
PharmaSUG 2025 - Paper AP-121

SET Statement Considered Harmful

Bartosz Jabłoński, yabwon/Warsaw University of Technology

ABSTRACT
The SET statement is the primary way SAS○R programmers access the data (I could bet $5, it is
over 90% of cases). Since data processing in SAS is I/O oriented the majority of optimization
can be done by reducing I/O, i.e., the proper use of the SET statement1 in the code. The article
is dedicated to beginner SAS programmers and considered education focused. In the paper we
present a group of examples showing how (mis)use of the SET statement can be (and is) harmful
for data processing and how the grim situation can be fixed.

Table of contents

WHEN SET DOES NOT MEAN "ALL SET" 1
THE DATA . 2
THE LIST . 3

"TROLLING IS A ART" . 3
"TWO BIRDS WITH ONE STONE" 4
"IT MAKES MY BLOOD BOIL" . 4
"CUTTING, SLASHING, AND SHREDDING" 5
"THE FINAL (BACKWARD) COUNTDOWN" 6
"DISENCHANTING" . 6
"DISENCHANTING" AGAIN . 7
"DISENCHANTING" A BIT MORE 7
"NICE PIECE OF ABSOLUTELY USELESS STEP" 8

"DOING MORE BY DOING LESS" 8
"DOING BY NOT DOING" . 9
"NO RAW MACRO LOOPS", PART 1. 10
"NO RAW MACRO LOOPS", PART 2. 11
"#HASH TABLE FOR HELP" . 14
"NO RAW MACRO LOOPS", PART 2. - REVISITED 15
"ONE STEP TO RULE THEM ALL" 16
"I HAVE SEEN THIS BEFORE" . 17

CONCLUSION . 20
REFERENCES . 20
Appendix A - code coloring guide 21
INDEX . 21

WHEN SET DOES NOT MEAN "ALL SET"

Toutes choses sont dites déjà; mais comme personne n’écoute, il faut toujours recommencer.2

André Gide

Contrary to the famous article by Edgar Dijkstra (see [Dijkstra 1968]), in this text we are not going to dis-
courage SAS programmers from using the SET statement. In fact, discouraging use of the SET statement
could be rather hard (though not impossible) to achieve. In this article, we want bring beginner SAS pro-
grammer’s attention to the following good programming practice, shared by Aster and Seidman in their book,
to "consider every SET statement1 with suspicion" (see [Aster & Seidman 1996]).

However strange as it might sound, a SAS data set (not a variable, not an array) is a fundamental data struc-
ture in SAS programming. All data communication is done through SAS data sets. Whenever we are placing
data into the Program Data Vector (PDV) or pushing data off of it, we are using SAS data sets as a transport
medium. Data sets by design are stored on disk drives and require input and output (I/O) operations to
move data into and from memory. Even though modern disk drives went through huge technological trans-
formation gaining a lot of speed, still I/O operations are one of the slowest (or rather most time-consuming)
part of code execution. Thus, reducing the number of I/O operations seems to be the most natural way of
improving program efficiency. If reading a data set one time takes some time, doing it twice doubles the time,
etc. If one says: "my data are small and read/write in fraction of a second", we postulate that even small data,
when read thousands of times, can become annoyingly "big".

1Of course also statements like: MERGE, INPUT, DATA=, etc.
2See "Conclusion" section for explanation

1

B. Jabłoński - SET Statement Considered Harmful

Of course, working with the SET statement is not the only way to "interact" with the data; reading in from
or writing out to external text files, or processing through library engines, also fit into I/O operations realm,
and because of that, can be considered potentially "harmful."

The "SET" statement in the article’s title is a representative of a wider class of statements also containing:
the MERGE, INPUT, DATA, DATA=, OUT=, or any other I/O related statement. In fact, the title could be:
"Use of too many input/output statements can be potentially harmful for a program performance" (but you
must admit, it would not be "it"). In fact, in the Dijkstra’s article, it is not that the GOTO3 statement is evil – it
is the lack of structured programming that causes harm. Similarly, here, it is not the SET statement itself that
is at fault . The thing we want to highlight is a general (so often haunting inexperienced SAS programmers)
problem of writing code that in one or another way inefficiently uses I/O operations.

Being a beginner SAS programmer is not an easy job; that is why we want to help you in the journey by
showing some of the most common I/O pitfalls and how to avoid them. To be clear, this article should not be
considered exhaustive (frankly, we do not even dare to claim so). There is a rather high probability you will
have to search through more literature to make yourself a better SAS programmer, but we hope you will be
able to use this article as a convenient starting point or, at least, a "handy" support.

THE DATA

Let’s assume we are starting with the following data set and text file:
code: data

1 options DLcreateDIR;
2 libname source "%sysfunc(pathname(WORK))/have";
3 filename source "%sysfunc(pathname(WORK))/have/have.txt";
4

5 data source.have;
6 call streaminit(42);
7 file source;
8 do grp = 1 to 3333 by 2, 2 to 3333 by 2;
9 length id $ 8;
10 do id = "A","B","C","D","E","F","G","H","I","J","K","L","M",
11 "N","O","P","Q","R","S","T","U","V","W","X","Y","Z";
12 do number = 1 to rand("integer",17,42);
13 obs+1;
14 output;
15 put grp id number obs;
16 end;
17 end;
18 end;
19 run;

The data set HAVE located in the library named SOURCE, is rather moderate in size (somewhere around
80MB in volume). HAVE has the following variables: grp, id, number, and obs. Table 1 displays part of
the data set. The LOG summarizes it as:

the log - observations and variables
1 NOTE: The data set SOURCE.HAVE has 2’555’488 observations and 4 variables.

The have.txt text file created contains the same data and is approximately 45MB in volume.

3Yes, the SAS language also has GOTO statements, both in the 4GL and the macro language.
2

B. Jabłoński - SET Statement Considered Harmful

Table 1: Data set SOURCE.HAVE, example
grp id number obs

1 A 1 1

1 A 30 30

1 B 1 31

1 B 36 66

1 C 1 67

1 C 20 86

1 D 1 87

1 D 36 122

1 E 1 123

1 E 35 157

1 F 1 158

1 F 40 197

1 G 1 198

1 G 34 231

1 H 1 232

1 H 18 249

1 I 1 250

1 I 42 291

1 J 1 292

1 J 22 313

1 K 1 314

1 K 39 352

1 L 1 353

grp id number obs

1 L 21 373

1 M 1 374

1 M 22 395

1 N 1 396

1 N 32 427

1 O 1 428

1 O 37 464

1 P 1 465

1 P 32 496

1 Q 1 497

1 Q 42 538

1 R 1 539

1 R 35 573

1 S 1 574

1 S 38 611

1 T 1 612

1 T 37 648

1 U 1 649

1 U 24 672

1 V 1 673

1 V 17 689

1 W 1 690

1 W 27 716

grp id number obs

1 X 1 717

1 X 18 734

1 Y 1 735

1 Y 26 760

1 Z 1 761

1 Z 37 797

3 A 1 798

3 A 20 817

3 B 1 818

3 B 37 854

3 C 1 855

3 C 37 891

3 D 1 892

3 D 17 908

3 E 1 909

3 E 42 950

3 F 1 951

3 F 40 990

3 G 1 991

3 G 33 1023

3 H 1 1024

3 H 39 1062

3 I 1 1063

grp id number obs

3 I 28 1090

3 J 1 1091

3 J 24 1114

3 K 1 1115

3 K 27 1141

3 L 1 1142

3 L 35 1176

3 M 1 1177

3 M 30 1206

3 N 1 1207

3 N 40 1246

3 O 1 1247

3 O 37 1283

3 P 1 1284

3 P 28 1311

3 Q 1 1312

3 Q 33 1344

3 R 1 1345

3 R 25 1369

3 S 1 1370

3 S 37 1406

3 T 1 1407

3 T 24 1430

THE LIST

Examples presented here have (more or less) the following form: first there is a short introduction, then
(usually) two parallel snippets of code are compared, and some comments are shared. To be 100% clear,
those examples and techniques used should not be perceived as "silver bullets", they are rather "80/20
rules" – i.e., usually working best practices. It might happen that your specific programming setup could be
so exotic that you will basically have to use extra SET, MERGE, or similar statement, but that’s life...

"TROLLING IS A ART"
Finding the following snippet in code you read you can be almost certain someone is playing a "troll."

code: the existing situation
1 /* a troll */
2 data source.have;
3 set source.have;
4 run;

code: a smarter approach
1 /* solution */
2

3 /* a rare case of no-code/low-code */
4 /* beating programming */

The DATA step is not only wasting I/O operations, your time, and space in the code file, but also can be
potentially dangerous because overwriting may destroy potential indexes associated with the data set.
And in case someone is really trying to get rid of an index, there are much better ways to do it, like
PROC DATASETS, which we are going to talk about in a moment.

In this case we replace one data reading (I, input) and one data write (O, output) with zero, so the I/O
savings can be symbolically presented as: 2I/OÐ→0I/O, which gives an infinite (∞) gain.

3

B. Jabłoński - SET Statement Considered Harmful

"TWO BIRDS WITH ONE STONE"
When you need only a vertical subset (i.e., only selected variables) of your data for some sort of BY-group
processing (i.e., sorting is required) you can do both in a single processing step.

code: the existing situation
1 /* two birds... */
2 data work.have;
3 SET source.have;
4 drop obs;
5 run;
6

7 proc sort data=work.have;
8 by id grp;
9 run;

code: a smarter approach
1 /* ...one stone */
2 proc sort
3 data=source.have(drop=obs)
4 out=work.have
5 ;
6 by id grp;
7 run;

Instead of copying the sub-selected data and then sorting, we can do sorting directly on a subset of data.
With this approach we replace two data reading (SET statement and DATA= option) and two data write
(DATA statement and implicit output of the PROC SORT) with just two (DATA= and OUT= options), and the
I/O reduction in this case is 4I/OÐ→2I/O.

[Note] This is a good moment to state a disclaimer. We are aware that such a simplified approach (i.e.,
presenting xI/OÐ→yI/O reduction purely based on the number of SAS statements) and, especially, its pre-
cision might be debated, but the aim of the article is not to provide exact (up to every byte) I/O estimations.
Our idea is to point out some programming styles which can result in better (or worse) performance of our
programs.

"IT MAKES MY BLOOD BOIL"
I had a chance to see the following snippet multiple times when reviewing a coworker’s code, and it always
made (and still makes) my blood boil. It is almost like the "troll" but worse...

code: the existing situation
1 /* "blood boiler" */
2 data work.have;
3 SET work.have;
4 format number ROMAN12.;
5 run;

code: a smarter approach
1 /* "cooler" */
2 proc datasets lib=work noprint;
3 modify have;
4 format number ROMAN12.;
5 run;
6 quit;

Instead of data read and write just to modify metadata, i.e., format assigning to the number variable, use
of the PROC DATASETS makes much more sense. With the PROC DATASETS we can achieve our goal
with just a fraction of the original I/O operations sacrifice. The bottom line is: 2I/OÐ→0.1I/O. We cannot
write 0I/O because the PROC DATASETS has to touch metadata, what involves some I/O operations, but
definitely much less than a "full" data step.

The Polish language idiom for "it makes my blood boil" is: "nóż się w kieszeni otwiera"4 what literally trans-
lates to "a knife opens in one’s pocket", and this reminds me that a very good introduction (and more) to
PROC DATASETS can be found in [Raithel 2010 & 2018].

4See: https://en.wiktionary.org/wiki/n%C3%B3%C5%BC_si%C4%99_w_kieszeni_otwiera
4

B. Jabłoński - SET Statement Considered Harmful

"CUTTING, SLASHING, AND SHREDDING"
Sometimes we have to split data into separate data sets according to values of a variable, or according to a
bunch of different splitting rules.

To split by values, people often involve macro-loops, but usually not the way it is "the way" for macro loops.
Both snippets below, the left and the right one, can be imagined as a result of executing %DO-LOOP(s) over
values: 1, 2, and 3.

code: the existing situation
1 /* silly */
2 data work.group_1;
3 SET source.have;
4 where grp=1;
5 run;
6 data work.group_2;
7 SET source.have;
8 where grp=2;
9 run;
10 data work.group_3;
11 SET source.have;
12 where grp=3;
13 run;

code: a smarter approach
1 /* smarter */
2 data work.group_1
3 work.group_2
4 work.group_3;
5 SET source.have;
6 where grp in (1 2 3);
7 select(grp);
8 when(1) output work.group_1;
9 when(2) output work.group_2;
10 when(3) output work.group_3;
11 otherwise;
12 end;
13 run;

Though both achieve the same final effect, the processing efficiency differs. The left one just wraps a 4GL
code snippet of the whole DATA step inside the loop’s body, like this:

code: 1 loop
1 %do i = 1 %to 3;
2 data work.group_&i.;
3 SET source.have;
4 where grp=&i.;
5 run;
6 %end;

When we think twice, and realize (or rather remind ourselves) that macro language is not a 4GL-code gen-
erator but, it is a whatever-text-you-want generator(!), we can write it the "right" way, and easily reduce not
needed I/O operations with three macro loops:

code: 3 loops
1 data %do i = 1 %to 3;
2 work.group_&i.
3 %end;;
4 SET source.have;
5 where grp in (%do i = 1 %to 3; &i. %end;);
6 select(grp);
7 %do i = 1 %to 3;
8 when(&i.) output work.group_&i.;
9 %end;
10 otherwise;
11 end;
12 run;

We get the same three data writes, but only one data read!

The trick with splitting data in a single read works well also for the "different splitting rules" case, even if
result data sets have "overlapping" observations. In such cases, instead SELECT statement, a "good-old"
IF-THEN conditional logic does the job:

5

B. Jabłoński - SET Statement Considered Harmful

code: the existing situation
1 data work.group_1;
2 SET source.have;
3 where grp in (1 2 3331 3332);
4 run;
5

6 data work.group_2;
7 SET source.have;
8 where "A"<id<"C" or "X"<id<"Z";
9 run;

code: a smarter approach
1 data work.group_1 work.group_2;
2 SET source.have;
3

4 if grp in (1 2 3331 3332) then
5 output work.group_1;
6 if "A"<id<"C" or "X"<id<"Z" then
7 output work.group_2;
8 run;

In the scenarios we have considered, reduction went, respectively, from 6I/O to 4I/O, and from 4I/O to
3I/O, but in the general case it goes: 2nI/OÐ→n+1I/O, where n is the number of "groups/rules" we have
to split the data.

"THE FINAL (BACKWARD) COUNTDOWN"
Sometimes we may be faced with a task that requires reversing our data order, i.e. reading a data set from
bottom to top. In such a situation, instead of creating an artificial ordering variable n and resorting our newly
created data by it, it is much better (and cheaper) to use the POINT= option in the SET statement.

code: the existing situation
1 /* sloppy */
2 data work.have;
3 SET source.have;
4 n + 1;
5 run;
6

7 proc sort data=work.have
8 out=work.have(drop=n);
9 by descending n;
10 run;

code: a smarter approach
1 /* smarter */
2 data work.have;
3 do point = nobs to 1 by -1;
4 SET source.have point=point
5 nobs=nobs;
6 output;
7 end;
8 stop;
9 run;

Explicit DO-LOOP reads the data backward and gives the following reduction: 4I/OÐ→2I/O.

"DISENCHANTING"
Sometimes people may think that reading data from an external file with help of INFILE and INPUT state-
ments requires "special" treatment. In fact there is nothing special in such DATA steps.

code: the existing situation
1 data work.have;
2 infile source;
3 INPUT grp id $ number obs;
4 run;
5

6 data work.have2;
7 SET work.have;
8 if grp NE 1;
9 number2 = number + 1000;
10 run;

code: a smarter approach
1 data work.have2;
2 infile source;
3 INPUT grp id $ number obs;
4 if grp NE 1;
5 number2 = number + 1000;
6 run;

There is no need to split our processing in two steps. We can read data directly from an external file, filter
them out, derive new variables, or do calculations. Again: 4I/OÐ→2I/O.

6

B. Jabłoński - SET Statement Considered Harmful

"DISENCHANTING" AGAIN
The aim of this tip is also to "demystify", this time the MERGE statement. For this example let’s assume
that we were provided with those two data sets: work.data1 (2457997 observations) and work.data2
(2554654 observations). Our goal is, after merging those two data sets over variable obs, to aggregate
variables number2 and number3

code: 1st data set
1 data work.data1;
2 SET source.have;
3 where id ne "B";
4 number2=number*number;
5 run;

code: 2nd data set
1 data work.data2;
2 SET source.have;
3 where grp ne 17;
4 number3=number + 17;
5 run;

One could think that merging two data sets has to be executed exclusively, so that in the next step we could
filter, summarize or use options like for example END=. Nothing could be further from the truth than that.
The MERGE statement accepts: END=, NOBS=, or INDSNAME= options, same way the SET statement does.
Furthermore, there is nothing wrong in not generating a data set (i.e. data _null_;) from a DATA step
that merges data.

code: the existing situation
1 /* wandering around */
2 data work.interimStep;
3 MERGE work.data1 work.data2;
4 by obs;
5 run;
6 data OneObs;
7 set work.interimStep END=_E_;
8 sum + (number2 + number3);
9 if _E_;
10 put sum;
11 run;

code: a smarter approach
1 /* straight to the point */
2 data _null_;
3 MERGE work.data1 work.data2 END=_E_;
4 by obs;
5 sum + (number2 + number3);
6 if _E_;
7 put sum;
8 run;

This way we gain some I/O savings too, 4.01I/OÐ→2I/O (the 0.01 is for the OneObs).

"DISENCHANTING" A BIT MORE
We have taken already away a bit of "holiness" from the MERGE statement, and we are not going to stop
there. After playing a bit with SQL, a beginner SAS user might think that similarly to SQL’s join the MERGE
allows only two tables. And that is not true. The MERGE statement allows us to combine data from as many
data sets as we want, of course as long as the merging is done over the same variable.

code: the existing situation
1 /* I/O waste */
2 data work.step1;
3 MERGE source.have work.data1;
4 by obs;
5 run;
6

7 data work.final;
8 MERGE work.step1 work.data2;
9 by obs;
10 run;

code: a smarter approach
1 /* smarter */
2 data work.final;
3 MERGE source.have
4 work.data1
5 work.data2;
6 by obs;
7 run;

So, instead of executing several steps with two data sets each we can simply do one with all data sets
merged at once. This way we again gain some more I/O savings, 6I/OÐ→4I/O, and in general case
3nI/OÐ→n+2I/O, in this case n is the number of data sets to merge, not counting the "main" data set.

7

B. Jabłoński - SET Statement Considered Harmful

"NICE PIECE OF ABSOLUTELY USELESS STEP"
Sometimes when we are focused on deriving next and next variables we may fall into a trap called by Aster
and Seidman in [Aster & Seidman 1996] a "stream of consciousness" programming: one thought (derivation)
one DATA step. Instead of producing a bunch of intermediate DATA steps, and through those DATA steps more
data sets, and eventually re-merging those results (fortunately now we know only one MERGE data step is
enough!) we can sometimes reduce I/O operations and combine processing into one data step.

code: the existing situation
1 /* stream of consciousness */
2 data work.step1;
3 SET source.have;
4 where number > 20;
5 number2=number*number;
6 keep obs number2;
7 run;
8 data work.step2;
9 SET source.have;
10 where id NE "B";
11 number3=number+17;
12 keep obs number3;
13 run;
14 /*data work.step3;
15 SET source.have;
16 where id > "X";
17 number4=number**42;
18 keep obs number4;
19 run;*/
20 data work.final;
21 MERGE source.have
22 work.step1
23 work.step2
24 /*work.step3*/
25 ;
26 by obs;
27 run;

code: a smarter approach
1 /* smart */
2 data work.final;
3 SET source.have;
4

5 if number > 20 then
6 number2=number*number;
7

8 if id NE "B" then
9 number3=number+17;
10 /*
11 if id > "X" then
12 number4=number**42;
13 */
14 run;

Sometimes such code has one more advantage: if we have to comment out a part of the code (e.g., a variable
derivation or a conditional processing) we only need to comment out in one place of the code. Savings here
are 8I/OÐ→2I/O, but the I/O reduction as a function of the derivations number n would have the following
form 2+3nI/OÐ→2I/O.

"DOING MORE BY DOING LESS"
For this example, let’s assume that we were provided with those two data sets: work.one (842279 observa-
tions) and work.two (2457997 observations). This time our goal is to create three data sets: a) the first with
only those OBS values from WORK.ONE that does not show up in WORK.TWO, b) the second that has obser-
vations with a reversed relation, and c) the third that contains OBS values in the intersection of WORK.ONE
and WORK.TWO.

code: 1st data set
1 data work.one;
2 set source.have;
3 where number > 20;
4 run;

code: 2nd data set
1 data work.two;
2 infile source;
3 INPUT grp id $ number obs;
4 if id ne "B";
5 run;

Classic PROC SQL approach can be replaced with shorter and clearer MERGE data step. Of course, this
example quietly assumes that WORK.ONE and WORK.TWO are sorted by values of OBS.

8

B. Jabłoński - SET Statement Considered Harmful

code: the existing situation
1 /* "classic" */
2 proc sql;
3 create table only_in_one as
4 select one.*
5 FROM work.one
6 left join
7 work.two
8 on one.obs = two.obs
9 where two.obs is missing;
10 create table only_in_two as
11 select two.*
12 FROM work.one
13 right join
14 work.two
15 on one.obs = two.obs
16 where one.obs is missing;
17 create table one_and_two as
18 select one.*
19 FROM work.one
20 inner join
21 work.two
22 on one.obs = two.obs;
23 quit;

code: a smarter approach
1 /* smarter */
2 data
3 only_in_one
4 only_in_two
5 one_and_two;
6

7 MERGE work.one(in=o1)
8 work.two(in=t2);
9 by obs;
10

11 select;
12 when(o1 and not t2)
13 output only_in_one;
14 when(not o1 and t2)
15 output only_in_two;
16 when(o1 and t2)
17 output one_and_two;
18 otherwise;
19 end;
20 run;

The reduction here, 9I/OÐ→5I/O, may not look so spectacular, but again we can see the superiority of the
MERGE statement skills (of course, as long as we are staying in the world of 1−to−1 and 1−to−N merges).

"DOING BY NOT DOING"
Imagine you have two (in practice more) data sets (for simplicity, with excluding data) produced by the
following snippet:

code: data
1 data work.one work.two;
2 set source.have;
3 if id NE "C" then output work.one;
4 else output work.two;
5 run;

For example, one data set contains data for placebo subjects and the other for treatment. Or maybe the first
data set has data from January, the second from February, the third from March, etc.

Our task is to concatenate data (i.e. to stack data from the second data sets behind data from the first,
and so on) so we can read them sequentially. There is a non-zero probability that a DATA step with sequen-
tial SET statement reading both data sets and overwriting the first one would be the first choice. But for
such a job PROC APPEND, moving only data from the second data set could work better (giving reduction
3I/OÐ→1I/O, as the BASE= data set is not touched)

code: the existing situation
1 /* silly */
2 data work.one;
3 SET work.one work.two;
4 run;

code: a smarter approach
1 /* smarter */
2 proc append base=work.one
3 data=work.two;
4 run;

But since we are going to read the data in the subsequent step, maybe we do not have to move data at all?
9

B. Jabłoński - SET Statement Considered Harmful

By creating SAS view we can reduce I/O operations of the concatenation process to zero and materialize it
only when we really need it, just like in this snippet:

code: a smarter approach
1 /* possibly even smarter */
2 data work.onetwo / view=work.onetwo;
3 SET work.one work.two;
4 run;

"NO RAW MACRO LOOPS", PART 1.
The macro language is a very practical way to write reusable code. Wrapping a snippet in a macro and have
it for every call seems like a good idea, but sometimes, especially with the wrong application of %DO-LOOPs,
it may slow your processing down (we have seen examples of this earlier). In his blog posts Rick Wicklin
wrote about doing things "the BY way" multiple times (see [Wicklin 2012] or [Wicklin 2017]). The following
examples will present work driven by a spirit similar to the one described by Rick, i.e., reducing unnecessary
macro loops.

The first example is pretty easy to follow. Let’s assume we have to calculate percentiles for our data in groups
over variable id. A naive (but not so uncommon) approach would be to write a macro that extracts the list of
id values and then execute a %DO-LOOP over the list. The loop, in each iteration, subsets the data set, then
runs the PROC UNIVARIATE to calculate percentiles, and eventually use the PROC APPEND to combine
results. In this, or any other, approach the PROC UNIVARIATE seems to be rather unavoidable, especially
if we consider how very robust it is for calculating percentiles. But all those sub-setting DATA steps and all
that appending can be avoided.

code: the existing situation
1 %macro slow();
2 proc sql;
3 select distinct id
4 into :id_list separated by " "
5 FROM source.have;
6 %let n = &SQLobs.;
7 quit;
8 %do i = 1 %to &n.;
9 %let id = %scan(&id_list.,&i.);
10 data subset;
11 SET source.have;
12 where id = "&id.";
13 run;
14 proc univariate data=subset;
15 var number;
16 output out=p
17 pctlpre=P pctlpts=0 to 100;
18 run;
19 proc append base=pctl1 data=p;
20 run;
21 %end;
22 %mend slow;
23 %slow()

code: a smarter approach
1 /* smarter */
2 proc univariate data=source.have;
3 class id;
4 var number;
5 output out=pctl2
6 pctlpre=p pctlpts=0 to 100;
7 run;

Instead of macro looping we can do processing in groups, right? You could argue: "But to do the BY-group
processing we still have to sort the data by the grouping variable". Well, that is true - but fortunately
PROC UNIVARIATE provides the CLASS statement that saves our day. It is important to remember that
the CLASS statement can specify at most two variables to be used to group the data into classification
levels!

10

B. Jabłoński - SET Statement Considered Harmful

The I/O reduction here has the following form: 2+5nI/OÐ→2I/O, the 2 on the left side is for SQL and for the
first creation of pctl1 data set. There is one more advantage of the CLASS approach, it not only reduces
I/O operations, but also gives us values of the id variable in the final pctl2 data set.

"NO RAW MACRO LOOPS", PART 2.
The second example is a bit more complicated. It is based on a true story, though any similarities...

Assuming we have an input data set have grouped by variable grp, though not necessarily sorted, a dictio-
nary dict of separate parameters for each value of grp variable, and we want to execute a parameterized
calculation of a new variable, let’s say something like the following:

x = function(αgrp × var1, βgrp × var2, γgrp × var3) +Constantgrp;

where α, β, γ, and Constant are group dependent, i.e., their values changes depending on the grp variable
values (that is why we are picking those values from the dictionary). And the function(. . .) can be consid-
ered as a group of conditional logic expressions composed of SAS statements and SAS functions (including
PROC FCMP user defined functions too).

In our example, we are going to use the RAND() function and the following snippet:
code: formula to evaluate

1 x = rand("Distribution", ParA, ParB) + Threshold;

The RAND() function accepts various number of parameters - depending on the distribution used - so it
perfectly fits into our need for a "pretender-of-some-business-logic", by being semantically simple enough
and syntactically complicated enough at the same time. The dictionary is a SAS data set source.dict
with the following (long) structure, and for brevity we have it prepared only for selected values of id variable
from the source.have. Here is the code for the dictionary:

code: dictionary
1 data source.dict;
2 array distr[9] $ 4 ("BERN" "CAUC" "EXPO" "F" "GAMM" "INTE" "LOGI" "T" "UNIF");
3 array Npar[9] $ 4 ("1" "0" "1" "2" "1" "2" "2" "1" "2");
4 array ParA[9] $ 4 ("0.5" " " "1" "3" "42" "0" "0" "1" "0");
5 array ParB[9] $ 4 (" " " " " " "4" " " "10" "1" " " "1");
6

7 do i = 1 to 9;
8 length id $ 8;
9

10 id = char(distr[i],1);
11 par="Distribution";
12 val=distr[i]; output;
13 par="Npar";
14 val=Npar[i]; output;
15 par="ParA";
16 val=ParA[i];
17 if val NE "" then output;
18 par="ParB";
19 val=ParB[i];
20 if val NE "" then output;
21 par="Threshold";
22 val = put(i/10,3.1); output;
23 end;
24 keep id par val;
25 run;

and here is the output of the dictionary displayed in two columns tabular form:

11

B. Jabłoński - SET Statement Considered Harmful

Table 2: Data set SOURCE.DICT
id par val

B Distribution BERN

B Npar 1

B ParA 0.5

B Threshold 0.1

C Distribution CAUC

C Npar 0

C Threshold 0.2

E Distribution EXPO

E Npar 1

E ParA 1

E Threshold 0.3

F Distribution F

F Npar 2

F ParA 3

F ParB 4

F Threshold 0.4

G Distribution GAMM

G Npar 1

G ParA 42

G Threshold 0.5

id par val

I Distribution INTE

I Npar 2

I ParA 0

I ParB 10

I Threshold 0.6

L Distribution LOGI

L Npar 2

L ParA 0

L ParB 1

L Threshold 0.7

T Distribution T

T Npar 1

T ParA 1

T Threshold 0.8

U Distribution UNIF

U Npar 2

U ParA 0

U ParB 1

U Threshold 0.9

The solution I witnessed (left column below) was based on the following logic:

(1) start the process and create a list of unique values of the id variable from the dictionary [lines 2-8],
(2) loop over the list and for each value from the list [lines 10,11,28]:

(a) sub-set the dictionary for givenid value and produce a bunch of macro variables named like parameters
and with their corresponding values as values [lines 12-16],

(b) sub-set the have data set for given id value and for every given set of macro variables execute calcu-
lation [lines 17-24],

(c) stack the result by appending it to previous iteration’s result [lines 25-27]
(3) end the process [line 29].

The number of I/O operations here is 5nI/O, where n is the number of the id variable values (9 in our
case), plus one I/O for SQL and one for the first execution of the PROC APPEND. So, in the example here
the number of inputs and outputs ends to be 47I/O.

12

B. Jabłoński - SET Statement Considered Harmful

code: the existing situation
1 /* slow */
2 %macro slow2();
3 proc sql;
4 select distinct id
5 into :id_list separated by " "
6 FROM source.dict;
7 %let n = &SQLobs.;
8 quit;
9

10 %do i = 1 %to &n.;
11 %let id = %scan(&id_list.,&i.);
12 data dict;
13 SET source.dict;
14 where id = "&id.";
15 call symputX(par,val,"L");
16 run;
17 data tmp;
18 SET source.have;
19 where id = "&id.";
20 x = rand("&Distribution."
21 %if &Npar.>0 %then %do;,&ParA.%end;
22 %if &Npar.>1 %then %do;,&ParB.%end;
23) + &Threshold.;
24 run;
25 proc append base=work.result1
26 data=tmp;
27 run;
28 %end;
29 %mend slow2;
30

31 options Mprint;
32 %slow2()

code: a smarter approach
1 /* smarter */
2 proc transpose data=source.dict
3 out=dict(drop=_:);
4 by id;
5 id par;
6 var val;
7 run;
8

9 PROC SQL;
10 create table work.result2 as
11 select h.*,
12 case
13 when d.Npar="2" then
14 rand(Distribution
15 ,input(ParA, best.)
16 ,input(ParB, best.))
17 when d.Npar="1" then
18 rand(Distribution
19 ,input(ParA, best.))
20 else
21 rand(Distribution)
22 end + input(Threshold, best.) as x
23 from
24 source.have as h
25 inner join
26 dict as d
27 on h.id = d.id;
28 QUIT;

An alternative to the first approach is based only on 5I/O, the first two are for the PROC TRANSPOSE
which transforms the dictionary from long into wide format (see table printout below). The other three are
for the PROC SQL where the CASE-WHEN-END conditional expression combined with several calls to the
INPUT() function does the heavy lifting. Remembering that n is the number of the id variable values we
eventually end up with 2+5nI/OÐ→5I/O reduction.

Table 3: Data set with dictionary after transposition
id Distribution Npar ParA ParB Threshold

B BERN 1 0.5 0.1

C CAUC 0 0.2

E EXPO 1 1 0.3

F F 2 3 4 0.4

G GAMM 1 42 0.5

id Distribution Npar ParA ParB Threshold

I INTE 2 0 10 0.6

L LOGI 2 0 1 0.7

T T 1 1 0.8

U UNIF 2 0 1 0.9

13

B. Jabłoński - SET Statement Considered Harmful

"#HASHTABLE FORHELP"
Classical problem of re-merging summary statistics back with the original data (often seen as a note after
PROC SQL execution) usually is done by a) sorting data by grouping variables, b) doing some BY-group
processing to calculate statistics, and c) merging created summary statistics data set with the source data.

code: the existing situation
1 /* standard */
2 proc sort data=source.have
3 out=work.have;
4 by id;
5 run;
6 data work.aggr;
7 SET work.have;
8 by id;
9 if first.id then
10 do;
11 maxN=number;
12 minN=number;
13 end;
14 maxN = maxN max number;
15 minN = minN min number;
16 if last.id then
17 do;
18 range = maxN-minN;
19 output;
20 end;
21 keep id range;
22 retain maxN minN;
23 run;
24 data work.want;
25 merge work.have work.aggr;
26 by id;
27 shift = number/range;
28 drop range;
29 run;

code: a smarter approach
1 /* with hash tables */
2 data work.want;
3 dcl hash S(ordered:"A");
4 S.defineKey("id");
5 S.defineData("id","maxN","minN");
6 S.defineDone();
7 declare hiter I("S");
8

9 dcl hash D(multidata:"Y",ordered:"A");
10 D.defineKey("id");
11 D.defineData("grp","id","number","obs");
12 D.defineDone();
13

14 do until(_E_);
15 SET source.have END=_E_;
16 D.add();
17

18 shift = S.find();
19 maxN = max(maxN,number);
20 minN = min(minN,number);
21 S.replace();
22 end;
23

24 do while(0=I.next());
25 do while(D.do_over()=0);
26 shift = number/(maxN-minN);
27 output;
28 end;
29 end;
30 stop;
31 drop maxN minN;
32 run;

Use of hash tables can give us pretty nice I/O operations reduction if we use them both for storing summary
statistics and the source data. Like in the example above hash table S stores minimum and maximum for
id groups, and hash table D stores all data from the input data set. Use of the explicit DO-UNTIL loop
allows us to read-in source data and calculate statistics at the same time with only one data pass. Then in
a double DO-WHILE loop we combine data and the aggregate to produce final result. Original seven I/O
operations reduce to two giving: 7I/OÐ→2I/O. Of course, we realize that reduction of I/O operations
here has a price of higher memory consumption. But often that price is worth paying, especially that hash
tables allow us to reduce or stop I/O intensive data sorting. The best hash tables source of knowledge is
[Dorfman & Henderson 2018] book.

14

B. Jabłoński - SET Statement Considered Harmful

"NO RAW MACRO LOOPS", PART 2. - REVISITED
If consider our just gained hash tables experience and we add some "good old" arrays to it, we can go even
one step further with I/O operations reduction.

code: hash tables approach
1 data work.result3;
2 if 1=_N_ then do;
3 declare hash D(); declare hash I();
4 D.defineKey("id", "par"); I.defineKey("id");
5 D.defineData("val");
6 D.defineDone(); I.defineDone();
7 do until(_E_);
8 SET source.dict end=_E_; /* one data reading for 2 hash tables */
9 if D.add() then stop; /* "quality stop" if dict has doubles */
10 I.replace();
11 end;
12 end;
13

14 SET source.have;
15 by ID notsorted;
16 if 0=I.check(); /* to get "inner join" effect */
17

18 if first.ID then do; /* get parameters */
19 array Dict[*] $ Distribution Npar ParA ParB Threshold; retain;
20 call missing(of Dict[*]);
21 do j=1 to Dim(Dict);
22 if 0=D.find(key:id,key:vname(Dict[j])) then Dict[j] = val;
23 end;
24 end;
25 select(Npar);
26 when("2") x = rand(Distribution,input(ParA, best.),input(ParB, best.));
27 when("1") x = rand(Distribution,input(ParA, best.));
28 otherwise x = rand(Distribution);
29 end;
30 x = x + input(Threshold, best.);
31

32 drop par val j Distribution Npar ParA ParB Threshold;
33 run;

We end up with 2+5nI/OÐ→3I/O instead of 5I/O. But this example cannot be left without a comment.
There is a fair chance that the PROC TRANSPOSE + PROC SQL’s approach, though it has two more I/O
operations, will win here (in terms of "wall clock" time) especially when the dictionary is small. This is because
PROC SQL is designed smart and if it figures out the dictionary table is small enough to fit in-memory, it
will use so called "hash join" method to combine data faster. If you run PROC SQL from our example with
(undocumented) option: _METHOD5, it will print something similar to this:

the log - SQL and _method
1 NOTE: SQL execution methods chosen are:
2 sqxcrta /* Create table */
3 sqxjhsh /* Hash join operation */
4 sqxsrc(SOURCE.HAVE(alias = H)) /* Source rows from table */
5 sqxfil /* Rows filtration */
6 sqxsrc(WORK.DICT(alias = D))

5See [Lavery 2005] to learn the _method secrets
15

B. Jabłoński - SET Statement Considered Harmful

Of course, if the program logic requires data step solutions, e.g., arrays, this one is clearly the winner. The ex-
ample also shows that: a single data read can populate multiple hash tables, what is an extremely convenient
trick. Further more we did not have to sort the source.have data set to do the table join. The bottom line
here is that, in general, hash tables give us a bunch of useful I/O-saving features.

"ONE STEP TO RULE THEM ALL"
Sometimes there is a need to create a "template" data set that contains all possible combinations of categor-
ical variables. A "standard" PROC SQL approach, of creating a few data sets with unique values, crowned by
SQL’s Cartesian product of those, is often the choice. But, in such a case, the much more I/O-efficient is a
data step.

code: SQL 1
1 proc sql;
2 create table
3 work.sql_dist_number as
4 select
5 distinct number
6 from
7 source.have;
8

9 create table
10 work.sql_dist_id as
11 select
12 distinct id
13 from
14 source.have;
15

16 create table
17 work.sql_dist_grp as
18 select
19 distinct grp
20 from
21 source.have;
22

23 create table
24 all_possible_crosses_S as
25 select *
26 from
27 work.sql_dist_number,
28 work.sql_dist_id,
29 work.sql_dist_grp;
30 quit;

code: hash table
1 data all_possible_crosses_H;
2 declare hash H1(ordered:"A");
3 H1.defineKey("number");
4 H1.defineDone();
5 declare hiter i1("H1");
6

7 declare hash H2(ordered:"A");
8 H2.defineKey("id");
9 H2.defineDone();
10 declare hiter i2("H2");
11

12 declare hash H3(ordered:"A");
13 H3.defineKey("grp");
14 H3.defineDone();
15 declare hiter i3("H3");
16

17 do until(_E_);
18 set source.have(keep=number id grp)
19 end=_E_;
20 H1.ref();
21 H2.ref();
22 H3.ref();
23 end;
24

25 do while(0=i1.next());
26 do while(0=i2.next());
27 do while(0=i3.next());
28 output;
29 end;
30 end;
31 end;
32 stop;
33 run;

Use of hash tables to store unique values allows us to traverse data only once and the result is produced
directly. The I/O reduction, in the example here, goes from 10I/O (read, write, and again read - for each
variable, plus one for result data set) to just 2I/O (one for reading source.have and the second for writing
the result data set). In general case, having n variables selected, it goes 1+3nI/OÐ→2I/O.

An inquisitive reader may doubt the efficiency, and suspect we are pulling the wool over one’s eyes, and even
support the doubts with the following (shorter) SQL query that seems to reduce part of those I/O operations:

16

B. Jabłoński - SET Statement Considered Harmful

code: SQL 2
1 proc sql _method;
2 create table all_possible_cross_S2 as
3 select *
4 from (select distinct number from source.have)
5 , (select distinct id from source.have)
6 , (select distinct grp from source.have)
7 ;
8 quit;

but, when the execution is closely inspected with the _METHOD option, we can see the source.have data
set is read 3 times, and the Cartesian join (sqxjsl) needs some utility storage too. We have at least four
evident I/O operations (including write of the result data set) and some unknown number of "under the
hood" utility data wranglings.

the log - SQL and _method
1 NOTE: SQL execution methods chosen are:
2 sqxcrta
3 sqxjsl /* Step loop join (Cartesian) */
4 sqxunqs
5 sqxsrc(SOURCE.HAVE)
6 sqxjsl
7 sqxunqs /* Select unique values */
8 sqxsrc(SOURCE.HAVE)
9 sqxunqs
10 sqxsrc(SOURCE.HAVE)
11 NOTE: SAS threaded sort was used.

"I HAVE SEEN THIS BEFORE"
Yet another example of an "I-have-seen-this-before" situation is the case where we have to add (combine)
some new data into our base table, furthermore:

(1) the data are provided in separate data sets (no Excels, CSVs, etc., just for simplicity),
(2) the data we want to combine must be merged over different variables, and
(3) the final data set should maintain the original observations order.

For simplicity, data sets with additional data have only two variables each, one for "joining key" and the other
for data, e.g., number and number_text, etc.

Usually, two approaches are used to solve the task. The first one combines merging and sorting intertwined
together, the second approach, as one can expect, is SQL’s left joining.

The "merge and sort" solution starts with ordering all additional data sets by their merging variables. Next,
the base data set is sorted by selected variable and then merged with additional data. The process is repeated
for all variables, and eventually the final data set is resorted to restore the original observations order. In our
example setup the process involves 23I/O. The alternative, with PROC SQL, seems to be less I/O intense,
at least at the first glance. Unfortunately, the _METHOD option reveals it is not just a ’94 "Four Reads and a
Write" comedy but it is (again) much more complicated. The LOG shows that before joining, all data sets are
resorted, and since the merge join is used, the temporary data have to be stored in utility files. Of course the
final re-sorting takes its toll too.

17

B. Jabłoński - SET Statement Considered Harmful

code: Merge and sort
1 proc sort
2 data = number_data
3 out = number_data_sort;
4 by number;
5 run;
6 proc sort
7 data = id_data
8 out = id_data_sort;
9 by id;
10 run;
11 proc sort
12 data = grp_data
13 out = grp_data_sort;
14 by grp;
15 run;
16 proc sort
17 data = source.have
18 out = have_by_grp;
19 by grp;
20 run;
21 data have_1;
22 merge
23 have_by_grp
24 grp_data_sort;
25 by grp;
26 run;
27 proc sort
28 data = have_1
29 out = have_by_id;
30 by id;
31 run;
32 data have_2;
33 merge
34 have_by_id
35 id_data_sort;
36 by id;
37 run;
38 proc sort
39 data = have_2
40 out = have_by_number;
41 by number;
42 run;
43 data have_3;
44 merge
45 have_by_number
46 number_data_sort;
47 by number;
48 run;
49 proc sort
50 data = have_3
51 out = combined_DS;
52 by obs;
53 run;

code: SQL
1 proc sql _method;
2 create table combined_SQL as
3 select
4 h.*,
5 n.number_text,
6 i.id_text,
7 g.grp_text
8 from
9 source.have as h
10 left join
11 number_data as n
12 on h.number=n.number
13

14 left join
15 id_data as i
16 on h.id=i.id
17

18 left join
19 grp_data as g
20 on h.grp=g.grp
21

22 order by obs;
23 quit;

The LOG unveils it all. Even if we assume that the sqxsrc and sqxsort utilize I/O operations together we
can count something around eleven I/O in the process.

18

B. Jabłoński - SET Statement Considered Harmful

the log - SQL and _method
1 NOTE: SQL execution methods chosen are:
2 sqxcrta
3 sqxsort
4 sqxjm
5 sqxsort
6 sqxsrc(WORK.GRP_DATA(alias = G))
7 sqxsort
8 sqxjm
9 sqxsort
10 sqxsrc(WORK.ID_DATA(alias = I))
11 sqxsort
12 sqxjm /* Merge join operation */
13 sqxsort
14 sqxsrc(WORK.NUMBER_DATA(alias = N))
15 sqxsort /* Sort operation */
16 sqxsrc(SOURCE.HAVE(alias = H))
17 NOTE: SAS threaded sort was used.

This time, with a little help from our hash table friends, the "optimized" solution proposed here uses only
5I/O: three data reads to populate hash tables: H1, H2, and H3 with data, one run over the source.have
base data set, and eventually for writing the final combined_hash data set, with no need for any re-
sorting at all (which also reduces Operating System Memory cost by 15 times!). The I/O costs reduction
goes 23I/OÐ→5I/O. And just to be clear, code in line number 2 does not read any data during the execution
phase. The SET statement is there just for metadata extraction in the compilation phase and is used just to
minimize variables metadata interaction (simple LENGTH would work too).

code: hash tables approach
1 data combined_hash;
2 if 0 then set work.number_data work.id_data work.grp_data;
3

4 declare hash H1(dataset:"work.number_data");
5 H1.defineKey("number");
6 H1.defineData("number_text");
7 H1.defineDone();
8

9 declare hash H2(dataset:"work.id_data");
10 H2.defineKey("id");
11 H2.defineData("id_text");
12 H2.defineDone();
13

14 declare hash H3(dataset:"work.grp_data");
15 H3.defineKey("grp");
16 H3.defineData("grp_text");
17 H3.defineDone();
18

19 do until(_E_);
20 set source.have
21 end=_E_;
22 if H1.find() then number_text="";
23 if H2.find() then id_text="";
24 if H3.find() then grp_text="";
25 output;
26 end;
27 stop;
28 run;

19

B. Jabłoński - SET Statement Considered Harmful

CONCLUSION

In this article we tried to bring beginner SAS programmers’ attention to mastering I/O operations efficiency
by "pruning" redundant SET, MERGE, INPUT, or any other I/O related statements. Undoubtedly, we can
state that SAS is a very syntax rich and flexible language, and it takes quite some effort to master it. Even
tough examples and snippets presented here may seem to be "repetitions of obvious things", like the 1947
Nobel Prize in Literature winner, French, André Gide6 said:

"Toutes choses sont dites déjà; mais comme personne n’écoute, il faut toujours recommencer."
("Everything has been said before, but since nobody listens we have to keep going back and beginning all over again.")

From time to time, new, inexperienced SAS programmers show up in the SAS community seeking ways to
make their code better, thus we strongly believe that some of those "seems to be obvious" programming
rules should be presented again and again. Writing good and efficient code is a non-trivial task. The article,
by use of the inevitable part of the education process - repetition, tries to help to get to the stage when "we
know how to write good code" easier, without need to first wander around through meanders and off-roads
of ugly or (probably more often) inefficient code. We hope that the topics presented in the article will help to
make life of "junior" SAS programmers easier and allow them to shorten the "from bad to good code" path
they are walking. Hopefully, programmers with more experience will also find the paper useful.

Thus, to make your program efficient, let’s repeat after [Aster & Seidman 1996] one more time: "consider
every SET (MERGE, INPUT, and any other I/O related) statement with suspicion!"

The End

REFERENCES
[Dijkstra 1968] Edsger Dijkstra, "Go To Statement Considered Harmful", Communications of the ACM. 11 (3): 147-148, 1968,

https://doi.org/10.1145%2F362929.362947,
https://homepages.cwi.nl/~storm/teaching/reader/Dijkstra68.pdf

[Aster & Seidman 1996] Rick Aster, Rhena Seidman, "Professional SAS Programming Secrets",
McGraw-Hill Inc., US; 2nd Updated Edition, 1996

[Lavery 2005] Russ Lavery, "The SQL Optimizer Project: _Method and _Tree in SAS 9.1", SUGI 30 Proceedings, 2005,
https://support.sas.com/resources/papers/proceedings/proceedings/sugi30/101-30.pdf

[Raithel 2010 & 2018] Michael A. Raithel, "PROC DATASETS; The Swiss Army Knife of SAS Procedures",
WUSS Proceedings, 2018, https://www.lexjansen.com/wuss/2018/144_Final_Paper_PDF.pdf

SGF Proceedings, 2010, https://support.sas.com/resources/papers/proceedings10/138-2010.pdf

[Wicklin 2012] Rick Wicklin, The DO-LOOP blog, 2012 "Simulation in SAS: The slow way or the BY way",
https://blogs.sas.com/content/iml/2012/07/18/simulation-in-sas-the-slow-way-or-the-by-way.html

[Wicklin 2017] Rick Wicklin, The DO-LOOP blog, 2017 "An easy way to run thousands of regressions in SAS",
https://blogs.sas.com/content/iml/2017/02/13/run-1000-regressions.html

[Dorfman & Henderson 2018] Paul M. Dorfman, Don Henderson, "Data Management Solutions Using SAS Hash Table Operations: A Busi-
ness Intelligence Case Study", SAS Institute Press, 2018

ACKNOWLEDGMENTS

We would like to thank Filip Kulon, Troy Martin Hughes, and Louise Hadden! We are utterly grateful for their
help in "polishing" this text.

6Quote taken from: https://en.wikiquote.org/wiki/Andr%C3%A9_Gide
20

https://homepages.cwi.nl/~storm/teaching/reader/Dijkstra68.pdf
https://support.sas.com/resources/papers/proceedings/proceedings/sugi30/101-30.pdf
https://www.lexjansen.com/wuss/2018/144_Final_Paper_PDF.pdf
https://support.sas.com/resources/papers/proceedings10/138-2010.pdf
https://blogs.sas.com/content/iml/2012/07/18/simulation-in-sas-the-slow-way-or-the-by-way.html
https://blogs.sas.com/content/iml/2017/02/13/run-1000-regressions.html
https://support.sas.com/content/dam/SAS/support/en/books/data-management-solutions-using-sas-hash-table-operations/69153_excerpt.pdf
https://support.sas.com/content/dam/SAS/support/en/books/data-management-solutions-using-sas-hash-table-operations/69153_excerpt.pdf

B. Jabłoński - SET Statement Considered Harmful

CONTACT INFORMATION

Your comments and questions are valued and encouraged!

Contact Bart at one of the following e-mail addresses:

yabwonQgmail.com or bartosz.jablonskiQpw.edu.pl

or via the following LinkedIn profile: www.linkedin.com/in/yabwon or at the communities.sas.com

by mentioning @yabwon.

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. R⃝ indicates USA registration.
Other brand and product names are trademarks of their respective companies.

Appendix A - code coloring guide

The best experience for reading this article is in color and the following convention is used:

 The code snippets use the following coloring convention:

code: is surrounded by a black frame
1 In general we use black ink for the code but:
2 - for reading clarity we sometimes mark code in orange ink,
3 - and comments pertaining to code are in a bluish ink for easier reading.

 The LOG uses the following coloring convention:
the log - is surrounded by a blueish frame

1 The source code and general log text are blueish.
2 Log NOTEs are green.
3 Log WARNINGs are violet.
4 Log ERRORs are red.
5 Log text generated by the user is purple.

INDEX

function
INPUT(), 13
RAND(), 11

I/O(input/output), 1–20

macro-statement
%DO-LOOP, 5, 10
%IF-THEN-ELSE, 13
%LET, 10

option
_METHOD, 15, 17
BASE=, 9
DATA=, 1, 2, 4
END=, 7

INDSNAME=, 7
NOBS=, 7
OUT=, 2, 4
POINT=, 6

procedure
APPEND, 9, 10, 12
DATASETS, 3, 4
FCMP, 11
SORT, 4
SQL, 8, 13–17
TRANSPOSE, 13, 15
UNIVARIATE, 10

statement

BY, 4, 10, 14
CASE-WHEN-END, 13
CLASS, 10, 11
DATA, 2, 4
DO-LOOP, 6
DO-UNTIL, 14
DO-WHILE, 14
GOTO, 2
IF-THEN, 5
INFILE, 6
INPUT, 1, 2, 6, 20
LENGTH, 19
MERGE, 1–3, 7–9, 20
SELECT, 5
SET, 1–4, 6, 7, 9, 19, 20

B A

R
TEX

21

	WHEN SET DOES NOT MEAN "ALL SET"
	THE DATA
	THE LIST
	 "TROLLING IS A ART"
	 "TWO BIRDS WITH ONE STONE"
	 "IT MAKES MY BLOOD BOIL"
	 "CUTTING, SLASHING, AND SHREDDING"
	 "THE FINAL (BACKWARD) COUNTDOWN"
	 "DISENCHANTING"
	 "DISENCHANTING" AGAIN
	 "DISENCHANTING" A BIT MORE
	 "NICE PIECE OF ABSOLUTELY USELESS STEP"
	 "DOING MORE BY DOING LESS"
	 "DOING BY NOT DOING"
	 "NO RAW MACRO LOOPS", PART 1.
	 "NO RAW MACRO LOOPS", PART 2.
	 "#HASHTABLEFORHELP"
	 "NO RAW MACRO LOOPS", PART 2. - REVISITED
	 "ONE STEP TO RULE THEM ALL"
	 "I HAVE SEEN THIS BEFORE"

	CONCLUSION
	REFERENCES
	Appendix A - code coloring guide
	INDEX

