3) E1/2(L) = {x ∈ R2 : ∃k ω(X+k
f (x), X−k

f (x)) = 0} .

It is clear from (2.3) that E1/2(L) can be defined as the set of mid-
points of chords connecting points on L whose tangent vectors to L at
these endpoints are parallel. E1/2(L) is called the Wigner caustic of L
and is precisely the set where some A~

k blows up to infinity, see (2.2).
In fact, in a neighborhood of E1/2(L), the crude expression (2.1) is

inappropriate and must be substituted by uniform approximations that
do not blow up to infinity on E1/2(L) if ~ ̸= 0 but, nonetheless, take on
very high values at E1/2(L) for ~ << 1. However, the kind of uniform
approximation to be used will depend on the kind of singularity of
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the Wigner caustic. Thus, where the Wigner caustic corresponds to a
fold singularity, the uniform approximation of the Wigner function is
written in terms of Airy functions but, where the Wigner caustic has
cusp singularities, Pearcey functions must be used (see [3]).

Now, it is obvious from (2.3) that L ⊂ E1/2(L), so that Wψ peaks at
L for ~ << 1. On the other hand, as x→ L, S(x) → 0 and∇S(x) → 0,
so that Wψ is not highly oscillatory in a small neighborhood of L, for
~ << 1. This contrasts sharply with the situation when x is far from
L where, even if x ∈ E1/2(L), Wψ is highly oscillatory for ~ << 1 and
tends on average to 0 in any small neighborhood of x, as ~ → 0. Thus,
as ~ → 0, the pseudo probability distribution Wψ tends on average
to the singular probability distribution which is zero everywhere but
on L, where Wψ tends to infinity. In this way, L can be seen as the
classical correspondence of the pure state Ψ.

The less oscillatory behavior of the Wigner function Wψ in a neigh-
borhood of L makes it convenient to separate the Wigner caustic of L
in a part which is away from L and another which is very close to L
and contains L. This latter is called the Wigner caustic on shell.

The situation for integrable systems with more degrees of freedom is
similar: the crude semiclassical expression for the Wigner function is

(2.4) Wψ(x) ≈
∑
k

Ã~
k(x) cos (S̃k(x)/~− nkπ/4) ,

where S̃k(x) is the symplectic area of any surface bounded by a curve
formed by taking any arc of the Lagrangian submanifold L = {x′ ∈
R2m : fj(x

′) = αj, j = 1, ...,m} and closing it with the k-th chord
connecting two points x+k and x−k on L, with midpoint x, and where

(2.5) Ã~
k(x) ∝

1

| det[ω(X+k
fi

(x), X−k
fj

(x))]|1/2
,

with X±k
fj

(x) being the Hamiltonian vector field Xfj evaluated at the

endpoint x±k ∈ L of the k-th chord, parallel translated to its centre
x. Also, the integer nk in (2.4) is the signature of the m ×m matrix
[ω(X+k

fi
(x), X−k

fj
(x))]. Therefore, in this case,

(2.6) E1/2(L) = {x ∈ R2m : ∃k det[ω(X+k
fi

(x), X−k
fj

(x))] = 0}

and can be identified with the set of midpoints of chords connecting
points on L whose tangent spaces to L at these endpoints are weakly
parallel, in other words, do not span the whole R2m, see [13]. Again,
uniform approximations must be used instead of (2.4) in a neighbor-
hood of E1/2(L) and, for ~ << 1, Wψ is not highly oscillatory in a
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small neighborhood of L, which is the classical correspondence of Ψ,
and it is therefore natural to single out the Wigner caustic on shell.

2.2. Mathematical definition of the Wigner caustic on shell.
Let L be a smooth Lagrangian submanifold of the affine symplectic
space (R2m, ω =

∑m
i=1 dpi ∧ dqi). Let a, b be points of L and let τa−b :

R2m ∋ x 7→ x+ (a− b) ∈ R2m be the translation by the vector (a− b).

Definition 2.1. A pair of points a, b ∈ L is a weakly parallel pair if

TaL+ τa−b(TbL) ̸= R2m.

A weakly parallel pair a, b ∈ L is called k-parallel if

dim(TaL ∩ τb−a(TbL)) = k.

If k = m the pair a, b ∈ L is called strongly parallel, or just parallel.

Definition 2.2. A chord passing through a pair a, b, is the line

l(a, b) = {x ∈ Rn : x = ηa+ (1− η)b, η ∈ R}.

Definition 2.3. For a given η, an affine η-equidistant of L, denoted
Eη(L), is the set of all x ∈ R2m s.t. x = ηa + (1 − η)b, for all weakly
parallel pairs a, b ∈ L. Note that, for any η, Eη(L) = E1−η(L) and in
particular E0(L) = E1(L) = L. Thus, the case η = 1/2 is special.

Definition 2.4. The set E1/2(L) is the Wigner caustic of L.

Consider R2m×R2m with coordinates (x+, x−) and the tangent bun-
dle to R2m, TR2m = R2m × R2m, with coordinates (x, ẋ) and standard
projection π : TR2m ∋ (x, ẋ) → x ∈ R2m. Consider the linear map

Φ1/2 : R2m×R2m ∋ (x+, x−) 7→
(
x+ + x−

2
,
x+ − x−

2

)
= (x, ẋ) ∈ TR2m.

On the product affine symplectic space, consider the symplectic form

δ1/2ω =
1

2
(π∗

1ω − π∗
2ω) ,

πi the i-th projection R2m × R2m → R2m. Canonical relations corre-
spond to Lagrangian submanifolds of (R2m × R2m, δ1/2ω). Then,(

Φ−1
1/2

)∗
(δ1/2ω) = ω̇ ,

where ω̇ is the canonical symplectic form on TR2m, which is defined by
ω̇(x, ẋ) = d{ẋyω}(x) or, in Darboux coordinates for ω, by

ω̇ =
m∑
i=1

dṗi ∧ dqi + dpi ∧ dq̇i .
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If L is a Lagrangian submanifold of (R2m, ω), then L × L is a La-
grangian submanifold of (R2m × R2m, δ1/2ω) and L = Φ1/2(L × L)
is a Lagrangian submanifold of (TR2m, ω̇), which can be locally de-
scribed by a generating function of the midpoints x = π ◦Φ1/2(x

+, x−),
(x+, x−) ∈ L×L, when L projects regularly to the zero section [14][16].

We recall basic definitions of the theory of Lagrangian singularities
(see [1], [7]). First, (TR2m, ω̇) with canonical projection π : TR2m →
R2m is a Lagrangian fibre bundle and π|L : L → R2m is a Lagrangian
map . Let L̃ be another Lagrangian submanifold of (TR2m, ω̇). Two
Lagrangian maps π|L : L → R2m and π|L̃ : L̃ → R2m are Lagrangian
equivalent if there exists a symplectomorphism of (TR2m, ω̇) taking
fibres of π to fibres and mapping L to L̃. A Lagrangian map is stable if
every nearby Lagrangian map (in the Whitney topology) is Lagrangian
equivalent to it. The set of critical values of a Lagrangian map is called
a caustic. Then, we have the following result:

Proposition 2.5 ([7]). The caustic of the Lagrangian map π|L : L →
R2m is the Wigner caustic E1/2(L).

In this paper, we study E1/2(L) in a neighborhood L. For this reason,
we consider pairs of points of the type (a, a) ∈ L×L as strongly parallel
pairs. In other words, in Definition 2.1 we did not impose the restriction
a ̸= b on the pair of points of L to be considered a parallel pair. This
broader definition of parallel pairs is suitable for studying the part of
the Wigner caustic that is close to L, because then L is itself part of
the Wigner caustic. This broader definition of the Wigner caustic is
also natural from its origin in quantum physics, as shown by equations
(2.3) and (2.6). On the other hand, imposing the restriction a ̸= b in
Definition 2.1 allows for a neater definition of the Wigner caustic as a
centre symmetry set, as in [7] (see also [9], where, for a curve L and
a ̸= b, E1/2(L) is called the area evolute of L).

Definition 2.6. The germ at a of the Wigner caustic on shell is
the germ of Wigner caustic E1/2(L) at the point a ∈ L.

Now let L be a germ at 0 of a smooth Lagrangian submanifold of
(R2m, ω), generated by the function-germ S ∈ Em in the usual way,

(2.7) L =

{
(p, q) ∈ R2m : pi =

∂S

∂qi
(q) for i = 1, · · · ,m

}
.

Then, L is the germ at 0 of a submanifold of (TR2m, ω̇) described as

(2.8) ṗ =
1

2

(
∂S

∂q
(q + q̇)− ∂S

∂q
(q − q̇)

)
,
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(2.9) p =
1

2

(
∂S

∂q
(q + q̇) +

∂S

∂q
(q − q̇)

)
.

By Proposition 2.5, the germ at 0 ∈ L of the Wigner caustic on shell
E1/2(L) is described as

∃q̇ ∈ Rm s.t. (2.9) is satisfied, and

det

[
∂2S

∂q2
(q + q̇)− ∂2S

∂q2
(q − q̇)

]
= 0.(2.10)

Thus, putting q̇ = 0 in (2.9)-(2.10) we obtain the obvious fact:

Proposition 2.7. L is contained in E1/2(L).

Now, let us consider the reflection

(2.11) ζ : TR2m ∋ (ṗ, q̇, p, q) 7→ (−ṗ,−q̇, p, q) ∈ TR2m

whose mirror is the zero section {ṗ = q̇ = 0} ⊂ TR2m. Note that
{id, ζ} generates an action of Z2 on TR2m. Using (2.8) we obtain

Proposition 2.8. L is Z2-symmetric, that is, ζ(L) = L.

We shall study singularities of E1/2(L) via generating families of L.

Definition 2.9. The germ of a generating family of L is the smooth
function-germ F : Rk × R2m ∋ (β, p, q) 7→ F (β, p, q) ∈ R such that
(2.12)

L =

{
(ṗ, q̇, p, q) ∈ TR2m : ∃ β ∈ Rk ṗ =

∂F

∂q
, q̇ = −∂F

∂p
,
∂F

∂β
= 0

}
.

Remark 2.10. When there are no symmetries, two Lagrangian map-
germs on the same Lagrangian fibre bundle are Lagrangian equivalent if
and only if their generating families are stably (fibred) R+-equivalent.
Moreover the Lagrangian map-germ given by the generating family
F (β, p, q) with parameters (p, q) is Lagrangian stable if and only if
F (β, p, q) is a R+-versal deformation of f(β) = F (β, 0, 0) (see [1]).

Now, in the Z2-symmetric context, the following Theorem, whose
proof is a straightforward computation from (2.12) to (2.8)-(2.9), is a
particular case of the more general result presented in [7]:

Theorem 2.11 ([7]). The germ at 0 ∈ L of the Wigner caustic on shell
is the germ of a caustic of the germ of a Lagrangian submanifold L in
the Lagrangian fibre bundle TR2m ∋ (ṗ, q̇, p, q) 7→ (p, q) ∈ R2m with the
symplectic form ω̇ =

∑m
i=1 dṗi ∧ dqi + dpi ∧ dq̇i and generating family

(2.13) F (β, p, q) ≡ 1

2
S(q + β)− 1

2
S(q − β)−

m∑
i=1

piβi.
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For any β, p, q, the generating family (2.13) satisfies

(2.14) F (−β, p, q) ≡ −F (β, p, q)
It implies that F is a deformation of an odd function-germ

(2.15) f(β) ≡ F (β, 0, 0) ≡ 1

2
(S(β)− S(−β)).

We call F which satisfies (2.14) an odd deformation of an odd function-
germ f (see Definitions 3.1 and 3.7, below). Thus, in order to study
singularities of the Wigner caustic on shell, we must consider classifi-
cation of odd function-germs and their odd deformations.

Remark 2.12. Theorem 2.11 implies that singularities of the Wigner
caustic on shell are Z2-symmetric singularities (see Proposition 2.8,
above, and Remark 3.3, below). However, at the level of a germ of the
Wigner caustic on shell E1/2(L) ⊂ R2m, this Z2-symmetry is a hidden
symmetry which is only actually revealed in L ⊂ TR2m.

Remark 2.13. The form (2.13) for the generating family of the Wigner
caustic on shell of a Lagrangian submanifold of the affine-symplectic
space was already presented in [13], and its odd character was re-
marked. However, the classification used there, borrowed from Arnold’s,
was not performed in the Z2-symmetric context. Furthermore, albeit
respecting that f(β) = F (β, 0, 0) is odd, the authors did not take into
account that F (β, p, q) must be an odd deformation of F (β, 0, 0).

3. Singularities of odd functions

3.1. Preliminaries. We recall basic definitions.

Definition 3.1. A smooth function-germ f at 0 on Rm is even if
f(−x) ≡ f(x) and it is odd if f(−x) ≡ −f(x).

Notation 3.2. Let us denote by Eevenm the ring of even smooth function-
germs f : (Rm, 0) → R and by Eoddm the set of odd smooth function-
germs g : (Rm, 0) → (R, 0), which has a module structure over Eevenm .

Remark 3.3. Consider the diagonal action of Z2 = {1,−1} on Rm:

(3.1)
Z2 × Rm → Rm(

γ, (x1, . . . , xm)
)

7→ (γx1, . . . , γxm).

Hence, Eevenm is the ring of Z2-invariant germs under this action on
source. Also, Eoddm is the module of Z2-equivariant germs, with same
action on source and on target - take (3.1) for m = 1.

We now set up the equivalence relation in Eoddm . Changes of coordi-
nates shall preserve Z2-equivariance, so we consider the following:
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Definition 3.4. A diffeomorphism-germ Φ : (Rm, 0) → (Rm, 0) is odd
if Φ(−x) ≡ −Φ(x). Denote by Dodd

m the group of odd diffeomorphism-
germs (Rm, 0) → (Rm, 0).

Definition 3.5. Let f, g ∈ Eoddm . We say that f and g are Rodd-
equivalent if there exists Φ ∈ Dodd

m such that f = g ◦ Φ.
Following standard notation, denote by LRoddg the tangent space to

the Rodd-orbit of g at g, given by elements of the form d
dt
|t=0 (g ◦ Φt) =∑m

i=1
∂g
∂xi

dϕti
dt

|t=0 , where g ◦ Φt is a path in the Rodd-orbit of g, with

Φt = (ϕt1, · · · , ϕtm) in Dodd
m such that Φ0 = I. Now, ϕti =

∑m
j=1 xjh

t
ij,

with htij ∈ Eevenm , so that d
dt
|t=0 (g ◦ Φt) =

∑m
i,j=1 xj

∂g
∂xi

dhtij
dt

|t=0 , i, j =

1, · · · ,m. Since htij ∈ Eevenm , so does
dhtij
dt

|t=0 . We have:

Proposition 3.6. Let g ∈ Eoddm . The tangent space LRoddg to the Rodd-

orbit of g at g is the Eevenm -module generated by
{
xj

∂g
∂xi

: i, j = 1, · · · ,m
}
.

Definition 3.7. A function-germ F ∈ Em+k is an odd deformation
of f ∈ Eoddm if F |Rm×{0} = f and for any fixed λ ∈ Rk the function-
germ F |Rm×{λ} ∈ Eoddm . The space Rk is called the base of the odd
deformation F and k is its dimension.

Definition 3.8. The odd deformation F ∈ Em+k is Rodd-versal if
every odd deformation of f is Rodd-isomorphic to one induced from F
i.e. any odd deformation G ∈ Em+l of f is representable in the form

G(x, λ) ≡ F (Φ(x, λ),Λ(λ)),

Φ : (Rm+k, 0) → (Rm, 0), Λ : (Rk, 0) → (Rl, 0) smooth map-germs s.t.

Φ|Rm×{λ} ∈ Dodd
m , Φ(x, 0) ≡ x.

An Rodd-versal deformation F ∈ Em+k of f ∈ Eoddm is Rodd-miniversal
if the dimension of the base has its least possible value. This minimum
value is the (odd) codimension of f .

The group Dodd
m is a geometric subgroup in the sense of Damon (see

[6]). The following theorem is a particular case of [2, Theorem 3.7]:

Theorem 3.9. Let g ∈ Eoddm . Then
(a) A k-parameter deformation G of g is Rodd-versal if and only if

Eoddm = Eevenm

{
xj
∂g

∂xi
: i, j = 1, · · · ,m

}
+R

{
∂G

∂λℓ
|Rm×{0} : ℓ = 1, · · · , k

}
.

(b) If W ⊂ Eoddm is a finite dimensional vector space such that Eoddm =
LRoddg ⊕W , and if h1, . . . , hs ∈ Eoddm is a basis for W , then G(x, λ) ≡
g(x) +

∑s
j=1 λjhj(x) is a Rodd-miniversal deformation of g.
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We introduce the equivalence relation between odd deformations.

Definition 3.10. Odd deformations F,G ∈ Em+k are fibred Rodd-
equivalent if there exists a fibred diffeomorphism-germ Ψ ∈ Dm+k s.t.
Ψ(x, λ) ≡ (Φ(x, λ),Λ(λ)), Φ|Rm×{λ} ∈ Dodd

m , ∀λ ∈ Rk, and F = G ◦Ψ.

Notation 3.11. Let Mk(odd)
m denote the Eevenm -submodule of Eoddm gen-

erated by xk11 · · ·xkmm ,∀k1, · · · , km ≥ 0, s.t. k1 + · · ·+ km = k.

Obviously, these are nontrivial submodules precisely when k is odd.
It follows the finite determinacy result for our particular case (see [6],
[17]-[18]):

Proposition 3.12. g ∈ Eoddm is finitely Rodd-determined if and only if

Mk(odd)
m ⊂ LRoddg for some odd positive integer k .

We start the classification of odd function-germs with the following
obvious result.

Proposition 3.13. If g ∈ Eoddm is a germ of a submersion than g is
Rodd-equivalent to the following germ (x1, · · · , xm) 7→ x1.

Now we prove that if m ≥ 3 there are no singular simple odd
function-germs.

Theorem 3.14. Let g ∈ Eoddm with a singular point at 0. If m ≥ 3,
then g is not Rodd-simple.

Proof. If 0 is a singular point of g then g ∈ M3(odd)
m . The vector space

of 3-jets at 0 of singular odd function-germs is spanned by xk11 · · ·xkmm
for all integers k1, · · · , km ≥ 0, such that k1 + · · · + km = 3. By a
simple combinatorial consideration we got that the dimension of this
vector space is equal to (m+ 2)(m+ 1)m/6. We act on this space
with the linear group GL(m), of dimension m2. But, for m ≥ 3,
(m+ 2)(m+ 1)m/6 > m2. So the dimension of the space is greater
than the dimension of the group acting on this space. �
Remark 3.15. If g ∈ Eodd2+n, the usual procedure of adding quadratic
forms in the remaining n variables cannot be performed.

Thus, classification of simple odd singularities must be performed
only in dimension one and two, as presented in the next subsection.

3.2. Simple odd function-germs and their odd deformations.
Here we deduce the normal forms and their mini-versal deformations for
the simple odd singularities of function germs in one and two variables.
We have chosen a particular notation for each. We start with the cases
in one-variable. The results are obtained straightforwardly and are
given in the next theorem and corollary.
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Theorem 3.16. Let g ∈ Eodd1 . Then g is Rodd-simple if, and only if, g
is Rodd-equivalent to one of the following function-germs at 0:

A2k/2 : x 7→ x2k+1, for k = 1, 2, · · ·

Corollary 3.17. For k ≥ 1, Rodd-miniversal deformation of A2k/2 is

G(x, λ1, · · · , λk) = x2k+1 +
k∑
j=1

λjx
2j−1 .

The following theorem and corollary deal with the cases in two vari-
ables. We recall that by Theorem 3.14 if the number of variables is
greater than two there are no simple singular odd function-germs.

Theorem 3.18. Let g ∈ Eodd2 . Then g is Rodd-simple if, and only if, g
is Rodd-equivalent to one of the following function-germs at 0:

D±
2k/2 : (x1, x2) 7→ x21x2 ± x2k−1

2 , for k = 2, 3, · · ·

E8/2 : (x1, x2) 7→ x31 + x52,

J±
10/2 : (x1, x2) 7→ x31 ± x1x

4
2,

E12/2 : (x1, x2) 7→ x31 + x72.

Proof. The procedure is the systematic usage of the complete transver-
sal method ([5], [11]) at the level of jets and then usage of the finite
determinacy theorem. In our context, the complete transversal is a

subspace T of M2k+1(odd)
m such that

(3.2) M2k+1(odd)
2 ⊂ LRodd

1 · g + T +M2k+3(odd)
2 ,

where Rodd
1 is the subgroup of Rodd whose elements have 1-jet equal to

identity, and LRodd
1 · g is the tangent space to the Rodd

1 -orbit of g at g.
We start with the 3-jet of g, which is also the starting point of the

classification without symmetry. Since linear changes of coordinates
are Z2-equivariant, it follows that, at this level, the results here are
precisely the same as in the context without symmetry. Therefore, as
it is well known, a nonzero cubic polynomial in two variables is linearly
equivalent to one of the following types:

x21x2 ± x32(3.3)

x21x2(3.4)

x31(3.5)

First, assuming that j30g is of form (3.3), the Rodd
1 tangent space of

the orbit of (3.3) is M5(odd)
2 . The complete transversal is empty in this

case and g is finitely Rodd-determined and Rodd-equivalent to (3.3).
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Now, assume that j30g has form (3.4), whose orbit has

Eeven2 · {x51, x41x2, x31x22, x21x32, x1x42}

as its Rodd
1 tangent space. So the complete transversal is T = R{x52}.

Hence, j50g is Rodd
1 - equivalent to x21x2 + ax52 and it is easy to see that

if a > 0 then j50f is Rodd-equivalent to x21x2 + x52, and if a < 0 then
j50f is Rodd-equivalent to x21x2 − x52. In the next step we check that

the Rodd
1 tangent space to the orbit of both of these germs is M5(odd)

2 .
So the complete transversal is empty and g is finitely Rodd-determined
and Rodd-equivalent to x21x2 ± x52. If a = 0, then T = R{x72} and j70g is
Rodd

1 -equivalent to x21x2 + bx72. Proceeding inductively, we obtain that
if j3g0 has the form (3.4) and g is finitely Rodd-determined then g is
Rodd-equivalent to x21x2 ± x2k+1

2 for k ≥ 2.
Finally, assume that j30g has the form (3.5). In this case, T =

R{x1x42, x52} and j50g is Rodd
1 -equivalent to x31 + ax52 + bx1x

4
2.

If a ̸= 0, then j50g is Rodd-equivalent to x31 + x52 + bx1x
4
2 and

Eeven2 · {x52, x1x42, x21x2, x31}

is its tangent space. So its dimension does not depend on b and it
contains the germ of x1x

4
2. It then follows from Mather’s lemma that

j50g is Rodd-equivalent to x31 + x52. As next step we obtain that g is
finitely Rodd-determined. Then, g is Rodd-equivalent to x31 + x52.

If a = 0 and b ̸= 0, then j50g = x31 ± x1x
4
2 and T = R{x72}. Then j70g

is Rodd
1 -equivalent to x31 ± x1x

4
2 + ax72. But LRoddg is given by

Eeven2 · {x72, x1x42, 3x21x2 ± x52, x
3
1}.

Its dimension independs on a and it contains x72. By Mather’s lemma,
j70g is Rodd-equivalent to x31 ± x1x

4
2. As in the previous case, we find

that g is finitely Rodd-determined, so is Rodd-equivalent to x31 ± x1x
4
2.

If a = b = 0, then j50g = x31. Thus, the complete transversal is T =
R{x1x62, x72}. It means that j70g is Rodd-equivalent to x31 + cx1x

6
2 + dx72.

If d ̸= 0 we may assume that j70g = x31 + cx1x
6
2 + x72. But LRoddg is

Eeven2 · {x72, x1x62, x21x2, x31}.

Its dimension independs on c and it contains x1x
6
2. By Mather’s lemma,

j70g isRodd-equivalent to x31+x
7
2. As next step we obtain that g is finitely

Rodd-determined, so is Rodd-equivalent to x31 + x72.
If d = 0 and c ̸= 0, we may assume j70g = x31 ± x1x

6
2. The complete

transversal is T = R{x92}. So j90g is Rodd
1 -equivalent to x31±x1x62+ax92.

But x92 /∈ LRoddj90g. By Mather’s lemma, c is a modulus.
Finally we show that odd function-germs with zero 3-jet are not

simple. The method of proof is same as the one used in the proof of
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Theorem 3.14, that is, the vector space of 5-jets of odd function-germs
with zero 3-jet has dimension six and we act on this space with the
linear group GL(2) of dimension four. �

From Theorem 3.9 and the proof of Theorem 3.18, we obtain:

Corollary 3.19. The Rodd-miniversal deformation of the odd-simple
map-germs are given by:

D±
2k/2 : F (x1, x2, λ1, · · · , λk) ≡ x21x2 ± x2k−1

2 + λ1x1 +
k∑
i=2

λix
2i−3
2 .

E8/2 : F (x1, x2, λ1, · · · , λ4) ≡ x31 + x52 + λ1x1 + λ2x2 + λ3x1x
2
2 + λ4x

3
2.

J±
10/2 : F (x1, x2, λ1, · · · , λ5) ≡

x31 ± x1x
4
2 + λ1x1 + λ2x2 + λ3x

2
1x2 + λ4x

2
2x1 + λ5x

3
2.

E12/2 : F (x1, x2, λ1, · · · , λ6) ≡
x31 + x72 + λ1x1 + λ2x2 + λ3x1x

2
2 + λ4x

3
2 + λ5x1x

4
2 + λ6x

5
2.

Remark 3.20. The notations for the odd-simple singularities pre-
sented above have been chosen by their resemblance with the classical
notations [1] for normal forms of R-singularities. In fact, A2k/2 has
the same representative as A2k, but while the latter has codimension
2k, the former has odd codimension k = 2k/2. Similarly, for D2k/2

and E8/2, with odd codimensions k and 4, respectively, for which the
corresponding R-singularities D2k and E8 have codimensions 2k and 8,
respectively. The situation differs for the other odd-simple singularities.
The germ of the odd codimension 6 singularity E12/2 is R-equivalent
to the codimension 12 singularity E12, but we stress that the latter
is unimodal. Similarly for the odd codimension 5 singularity J±

10/2 in

comparison with codimension 10 unimodal R-singularity J10.

4. Simple stable singularities of Wigner caustic on shell

From classical results ([1]) we know that Lagrangian equivalence of
Lagrangian maps corresponds to stable fibred R+-equivalence of their
generating families (see Remark 2.10). Thus we introduce the following
definition in the Z2-symmetric case.

Definition 4.1. Let L and L̃ be germs at (0, 0) ∈ R2m of Lagrangian
submanifolds of the affine symplectic space. The germs at (0, 0) of
Wigner caustics on shell E1/2(L) and E1/2(L̃) are Lagrangian equiv-
alent if germs at (0, 0, 0) ∈ Rm×R2m of the corresponding odd gener-
ating families F and F̃ are fibred Rodd-equivalent.
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From Remark 2.12, this means equivalence of Z2-symmetric germs
of Wigner caustics. The following definition specializes to this Z2-
symmetric context the well-known fact ([1]) that stability of Lagrangian
maps corresponds to versality of generating families (Remark 2.10).

Definition 4.2. A germ of Wigner caustic on shell is stable if its
generating family is an Rodd-versal deformation of an odd function-
germ, and it is simple stable if its generating family is an Rodd-versal
deformation of an Rodd-odd simple function-germ.

Notice that any odd function-germ f ∈ M3(odd)
m can be written as

f(β) ≡ 1
2
(S(β)− S(−β)) for some S ∈ M3

m, implying the following:

Proposition 4.3. For any f ∈ M3(odd)
m there exists S ∈ M3

m such that
the generating family F of the form (2.13) is an odd deformation of f .

By Theorem 3.9 we obtain the following corollary.

Corollary 4.4. The germ of a generating family F of the form (2.13)
is an Rodd-versal deformation if and only if

M3(odd)
m = Eevenm

{
βi

(
∂S

∂qj
(β) +

∂S

∂qj
(−β)

)
: i, j = 1, · · ·m

}
+(4.1)

R
{
∂S

∂qj
(β)− ∂S

∂qj
(−β) : j = 1, · · ·m

}
.

From Corollary 4.4 we get the following realization theorem.

Theorem 4.5. Let f ∈ M3(odd)
m be a finitely determined germ. Then

there exists S ∈ M3
m such that the generating family F of the form

(2.13) is an Rodd-versal deformation of f if and only if there exist

h1,· · · ,hm in M3(odd)
m such that

(4.2) M3(odd)
m = LRoddf + R{h1, · · · , hm}

and
∑m

i=1 hi(β1, · · · , βm)dβi is a germ of closed 1-form.

Proof. First, notice that any fuction-germ S ∈ Em can be decomposed
into S = S+ + S−, where S+ ∈ Eevenm , S− ∈ Eoddm are given in the
following way S+(β) ≡ 1

2
(S(β) + S(−β)), S−(β) ≡ 1

2
(S(β) − S(−β)).

Then the versality condition (4.1) of F given by (2.13) has the form

M3(odd)
m = LRoddS− + R

{
∂S+

∂βj
(β) : j = 1, · · ·m

}
.

From the above, f must be equal to S− and the germ of a 1-form∑m
j=1

∂S+

∂βj
(β)dβj is closed since it is just dS+. On the other hand if

condition (4.2) is satisfied and α =
∑m

i=1 hi(β1, · · · , βm)dβi is a germ
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of closed 1-form then it is obvious that there exists such a function-germ
g ∈ Eevenm such that α = dg. So we take S = f + g. �

It follows from Theorem 3.14 that simple singularities for the Wigner
caustic on shell of a Lagrangian submanifold can be realized only for
curves in R2 and surfaces in R4. Thus, first we apply Theorem 4.5 to
check which versal deformations of simple odd singularities are realiz-
able as a generating family of the form (2.13).

Corollary 4.6. Rodd-versal deformations of A2/2, A4/2 (for m = 1)
and D±

4/2, D
±
6/2 D

±
8/2, E8/2 (for m = 2) are realizable as generating

families of form (2.13).
Rodd-versal deformations of A2k/2 for k > 2 (and for m = 1) and

D2k/2 for k > 4, J±
10/2 and E12/2 (for m = 2) are not realizable as

generating families of form (2.13).

Proof. First notice that if the codimension of the singularity is greater
than 2m then the Rodd-versal deformation of it is not realizable by a
generating family of the form (2.13). This proves the second statement.
Since any smooth 1-form on R is closed this is the only restriction for
m = 1. The realization of D±

4/2 is obvious. For the others singularities

we apply Theorem 4.5 in the following way: for D±
6/2 take h1(β) ≡ 0

and h2(β) ≡ β3
2 , for D

±
8/2 take h1(β) ≡ β3

2 and h2(β) ≡ β5
2 +3β1β

2
2 , and

for E8/2 take h1(β) ≡ β3
2 and h2(β) ≡ 3β1β

2
2 . �

4.1. The Wigner caustic on shell of a Lagrangian curve. Let L
be the germ at (0, 0) of a curve on symplectic affine plane (R2, ω =
dp∧ dq) and, without loss of generality, assume that L is generated by
a function-germ S ∈ M3

1 ⊂ E1 in the usual way given by (2.7), i = 1.

Theorem 4.7. Let F of form (2.13) be the generating family of L.
If d3S

dq3
(0) ̸= 0, F is fibred Rodd-equivalent to the Rodd-versal defor-

mation of A2/2 : (β, p, q) 7→ β3 + pβ.

If d3S
dq3

(0) = 0, d4S
dq4

(0) ̸= 0 and d5S
dq5

(0) ̸= 0, F is Rodd-equivalent to the

Rodd-versal deformation of A4/2 : (β, p, q) 7→ β5 + qβ3 + pβ.

Proof. From (2.13), ∂
kF
∂βk (β, 0, 0) =

1
2

(
dkS
dqk

(β) + (−1)k+1 dkS
dqk

(−β)
)
. Thus

d3S
dq3

(0) ̸= 0 implies that d3F
dβ3 (0, 0, 0) ̸= 0 and F |R×{0}×{0} ∈ M3

1, since

S ∈ M3
1. Therefore, F is an odd deformation of A2/2. By Theorems

3.9 and 3.17 we obtain that F is Rodd-equivalent to Rodd-versal defor-
mation of A2/2: (β, p, q) 7→ β3 + pβ, since ∂F

∂p
(β, 0, 0) = −β.
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If S ∈ M4
1 and d5S

dq5
(0) ̸= 0 then ∂kF

∂βk (0, 0, 0) = 0 for k < 5 and
∂5F
∂β5 (0, 0, 0) ̸= 0 and consequently F is an odd deformation of A4/2. By

direct calculation, ∂
k+1F
∂βk∂q

(β, 0, 0) = 1
2

(
dk+1S
dqk+1 (β) + (−1)k+1 dk+1S

dqk+1 (−β)
)
.

Then ∂k+1F
∂βk∂q

(0, 0, 0) = 0 for k < 3 and ∂4F
∂β3∂q

(0, 0, 0) = d4S
dq4

(0). But
∂F
∂p
(β, 0, 0) = −β. So if d4S

dq4
(0) ̸= 0 we obtain by Theorem 3.9 and

Corollary 3.17 that F isRodd-equivalent toRodd-miniversal deformation
of A4/2: (β, p, q) 7→ β5 + qβ3 + pβ. �
Corollary 4.8. (Geometric interpretation) If the curvature of the
germ of a Lagrangian curve L does not vanish at (p0, q0) ∈ L, then the
germ at (p0, q0) of the Wigner caustic on shell consists of L only and is
Lagrangian stable. All germs of Wigner caustics of Lagrangian curves
at such points are Lagrangian equivalent.

If, at (p0, q0) ∈ L, the curvature of the germ of a Lagrangian curve
L vanishes but the first and the second derivatives of the curvature do
not vanish, then the germ at (p0, q0) of the Wigner caustic on shell con-
sists of two components: L and the germ at (p0, q0) of a 1-dimensional
smooth submanifold with boundary (p0, q0), which is 1-tangent to L at
(p0, q0) and is simple stable. Any germ of the Wigner caustic in such
a point is Lagrangian equivalent to the following germ at 0:{

(p, q) ∈ R2 : p = 0
}
∪
{
(p, q) ∈ R2 : p = −27

50
q2, q ≤ 0

}
.

The germs of the Wigner caustics of L at points of L which do not
satisfy the above conditions are not stable.

Proof. This is an obvious corollary of Theorem 4.7, because the curva-

ture of a curve L described by (2.7), i = 1, is given by κ
(
dS
dq
(q), q

)
=

d3S
dq3

(q)
/(

1 +
(
d2S
dq2

(q)
)2
)3/2

Thus κ(p0, q0) =
d3S
dq3

(q0) since
d2S
dq2

(q0) = 0.

If κ(p0, q0) = 0 then dκ
dq
(p0, q0) =

d4S
dq4

(q0) and
d2κ
dq2

(p0, q0) =
d5S
dq5

(q0) �
Remark 4.9. Although the curvature of a plane curve is not an affine
invariant, the vanishing or not vanishing of the curvature is an affine
invariant. Also, where the curvature is zero, the vanishing or not van-
ishing of its first two derivatives is also an affine invariant. Thus, Corol-
lary 4.8 provides coordinate-free affine-symplectic invariant conditions
for the realization of the singularities of the Wigner caustic on shell of
a Lagrangian curve on the affine symplectic plane. Similar results for
curves on a affine plane without a symplectic structure can be found
in [8], where bifurcations of affine equidistants were studied.
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4.2. The Wigner caustic on shell of a Lagrangian surface. Let
L be the germ at 0 of a Lagrangian surface in symplectic affine space
(R4, ω = dp1 ∧ dq1 + dp2 ∧ dq2) and, without loss of generality, assume
that L is generated by a function-germ S ∈ M3

2 ⊂ E2 by (2.7), i = 2,
and that F of form (2.13) is the generating family of L.

Notation 4.10. To simplify the equations, we use the following:

Si,j =
∂i+jS

∂qi1∂q
j
2

(0, 0) , Si,j(q) =
∂i+jS

∂qi1∂q
j
2

(q1, q2).

Then, the 3-jet of S at 0 has the form

j30S =
1

6
S3,0q

3
1 +

1

2
S2,1q

2
1q2 +

1

2
S1,2q1q

2
2 +

1

6
S0,3q

3
2

and the discriminant of j30S has the following form ∆(j30S) =

1

48

(
3S2

1,2S
2
2,1 − 4S0,3S

3
2,1 − 4S3

1,2S3,0 − S2
0,3S

2
3,0 + 6S0,3S1,2S2,1S3,0

)
Theorem 4.11. If ∆(j30S) > 0, F is Rodd-equivalent to the Rodd-versal
deformation of D−

4/2 : (β1, β2, p, q) 7→ β2
1β2 − β3

2 + p1β1 + p2β2.

If ∆(j30S) < 0, F is Rodd-equivalent to the Rodd-versal deformation
of D+

4/2 : (β1, β2, p, q) 7→ β2
1β2 + β3

2 + p1β1 + p2β2.

Proof. By (2.15) we get that j30f = j30S. If ∆(j30S) > 0, by linear
change of coordinates we can reduce j30f to β2

1β2 − β3
2 . Then repeating

the arguments in the proof of Theorem 3.18 it is easy to see that f is
Rodd-equivalent to D−

4/2 singularity. By Theorem 4.4 it is easy to see

that (2.13) is an Rodd-versal deformation of f . By Corollary 3.19 we
get the result. The case ∆(j30S) < 0 is analogous. �
Lemma 4.12. S3,0S1,2−S2

2,1 ≤ 0 and S0,3S2,1−S2
1,2 ≤ 0, if ∆(j30S) = 0.

Proof. The condition ∆(j30S) = 0 implies that w(t) = 1
6
S3,0t

3+ 1
2
S2,1t

2+
1
2
S1,2t +

1
6
S0,3 and v(t) = 1

6
S3,0 +

1
2
S2,1t +

1
2
S1,2t

2 + 1
6
S0,3t

3 have real

roots of multiplicity greater than 1. Thus polynomials dw
dt
(t) = 1

2
S3,0t

2+

S2,1t+
1
2
S1,2 and

dv
dt
(t) = 1

2
S2,1+S1,2t+

1
2
S0,3t

2 have real roots. So their
discriminants are nonnegative. �
Notation 4.13. Now we introduce the following abbreviations:

r1 =
S2,1S1,2 − S3,0S0,3

2(S3,0S1,2 − S2
2,1)

, r2 =
S2
3,0S0,3 − S3,0S2,1S1,2 + 3S3

2,1

S3,0S1,2 − S2
2,1

σ0,n =

∑n
k=0 (

n
k)Sk,n−kr

k
1

(S3,0r1 − r2)n
for n = 5, 7
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r̃1 =
S2,1S1,2 − S3,0S0,3

2(S0,3S2,1 − S2
1,2)

, r̃2 =
S2
0,3S3,0 − S0,3S1,2S2,1 + 3S3

1,2

S0,3S2,1 − S2
1,2

σn,0 =

∑n
k=0 (

n
k)Sn−k,kr̃

k
1

(S0,3r̃1 − r̃2)n
for n = 5, 7

Theorem 4.14. Assume S satisfies condition (4.1) and ∆(j30S) = 0.
Consider the following pair of conditions:

(4.3) S3,0S1,2 − S2
2,1 < 0,

(4.4) S0,3S2,1 − S2
1,2 < 0.

If (4.3) is satisfied and σ0,5 > 0, or (4.4) is satisfied and σ5,0 >
0, then F is Rodd-equivalent to the Rodd-versal deformation of D+

6/2 :

(β1, β2, p, q) 7→ β2
1β2 + β5

2 + p1β1 + p2β2 + q1β
3
2 .

If (4.3) is satisfied and σ0,5 < 0, or (4.4) is satisfied and σ5,0 <
0, then F is Rodd-equivalent to the Rodd-versal deformation of D−

6/2 :

(β1, β2, p, q) 7→ β2
1β2 − β5

2 + p1β1 + p2β2 + q1β
3
2 .

Proof. First we assume ∆(j30S) = 0 and condition (4.3), with σ0,5 > 0.

Then we get j30f = j30S = (β1 − r1β2)
2(S3,0β1 − r2β2) = β̃2

1 β̃2, where

(β̃1, β̃2) = (β1− r1β2, S3,0β1− r2β2) forms the coordinate system on R2,

since by condition (4.3) r1 ̸= r2/S3,0. σ0,5 > 0 is equivalent to ∂5f

∂β̃5
2

(0) >

0. Thus, f isRodd-equivalent toD+
6/2. By Theorem 4.4 we obtain that F

is an Rodd-versal deformation of f since S satisfies (4.1). If ∆(j30S) = 0
and (4.4) is satisfied with σ5,0 > 0, then we repeat in the same way

using the coordinate system (β̃1, β̃2) = (β2 − r̃1β1, S0,3β2 − r̃2β1). The
cases (4.3) and σ0,5 < 0, or (4.4) and σ5,0 < 0, are analogous. �
Theorem 4.15. Assume S satisfies condition (4.1) and ∆(j30S) = 0.

If (4.3) holds, σ0,5 = 0 and σ0,7 > 0, or, if (4.4) holds, σ5,0 = 0 and
σ7,0 > 0, then F is Rodd-equivalent to the Rodd-versal deformation of
D+

8/2 : (β1, β2, p, q) 7→ β2
1β2 + β7

2 + p1β1 + p2β2 + q1β
3
2 + q2β

5
2 .

If (4.3) holds, σ0,5 = 0 and σ0,7 < 0, or, if (4.4) holds, σ5,0 = 0 and
σ7,0 < 0, then F is Rodd-equivalent to the Rodd-versal deformation of
D−

8/2 : (β1, β2, p, q) 7→ β2
1β2 − β7

2 + p1β1 + p2β2 + q1β
3
2 + q2β

5
2 .

Proof. First assume ∆(j30S) = 0, condition (4.3) is satisfied and σ0,5 =

0, σ0,7 > 0. As in the proof of Theorem 4.14 we get j30f = j30S = β̃2
1 β̃2,

where (β̃1, β̃2) = (β1− r1β2, S3,0β1− r2β2) and
∂5f

∂β̃5
2

(0) = 0 and ∂7f

∂β̃7
2

(0) >

0, since σ0,5 = 0 and σ0,7 > 0. Thus f is Rodd-equivalent to D+
8/2. By

Theorem 4.4, F is anRodd-versal deformation of f since S satisfies (4.1).
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If ∆(j30S) vanishes, condition (4.4) is satisfied and σ5,0 = 0, σ7,0 > 0, we

repeat using the coordinate system (β̃1, β̃2) = (β2− r̃1β1, S0,3β2− r̃2β1).
The case (4.3), σ0,5 = 0 and σ0,7 < 0, and the case (4.4), σ5,0 = 0 and
σ7,0 < 0, are worked out analogously. �

Theorem 4.16. Assume S satisfies condition (4.1) and ∆(j30S) = 0.
If either of the following two conditions are satisfied,
(4.5)

S3,0S1,2 − S2
2,1 = 0, S3,0 ̸= 0,

5∑
k=0

(
5
k

)
Sk,5−k (−S2,1)

k (S3,0)
5−k ̸= 0,

(4.6)

S0,3S2,1 − S2
1,2 = 0, S0,3 ̸= 0,

5∑
k=0

(
5
k

)
S5−k,k (−S1,2)

k (S0,3)
5−k ̸= 0,

then F is Rodd-equivalent to the Rodd-versal deformation of E8/2 :
(β1, β2, p, q) 7→ β3

1 + β5
2 + p1β1 + p2β2 + q1β1β

2
2 + q2β

3
2 .

Proof. First we assume that ∆(j30S) = 0 and condition (4.5) is sat-

isfied. It implies that we get j30f = j30S = β̃3
1 , where (β̃1, β̃2) =((

S3,0

6

)1/3 (
β1 − S2,1

S3,0
β2

)
, β2

)
and ∂5f

∂β̃5
2

(0) ̸= 0. Thus f isRodd-equivalent

to E8/2. By Theorem 4.4 we obtain that F is an Rodd-versal deforma-
tion of f since S satisfies (4.1). If ∆(j30S) = 0 and condition (4.6) is

satisfied, we repeat with (β̃1, β̃2) =

((
S0,3

6

)1/3 (
β2 − S1,2

S0,3
β1

)
, β1

)
. �

Remark 4.17. These are all odd-simple singularities that can be real-
ized as singularities of on-shell Wigner caustics of Lagrangian submani-
folds in affine-symplectic space. The odd-simple singularities J±

10/2 and

E12/2 cannot be realized in this way because their codimensions are
too big for a Lagrangian surface in affine-symplectic 4-space. On the
other hand, for higher dimensional Lagrangian submanifolds in affine-
symplectic space, the necessary number of variables for the generating
families of on-shell Wigner caustics is at least 3 (see Remark 3.15).

4.3. Geometric interpretation. Finally, we provide the geometric
interpretation of each realization condition for simple stable Lagrangian
singularities of on-shell Wigner caustics of Lagrangian surfaces. This
also provides affine-invariant descriptions for such realization condi-
tions, which were presented in a particular coordinate system, in The-
orems 4.11-4.16. Similar results for surfaces on a affine 4-space without
a symplectic structure can be found in [10], where geometry of surfaces
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through the contact map was studied. Background for extrinsic geom-
etry of surfaces in euclidean 4-space can be found in [12]. Here, we
merely adapt it to the case of Lagrangian surfaces in affine-symplectic
4-space. Recall Notation 4.10.

Then, for the canonical euclidean metric in R4, the matrix of the
second fundamental form at (p, q) of L can be written as follows:

II(p,q) =

[
S3,0(q) S2,1(q) S1,2(q)
S2,1(q) S1,2(q) S0,3(q)

]
from which is defined the following determinant:

∆L(p, q) =
1

4
det


S3,0(q) 2S2,1(q) S1,2(q) 0

0 S3,0(q) 2S2,1(q) S1,2(q)
S2,1(q) 2S1,2(q) S0,3(q) 0

0 S2,1(q) 2S1,2(q) S0,3(q)


and it is easy to see that

(4.7) ∆L(p, q) = −16∆(j3qS).

Also, the Gaussian curvature at (p, q) ∈ L is given by the formula

(4.8) κ(p, q) = S3,0(q)S1,2(q)− (S2,1(q))
2 + S2,1(q)S0,3(q)− (S1,2(q))

2.

In extrinsic geometry of surfaces in euclidean R4, ∆L and κ are both
invariant under the action of the euclidean group of isometries on R4,
but neither is invariant under the action of the whole affine group on
R4. The same is true if we restrict to the action of the affine-symplectic
group on symplectic R4. However, although neither ∆L nor κ are affine-
symplectic invariants, the following propositions allow us to use them
for classifying points in a Lagrangian surface of symplectic R4.

Proposition 4.18. The sign ( > 0 , < 0 , = 0 ) of ∆L is an affine
(and therefore affine-symplectic) invariant.

Proof. The proof follows from the following two statements:
(i) The sign of ∆L stratifies the singularities of height functions h[ι] :
L × S3 → R , (m, v) 7→ ⟨ι(m), v⟩, where ι : L → R4 is an embedding,
S3 ⊂ R4 is the unit sphere, and ⟨·, ·⟩ is the euclidean inner product
in R4 (see [12], Lemma 3.2, which relates the sign of ∆L(p, q) to the
number of unit vectors v normal to L at (p, q) ∈ L for which (p, q) is a
degenerate critical point of the height function h[ι, v] : L→ R).
(ii) The stratification of the singularities of height functions h[ι] is
invariant under affine transformations (see [4], Proposition A.4, which
relates singularities of height functions to contact with hyperplanes and
shows that the stratification of these contacts is affine invariant). �
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Recall that a point (p, q) ∈ L is called: (i) parabolic if ∆L(p, q) = 0,
(ii) elliptic if ∆L(p, q) > 0, (iii) hyperbolic if ∆L(p, q) < 0, see [12].

From Proposition 4.18, such a classification of points on L ⊂ R4

(with symplectic structure) is affine (and therefore affine-symplectic)
invariant and, from equation (4.7), we obtain the following immediate
corollary of Theorem 4.11, which gives a geometrical characterization
of singularities D±

4/2 of the Wigner caustic on shell.

Corollary 4.19. Let L be a Lagrangian surface. Iff (p, q) ∈ L is a hy-
perbolic point, the germ of Wigner caustic on shell at (p, q) is generated
by function-germ of type D−

4/2 and it consists of L only, being simple

stable. Iff (p, q) ∈ L is an elliptic point, the germ of Wigner caustic
on shell is generated by function-germ of type D+

4/2 and is Lagrangian

equivalent to the following simple stable germ at 0:

E1/2(L) =
{
(p, q) ∈ R4 : 3p21 = p22, p2 ≤ 0

}
.

We also recall [12] that a parabolic point m ∈M2 ⊂ R4 is called
(i-i) an inflection point of imaginary type, if κ(m) > 0,
(i-ii) an inflection point of real type, if κ(m) < 0, rank{II(m)} = 1,
(i-iii) a point of nondegenerate ellipse, if κ(m) < 0, rank{II(m)} = 2,
(i-iv) an inflection point of flat type, if κ(m) = 0.

Again, we refer to [12] where the above classification of parabolic
points on M2 ⊂ R4 is related to the classification of singularities of
height functions, which, from Proposition A.4 in [4] implies:

Proposition 4.20. When ∆(p, q) = 0, the classification of the para-
bolic point m = (p, q) ∈ M2 ⊂ R4 (with symplectic structure) given by
(i-i)-(i-iv) above is affine (and therefore affine-symplectic) invariant.

And thus, finally, we obtain the other geometric characterizations.

Corollary 4.21. If L is a Lagrangian surface, then L has no inflection
points of real or imaginary types. The germ of the Wigner caustic on
shell at (p, q) ∈ L has simple stable Z2-symmetric singularity generated
by function-germ of type D±

6/2 or D±
8/2 only if (p, q) is a parabolic point

of nondegenerate ellipse, and by function-germ of type E8/2 only if (p, q)
is an inflection point of flat type.

Proof. (4.8) and Lemma 4.12 imply that if (p, q) is a parabolic point of
a Lagrangian surface L then the Gaussian curvature κ(p, q) is nonpos-
itive. Thus, L has no inflection points of imaginary type. The simple
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observation, that, in the Lagrangian case (only), if rank{II(p,q)} = 1
then κ(p, q) = 0, implies L has no inflection points of real type. The
second statement follows from Theorems 4.14-4.15-4.16 and the fact
that ∆(j30S) = 0 together with one of the conditions S3,0S1,2 − S2

2,1 =

0, S3,0 ̸= 0, or S0,3S2,1 − S2
1,2 = 0, S0,3 ̸= 0, imply κ(p, q) = 0. �

Remark 4.22. Simply saying that (p, q) ∈ L is a parabolic point of
nondegenerate ellipse is not enough to characterize the type of singular-
ity of the Wigner caustic on shell at (p, q). Therefore, for a Lagrangian
surface, the type of singularity of the Wigner caustic on shell at a
parabolic point of nondegenerate ellipse is a further affine-symplectic
invariant that allows for a finer classification of the point.
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