
Paper 1079-2021

My First SAS◦R Package - a How To

Bartosz Jabłoński Warsaw University of Technology / Citibank Europe PLC Poland

ABSTRACT

A SAS◦R package1 is an automatically generated, single, stand alone zip file containing organised and
ordered code structures, created by the developer and extended with additional automatically gener-
ated ”driving” files (i.e. description, metadata, load, unload, and help files).

The purpose of a package is to be a simple, and easy to access, code sharing medium, which allows:
on the one hand, to separate the code complex dependencies created by the developer from the user
experience with the final product and, on the other hand, reduce developers and users unnecessary
frustration related to a remote deployment process.

The SAS Packages Framework is a ”pack” of macros, which allows to use and to develop SAS packages.

To create a package the developer executes a few simple steps which, in general, are:
• prepare the code (package content files) and a description file,
• ”fit” them into a structured form (see next sections for details),
• download the SPFinit.sas (the SAS Packages Framework) file,
• and execute the %generatePackage() macro.

In this article we are presenting a step-by-step tutorial which allows to develop a SAS package.

INTRODUCTION and CONTEXT

In the world of programmers, software developers, or data analysts the concept of a package, as a prac-
tical and natural medium to share you code with other Users, is well known and common. To give an
evidence of this statement let us consider a few very popular examples: Python, TEX, and R software.
As an endorsement of this fact it is enough to visit the following web pages:

https://pypi.org/

https://www.ctan.org/

https://cran.r-project.org/

to see the number of available packages. As of January 1st, 2021 there were over 5,962 packages
available on the Comprehensive TEX Archive Network, and over 16,851 packages on the Comprehensive
R Archive Network! More than a dozen of TEX packages were used while writing this article.

With this said, the fundamental question of a new or a seasoned SAS User should be: ”Why there is
no such thing like packages in SAS?” To be clear, there are ”packages” in the SAS ecosystem (see the
footnote) but they do not o�er such functionality as the one mention above. For example the SAS/IML
o�ers (limited) functionality similar to the concept of a package in programming languages mentioned
above but such functionality is not available in the Base SAS.

The general overwiew of the SAS Packages Framework was introduced in [01]. The main goal of this
article is to describe, explain, and discuss the process of creating SAS packages and to allow to learn
how to easily share code with others.

1The idea presented in this article should not be confused with other occurrences of ”package” concept which could be
found in the SAS ecosystem, e.g. Proc DS2 packages, SAS/IML packages, SAS ODS packages, SAS Integration Technologies
Publishing Framework packages, or a *.egp file.

1

MY FIRST SAS PACKAGE - A HOW TO 2

Note. Though using or building a package is very straightforward process the creation of a package
content (i.e. macros, functions, formats, etc.) requires some experience. That is why the intended
readers for the following text are at least intermediate SAS programmers. The good knowledge of the
Base SAS and practice in macro programming will be an advantage. Such a background knowledge
can be found for example in [02].

THE FRAMEWORK

The SAS Packages Framework is a set of macros which allow to interact with SAS packages. Several
of these macros are used to work with a package when it is already created. But from the package
generation point of view the %generatePackage() macro is the one which is crucial. Though all of the
remaining macros are also used during the process, without the %generatePackage() nothing can be
done. Below is the description how to enable the framework in the SAS session.

Location. The SAS Packages Framework macros are all stored in the SPFinit.sas file, which is
available at the following GitHub repository:

https://github.com/yabwon/SAS_PACKAGES

The GitHub repository is the main repository of the framework. An alternative/emergency location
which also contains the file is:

https://pages.mini.pw.edu.pl/~jablonskib/SASpublic/SAS_PACKAGES/

(previously: https://mini.pw.edu.pl/~bjablons/SASpublic/SAS_PACKAGES/)

Instalation. The file can be installed (i.e. downloaded) either manually or programmatically. But
the very first step (step zero) is to create a folder where the framework will be installed. Let’s assume
that from now on for the Windows OS it will be the C:\saspackages folder and for the Linux/UNIX OS
it will be the ~/saspackages directory.

To download the file by hand the following steps have to be executed:

• go to repository mentioned above,
• open the SPF subdirectory,
• select the SPFinit.sas file,
• click on the ”Raw” button on the left side,
• click right-mouse-button on the opened text and select save-as from the menu
• navigate to the directory created in the step zero
• save the SPFinit.sas file

To enable the framework in the SAS session the following snippet has to be run:
filename packages "<directory/from/step/zero/>";

%include packages(SPFinit.sas);

Side Note: Another way to get the framework file would be to just pull the GitHub repository, but with
this way all additional files from the repository are also downloaded.

To get and enable the framework file ”by coding”, from within a SAS session, an execution of the
filename statement with the URL device has to be possible in the session. If this is the case the
following code snippet should be run:
filename packages "<directory/from/step/zero/>";

filename SPFinit url

"https://raw.githubusercontent.com/yabwon/SAS_PACKAGES/main/SPF/SPFinit.sas";

%include SPFinit;

%installPackage(SPFinit)

to enable and install the framework. In all subsequent SAS sessions only this code:
filename packages "<directory/from/step/zero/>";

%include packages(SPFinit.sas);

MY FIRST SAS PACKAGE - A HOW TO 3

should be run to enable the framework.
Side Note: Adding those two lines of code to the autoexec.sas will enable the framework for every new
SAS session.

THE PACKAGE CONTENT

When the SAS Packages Framework is installed and ready the next step is to prepare the package files.
From now on, without loss of generality and for the sake of simplicity, let’s assume that the package
will be named myPackage.

The Example. The process of creating myPackage will be presented with a little help of the following
example code. The code is one file containing the code of:

• one library myLib created in the (same named) subderectory of the WORK directory [lines 1:13],
• two FCMP functions: F1 and F2 [lines 15:25],
• one numeric format fmtNum and informat infNum [lines 27:42],
• one exemplary small dataset myLib.smallDataset [lines 44:50],
• one exemplary bigger dataset myLib.biggerDataset [lines 52:59], and
• two macros: mcrOne and mcrTwo [lines 61:78].

The example code is just a ”shell” but it is ”complex” enough to perform a fully valid presentation.
the example

1 /*one library "myLib" created in the (same named) subderectory of the "WORK" directory.*/

2 data _null_;

3 length rc0 $ 32767 rc1 rc2 8;

4 lib = "myLib";

5 rc0 = DCREATE(lib, "%sysfunc(pathname(work))/");

6 put rc0 = ;

7 rc1 = LIBNAME(lib, "%sysfunc(pathname(work))/" !! lib, "BASE");

8 rc2 = LIBREF (lib);

9 if rc2 NE 0 then

10 rc1 = LIBNAME(lib, "%sysfunc(pathname(work))", "BASE");

11 run;

12

13 libname myLib LIST;

14

15 /*two FCMP functions: "F1" and "F2", */

16 proc FCMP outlib = work.f.p;

17 function F1(n);

18 return (n+1);

19 endsub;

20

21 function F2(n);

22 return (n+2);

23 endsub;

24 run;

25 options cmplib = work.f;

26

27 /*one numeric format "fmtNum" and informat "infNum", */

28 proc FORMAT;

29 value fmtNum

30 low -< 0 = "negative"

31 0 = "zero"

32 0 <- high = "positive"

33 other = "missing"

34 ;

35 invalue infNum

36 "negative" = -1

37 "zero" = 0

38 "positive" = 1

39 "missing" = .

40 other = 42

41 ;

42 run;

43

44 /*one exemplary small dataset "myLib.smallDataset", and*/

MY FIRST SAS PACKAGE - A HOW TO 4

45 data myLib.smallDataset;

46 do n = ., -1, 0, 1;

47 m = put(n, fmtNum.);

48 output;

49 end;

50 run;

51

52 /*one exemplary bigger dataset "myLib.biggerDataset".*/

53 data myLib.biggerDataset;

54 do i = ., -1e6 to 1e6;

55 j = put(i, fmtNum.);

56 k = ranuni(17);

57 output;

58 end;

59 run;

60

61 /*two macros: "mcrOne" and "mcrTwo" */

62 %macro mcrOne();

63 %put **Hi! This is macro &sysmacroname.**;

64 data _null_;

65 set myLib.smallDataset;

66 p = f1(n);

67 p + f2(n);

68 put (n p) (= fmtNum.);

69 run;

70 %mend mcrOne;

71

72 %macro mcrTwo(m=mcrOne);

73 %put **This is macro &sysmacroname.**;

74 %put **and I am calling the &m.**;

75 %&m.()

76

77 %put The answer is: %sysfunc(inputn("I don’t know...", infNum.));

78 %mend mcrTwo;

79

80 /* %mcrTwo() */

When the code facilitating the package is ready the next step is to split it into separate files, according
to so called types, arrange them in a package structure and provide the help information. The upcoming
section describes the process.

THE STRUCTURE

The first step of setting up a structure of a package is to create a package folder. It could be any folder
and it does not have to be ”related” to the framework folder. But, from the practice, since the folder
for the framework is already available it can be used. The package will be named myPackage so let’s
assume that for the Windows OS the package folder will be the C:\saspackages\myPackage and for the
Linux/UNIX OS it will be the ~/saspackages/myPackage directory.

Types and Files. Inside the package folder the developer creates subfolders for package content.
All of them have to be in lower case letters similarly as all files inside.

The code of the package has to be divided in separate files according to the following rules:

• One-file-one-object, e.g. macro %abc() definition has to be contained in a single file without any
definitions of other objects. The only exception are formats/informats, in this case one file has
to contain all definitions of formats/informats sharing the same name, e.g. numeric format abc.,
character format $abc., numeric informat abc., and character informat $abc. all have to be kept
in one file.

• An object name is a file name, e.g. a definition of a macro named %abc() has to be contained in a
file named abc.sas.

MY FIRST SAS PACKAGE - A HOW TO 5

According to these rules the Example code has to be divided into nine parts, one for
each object: mylib.sas, f1.sas, f2.sas, fmtnum.sas, infnum.sas, mylib.smalldataset.sas,
mylib.biggerdataset.sas, mcrone.sas, and mcrtwo.sas .

The files have to be placed in subfolders indicating their types, and the subfolders have to be created
according to the specific rules:

• subfolder name contains only lower case letters, digits, and an underscore (”_”)
• subfolder name is composed of two parts separated by an underscore, i.e.
◦ the first part is a series of digits (with leading zeros, e.g. 001, 002, . . ., 123, 124, . . .) to keep

an execution sequence in case the code must be ordered to run properly. For example if a code
creating a library has to be execute before a code creating a dataset then subfolders could have
the following form: 001_libname and 002_data.

◦ the second part, called folder type, indicates subfolder’s content. The type has to be one of the
following:
· libname (for libraries assignments),
· macro (for macros),
· function (for proc fcmp function),
· functions (mind the ”s” at the end, for proc fcmp functions),
· format (for format and informat),
· formats (mind the ”s” at the end, for formats and informats),
· imlmodule (for IML modules),
· proto (for proc proto external C functions),
· data (for the code generating datasets),
· lazydata (for the code generating datasets loaded on demand, so called ”lazy datasets”),
· exec (for so called ”free code”),
· clean (for the code cleaning up the session after execs) or
· test (for developer code with package tests, not included into the package).

According to these rules the Example code will be structured as presented in Figure 1. The Notes below
provides additional justification for such structure.

Note 1. Types functions and formats behaves di�erently than function and format. The di�erence
is related to the way how the code has to be structured inside the file (see [01] for the details). Work
with the ”S” is more convenient, and no additional options are needed, that is why types functions

and formats will be used.

Note 2. The code of the dataset smallDataset refers to the myLib library and uses the fmtNum. format
that is why their code has to be generated first and, as a consequence, folders for their code will have
smaller ordering numbers to ensure proper code execution. So when the package will be loaded into
the User’s SAS session as the first the code from the 001_libname folder will be executed, as the second
the code from the 002_functions and so on.

Note 3. The code of the dataset biggerDataset generates a dataset of approximately 50 megabytes
whence it will be included in the package as a lazydata type. This means that it will not be generated
automatically during the package loading but it will be generated ”on demand”.

MY FIRST SAS PACKAGE - A HOW TO 6

..<C:\saspackages\myPackage>

|

+-001_libname

| |

| +-mylib.sas

|

+-002_functions

| |

| +-f1.sas

| +-f2.sas

+-003_formats

| |

| +-fmtnum.sas

| +-infnum.sas

+-004_data

| |

| +-mylib.smalldataset.sas

|

+-005_lazydata

| |

| +-mylib.biggerdataset.sas

+-006_macro

|

+-mcrone.sas

+-mcrtwo.sas

Figure 1: Structure of the myPackage package subfolders.

The Code. When the files and folders structure is set up the subsequent step is to prepare the
code. For some types the code can be copy-pasted ”as is”, for other some small ”cosmetic” changes
are required. Everything is very straightforward.

The code of the libname type can be copy-pasted so the mylib.sas file contains the following content:

mylib.sas

1 data _null_;

2 length rc0 $ 32767 rc1 rc2 8;

3 lib = "myLib";

4 rc0 = DCREATE(lib, "%sysfunc(pathname(work))/");

5 put rc0 = ;

6 rc1 = LIBNAME(lib, "%sysfunc(pathname(work))/" !! lib, "BASE");

7 rc2 = LIBREF (lib);

8 if rc2 NE 0 then

9 rc1 = LIBNAME(lib, "%sysfunc(pathname(work))", "BASE");

10 run;

11

12 libname myLib LIST;

Since the functions type is used for the FCMP functions only the plain code of the function has to
be copy-pasted, without the Proc FCMP header and the run footer. The header and the footer will be
generated automatically. Whence the f1.sas file contains the following content:

f1.sas

1 function F1(n);

2 return (n+1);

3 endsub;

and the f2.sas file contains the following content:

MY FIRST SAS PACKAGE - A HOW TO 7

f2.sas

1 function F2(n);

2 return (n+2);

3 endsub;

Similarly, to the functions type, works the formats type. Only the plain code of the format/informat
has to be copy-pasted into the code file. Also without the Proc FORMAT header and the run footer which
will be generated automatically. The fmtnum.sas file contains the following content:

fmtnum.sas

1 value fmtNum

2 low -< 0 = "negative"

3 0 = "zero"

4 0 <- high = "positive"

5 other = "missing"

6 ;

and the infnum.sas file contains the following content:
infnum.sas

1 invalue infNum

2 "negative" = -1

3 "zero" = 0

4 "positive" = 1

5 "missing" = .

6 other = 42

7 ;

The code for both datasets (including lazy data) and macros can be copy-pasted ”as is” so the files
mylib.smalldataset.sas, mylib.biggerdataset.sas, mcrone.sas, and mcrtwo.sas will contain, re-
spectively, the following content:

mylib.smalldataset.sas

1 data myLib.smallDataset;

2 do n = ., -1, 0, 1;

3 m = put(n, fmtNum.);

4 output;

5 end;

6 run;

mylib.biggerdataset.sas

1 data myLib.biggerDataset;

2 do i = ., -1e6 to 1e6;

3 j = put(i, fmtNum.);

4 k = ranuni(17);

5 output;

6 end;

7 run;

mcrone.sas

1 %macro mcrOne();

2 %put **Hi! This is macro &sysmacroname.**;

3 data _null_;

4 set myLib.smallDataset;

5 p = f1(n);

6 p + f2(n);

7 put (n p) (= fmtNum.);

8 run;

9 %mend mcrOne;

and
mcrtwo.sas

1 %macro mcrTwo(m=mcrOne);

2 %put **This is macro &sysmacroname.**;

3 %put **and I am calling the &m.**;

4 %&m.()

MY FIRST SAS PACKAGE - A HOW TO 8

5

6 %put The answer is: %sysfunc(inputn("I don’t know...", infNum.));

7 %mend mcrTwo;

Help. The final step of preparing the package content is providing a valuable-help-information.
Every part of the code or a comment in the package file surrounded by the ”/*** HELP START ***/”
and the ”/*** HELP END ***/” tags will be treated as a part of the help information extracted for the
User by the %helpPackage() macro. These tags have to be placed in separate line and left adjusted. If
the following text:

”The ‘%mcrTwo()‘ macro is the main macro of the package.

It has one key-value parameter ‘m‘ with default value ‘mcrOne‘.

Example 1. Basic use-case: %mcrTwo(m=mcrOne)”

is to be used as a comment in the mcrtwo.sas file it could be placed the following way:

mcrtwo.sas with the help information

1 /*** HELP START ***/

2 /*

3 ## General Info: ##

4

5 The ‘%mcrTwo()‘ macro is the main macro of the package.

6

7 It has one key-value parameter ‘m‘ with default value ‘mcrOne‘.

8 */

9 /*** HELP END ***/

10

11 %macro mcrTwo(m=mcrOne);

12 %put **This is macro &sysmacroname.**;

13 %put **and I am calling the &m.**;

14 %&m.()

15

16 %put The answer is: %sysfunc(inputn("I don’t know...", infNum.));

17 %mend mcrTwo;

18

19 /*** HELP START ***/

20 /*

21 ## Examples: ##

22

23 Example 1. Basic use-case:

24 ~~~~~~~~~~~~~~~~~~~~~~~~~~

25

26 %mcrTwo(m=mcrOne)

27

28 ~~~~~~~~~~~~~~~~~~~~~~~~~~

29 */

30 /*** HELP END ***/

Attentive reader will notice at once that the comment was provided in a markdown format (see [04]).
Though it is the author’s favourite way of writing help info (and also very practical, since it is ”readable”
both as a plain text and as interpreted one) it is not the obligatory way of doing so. In fact, the form of
the help text is one-hundred percent the Developer’s initiative.

Note. If the help information is not provided, i.e. there are no help tags in the file, the package gener-
ation process will rise a warning in the SAS log indicating this fact. This means that help tags should
be provided also to other files in the package not only to the mcrtwo.sas file.

THE DESCRIPTION FILE

When the content is ready, and the files and folders are structured there is only one more thing to do.
It is the creation of the desctiption.sas file and (optional) the licence.sas file. Both files have to be

MY FIRST SAS PACKAGE - A HOW TO 9

placed in the package folder alongside with the subfolders with the code, so for the Example the folder
structure would be extended like in Figure 2.

..<C:\saspackages\myPackage>

|

+-001_libname

| |

[...] +-mylib.sas

|

+-006_macro

| |

| +-mcrone.sas

| +-mcrtwo.sas

|

+-description.sas

|

+-<license.sas>

Figure 2: The description.sas and (optional) license.sas files in the package folder.

The description.sas file is mandatory, it has simple structure, and contains the package metadata
and (short) description (compare [03]). An example of the description.sas file for a package can be
seen in Figure 3. The structure will be explained in the next paragraphs (see [01] for the details).

/*** HEADER ***/ À

Type: Package Ê

Package: ThePackageName Ë

Title: Short description, single sentence. Ì

Version: x.y Í

Author: Fname1 Lname1 (xxx1@yyy.zz), Fname2 Lname2 (xxx2@yyy.zz) Î

Maintainer: Fname3 Lname3 (xxx3@yyy.zz) Ï

License: XYZ17 Ð

Encoding: UTF8 Ñ

Required: "Base SAS Software", "SAS/XYZ", "SAS/ACCESS Interface to ..." Â

ReqPackages: "piPackage (3.14)", "ultimatePackage (42)" Ã

/*** DESCRIPTION ***/ Á

DESCRIPTION START: Ò

Lorem ipsum dolor sit amet, ThePackageName consec tetur

adipis cingelit. Nullamdapibus lacus a elit congue

elementum.

Suspendisse iaculis ipsum ThePackageName nec ante

luctus volutpat. Donec iaculis laoreet tristique:

~~~~~~~~~~~~~~

data _null_;

x = 17;

run;

~~~~~~~~~~~~~~

DESCRIPTION END: Ó

Figure 3: General structure of a SAS package description file.

The meaning of entries inside the description.sas file are the following (the dark bullet with values
from 1 to 10 marks elements which are mandatory):

MY FIRST SAS PACKAGE - A HOW TO 10

(À) /***HEADER***/ - marks the header start (it is optional comment). Each of the following lines is a
key:value pair and such a pair must be a single line of text. The colon (:) is a field separator and
is restricted in lines of the header.

(Ê) is a constant value, always Type:Package.
(Ë) is the package name. It is required, not null, up to 24 characters long, and shares SAS dataset

naming restrictions.
(Ì) is the short text, i.e. one phrase, describing the package.
(Í) is the package version, has to be a positive number (i.e.>0). Note. The %loadPackage() macro

contains a dedicated macrovariable requiredVersion to test if the provided version of a package is
greater or equal then the required version - a very important, in line with the ”SAS way”, assumption
must be highlighted! The assumption is: packages are assumed to be backward compatible!

(Î) and (Ï) are comma separated lists of package author(s) and maintainer(s).
(Ð) indicates the license under which the package is distributed. The license text itself should be in-

serted into the license.sas file (see further paragraphs for details).
(Ñ) points the information about SAS session encoding the package files were created in. It is tech-

nical parameter and possible values have to satisfy requirements for the encoding= option of the
filename statement.

(Á) /*** DESCRIPTION ***/ - marks the description start (it is optional comment).
(Ò) and (Ó) The package description is the last required part. It is a free text bounded between the

”DESCRIPTION START:” and the ”DESCRIPTION END:” tags. It can be multi-line. It should elaborate
about the package and its components (e.g. macros, functions, datasets, etc.). Text outside the
tags is ignored.

There are two additional, optional, elements of the header.

(Â) Required - is a quoted and comma separated list of licensed SAS products required for the package
to work. Values on the list should be the same as the proc setinit output in the SAS log.

(Ã) ReqPackages - is a quoted and comma separated list of names and versions (in parentheses) of
other SAS packages required for the package to work.

The description.sas file for the Example discussed can look like in Figure 4.

Type: Package

Package: myPackage

Title: My first SAS package.

Version: 1.0

Author: John Smith (john.smith@mail.com)

Maintainer: Jane Smith (jane.smith@mail.com)

License: MIT

Encoding: UTF8

Required: "Base SAS Software"

DESCRIPTION START:

The myPackage

The ‘myPackage‘ is my first SAS package and

for sure it won’t be the last package!

It was created during SAS Global Forum 2021

virtual event.

It helps me to share my code with other SAS users!

DESCRIPTION END:

Figure 4: The description file for myPackage.

MY FIRST SAS PACKAGE - A HOW TO 11

License. A separate discussion is the license.sas file. If the file is not provided by the Developer
the %generatePackage() macro automatically generates the MIT license file based on generation date
and the Author: tag in the description file.

If the Developer want to distribute the package under di�erent conditions then the MIT license then
the license.sas file, containing required license text, has to be provided.

In the Example that is discussed the MIT license will be generated automatically.

PACKAGE GENERATION

At this point everything is ready, the SAS Packages Framework is downloaded, the description file is
prepared, and the package content is structured and ”sprinkled” with the help information. There is
nothing left to do but to generate the package!

The %generatePackage() macro. To generate the package the %generatePackage() macro has to
be executed. According to the Example’s setup the code to be run has to be the following:

code to generate the package under Windows

1 filename packages "C:\saspackages";

2 %include packages(SPFinit.sas);

3

4 %generatePackage(C:\saspackages\myPackage)

or the following:
code to generate the package under Linux/UNIX

1 filename packages "~/saspackages";

2 %include packages(SPFinit.sas);

3

4 %generatePackage(~/saspackages/myPackage)

Summary. When the above code is executed the mypackage.zip file is created inside the package
folder. When the process is finished the SAS Packages Framework prints out a summary, both in the
log and as a set of tables in the output window.

The best practice is to start with investigating the log. In the log there are information about results
of creating the package content. This section indicates if a given file was copied into the zip file and if
it was successful. It also prints a warning message if the help tags were not found in some of files or
an error message if the tags were mismatch (e.g. overlapping). Package SHA256 checksum is printed
in the log too. The final part of the log provides an information about the testing process, if one was
executed.

In the output window a general information about the package is printed out. It contains:

• package folder location,
• login of a user who was running the session,
• time-stamp of the execution,
• version of SAS used for the process
• information about both package and session encoding

The next part lists packages components and metadata information such as: name, version, license
type, MD5 hash of the package low cased name (used as a fileref), and a list of required SAS components
and SAS packages (if they were provided). Package SHA256 checksum is printed out again.

The last part is a table with the summary of tests executed. It contains, in subsequent observations,
a name of the test and values of systask return code, sysrc return code, the number of errors and the
number of warnings for that particular test. Also a path to the location of logs and listings from the
tests is printed out.

MY FIRST SAS PACKAGE - A HOW TO 12

Obs testName systask sysrc error warning
1 loading 0 0 0 0
2 my test 0 0 0 0

Table 1: Expected result for properly executed test for loading package and a Developer’s test.

TESTS

Process of testing is composed of two parts. The first one is automatic and mandatory, the second one
is up to developer’s will. But they both are dependent on the XCMD option and are executed only if it is
enabled. This is because tests are executed in separate SAS sessions run by the systask statement.
As a default the !SASROOT directory is used to search for SAS binary and config file but it can be altered
by sasexe= and sascfgfile= parameters.

Test for Loading. Assuming the XCMD is on, the first test is generated automatically by the frame-
work and checks some fundamental functionalities like: package loading, printing package help info,
printing package code, checking if macros (if there are any) were compiled, and eventually checks
package unloading. The test result is printed out in the summary table as the number one under the
name ”loading”. If everything went well and the test passed all result values for it should be zeros (see
Table 1). If there were any errors or warning in the loading test log they will be also printed out in the
main SAS session log with lines numbers.

Developer’s tests. If the Developer want to perform additional tests the test type subfolder has
to be created in the package folder. Each file with code inside this folder will be executed in a separate
SAS session the same way as the loading test. The file with test code does not have to contain code
loading the package, it is automatically added in dedicated autoexec.sas file. For example trivial test
executing only one line of code:

my test.sas

1 %mcrTwo(m=mcrOne)

will be executed in a separate SAS session and, similarly to the loading test, if everything went well and
the test passed all result values for it should be zeros (see Table 1).

No XCMD. Testing can be suspended by setting the testPackage= parameter to ”N”. But when
the XCMD option is disabled the testing cannot be executed automatically, in such case the framework
prints out text of code which should be executed by hand by the Developer to verify loading process.

CONCLUSION

This article presented the process of generating SAS package with use of the SAS Packages Frame-
work. Fundamental concepts of types, code structuring, providing help information and testing were
discussed. Everything was executed with a little help of a very simple Example. Author hopes that
knowledge presented here will help and engage Developers to contribute and create more practical
and useful SAS packages in the (near) future!

REFERENCES
[01] Bartosz Jabłoński, ”SAS Packages: The Way to Share (a How To)”,

SAS Global Forum 2020 Proceedings, 4725-2020
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2020/4725-2020.pdf

extended version available at: https://github.com/yabwon/SAS_PACKAGES/blob/main/SPF/Documentation
[02] Art Carpenter, ”Carpenter’s Guide to Innovative SAS Techniques”, SAS Press, 2012
[03] Hadley Wickham, ”R Packages: Organize, Test, Document, and Share Your Code”,

O’Reilly Media, 2015, http://r-pkgs.had.co.nz/description.html

MY FIRST SAS PACKAGE - A HOW TO 13

[04] Markdown, https://en.wikipedia.org/wiki/Markdown as of January 2021

ACKNOWLEDGMENTS

Author would like to acknowledge Filip Kulon and Krzysztof Socki for their contribution and e�ort
to make this paper looks and feel as it should!

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at one of the following
e-mail address:

yabwonQ gmail.com

bartosz1.jablonskiQ citi.com

or via the following LinkedIn profile: www.linkedin.com/in/yabwon

—

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks
of SAS Institute Inc. in the USA and other countries. r indicates USA registration.
Other brand and product names are trademarks of their respective companies.

Appendix A - Other Types

A few of SAS package file types were not discussed in the Example presented in the main part of the
article. They will be discussed in this Appendix section.

A definition of an imlmodule has to be plain code of the Proc IML module, for example:
imlmodule

1 start aModule(x);

2 return (x#x + 42);

3 finish aModule;

All modules defined in the ..._imlmodule subfolder are compiled with one Proc IML execution and are
stored in the work.&packageName.iml catalog.

A definition of a proto external C function has to be plain code of the PROTO C function. All functions
defined in the ..._proto subfolder are compiled with one Proc Proto execution and are stored in
the work.&packageName.proto dataset. Function code has to contain the header, and the body of the
function between externc and externcend, for example:

proto

1 int doublePlusOne(int x);

2

3 externc doublePlusOne;

4 int doublePlusOne(int x)

5 {

6 return (2*x + 1);

7 }

8 externcend;

The exec folders are for so-called ”free code”, i.e. if a package, to be ready and usable, requires some
additional code to be run, and the code does not fit provided types, this code can be inserted into a file
inside the exec subfolder.

The clean folders are design for cleaning after execs, i.e. if a code from one of exec folders creates
some object (e.g. a catalog, a macro, or a dataset) the appropriate code inside a clean subfolder shoud
be developed to remove that created object.

	ABSTRACT
	INTRODUCTION and CONTEXT
	THE FRAMEWORK
	Location.
	Instalation.

	THE PACKAGE CONTENT
	The Example.

	THE STRUCTURE
	Types and Files.
	The Code.
	Help.

	THE DESCRIPTION FILE
	License.

	PACKAGE GENERATION
	The %generatePackage() macro
	Summary

	TESTS
	Test for Loading
	Developer's tests
	No XCMD

	CONCLUSION
	REFERENCES
	ACKNOWLEDGMENTS
	CONTACT INFORMATION
	—
	Appendix A - Other Types

