Programming 3 Advanced

Introduction, Organization, Rules and Regulations, GitHub Labs

Tomasz Herman

Faculty of Mathematics and Information Science Warsaw University of Technology

Lecture 0, 7 października 2024

Outline

- Oragnization
- 2 Resources
- Rules & Regulations
- Schedule
- 6 GitHub Lab System

Organization

Lecture

Lecturer M.Sc. Tomasz Herman (Course Coordinator)

email mailto:tomasz.herman@pw.edu.pl

www https://pages.mini.pw.edu.pl/~hermant

Course page P3Z

https://pages.mini.pw.edu.pl/~hermant/zajecia/programowanie-3

Course page P3A

https://pages.mini.pw.edu.pl/~hermant/courses/programming-3

Organization

Laboratories

Lab teachers (P3Z)

- M.Sc. Tomasz Herman
- M.Sc. Cezary Bella
 - Adam Grącikowski
- M.Sc. Anna Kozłowska
 - B.Sc. Piotr Krasowski
- M.Sc. Maciej Spychała
- Piotr Skibiński

Lab teachers (P3A)

- M.Sc. Cezary Bella
 - Adam Grącikowski
- M.Sc. Anna Kozłowska
- M.Sc. Maciej Spychała

Resources

Books

- C# 12 in a Nutshell: The Definitive Reference 1st Edition by Joseph Albahari
- C# 12 Pocket Reference: Instant Help for C# 12 Programmers 1st Edition by Joseph Albahari, Ben Albahari
- The C# Player's Guide 5th Edition by RB Whitaker

Documentation

- C# Documentation
 https://docs.microsoft.com/en-us/dotnet/csharp/
- .NET Documentation https://docs.microsoft.com/en-us/dotnet/
- C# Language Reference https://docs.microsoft.com/en-us/dotnet/csharp/ language-reference/

5 / 17

Full texts of rules and regulations are available on USOS

PL course page

https://usosweb.usos.pw.edu.pl/kontroler.php?_action= katalog2/przedmioty/pokazPrzedmiot&prz_kod= 1120-IN000-ISP-0234&lang=pl

EN course page

https:

//usosweb.usos.pw.edu.pl/kontroler.php?_action=katalog2/przedmioty/pokazPrzedmiot&kod=1120-IN000-ISA-0236&lang=en

Class attendance

- Attendance at lectures is not mandatory
- Attendance at laboratory classes is mandatory
- In case of absence, a student receives 0 points for activities conducted during the missed laboratory
- An absence is considered excused upon presenting a medical leave to the course tutor
- A maximum of 3 absences from laboratory classes is allowed

Laboratories

Laboratory activities (100p. total)

- 8 Workshops (4p. each)
- 6 Laboratory Tasks (8p. each)
- 1 Laboratory Task Retake
- 2 Projects (10p. each)

Common Rules

- The code quality is also evaluated
- To earn points, solutions must be submitted to the server using the git version control system
- Solutions will be compared using an anti-plagiarism system

Laboratories - Workshops

- Students can earn 0 to 4 points per workshop
- Each workshop duration is 90 minutes during classes
- Workshops can be completed at home within 1 week of receiving the workshop
- Students who earned fewer than 2 points during the class can earn up to twice their score after completing it at home
- An excused absence allows the student to complete the workshop at home within a week for full points

Laboratories - Tasks

- Students can earn 0 to 8 points per laboratory task
- Each laboratory task duration is 90 minutes during classes
- The entire solution must be created independently
- Laboratory tasks are divided into stages. Points for each stage are specified in the task description. Stages must be completed in the designated order.
- Each stage is checked and graded during classes
- An excused absence allows solving the laboratory task at home, with conversion points awarded at the end of the semester
- Students can earn 0 to 8 points for improving a laboratory task, replacing the score of the indicated task

Laboratories - Task Retake

 Students can earn 0 to 8 points for improving a laboratory task, replacing the score of the indicated task

Laboratories - Projects

- Students can earn 0 to 10 points per project
- Each project has a 2-week completion period from the time of assignment
- Solutions must be completed at home and submitted to the server using the git version control system
- Upon the instructor's request, students may be asked to present their submitted solutions during classes
- The entire solution must be created independently

Acceptable aids

Acceptable aids

- your own materials
- system documentation
- the Internet (provided that the work evaluated is self-constructed)
 - Any publicly available code fragments used must not constitute a significant portion of the solution and must be clearly marked with references to their source
 - Materials sourced from the Internet must be understandable to the student, and the student should be able to explain the operation of the copied code

Prohibited

Al-generated solutions, such as chat GPT, Github Copilot, and similar tools are prohibited

Grading

- Part A (40 p.): W1, W2, W3, W4, L1, L2, L3
- Part B (60 p.): W5, W6, W7, W8, L4, L5, L6, P1, P2

Necessary conditions for passing

- at least 20 points from Part A
- at least 30 points from Part B
- total of more than 50 points

Grading scale

- [0, 50] points 2.0 (fail)
- (50, 60] points 3.0 (satisfactory)
- (60, 70] points 3.5 (fairly good)
- (70, 80] points 4.0 (good)
- (80, 90] points 4.5 (above good)
- (90, 100] points 5.0 (very good)

Schedule

Part A (40 points)

No.	Lab	Topic	Туре	
1	03.10.2024	MSBuild, dotnet	Workshop	
2	10.10.2024	git, C# Basics	Workshop	
3	17.10.2024	Class/Struct, Inheritance, Properties, Access Modifiers	Workshop	
4	24.10.2024	Operators, Indexers, Base Class Library	Workshop	
5	31.10.2024	Yield, Interface, Generics, IEnumerable	Laboratory Task	
6	07.11.2024	Collections, LINQ	Laboratory Task	
7	21.11.2024	Extension Methods, Delegates, Lambdas, Events	Laboratory Task	

Schedule

Part B (60 points)

	8	28.11.2024	Unit Tests, Exceptions	Workshop
	9	05.12.2024	Assembly, Attribute, Reflection, Embedded Resources	Workshop, Project
	10	12.12.2024	IO, Serialization, Disposable, Streams	Laboratory Task
	11	19.12.2024	Thread, Task, Async, Await, Parallel	Workshop
	12	02.01.2025	Thread, Task, Async, Await, Parallel	Laboratory Task
	13	09.01.2025	Interoperability, Marshal, Unsafe	Workshop, Project
	14	16.01.2025	Synchronization	Laboratory Task
			40.45	

GitHub Lab System

- Registration is mandatory
- Visit the https://ghlabs.mini.pw.edu.pl website
- Link your USOS and Github profile
- Join the WUT-MiNI organization
- Tasks will be published on a GitHub repository
- Solutions must be submitted to a GitHub repository

System Accessibility

The GitHub Lab System is accessible only from the MiNI network. To access the system from home, you can use an SSH tunnel.

