
Paper AP-124-2024

Macro Variable Arrays Made Easy
with macroArray SAS○R Package∗

Bartosz Jabłoński - yabwon / Warsaw University of Technology

ABSTRACT

A macro variable array is a jargon term for a list of macro variables with a common prefix and nu-
merical suffixes. Macro arrays are valued by advanced SAS○R programmers and often used as ”driving”
lists, allowing sequential metadata for complex or iterative programs. Use of macro arrays requires ad-
vanced macro programming techniques based on indirect reference (aka, using multiple ampersands
&&), which may intimidate less experienced programmers.

The aim of the paper is to introduce the macroArray SAS package. The package facilitates a solution
that makes creation and work with macro arrays much easier. It also provides a ”DATA-step-arrays-like”
interface that allows use of macro arrays without complications that arise from indirect referencing.
Also, the concept of a macro dictionary is presented, and all concepts are demonstrated through use
cases and examples.

INTRODUCTION

A macro variable array (also MVA or just a macro array) is a jargon term for a list of macro variables
with a common prefix and numerical sequential suffixes. Usually such terms have a form similar to
&&prefix&suffix (e.g., &&var&i).

Every year for the last 25 years (i.e., 2000 - 2024), there has been at least one paper related to the sub-
ject of macro variable arrays published in at least one major SAS conference proceedings (this paper in-
cluded). For example: [Widawski 2000], [First 2001], [Widawski 2002], [Carpenter & Smith 2003],
[Fehd 2003], [Clay 2004], [Carpenter 2005], [Clay 2006], [Lavery 2007], [Philp 2008],
[Rosson 2009], [Russell & Tyndall 2010], [Gilsen 2011], [Li 2012], [Zender 2013], [Werner 2014],
[Nayak 2015], [Wong & Short 2016], [Carpenter 2017], [Renauldo 2018], [Horstman 2019],
[Huang 2020], [Wang 2021], [Walker 2022], and [Roudneva 2023]. With a quick glimpse at
www.lexjansen.com, it can be seen that articles pertaining to macro variable arrays spread they
range from: simple examples, by detailed explanations and tutorials, to use cases, and eventually to
development of tools to make work with MVAs easier and more comfortable.

On the one hand, MVAs (or just macro arrays) are valued by advanced SAS programmers and are often
used as ”driving” lists allowing to provide sequential metadata for complex or iterative programs. On
the other, use of macro arrays requires advance macro programming techniques based on indirect
reference, aka work with multiple ampersands (&&), which may be intimidating for less experienced
programmers.

∗The text was originally published in PharmaSUG 2024 proceedings (see [Jablonski 2024]). This is a republish.
1

BARTOSZ JABŁOńSKI - MACRO VARIABLE ARRAYS MADE EASY WITH MACROARRAY SAS PACKAGE 2

The aim of the article is to introduce macroArray SAS package. The package facilitates set of SAS
macros which make creation and work with macro arrays much easier. A ”data-step-arrays-like” in-
terface, which allows use of macro arrays without complications which arise from indirect referencing,
is provided. Also an idea of macro dictionary is presented. So, according to the classification men-
tioned above, this article falls into the ”development of tools to make work with MVAs easier and more
comfortable” category.

MACRO VARIABLE ARRAYS

This section is a ”brief” introduction to the idea of macro variable arrays. Let’s start with a definition.

As mentioned above, a macro variable array (an MVA or a macro array) is a list of macro variables with
a common prefix and numerical suffixes. There are many ways to create a macro array. The following
are some of the ”most popular” ways for creating a macro array (for color convention check Appendix
A - code coloring guide).

Direct creation of an MVA can be simple assignment values to macro variables:
code: simple MVA

1 %let a1 = Macro;

2 %let a2 = Variables;

3 %let a3 = Array;

In this case, because of the prefix (”A”), the macro array would be referred to as ”three element macro
array a”.

Another approach to create a macro array is to use data step and call symputx() routine:

code: data step approach

1 data _null_;

2 length val $ 9;

3 do val = "Next", "Macro", "Variables", "Array";

4 i+1;

5 call symputx(cats("b", i), val);

6 end;

7 run;

This time we are creating ”four element macro array b”.

Third approach is to use SAS Proc SQL’s into clause to create a macro array:

code: proc sql approach

1 data have;

2 input val $9.;

3 cards;

4 Proc

5 SQL

6 Macro

7 Variables

8 Array

9 ;

10 run;

11

12 proc SQL;

BARTOSZ JABŁOńSKI - MACRO VARIABLE ARRAYS MADE EASY WITH MACROARRAY SAS PACKAGE 3

13 select val

14 into :c1-

15 from have

16 ;

17 quit;

The Proc SQL creates ”five element macro array c”.

Now when we execute:
code: preview

1 %put _user_;

we will see in the log that a dozen of macro variables were created:
the log

1 GLOBAL A1 Macro

2 GLOBAL A2 Variables

3 GLOBAL A3 Array

4 GLOBAL B1 Next

5 GLOBAL B2 Macro

6 GLOBAL B3 Variables

7 GLOBAL B4 Array

8 GLOBAL C1 Proc

9 GLOBAL C2 SQL

10 GLOBAL C3 Macro

11 GLOBAL C4 Variables

12 GLOBAL C5 Array

13 ...

The ”. . .” indicates that there can be other macro variables created in the SAS session. In fact, since
we are using Proc SQL, there are a number of macro variables automatically created (not shown).

In a nut shell this is how MVAs can be created. The following articles provides good additional
learning: [Fehd 2003], [Carpenter 2017], [Renauldo 2018], [Horstman 2019], and of course the
[Carpenter 2016] book.

When an MVA is created to retrieve values from macro variables a technique called indirect referencing
is used. The indirect referencing uses the following ”multiple-ampersands” approach:

&&prefix&suffix

The method works as follows. Let’s assume we have our a1, a2, and a3 MVA. To print all three values
in the log the following macro loop does the job:

code: macro loop

1 %do i = 1 %to 3;

2 %put &&a&i;

3 %end;

(of course the loop is executed inside some macro!). In this case the prefix part is a and the suffix is i.
The code execution explanation is described below:

1. Value of i equals 1 which is less or equal to 3, loop starts the first iteration:
– SAS starts scanning the %put statement text and processes it;

● Two consecutive ampersands ”&&” in the ”&&a&i” code are recognized as a macro language
triggers and are replaced with single ”&”, text kept on stack is ”&”;

BARTOSZ JABŁOńSKI - MACRO VARIABLE ARRAYS MADE EASY WITH MACROARRAY SAS PACKAGE 4

● The text ”a” in the remaining ”a&i” code, since it is not a macro language element, is added
to the stack, which is now ”&a”;
● The ”&i” in the remaining ”&i” code, is recognized as a macro variable i and its value is

resolved, text ”1” is added to the stack, which is now ”&a1”;
● SAS gets to the end of the %put statement (the semicolon);
● SAS ”sees” that text on the stack (”&a1”) still has macrotriggers (ampersands) in it and

starts processing again.
– The ”&a1” in the ”&a1” code, is recognized as a macro variable a1 and its value is resolved, text

”Macro” is added to the stack, stack is now ”Macro”;
– SAS ”sees” that there are no macrotriggers in the stack text and runs the %put statement;
– Value ”Macro” is printed in the log.
– Value of i is increased by 1;

2. Value of i equals 2 which is less or equal to 3, loop starts the second iteration:
– SAS starts scanning the %put statement text and processes it;

● Two consecutive ampersands ”&&” in the ”&&a&i” code are recognized as a macro language
triggers and are replaced with single ”&”, text kept on stack is ”&”;
● The text ”a” in the remaining ”a&i” code, since it is not a macro language element, is added

to the stack, which is now ”&a”;
● The ”&i” in the remaining ”&i” code, is recognized as a macro variable i and its value is

resolved, text ”2” is added to the stack, which is now ”&a2”;
● SAS gets to the end of the %put statement (the semicolon);
● SAS ”sees” that text on the stack (”&a2”) still has macrotriggers (ampersands) in it and

starts processing again.
– The ”&a2” in the ”&a2” code, is recognized as a macro variable a2 and its value is resolved, text

”Variables” is added to the stack, stack is now ”Variables”;
– SAS ”sees” that there are no macrotriggers in the stack text and runs the %put statement;
– Value ”Variables” is printed in the log.
– Value of i is increased by 1;

3. Value of i equals 3 which is less or equal to 3, loop starts the third iteration:
– SAS starts scanning the %put statement text and processes it;

● Two consecutive ampersands ”&&” in the ”&&a&i” code are recognized as a macro language
triggers and are replaced with single ”&”, text kept on stack is ”&”;
● The text ”a” in the remaining ”a&i” code, since it is not a macro language element, is added

to the stack, which is now ”&a”;
● The ”&i” in the remaining ”&i” code, is recognized as a macro variable i and its value is

resolved, text ”3” is added to the stack, which is now ”&a3”;
● SAS gets to the end of the %put statement (the semicolon);
● SAS ”sees” that text on the stack (”&a3”) still has macrotriggers (ampersands) in it and

starts processing again.
– The ”&a3” in the ”&a3” code, is recognized as a macro variable a3 and its value is resolved, text

”Array” is added to the stack, stack is now ”Array”;
– SAS ”sees” that there are no macrotriggers in the stack text and runs the %put statement;
– Value ”Array” is printed in the log.
– Value of i is increased by 1;

4. Value of i equals 4 which is not less or equal to 3, loop stops. The end.

The result in the log is:

BARTOSZ JABŁOńSKI - MACRO VARIABLE ARRAYS MADE EASY WITH MACROARRAY SAS PACKAGE 5

the log

1 Macro

2 Variables

3 Array

If you are ”junior” SAS programmer and feel a bit overwhelmed by above explanation - do not be. All
that text can be boiled down to the following four rules:

● double ampersands (&&) are replaced with a single one (&),
● macro variables (&macVar) are resolved to the value (value),
● any non-macro text is kept ”as is”,
● repeat until there are no more macrotriggers.

When it goes to creation of MVAs, it can be seen that each of the above three methods has some
”shortcomings”. In the first one, it is obvious that the shortcoming is that it was created ”by-hand”. The
second requires jumping back from the macro language level to the 4GL data step. The third in addition
to ”4GL back jumping” also requires a data set with input values. Further more, for inexperienced users
the use of ”multiple-ampersands” approach to resolve macro variables data may be a bit ”intimidating”
or even obscured1 and for experienced one it may cause ”my-code-is-a-mess” thinking. For all that
”little pains” the SAS users community has solutions!

STANDING ON THE SHOULDERS OF GIANTS

The SAS community is a very active one, so in no time, solutions allowing to ”improve” convenience of
work started to appear. Those of the highest value were articles presented by Ted Clay ([Clay 2004]
and [Clay 2006]) where the %array() and the %do_over() macros were presented. The purpose of the
%array() macro is to create MVAs in an easy and convenient way and the purpose of the %do_over()

macro is to allow practical looping over MVAs created by the %array(). For example:
code: Ted Clay’s approach

1 data Have;

2 input dayName :$12. value;

3 cards;

4 Monday 1

5 Tuesday 2

6 Wednesday 3

7 Thursday 4

8 Friday 5

9 Saturday 6

10 Sunday 7

11 ;

12 run;

13

14 %ARRAY(days, VALUES=Monday Wednesday Friday Sunday)

15

16 data Want;

17 set Have end=end;

18 where dayName in (%DO_OVER(days, PHRASE="?"));

19 total + value;

1Despite the ”awkwardness” and ”this-looks-to-hard-to-me” the author highly recommend putting effort and learn-
ing/understanding in depth how the process works.

BARTOSZ JABŁOńSKI - MACRO VARIABLE ARRAYS MADE EASY WITH MACROARRAY SAS PACKAGE 6

20 if end then output;

21 run;

The %array() creates four global macro variables days1=Monday, days2=Wednesday, days3=Friday,
days4=Sunday, and additional (technical) variable daysN with value 4, which keeps the information
about the MVA length. The %do_over(), with help of daysN, executes internal loop over days* and
produce a text string:

"Monday" "Wednesday" "Friday" "Sunday"

which is used inside the where clause. Further more, the %array() macro also allows for the creation
of MVAs from data sets.

The section title ”Standing on the shoulders of giants” (a metaphor which means ”using the under-
standing gained and work done by major thinkers working in the field before you in order to make
progress”) is fully justified here since the first contact with those macros, used to solve problems on
the SAS-L discussion list and, in consequence, lecture of Ted Clay’s articles gave birth to the following
thoughts in the authors head:

1. ”This is brilliant!”
2. ”How does it work?!” and (after answering the question)
3. ”Can its functionality be improved?”

Eventually, the development of the macroArray package was the result. One more remark, it is ”giants”,
not ”giant”, because the source code clearly states: ”Authors: Ted Clay, David Katz”!

So, how was it with the macroArray package development in the first place? After reading through
Clay’s and Katz’s %array() code the first observation was that the code is not ”pure macro code” 2 (to
be more precise, the part responsible for producing MVAs from data sets). According to the code infor-
mation notes, the last modification of the Clay’s and Katz’s %array()macro was in August 2006. At that
point the famous DoSubL() function (see [Langston 2013], [McMullen 2020], or [Jablonski(1) 2023])
was not at their disposal to utilize the ”macro-function sandwich” technique. Fortunately, when I was
taking my first attempts to write my own version in January 2019 (see SAS-L post: ”%array() macro
and dosubl() function” - January 18, 2019, although do not use version of the code from that post, it
is quite obsolete now) I was fortunate to have the DoSubL() at hand. My experience with the DoSubL()

led me to my first, and then several consecutive, question.

So the first question was: can we have %array() working as ”pure macro code” (even for creating
macro arrays from data sets)? The answer is yes.

The next observation was, macro arrays are ”one based”, i.e., the first element has always index 1. The
second question was: can an MVA created by %array() start indexing from an arbitrary non-negative
integer (e.g., 0, 2, 3, etc.)? Here, the answer is also yes.

Following idea was: we can create multiple MVAs from multiple variables from a data set. But can we
also create MVAs with lists of unique values? Yes.

When macro array is created its values still have to be called by &&prefix&suffix approach. Can we
make this call to the macro array value more ”convenient”, e.g., similar to the data step array, like:
(prefix[suffix])? Yes.

Can we use SAS functions to alter, modify, or generate MVA values? Yes.

When creating an MVA, can we have syntax similar to the one known form 4GL? Yes we can.

2The ”pure macro code” means it is a code which executes 100% on the macro processor level and does not produce any
data or proc step code for the compilation.

BARTOSZ JABŁOńSKI - MACRO VARIABLE ARRAYS MADE EASY WITH MACROARRAY SAS PACKAGE 7

And one more, very important question. Can all those ”yes we can” extension be added keeping back-
ward compatibility? Also, yes.

So, it is nice that all the answers were: yes we can! But now, our little internal ”Bob the Builder”
wants details. Explanation to the questions stated above can be found in the next section where the
macroArray package is described.

THE macroArray PACKAGE

In this section we are going to discuss the macroArray package, its components, capabilities, and
possible use cases.

The latest (and historical) version of the macroArray package, with its documentation, parameters
description and examples, can be found at:

https://github.com/SASPAC/macroarray

[Note:] To start playing with any SAS Package, not only the macroArray package, the package has to be
first installed and loaded into the SAS session. The Appendix B - install the SAS Packages Framework
and the macroArray package provides detailed instruction of the process. Detailed information about
SAS Packages idea can be found in [Jablonski 2020], [Jablonski 2021], and [Jablonski(2) 2023].

Assuming we are ready to go, let’s see what the macroArray package has to offer.

At the moment the package contains 14 macros, which are: %appendArray(), %appendCell(),
%array(), %concatArrays(), %deleteMacArray(), %do_over(), %do_over2(), %do_over3(),
%make_do_over(), %mcHashTable(), %mcDictionary(), %QzipArrays(), %zipArrays(), and
%sortMacroArray().

Rewriting macroArray package’s documentation would be rather silly idea, especially since the docu-
mentation is publicly available (see the github link above). Instead, we discover the macroArray pack-
age by ”getting our hands dirty”, i.e., by going through a bunch of examples and use cases presenting
package’s features and capabilities.

The %array()macro.
The first macro we discuss is the %array()3 macro. It allows us to create MVAs, either ”from code” or
from a data set.

Let’s start with something simple. We want to create six element MVA ”named” X with values from 101
to 106. For now, we will use the %put _user_; statement to print created macro variables.

code: %array() example No. 1

1 %array(X[6] (101:106))

2

3 %put _user_;

In the log we can see the following:
the log

1 1 %array(X[6] (101:106))

2 NOTE:[ARRAY] 6 macrovariables created

3 2

4 3 %put _user_;

3To be clear, although the macros %array() and %do_over() were designed to replicate the functionality of Clay and Katz’s
macros, their source code was written from scratch. Only the names are the same.

BARTOSZ JABŁOńSKI - MACRO VARIABLE ARRAYS MADE EASY WITH MACROARRAY SAS PACKAGE 8

5 GLOBAL SYSLOADEDPACKAGES macroArray(X.Y.Z)

6 GLOBAL X1 101

7 GLOBAL X2 102

8 GLOBAL X3 103

9 GLOBAL X4 104

10 GLOBAL X5 105

11 GLOBAL X6 106

12 GLOBAL XHBOUND 6

13 GLOBAL XLBOUND 1

14 GLOBAL XN 6

Let’s take a look at what we see.
First, there is a note issued by %array() macro saying that six macro variables were created.
Second, syntax of the code looks ”4GL-ish”. Indeed when we like to create a data step array we write
almost exactly the same:

code: 4GL array

1 data _null_;

2 array X[6] (101:106);

3 run;

This way of writing code is possible thanks to the DoSubL() function working under the hood and giving
us a bit of ”syntactic sugar” flavor which allows us to learn how to use the %array() macro faster.
Third, is a printout of user’s macro variables. We can see six global macro variables X1 to X6 with
values from 101 to 106 which ”constitute” the macro array. Additionally, we can see macro variable
XN which indicates the number of macro array elements, similarly to the original Clay’s and Katz’s
%array() macro. What is new are two macro variables XLBOUND and XHBOUND which indicates lower
and, respectively, higher index of the macro array, in this example they are 1 and 6 respectively. We
discuss XLBOUND and XHBOUNDmore in a bit, but now let’s take a look at one more macro variable, namely
the SYSLoadedPackages.

We are using the macroArray package which was loaded into the SAS session by the SAS Packages
Framework. The SYSLoadedPackages is special technical macro variable generated/updated by the
framework when a package is loaded into the SAS Session. The SYSLoadedPackages keeps information
about all SAS packages loaded in current SAS session. The value of the SYSLoadedPackages has the
following form: ”package1(version) package2(version) ... packageN(version)”. In the future
log printouts of user’s macro variables, for brevity, that one will be skipped.

[NOTE: About array name length] The naming convention for macro arrays is ”SAS standard” with the
respect to the following restrictions: cannot be empty, cannot be longer than ”32−max(6, the number

of digits in the biggest suffix value)”. In other words, if the maximum suffix is 123456789
then maximum length of a macro array name can be up to 23 (32 −max(6,9)) symbols4. The ”6” is
from the ”HBOUND” and ”LBOUND” suffixes. There is one more ”special case”, when macro array’s
name is single underscore, but this case is explained separately and in details in the documentation.

Before further discussion, let’s take a look at the next example. We create the days macro array, with
values: Monday, Wednesday, Friday, and Sunday, like in the example from previous section. Since we
can do it on at least two ways, the first MVA will be named: days_A and the second: days_B.

4By ”symbols” we mean the 26 letters of the Roman alphabet, ten digits from 0 to 9 and the underscore character.

BARTOSZ JABŁOńSKI - MACRO VARIABLE ARRAYS MADE EASY WITH MACROARRAY SAS PACKAGE 9

code: %array() example No. 2

1 %array(days_A[*] Monday Tuesday Wednesday Saturday, vnames=Y)

2

3 %array(days_B[4] $ 20 ("Monday" "Tuesday" "Wednesday" "Saturday"))

4

5 %put _user_;

The log shows the following:

the log - with "vnames=" parameter

1 1 %array(days_A[*] Monday Tuesday Wednesday Saturday, vnames=Y)

2 NOTE:[ARRAY] 4 macrovariables created

3 2

4 3 %array(days_B[4] $ 20 ("Monday" "Tuesday" "Wednesday" "Saturday"))

5 NOTE:[ARRAY] 4 macrovariables created

6 4

7 5 %put _user_;

8 GLOBAL DAYS_A1 Monday

9 GLOBAL DAYS_A2 Tuesday

10 GLOBAL DAYS_A3 Wednesday

11 GLOBAL DAYS_A4 Saturday

12 GLOBAL DAYS_AHBOUND 4

13 GLOBAL DAYS_ALBOUND 1

14 GLOBAL DAYS_AN 4

15 GLOBAL DAYS_B1 Monday

16 GLOBAL DAYS_B2 Tuesday

17 GLOBAL DAYS_B3 Wednesday

18 GLOBAL DAYS_B4 Saturday

19 GLOBAL DAYS_BHBOUND 4

20 GLOBAL DAYS_BLBOUND 1

21 GLOBAL DAYS_BN 4

We can see in both cases that a macro array was generated, but in each case a different approach was
used.
In the first approach we use the vnames=Y parameter and the fact that values: Monday, Wednesday,
Friday, and Sunday can be used as data step variables names. The vnames=Y parameter instructs the
%array() macro to take variable’s names as MVA’s values instead ”real” values stored in variables (the
default behavior). If we do not use the vnames= parameter or set its value to anything other then Y, the
result is:

the log - no "vnames=" parameter

1 1 %array(days_A[*] Monday Tuesday Wednesday Saturday)

2 NOTE:[ARRAY] 4 macrovariables created

3 2

4 3 %put _user_

5 GLOBAL DAYS_A1 .

6 GLOBAL DAYS_A2 .

7 GLOBAL DAYS_A3 .

8 GLOBAL DAYS_A4 .

9 GLOBAL DAYS_AHBOUND 4

BARTOSZ JABŁOńSKI - MACRO VARIABLE ARRAYS MADE EASY WITH MACROARRAY SAS PACKAGE 10

10 GLOBAL DAYS_ALBOUND 1

11 GLOBAL DAYS_AN 4

The reason we get ”periods” is because (according to 4GL rules) the array under the hood is considered
to be numeric. Bottom line is, if values (e.g., week days names) you want to use for MVA values ”satisfy”
SAS variables naming convention you can do it with vnames=Y.
In the second approach by writing ”[4] $ 20” we are declaring a character array of size four with initial
values which are then used to generate the MVA. This approach does not have ”limitations” of the first
one. Furthermore since values are provided in quotes it can be very handy way of ”masking” special
characters like ampersand, percent, semicolon or comma in macro array values, for example:

the log - "specials"

1 1 %array(days_B[4] $ 20 (’&Monday.’ ’%Tuesday()’ "Wed;nes;day;" "Sa,tur,day")

2 NOTE:[ARRAY] 4 macrovariables created

3 2

4 3 %put _user_

5 GLOBAL DAYS_B1 &Monday.

6 GLOBAL DAYS_B2 %Tuesday()

7 GLOBAL DAYS_B3 Wed;nes;day;

8 GLOBAL DAYS_B4 Sa,tur,day

9 GLOBAL DAYS_BHBOUND 4

10 GLOBAL DAYS_BLBOUND 1

11 GLOBAL DAYS_BN 4

Obviously the "Wed;nes;day;" text can be replaced with something like: "proc print

data=sashelp.class; var name age; run;".

In the examples above values of the MVA were a ”static text”, but this does not have to be the case.
The %array() macro can be extended with the use of SAS functions that can be used to generate
macro array values. A dedicated parameter, function=, can be used to assign the array’s values. The
function= parameter expects a SAS 4GL function, composition of functions, or an expression using
functions. If we would like to use array’s index in an expression the index value is kept in the _i_

variable5. Important thing to remember is that if the type of an array it numeric, then the value returned
by the expression in function= parameter must ”align” (be numeric too). Let’s look at log output for
some examples:

the log - with "function=" parameter

1 1 /* three constant expression, equiv. of %array(e[1:3] $ (3*"A")) */

2 2 %array(e[1:3] $, function = "A")

3 NOTE:[ARRAY] 3 macrovariables created

4 3

5 4 /* first six integer powers of 2 */

6 5 %array(f[0:5], function = (2**_i_))

7 NOTE:[ARRAY] 6 macrovariables created

8 6

9 7 /* five random numbers form uniform distribution on (0,1) interval */

10 8 %array(g[0:4], function = ranuni(123))

11 NOTE:[ARRAY] 5 macrovariables created

12 9

13 10 /* a formated list of twelve months */

14 11 %array(h[0:11] $ 11, function = put(intnx("MONTH", ’19may2024’d, _i_), yymmd.))

5The _i_ variable is used internaly inside the %array() macro processing.

BARTOSZ JABŁOńSKI - MACRO VARIABLE ARRAYS MADE EASY WITH MACROARRAY SAS PACKAGE 11

15 NOTE:[ARRAY] 12 macrovariables created

16 12

17 13 /* Fibonacci sequence, first ten elements */

18 14 %array(i[10] (10*0)

19 15 ,function = ifn(_i_<2, 1, sum(i[max(_i_-2,1)], i[max(_i_-1,2)])))

20 NOTE:[ARRAY] 10 macrovariables created

21 16

22 17 %put _user_;

23 GLOBAL E1 A

24 GLOBAL E2 A

25 GLOBAL E3 A

26 GLOBAL EHBOUND 3

27 GLOBAL ELBOUND 1

28 GLOBAL EN 3

29

30 GLOBAL F0 1

31 GLOBAL F1 2

32 GLOBAL F2 4

33 GLOBAL F3 8

34 GLOBAL F4 16

35 GLOBAL F5 32

36 GLOBAL FHBOUND 5

37 GLOBAL FLBOUND 0

38 GLOBAL FN 6

39

40 GLOBAL G0 0.7503960881

41 GLOBAL G1 0.3209120251

42 GLOBAL G2 0.178389649

43 GLOBAL G3 0.9060333813

44 GLOBAL G4 0.3571170775

45 GLOBAL GHBOUND 4

46 GLOBAL GLBOUND 0

47 GLOBAL GN 5

48

49 GLOBAL H0 2024-05

50 GLOBAL H1 2024-06

51 GLOBAL H2 2024-07

52 GLOBAL H3 2024-08

53 GLOBAL H4 2024-09

54 GLOBAL H5 2024-10

55 GLOBAL H6 2024-11

56 GLOBAL H7 2024-12

57 GLOBAL H8 2025-01

58 GLOBAL H9 2025-02

59 GLOBAL H10 2025-03

60 GLOBAL H11 2025-04

61 GLOBAL HHBOUND 11

62 GLOBAL HLBOUND 0

63 GLOBAL HN 12

BARTOSZ JABŁOńSKI - MACRO VARIABLE ARRAYS MADE EASY WITH MACROARRAY SAS PACKAGE 12

64

65 GLOBAL I1 1

66 GLOBAL I2 1

67 GLOBAL I3 2

68 GLOBAL I4 3

69 GLOBAL I5 5

70 GLOBAL I6 8

71 GLOBAL I7 13

72 GLOBAL I8 21

73 GLOBAL I9 34

74 GLOBAL I10 55

75 GLOBAL IHBOUND 10

76 GLOBAL ILBOUND 1

77 GLOBAL IN 10

The function= parameter with all its ”functionality” is not all that is. There are two more (optional)
counterpart parameters: before= and after=. The before= expects a function or an expression to be
added before looping through the array. The after= expects a function or an expression to be added
after looping through the array. If we want to provide a series of statements to before= or after=

they should be separated by semicolons. The following example generates macro array j with sorted
random numbers in range from zero to one, generated by the rand() function from uniform distribution.
The seed for the rand() function is set with the help of before= parameter. Sorting, change of the first
and the last value, and a ”debugging printout” are done with after= parameter:

code: %array() example No. 3

1 %array(j[10]

2 ,function = round(rand(’Uniform’,0,1),0.001)

3 ,before = call streaminit(42)

4 ,after = call sortn(of j[*]); j[1]=0; j[10]=1; put _all_

5)

6

7 %put _user_

The log presents the following content:
the log - with "before=" and "after=" parameters

1 1 %array(j[10]

2 2 ,function = round(rand(’Uniform’,0,1),0.001)

3 3 ,before = call streaminit(42)

4 4 ,after = call sortn(of j[*]); j[1]=0; j[10]=1; put _all_

5 5)

6

7 j1=0 j2=0.137 j3=0.219 j4=0.513 j5=0.66 j6=0.728 j7=0.747 j8=0.753 j9=0.901 j10=1

8 _I_=11 _ERROR_=0 _N_=1

9 NOTE:[ARRAY] 10 macrovariables created

10 6

11 7 %put _user_;

12 GLOBAL J1 0

13 GLOBAL J2 0.137

14 GLOBAL J3 0.219

15 GLOBAL J4 0.513

16 GLOBAL J5 0.66

BARTOSZ JABŁOńSKI - MACRO VARIABLE ARRAYS MADE EASY WITH MACROARRAY SAS PACKAGE 13

17 GLOBAL J6 0.728

18 GLOBAL J7 0.747

19 GLOBAL J8 0.753

20 GLOBAL J9 0.901

21 GLOBAL J10 1

22 GLOBAL JHBOUND 10

23 GLOBAL JLBOUND 1

24 GLOBAL JN 10

So at this point an MVA created by macroArray package has all properties provided by the Clay’s and
Katz’s %array() macro, so we can also use it with their version of %do_over().

Next extension of the %array() macro is the possibility to index ”coded” macro arrays not only starting
from one but from any non-negative integer (e.g., 0, 2, 3, etc.), for example:

code: %array() example No. 4

1 %array(k[5:7] $ ("fifth" "sixth" "seventh"))

2

3 %put _user_;

In the log we see:
the log - with "arbitrary index"

1 1 %array(k[5:7] $ ("fifth" "sixth" "seventh"))

2 NOTE:[ARRAY] 3 macrovariables created

3 2

4 3 %put _user_;

5 GLOBAL K5 fifth

6 GLOBAL K6 sixth

7 GLOBAL K7 seventh

8 GLOBAL KHBOUND 7

9 GLOBAL KLBOUND 5

10 GLOBAL KN 3

In case we decide to start indexing from a negative integer (e.g. -3) then the index range value in
the variable _i_ is used ”as is”, i.e., starts from provided negative value, but... and this has to be
highlighted(!), the index range for macro array is automatically shifted to start at zero! For example if
we want to get powers of two with exponents from -3 to 3 in macro array we can do the following:

code: %array() example No. 5

1 %array(l[-3:3], function = 2**_i_)

2

3 %put _user_;

In this case the log shows:
the log - with "negative index"

1 1 %array(l[-3:3], function = 2**_i_)

2 NOTE:[ARRAY] 7 macrovariables created

3 2

4 3 %put _user_;

5 GLOBAL L0 0.125

6 GLOBAL L1 0.25

7 GLOBAL L2 0.5

BARTOSZ JABŁOńSKI - MACRO VARIABLE ARRAYS MADE EASY WITH MACROARRAY SAS PACKAGE 14

8 GLOBAL L3 1

9 GLOBAL L4 2

10 GLOBAL L5 4

11 GLOBAL L6 8

12 GLOBAL LHBOUND 6

13 GLOBAL LLBOUND 0

14 GLOBAL LN 7

So the values assigned are 2−3, 2−2, . . ., 22, 23 but the suffixes goes from zero to six.
The reason for implementing such behavior is based on the following thoughts. The only characters
allowed for macro variables names are letters, digits and underscore(”_”). What symbol could be used
to indicate minus sign in negative index? It cannot be a number or a letter, the first are already reserved
for suffix part the second for prefix. The only ”natural candidate” which pops up is the underscore. But
if we decide to use underscore as an indicator of negative value, then from looking at the following
macro array M_1=2, M_2=1 you cannot tell which of those two examples: %array(m[-2:-1] (1 2)) and
%array(m_[1:2] (2 1)), was used to produce the MVA. In other words, we cannot tell if it is array M_

with index 1, or if it is array M with index -1.

But macro arrays created from data sets are indexed from one! Right! Macro variable arrays can be
created from a data set, we didn’t mention this feature yet.

The %array() macro allows us to create a macro array from a variable in a data set. Even better,
multiple macro arrays can be created based on different variables from that data set. Additionally, it
is possible to request a macro array with only distinct values extracted from a variable. To create MVA
from a variable in a data set two parameters should be used. The first one, ds=, points to a data set, the
second, vars=, points to variables. The ds= parameter takes precedence over other parameters, i.e., if
both ds= is not empty (points to a data set) and ”by code”6 array definition is provided then the ds=

dedicated code is executed. Data set in the ds= can be provided with data set options in parentheses but
the data set can be (like in the ”Highlander” movie) only one. On the other hand, the vars= parameter
allows for multiple values, this will be discussed next, but now let’s take a look at the following example:

code: %array() example No. 6

1 %array(ds=sashelp.class(where=(age=13)), vars=name)

2

3 %put _user_;

The condition in the where= data set option selects three observations from sashelp.class data set
and values of the name variable are taken for MVA values, the name of the variable is used for MVA
name. Log shows the following result:

the log - with "ds=" and "vars=" parameter

1 1 %array(ds=sashelp.class(where=(age=13)), vars=name)

2 NOTE:[ARRAY] 3 macrovariables created

3 2

4 3 %put _user_;

5 GLOBAL NAME1 Alice

6 GLOBAL NAME2 Barbara

7 GLOBAL NAME3 Jeffrey

8 GLOBAL NAMEHBOUND 3

9 GLOBAL NAMELBOUND 1

10 GLOBAL NAMEN 3

6A ”by code” array is an array declared within the macro call

BARTOSZ JABŁOńSKI - MACRO VARIABLE ARRAYS MADE EASY WITH MACROARRAY SAS PACKAGE 15

If we decide to create multiple MVAs we simply list variables we want to use separated by a space, for
example like this:

code: %array() example No. 7

1 %array(ds=sashelp.class(where=(age=13)), vars=name height weight)

2

3 %put _user_;

Log from execution is the following:

the log - ith multiple variables

1 1 %array(ds=sashelp.class(where=(age=13)), vars=name height weight)

2 NOTE:[ARRAY] 9 macrovariables created

3 2

4 3 %put _user_;

5 GLOBAL HEIGHT1 56.5

6 GLOBAL HEIGHT2 65.3

7 GLOBAL HEIGHT3 62.5

8 GLOBAL HEIGHTHBOUND 3

9 GLOBAL HEIGHTLBOUND 1

10 GLOBAL HEIGHTN 3

11

12 GLOBAL NAME1 Alice

13 GLOBAL NAME2 Barbara

14 GLOBAL NAME3 Jeffrey

15 GLOBAL NAMEHBOUND 3

16 GLOBAL NAMELBOUND 1

17 GLOBAL NAMEN 3

18

19 GLOBAL WEIGHT1 84

20 GLOBAL WEIGHT2 98

21 GLOBAL WEIGHT3 84

22 GLOBAL WEIGHTHBOUND 3

23 GLOBAL WEIGHTLBOUND 1

24 GLOBAL WEIGHTN 3

First we observe three brand new MVAs created, the second observation takes us to the log note printed
by the macro. The note reports total number of macro variables created.

The vars= parameter has two more features. The first, is a possibility to select only unique values from
a variable. It can be done by adding a vertical bar character (”|”) directly after the variable name in
the list, in other words ”no space in-between”, like in this example:

code: %array() example No. 8

1 %array(ds=sashelp.class, vars=age|)

2

3 %put _user_;

Log shows the following:

the log - with unique values

1 1 %array(ds=sashelp.class, vars=age|)

2 NOTE:[ARRAY] 6 macrovariables created

3 2

BARTOSZ JABŁOńSKI - MACRO VARIABLE ARRAYS MADE EASY WITH MACROARRAY SAS PACKAGE 16

4 3 %put _user_;

5 GLOBAL AGE1 15

6 GLOBAL AGE2 12

7 GLOBAL AGE3 16

8 GLOBAL AGE4 13

9 GLOBAL AGE5 14

10 GLOBAL AGE6 11

11 GLOBAL AGEHBOUND 6

12 GLOBAL AGELBOUND 1

13 GLOBAL AGEN 6

We can see six unique values selected. Order of returned values, as can be seen, is random. In general:
if there is ”|” inserted behind a variable name unique values are selected, and if there is nothing or the
pound sign (”#”) behind a variable name then values from all observations are selected.

A curious reader instantly asks: Why additional symbol (the pound sign)? The vertical bar(|) and
”nothing” perfectly good distinguish ”select distinct vs. select all” values. Well, it would be enough but
only in situations when we want MVA name to be the same as the data set variable’s name. And this is
the second feature the vars= parameter has. We can use values from a variable but we do not need to
use its name, we can change MVA’s name by setting an alias. The syntax is:

variable1<| or #<alias1>> <variable2<| or #<alias2>>> ... <variableN<| or #<aliasN>>>

The <...> indicates optional element. Basically, the variableA|aliasA means: select distinct val-
ues from variableA into MVA named aliasA, and the variableB#aliasB means: select all values
from variableB into MVA named aliasB. The best is to look at the next example in which we use
sashelp.class and create macro array N with all values from variable name and macro array A with
unique values from variable age:

code: %array() example No. 9

1 %array(ds=sashelp.class, vars=name#N age|A)

2

3 %put _user_;

And, as we would expect, in the log we see 25 variables created:
the log - with "vars=" parameter in full

1 1 %array(ds=sashelp.class, vars=name#N age|A)

2 NOTE:[ARRAY] 25 macrovariables created

3 2

4 3 %put _user_;

5 GLOBAL A1 15

6 GLOBAL A2 12

7 GLOBAL A3 16

8 GLOBAL A4 13

9 GLOBAL A5 14

10 GLOBAL A6 11

11 GLOBAL AHBOUND 6

12 GLOBAL ALBOUND 1

13 GLOBAL AN 6

14 GLOBAL N1 Alfred

15 GLOBAL N2 Alice

16 GLOBAL N3 Barbara

17 ...

BARTOSZ JABŁOńSKI - MACRO VARIABLE ARRAYS MADE EASY WITH MACROARRAY SAS PACKAGE 17

18 GLOBAL N17 Ronald

19 GLOBAL N18 Thomas

20 GLOBAL N19 William

21 GLOBAL NHBOUND 19

22 GLOBAL NLBOUND 1

23 GLOBAL NN 19

We all know that in the macro language world every value is a text so no quotes are needed. But
even despite that from time to time there is a need that value must be presented in quotes (double or
single). That is why one more parameter, q=, which indicate if quotes should be added, is available. The
parameter can take two values, 2 to indicate quoting with double quotes and 1 to indicate quoting with
apostrophes (single quotes). Parameter works both with ”coded” macro arrays and with ”from data
set” arrays. Log for two simple examples looks like this:

the log - with "q=" parameter

1 1 %array(Letters[5] $ 3, function = byte(rank(’A’)+_I_-1) , q=2)

2 NOTE:[ARRAY] 5 macrovariables created

3 2

4 3 %array(ds=sashelp.class, vars=name, q=1)

5 NOTE:[ARRAY] 19 macrovariables created

6 4

7 5 %put _user_;

8 GLOBAL LETTERS1 "A"

9 GLOBAL LETTERS2 "B"

10 GLOBAL LETTERS3 "C"

11 GLOBAL LETTERS4 "D"

12 GLOBAL LETTERS5 "E"

13 GLOBAL LETTERSHBOUND 5

14 GLOBAL LETTERSLBOUND 1

15 GLOBAL LETTERSN 5

16 GLOBAL NAME1 ’Alfred’

17 GLOBAL NAME2 ’Alice’

18 GLOBAL NAME3 ’Barbara’

19 ...

20 GLOBAL NAME17 ’Ronald’

21 GLOBAL NAME18 ’Thomas’

22 GLOBAL NAME19 ’William’

23 GLOBAL NAMEHBOUND 19

24 GLOBAL NAMELBOUND 1

25 GLOBAL NAMEN 19

[Note:] If you are working with BIG macro arrays do not forget to verify your session setting for macro
memory limits. Run:

code: session setting for macro memory

1 proc options group = macro;

2 run;

to verify the following options:

● MEXECSIZE - specifies the maximum macro size that can be executed in memory.

BARTOSZ JABŁOńSKI - MACRO VARIABLE ARRAYS MADE EASY WITH MACROARRAY SAS PACKAGE 18

● MSYMTABMAX - specifies the maximum amount of memory available to the macro variable symbol
table or tables.
● MVARSIZE - specifies the maximum size for a macro variable that is stored in memory.

In the final part of this subsection we discuss one more feature, unique to the macroArray package’s
implementation of the %array() macro. Up to now, to display macro array’s elements in the log we
use the %put _user_; trick. But what to do when we want to use MVA’s elements separately, e.g., in
a loop of some sort? As we already know, the ”structure” of variables in a macro array has the form:
[prefix][suffix] and when we want to call their values we have to use indirect reference. To call
elements of the macro array ARR in the example below we use the &&prefix&suffix construction in the
%do-loop:

code: %array() example No. 10

1 %macro someMacro();

2 %array(ARR[1:3] $ ("first" "second" "third"))

3

4 %do i=1 %to 3;

5 %put for &=i. value is &&ARR&i ;

6 %end;

7 %mend someMacro;

8

9 %someMacro()

In the log, printout from the %someMacro() execution has the following form:
the log - getting values

1 1 %someMacro()

2 NOTE:[ARRAY] 3 macrovariables created

3 for I=1 value is first

4 for I=2 value is second

5 for I=3 value is third

To make macro arrays behavior even more ”4GL arrays” alike the macarray=<Y,N> parameter was in-
troduced. The purpose of the macarray=, when set to Y (the default is N), is to generate a new macro
named the same as the MVA name. The new macro that is created allows us to call to macro arrays
elements in a similar fashion we call array elements in the data step, with the difference being that now
the percent symbol (%) precedes the reference. The example above can be modified the following way:

code: %array() example No. 11

1 %macro someMacro2();

2 %array(ARR[1:3] $ ("first" "second" "third"), macarray=Y)

3

4 %do i=1 %to 3;

5 %put for &=i. value is %ARR(&i) ;

6 %end;

7 %mend someMacro2;

8

9 %someMacro2()

And in the log, printout from the %someMacro2() execution looks exactly the same:
the log - getting values with "macarray=" parameter

1 1 %someMacro2()

2 NOTE:[ARRAY] 3 macrovariables created

BARTOSZ JABŁOńSKI - MACRO VARIABLE ARRAYS MADE EASY WITH MACROARRAY SAS PACKAGE 19

3 for I=1 value is first

4 for I=2 value is second

5 for I=3 value is third

Clearly the %ARR(&i) is more ”array like” looking code than the &&ARR&i is, isn’t it? Plus the added
benefit is you don’t have to remember how many & are needed.

The parameter works with data set generated macro arrays too. And when used with lower and high
bound variables it works even better, like in this example:

code: %array() example No. 12

1 %macro someMacro3();

2 %array(ds=sashelp.class, vars=age|ARR, macarray=Y)

3

4 %do i=&ARRLBOUND. %to &ARRHBOUND.;

5 %put for &=i. value is %ARR(&i) ;

6 %end;

7 %mend someMacro3;

Log printout:
the log - with "macarray=" and "ds=" parameters

1 1 %someMacro3()

2 NOTE:[ARRAY] 6 macrovariables created

3 for I=1 value is 15

4 for I=2 value is 12

5 for I=3 value is 16

6 for I=4 value is 13

7 for I=5 value is 14

8 for I=6 value is 11

9 2 %put _user_;

10 GLOBAL ARR1 15

11 GLOBAL ARR2 12

12 GLOBAL ARR3 16

13 GLOBAL ARR4 13

14 GLOBAL ARR5 14

15 GLOBAL ARR6 11

16 GLOBAL ARRHBOUND 6

17 GLOBAL ARRLBOUND 1

18 GLOBAL ARRN 6

The ”macro-array” macro created when the macarray= parameter is in use has one more convenient
feature. It allows us to reassign values of existing macro variables. The process is very straightforward,
all we need to do is to set the ”macro-array” macro’s second argument to ”i” (like ”insert”). Here is
the example:

code: %array() example No. 13

1 %array(ABC[3] (1:3), macarray=Y);

2

3 %put _user_;

4 %let %ABC(2,i) = 99999;

5 %put _user_;

BARTOSZ JABŁOńSKI - MACRO VARIABLE ARRAYS MADE EASY WITH MACROARRAY SAS PACKAGE 20

With log print showing:
the log - modifying macro array values

1 1 %array(ABC[3] (1:3), macarray=Y);

2 NOTE:[ARRAY] 3 macrovariables created

3 2

4 3 %put _user_;

5 GLOBAL ABC1 1

6 GLOBAL ABC2 2

7 GLOBAL ABC3 3

8 GLOBAL ABCHBOUND 3

9 GLOBAL ABCLBOUND 1

10 GLOBAL ABCN 3

11 4 %let %ABC(2,i) = 99999;

12 5 %put _user_;

13 GLOBAL ABC1 1

14 GLOBAL ABC2 99999

15 GLOBAL ABC3 3

16 GLOBAL ABCHBOUND 3

17 GLOBAL ABCLBOUND 1

18 GLOBAL ABCN 3

The macarray= parameter provides one more useful feature. If its value is set to M (”make”) then for a
given array name the macro symbols table is scanned for all macro variables with a prefix like the array
name and numeric suffixes. From all macro variables of that form found, the minimum and the maximum
index is determined and all non-existing sequential global macro variables between the minimum and
maximum index values are created. Also a macro is generated, in the same fashion as one is generated
for the macarray=Y value. Here is log printout from a small example:

the log - with macarray=M

1 1 %let ARR1=1;

2 2 %let ARR3=3;

3 3 %let ARR5=5;

4 4

5 5 %put _user_;

6 GLOBAL ARR1 1

7 GLOBAL ARR3 3

8 GLOBAL ARR5 5

9 6 %array(ARR,macarray=m)

10 NOTE:[ARRAY] 5 macrovariables created

11 7 %put _user_;

12 GLOBAL ARR1 1

13 GLOBAL ARR2

14 GLOBAL ARR3 3

15 GLOBAL ARR4

16 GLOBAL ARR5 5

17 GLOBAL ARRHBOUND 5

18 GLOBAL ARRLBOUND 1

19 GLOBAL ARRN 5

This ends the discussion about features and capabilities of the %array() macro.

BARTOSZ JABŁOńSKI - MACRO VARIABLE ARRAYS MADE EASY WITH MACROARRAY SAS PACKAGE 21

The %deleteMacArray()macro.
Purpose of the %deleteMacArray() macro is very simple, it is a ”house keeping” macro. When macro
array is created with help of the %array() macro the macro variables are set as global, even if the
%array() macro execution creates an MVA on seventeenth, or forty-second level of macro nesting
depth. This may, when less attention is given, produce overwrite errors. To minimize probability of
such error the best approach is to delete macro array as soon as it is no longer needed. The ”possible
use case” code could be something like the following one:

code: clean after work

1 %macro someMacroX();

2

3 /* declare someMacroArray */

4 %array(<definition of someMacroArray>, macarray=Y)

5

6 /* code using someMacroArray */

7 %do i=&someMacroArrayLBOUND. %to &someMacroArrayHBOUND.;

8 /* <... call to %someMacroArray(&i) ...> */

9 %end;

10

11 /* delete someMacroArray */

12 %deleteMacArray(someMacroArray, macarray=Y)

13

14 %mend someMacroX;

The second argument of the %deleteMacArray() macro, the macarray=<Y,N>, indicates should a macro
associated with macro array be deleted too. Default is N meaning ”no”.

If we specify a macro array to delete and there isn’t one an error in the log is produced. If we indicate
macarray=Y and there is no macro associated with the MVA the %deleteMacArray() macro still works
and deletes the macro array specified in the first argument.

The %sortMacroArray()macro.
Another ”house keeping” macro is the %sortMacroArray() macro. As the name suggests the macro
allows to sort macro array’s values, for example like this case:

code: sorting macro array

1 %array(n[6] $ 3 ("C33" "B22" "A11" "A01" "A02" "X42"))

2

3 %put _user_;

4

5 %sortMacroArray(n)

6

7 %put _user_;

Log shows the following:
the log - with "macarray=" and "ds=" parameters

1 1 %array(n[6] $ 3 ("C33" "B22" "A11" "A1" "A2" "X42"))

2 NOTE:[ARRAY] 6 macrovariables created

3 2

4 3 %put _user_;

5 GLOBAL N1 C33

6 GLOBAL N2 B22

BARTOSZ JABŁOńSKI - MACRO VARIABLE ARRAYS MADE EASY WITH MACROARRAY SAS PACKAGE 22

7 GLOBAL N3 A11

8 GLOBAL N4 A1

9 GLOBAL N5 A2

10 GLOBAL N6 X42

11 GLOBAL NHBOUND 6

12 GLOBAL NLBOUND 1

13 GLOBAL NN 6

14 4

15 5 %sortMacroArray(n)

16 6

17 7 %put _user_;

18 GLOBAL N1 A1

19 GLOBAL N2 A2

20 GLOBAL N3 A11

21 GLOBAL N4 B22

22 GLOBAL N5 C33

23 GLOBAL N6 X42

24 GLOBAL NHBOUND 6

25 GLOBAL NLBOUND 1

26 GLOBAL NN 6

Though macro works as ”pure macro code”, internally the Proc SORT does the job, the sorting sequence
can be modified by the sortseq= parameter. Its default value is LINGUISTIC(NUMERIC_COLLATION = ON)

which sort data that contain numbers in the values as if they were numbers (e.g., ”A2” before ”A10”).

Additionally, the outSet= macro parameter allows to store sorted values with the index ”after sorting”
in a data set pointed by the parameter. An example of sorting the MVA n from the previous example
and saving its data in the sortedData data set looks like this:

code: sorting macro array and storing sorted data

1 %sortMacroArray(n,outSet=sortedData)

Since under the hood Proc SORT is used the macro has one limitation though, maximum length of
sorted values is 32767 bytes.

The %appendArray() and the %concatArrays()macros.
Two more macros that ”organize macro arrays world” are %appendArray() and %concatArrays(). The
first macro (in fact a wrapper over the second) allows to append one macro array’s values at the end
of another macro array. The second macro does the same as the first one does, but also deletes the
second array’s elements after appending. The log illustrates this situation the best:

the log - appending one to another

1 1 %array(o[2:4] $ 1 ("A" "B" "C"))

2 NOTE:[ARRAY] 3 macrovariables created

3 2

4 3 %array(p[3] (1 2 3))

5 NOTE:[ARRAY] 3 macrovariables created

6 4

7 5 %put _user_;

8 GLOBAL O2 A

9 GLOBAL O3 B

BARTOSZ JABŁOńSKI - MACRO VARIABLE ARRAYS MADE EASY WITH MACROARRAY SAS PACKAGE 23

10 GLOBAL O4 C

11 GLOBAL OHBOUND 4

12 GLOBAL OLBOUND 2

13 GLOBAL ON 3

14 GLOBAL P1 1

15 GLOBAL P2 2

16 GLOBAL P3 3

17 GLOBAL PHBOUND 3

18 GLOBAL PLBOUND 1

19 GLOBAL PN 3

20 6 %appendArray(o, p);

21 7 %put _user_;

22 GLOBAL O2 A

23 GLOBAL O3 B

24 GLOBAL O4 C

25 GLOBAL O5 1

26 GLOBAL O6 2

27 GLOBAL O7 3

28 GLOBAL OHBOUND 7

29 GLOBAL OLBOUND 2

30 GLOBAL ON 6

31 GLOBAL P1 1

32 GLOBAL P2 2

33 GLOBAL P3 3

34 GLOBAL PHBOUND 3

35 GLOBAL PLBOUND 1

36 GLOBAL PN 3

And the second one:
the log - concatenating two

1 1 %array(q[2:4] $ 1 ("E" "F" "G"))

2 NOTE:[ARRAY] 3 macrovariables created

3 2

4 3 %array(r[3] (4 5 6))

5 NOTE:[ARRAY] 3 macrovariables created

6 4

7 5 %put _user_;

8 GLOBAL Q2 E

9 GLOBAL Q3 F

10 GLOBAL Q4 G

11 GLOBAL QHBOUND 4

12 GLOBAL QLBOUND 2

13 GLOBAL QN 3

14 GLOBAL R1 4

15 GLOBAL R2 5

16 GLOBAL R3 6

17 GLOBAL RHBOUND 3

18 GLOBAL RLBOUND 1

19 GLOBAL RN 3

20 6 %concatArrays(q, r);

BARTOSZ JABŁOńSKI - MACRO VARIABLE ARRAYS MADE EASY WITH MACROARRAY SAS PACKAGE 24

21 7 %put _user_;

22 GLOBAL Q2 E

23 GLOBAL Q3 F

24 GLOBAL Q4 G

25 GLOBAL Q5 4

26 GLOBAL Q6 5

27 GLOBAL Q7 6

28 GLOBAL QHBOUND 7

29 GLOBAL QLBOUND 2

30 GLOBAL QN 6

In both cases we can also notice how indexes increase is automatically maintained.

The %do_over()macro.
We already saw how the macarray= parameter of the %array() macro makes do-looping over macro
array elements simpler. A macro we discuss in this subsection, the %do_over() macro, is a helper
macro for the looping process itself. It allows for the looping over a macro array elements without
the necessity of ”putting” the do-loop inside an extra/external macro. As the result the %do_over()

generates plain text which is then ”used” (of course the result depends on the context into which the
text is pushed in the code, see the next two examples). Also when executed, the %do_over() macro
assumes that the %array() macro was run with the macarray= parameter set to Y.

For example the following:
code: silly %do_over() looping

1 %array(ds=sashelp.class(where=(age=12)), vars=name, q=2, macarray=Y)

2

3 %do_over(name)

4

5 %put _user_;

will rise an error message in the log:
the log - error

1 1 %array(ds=sashelp.class(where=(age=12)), vars=name, q=2, macarray=Y)

2 NOTE:[ARRAY] 5 macrovariables created

3 2

4 3 %do_over(name)

5 NOTE: Line generated by the macro function "UNQUOTE".

6 1 "James"

7 -------

8 180

9 ERROR 180-322: Statement is not valid or it is used out of proper order.

10

11 4

12 5 %put _user_;

13 GLOBAL NAME1 "James"

14 GLOBAL NAME2 "Jane"

15 GLOBAL NAME3 "John"

16 GLOBAL NAME4 "Louise"

17 GLOBAL NAME5 "Robert"

18 GLOBAL NAMEHBOUND 5

BARTOSZ JABŁOńSKI - MACRO VARIABLE ARRAYS MADE EASY WITH MACROARRAY SAS PACKAGE 25

19 GLOBAL NAMELBOUND 1

20 GLOBAL NAMEN 5

because SAS does not know how to interpret the "James" "Jane" ... "Robert" plain text string in
the open code.

But when we add the %put statement or place the %do_over() result in proper context (e.g. a data step
code) it works as intended:

code: wise %do_over() looping

1 %array(ds=sashelp.class(where=(age=12)), vars=name, q=2, macarray=Y)

2

3 %put %do_over(name);

4

5 data test;

6 set sashelp.class;

7 where name in (%do_over(name));

8 run;

which can be confirmed in log printout:

the log - good looping

1 1 %array(ds=sashelp.class(where=(age=12)), vars=name, q=2, macarray=Y)

2 NOTE:[ARRAY] 5 macrovariables created

3 2

4 3 %put %do_over(name);

5 "James" "Jane" "John" "Louise" "Robert"

6 4

7 5 data test;

8 6 set sashelp.class;

9 7 where name in (%do_over(name));

10 8 run;

11

12 NOTE: There were 5 observations read from the data set SASHELP.CLASS.

13 WHERE name in (’James’, ’Jane’, ’John’, ’Louise’, ’Robert’);

14 NOTE: The data set WORK.TEST has 5 observations and 5 variables.

As we can see from the examples, when the %do_over() is executed in its most basic form, i.e., with
only a macro array name as the array parameter value, the result is a text string listing all elements of
the macro array separated by space character.

The basic form, which uses only a macro array name, has a lot of practical use cases but, when we
use additional key-value parameters then the %do_over() reveals its full potential. The first key-value
parameter is the between= parameter, it provides a ”separator” string which is inserted between con-
secutive iterations. The default is space character.

The following example uses the ”" "” text (double quote, space, and double quote) for the between=

and does not use the q=2 in the MVA definition, plus the %do_over() is ”wrapped” in double quotes:

code: %do_over() looping with "between="

1 %array(ds=sashelp.class(where=(age=12)), vars=name, macarray=Y)

2

3 %put "%do_over(name, between=" ")";

BARTOSZ JABŁOńSKI - MACRO VARIABLE ARRAYS MADE EASY WITH MACROARRAY SAS PACKAGE 26

Log shows the following:
the log - "between="

1 1 %array(ds=sashelp.class(where=(age=12)), vars=name, macarray=Y)

2 NOTE:[ARRAY] 5 macrovariables created

3 2

4 3 %put "%do_over(name, between=" ")" ;

5 "James" "Jane" "John" "Louise" "Robert"

We can observe that this and the previous example produce the same result.

Next key-value parameter is the phrase=, this parameter keeps the text of a phrase which is executed
in each iteration of the %do_over() (see examples). The default value of the parameter, which results
in printing all elements of a macro array, is the following phrase of text: ”%nrstr(%&array(&_i_.))”.
The macro variable &_i_. is an implicit internal iterator of the %do_over() macro, &_i_. can be used
inside phrases you want to loop by the %do_over() macro (use of &_i_. instead &i. was dictated
by desire of similarity to 4GL’s ”do over Array;” statement and its default iterator _i_). There is a
requirement for phrases, when calling to &_i_. or ”macarray=Y generated macros”, that they have to
be ”enveloped” inside the %NRSTR() macro quoting function! Of course when the %NRSTR() is used its
masking rules, e.g., for brackets or apostrophes, has to be kept. So in practice, when we are thinking:
”phrase=<...code...>” it is better to think: ”phrase=%NRSTR(<...code...>)”.

Now, let’s look at some examples. In the first one we want to split a single data set into separate data
sets based on a variable’s values:

code: using "phrase=" parameter, ex. 1

1 %array(ds=sashelp.class, vars=age|, macarray=Y)

2

3 options mprint;

4 data

5 %do_over(age, phrase=%nrstr(data_%age(&_i_.)))

6 ;

7 set sashelp.class;

8

9 select(age);

10 %do_over(age, phrase=%nrstr(

11 when (%age(&_i_.)) output data_%age(&_i_.);

12))

13 otherwise put "unknown Age value!";

14 end;

15 run;

We are using the %do_over() macro twice, once to create a list of data sets, second to construct the
select(); ... end; statement. With the help of options mprint; we can see that in the log:

the log - using "phrase=" parameter, ex. 1

1 1 %array(ds=sashelp.class, vars=age|, macarray=Y)

2 NOTE:[ARRAY] 6 macrovariables created

3 2

4 3 options mprint;

5 4 data

6 5 %do_over(age, phrase=%nrstr(data_%age(&_i_.)))

7 MPRINT(DO_OVER): data_15

8 MPRINT(DO_OVER): data_12

BARTOSZ JABŁOńSKI - MACRO VARIABLE ARRAYS MADE EASY WITH MACROARRAY SAS PACKAGE 27

9 MPRINT(DO_OVER): data_16

10 MPRINT(DO_OVER): data_13

11 MPRINT(DO_OVER): data_14

12 MPRINT(DO_OVER): data_11

13 6 ;

14 7 set sashelp.class;

15 8

16 9 select(age);

17 10 %do_over(age, phrase=%nrstr(

18 11 when (%age(&_i_.)) output data_%age(&_i_.);

19 12))

20 MPRINT(DO_OVER): when (15) output data_15;

21 MPRINT(DO_OVER): when (12) output data_12;

22 MPRINT(DO_OVER): when (16) output data_16;

23 MPRINT(DO_OVER): when (13) output data_13;

24 MPRINT(DO_OVER): when (14) output data_14;

25 MPRINT(DO_OVER): when (11) output data_11;

26 13 otherwise put "unknown Age value!";

27 14 end;

28 15 run;

29 NOTE: There were 19 observations read from the data set SASHELP.CLASS.

30 NOTE: The data set WORK.DATA_15 has 4 observations and 5 variables.

31 NOTE: The data set WORK.DATA_12 has 5 observations and 5 variables.

32 NOTE: The data set WORK.DATA_16 has 1 observations and 5 variables.

33 NOTE: The data set WORK.DATA_13 has 3 observations and 5 variables.

34 NOTE: The data set WORK.DATA_14 has 4 observations and 5 variables.

35 NOTE: The data set WORK.DATA_11 has 2 observations and 5 variables.

In the second example we want to run a user defined macro over several consecutive dates as that
macro’s parameter value:

code: using "phrase=" parameter, ex. 2

1 %array(date[4], function=202300 + _i_, macarray=Y)

2

3 %put %do_over(date);

4

5 %macro someMacro4(period);

6 data _null_;

7 put "Running macro for &period.";

8 run;

9 %mend someMacro4;

10

11 %do_over(date, phrase=%nrstr(

12 %someMacro4(%date(&_i_.))

13))

With help of the function= parameter in the %array() macro we are creating a list of dates (in the
”YYYYMM” form) which will be passed as arguments in %do_over() in order to use them as parameters
in the call to %someMacro4() macro:

BARTOSZ JABŁOńSKI - MACRO VARIABLE ARRAYS MADE EASY WITH MACROARRAY SAS PACKAGE 28

the log - using "phrase=" parameter, ex. 2

1 1 %array(date[4], function=202300 + _i_, macarray=Y)

2 NOTE:[ARRAY] 4 macrovariables created

3 2

4 3 %put %do_over(date);

5 202301 202302 202303 202304

6 4

7 5 %macro someMacro4(period);

8 6 data _null_;

9 7 put "Running macro for &period.";

10 8 run;

11 9 %mend someMacro4;

12 10

13 11 %do_over(date, phrase=%nrstr(

14 12 %someMacro4(%date(&_i_.))

15 13))

16

17 Running macro for 202301

18 NOTE: DATA statement used (Total process time):

19 real time 0.00 seconds

20 cpu time 0.00 seconds

21

22 Running macro for 202302

23 NOTE: DATA statement used (Total process time):

24 real time 0.00 seconds

25 cpu time 0.00 seconds

26

27 Running macro for 202303

28 NOTE: DATA statement used (Total process time):

29 real time 0.01 seconds

30 cpu time 0.00 seconds

31

32 Running macro for 202304

33 NOTE: DATA statement used (Total process time):

34 real time 0.00 seconds

35 cpu time 0.00 seconds

Third example shows that inside the %do_over()’s phrases we can use multiple macro arrays at once:

code: using "phrase=" parameter, ex. 3

1 %array(ds=sashelp.class(obs=6), vars=name age, macarray=Y)

2

3 %do_over(name, phrase=%nrstr(

4 %put &_i_.. %name(&_i_.) has %age(&_i_.) years.;

5))

If two or more macro arrays have the same number of elements and ”aligned” indexes, then they can
be used in the phrase= parameter text. One of those macros should be used as the first parameter of
the %do_over() to be a ”driving” macro array (like the name MVA in the example).

BARTOSZ JABŁOńSKI - MACRO VARIABLE ARRAYS MADE EASY WITH MACROARRAY SAS PACKAGE 29

the log - using "phrase=" parameter, ex. 3

1 1 %array(ds=sashelp.class(obs=6), vars=name age, macarray=Y)

2 NOTE:[ARRAY] 12 macrovariables created

3 2

4 3 %do_over(name, phrase=%nrstr(

5 4 %put &_i_.. %name(&_i_.) has %age(&_i_.) years.;

6 5))

7 1. Alfred has 14 years.

8 2. Alice has 13 years.

9 3. Barbara has 13 years.

10 4. Carol has 14 years.

11 5. Henry has 14 years.

12 6. James has 12 years.

The last parameter of the %do_over() is which=, this one expects a space separated list of ”indexes
lists” over which the %do_over() will iterate. The idea behind this parameter is to allow subselection
of a macro array elements. A ”indexes list” is a construction of the form start<:end<:by>>, examples
of such ”indexes lists” are: 1:10:1, 1:10, 1:10:2, 1, 10, or even 10:1:-1. The which= allows multiple
”indexes lists” but sometimes single one is ”better” i.e., it is better if multiple index lists can be con-
densed to a single index list. For example, single ”index list” of the form: 1:5 is equivalent to five ”index
lists”: 1 2 3 4 5, but use of the first one is more efficient under the hood. There are some technical
requirements about ”indexes list”: 1) default value of by is 1, 2) a single ”index list” cannot have spaces
in its definition, 3) there a two special symbols: H and L which refers to higher and lower index values.
Interesting example where H, L, and -1 are used is to loop over a macro array backward:

code: using "which=" parameter

1 %array(test[*] x01-x06, vnames=Y, macarray=Y)

2

3 %put 1) %do_over(test);

4 %put 2) %do_over(test, which=H:L:-1);

The first loop from one to six, the second from six to one:
the log - using "which=" parameter

1 1 %array(test[*] x01-x06, vnames=Y, macarray=Y)

2 NOTE:[ARRAY] 6 macrovariables created

3 2

4 3 %put 1) %do_over(test);

5 1) x01 x02 x03 x04 x05 x06

6 4 %put 2) %do_over(test, which=H:L:-1);

7 2) x06 x05 x04 x03 x02 x01

Log printout from yet another example:
the log - using "which=" parameter, ex. 2

1 1 %array(test[*] x01-x99, vnames=Y, macarray=Y)

2 NOTE:[ARRAY] 99 macrovariables created

3 2

4 3 %put %do_over(test, which=L:3 97:H);

5 x01 x02 x03 x97 x98 x99

BARTOSZ JABŁOńSKI - MACRO VARIABLE ARRAYS MADE EASY WITH MACROARRAY SAS PACKAGE 30

The %do_overN() and the %make_do_over()macros.
The %do_over2() and %do_over3() macros are utility macros which ”extend” functionality of the
%do_over().

The %do_over() macro allows to loop over a macro array. The %do_over2() macro allows to loop
over two arrays by ”loop-in-loop” approach, which gives us a Cartesian product of two arrays. The
%do_over3() macro allows to loop over three arrays by ”loop-in-loop-in-loop” approach, which gives
us a Cartesian product of three arrays. Two following examples present use cases.

The first example shows how to run a macro with all possible combinations of input parameters values.

code: %do_over2()calling a two parameters macro

1 options nofullstimer nostimer; /* for shorter log */

2 %array(alpha[3] $ ("A" "B" "C"), macarray=Y)

3 %array(beta[3] (1 2 3), macarray=Y)

4

5 %macro letsPlay(x,y);

6 data &x&y;

7 x="&x.";

8 y= &y. ;

9 put x= y=;

10 run;

11 %mend letsPlay;

12

13 %do_over2(alpha, beta

14 ,phrase = %NRSTR(

15 %letsPlay(%alpha(&_I_.), %beta(&_J_))

16))

The log shows nine data sets created:

the log - nine data sets from %do_over2()

1 1 options nofullstimer nostimer; /* for shorter log */

2 2 %array(alpha[3] $ ("A" "B" "C"), macarray=Y)

3 NOTE:[ARRAY] 3 macrovariables created

4 3 %array(beta[3] (1 2 3), macarray=Y)

5 NOTE:[ARRAY] 3 macrovariables created

6 4

7 5 %macro letsPlay(x,y);

8 6 data &x&y;

9 7 x="&x.";

10 8 y= &y. ;

11 9 put x= y=;

12 10 run;

13 11 %mend letsPlay;

14 12

15 13 %do_over2(alpha, beta

16 14 ,phrase = %NRSTR(

17 15 %letsPlay(%alpha(&_I_.), %beta(&_J_))

18 16))

19

20 x=A y=1

BARTOSZ JABŁOńSKI - MACRO VARIABLE ARRAYS MADE EASY WITH MACROARRAY SAS PACKAGE 31

21 NOTE: The data set WORK.A1 has 1 observations and 2 variables.

22

23 x=A y=2

24 NOTE: The data set WORK.A2 has 1 observations and 2 variables.

25

26 x=A y=3

27 NOTE: The data set WORK.A3 has 1 observations and 2 variables.

28

29 x=B y=1

30 NOTE: The data set WORK.B1 has 1 observations and 2 variables.

31

32 x=B y=2

33 NOTE: The data set WORK.B2 has 1 observations and 2 variables.

34

35 x=B y=3

36 NOTE: The data set WORK.B3 has 1 observations and 2 variables.

37

38 x=C y=1

39 NOTE: The data set WORK.C1 has 1 observations and 2 variables.

40

41 x=C y=2

42 NOTE: The data set WORK.C2 has 1 observations and 2 variables.

43

44 x=C y=3

45 NOTE: The data set WORK.C3 has 1 observations and 2 variables.

The second example shows Cartesian product of a single macro array with itself and itself... so three
times.

code: %do_over3()producing Cartesian product over macro array A

1 %array(a[2] (0 1), macarray=Y)

2

3 %do_over3(a, a, a

4 , phrase = %NRSTR(

5 %put sum(%a(&_I_.),%a(&_J_),%a(&_K_))=%sysevalf(%a(&_I_.)+%a(&_J_)+%a(&_K_));

6))

In the log we can see:

the log - all possible sums

1 1 %array(a[2] (0 1), macarray=Y)

2 NOTE:[ARRAY] 2 macrovariables created

3 2

4 3 %do_over3(a, a, a

5 4 , phrase = %NRSTR(

6 5 %put sum(%a(&_I_.),%a(&_J_),%a(&_K_))=%sysevalf(%a(&_I_.)+%a(&_J_)+%a(&_K_));

7 6))

8 sum(0,0,0)=0

9 sum(0,0,1)=1

10 sum(0,1,0)=1

11 sum(0,1,1)=2

BARTOSZ JABŁOńSKI - MACRO VARIABLE ARRAYS MADE EASY WITH MACROARRAY SAS PACKAGE 32

12 sum(1,0,0)=1

13 sum(1,0,1)=2

14 sum(1,1,0)=2

15 sum(1,1,1)=3

As we can notice both macros have dedicated internal looping variables. For the %do_over2() macro
they are _I_ and _J_, and for The %do_over3() macro we also have _K_. The %do_over*() macros have
no which= parameter for them, only phrase= and between= are available.

With fairly high probability we can say that 99% of practical situations of looping over macro arrays
can be done with %do_over()(80%), %do_over2()(13%), and with %do_over3()(6%), but there is still
this 1% of ”special situations” where a ”do_over of higher order” may be required (i.e. greater than 3
nested loops). That is the reason why the %make_do_over() macro was implemented. Since it is rather
”special case” situation we only look at logs from two small examples.

the log - size must be greater than 3

1 1 %make_do_over(2);

2 NOTE:[MAKE_DO_OVER] NO MACRO GENERATED FOR SIZE = 2

3 [MAKE_DO_OVER] SIZE must be greater than 3!!!

the log - loop of size five

1 1 %make_do_over(5);

2

3 NOTE: The file _******_ is:

4 Filename=*******************************,

5 RECFM=V,LRECL=512,File Size (bytes)=0,

6 Last Modified=19May2024:12:34:56,

7 Create Time=19May2024:12:34:56

8 NOTE: 41 records were written to the file _******_.

9 The minimum record length was 1.

10 The maximum record length was 64.

11 NOTE: Fileref _******_ has been deassigned.

12 43

13 44 %array(a5_[2] (0 1), macarray=Y)

14 NOTE:[ARRAY] 2 macrovariables created

15 45

16 46 %do_over5(a5_, a5_, a5_, a5_, a5_

17 47 ,phrase = %NRSTR(

18 48 %put (%a5_(&_I1_.),%a5_(&_I2_),%a5_(&_I3_),%a5_(&_I4_),%a5_(&_I5_));

19 49))

20 (0,0,0,0,0)

21 (0,0,0,0,1)

22 ...

23 ...

24 ...

25 (1,1,1,1,0)

26 (1,1,1,1,1)

What is worth mentioning, the loop index variables are in this case _I1_, _I2_, _I3_, etc. All technical
details are described in the documentation of the macro. As mentioned earlier, all the documentation
is available at macroArray package’s repository.

BARTOSZ JABŁOńSKI - MACRO VARIABLE ARRAYS MADE EASY WITH MACROARRAY SAS PACKAGE 33

The %zipArrays() and the %QzipArrays()macros.
Two final macros from the macro arrays suite in the macroArray package are dedicated to execute
operations and functions on respective elements of two macro arrays and produce a new macro array
with results of processing. The only difference between them is that the %QzipArrays()returns macro
quoted results and %zipArrays() does not. The ”zip” in the macro name has nothing to do with data
compression, its rather a reference to a ”zipper”, where corresponding pairs of teeth from the left and
right row are ”meshed” together. When one of macro arrays has fewer elements than the other then
elements of the shorter are, by default, ”reused” starting from the beginning. This behavior can be
altered, to produce Cartesian product or stop at shorter, with help of the reuse= parameter.

Two positional parameters, which are required, are names of macro arrays. The default function op-
erating on corresponding elements is the cat() function, the name of newly created macro array is
concocted from names of input macro arrays. Both the function and the name can be altered, respec-
tively, by the function= and the result= parameter. Also the macarray= parameter (known from the
%array() macro) is available.

The following example creates new macro array ab with concatenated values of macro arrays a and b

(values of b are reused):

code: simple zip of two macro arrays

1 %array(a[4] X Y Z T, vnames=Y)

2 %array(b[2] (1 2))

3

4 %put _user_;

5 %zipArrays(a, b);

6 %put _user_;

The log reveals the following information:

the log - new macro array AB highlighted

1 1 %array(a[4] X Y Z T, vnames=Y)

2 NOTE:[ARRAY] 4 macrovariables created

3 2 %array(b[2] (1 2))

4 NOTE:[ARRAY] 2 macrovariables created

5 3

6 4 %put _user_;

7 GLOBAL A1 X

8 GLOBAL A2 Y

9 GLOBAL A3 Z

10 GLOBAL A4 T

11 GLOBAL AHBOUND 4

12 GLOBAL ALBOUND 1

13 GLOBAL AN 4

14 GLOBAL B1 1

15 GLOBAL B2 2

16 GLOBAL BHBOUND 2

17 GLOBAL BLBOUND 1

18 GLOBAL BN 2

19 5 %zipArrays(a, b);

20 NOTE:[ZIPARRAYS] 4 macrovariables created

21 6 %put _user_;

22 GLOBAL A1 X

BARTOSZ JABŁOńSKI - MACRO VARIABLE ARRAYS MADE EASY WITH MACROARRAY SAS PACKAGE 34

23 GLOBAL A2 Y

24 GLOBAL A3 Z

25 GLOBAL A4 T

26 GLOBAL AB1 X1

27 GLOBAL AB2 Y2

28 GLOBAL AB3 Z1

29 GLOBAL AB4 T2

30 GLOBAL ABHBOUND 4

31 GLOBAL ABLBOUND 1

32 GLOBAL ABN 4

33 GLOBAL AHBOUND 4

34 GLOBAL ALBOUND 1

35 GLOBAL AN 4

36 GLOBAL B1 1

37 GLOBAL B2 2

38 GLOBAL BHBOUND 2

39 GLOBAL BLBOUND 1

40 GLOBAL BN 2

This example creates new macro array and utilizes parameters presented above (new macro array is
Cartesian product in this case):

code: zip of two macro arrays with parameters

1 %array(a[2] (100 200))

2 %array(b[2] (3 4))

3

4 %put _user_;

5 %zipArrays(a, b

6 , result=NEW_ARR

7 , function=SUM

8 , reuse=CP

9 , macarray=Y

10)

11 %put _user_;

12

13 %put %do_over(NEW_ARR);

The log shows everything, even additional note for the macarray= parameter:

the log - zip of two macro arrays with parameters

1 1 %array(a[2] (100 200))

2 NOTE:[ARRAY] 2 macrovariables created

3 2 %array(b[2] (3 4))

4 NOTE:[ARRAY] 2 macrovariables created

5 3

6 4 %put _user_;

7 GLOBAL A1 100

8 GLOBAL A2 200

9 GLOBAL AHBOUND 2

10 GLOBAL ALBOUND 1

11 GLOBAL AN 2

BARTOSZ JABŁOńSKI - MACRO VARIABLE ARRAYS MADE EASY WITH MACROARRAY SAS PACKAGE 35

12 GLOBAL B1 3

13 GLOBAL B2 4

14 GLOBAL BHBOUND 2

15 GLOBAL BLBOUND 1

16 GLOBAL BN 2

17 5 %zipArrays(a, b

18 6 , result=NEW_ARR

19 7 , function=SUM

20 8 , reuse=CP

21 9 , macarray=Y

22 10)

23 NOTE:[ZIPARRAYS] 4 macrovariables created

24

25 NOTE: When macarray= parameter is active the zipArrays macro

26 cannot be called within the %put statement.

27 NOTE: Execution like: %put %zipArrays(..., macarray=Y) will

28 result with an e.r.r.o.r.

29 11 %put _user_;

30 GLOBAL A1 100

31 GLOBAL A2 200

32 ...

33 GLOBAL BLBOUND 1

34 GLOBAL BN 2

35 GLOBAL NEW_ARR1 103

36 GLOBAL NEW_ARR2 104

37 GLOBAL NEW_ARR3 203

38 GLOBAL NEW_ARR4 204

39 GLOBAL NEW_ARRHBOUND 4

40 GLOBAL NEW_ARRLBOUND 1

41 GLOBAL NEW_ARRN 4

42 12

43 13 %put %do_over(NEW_ARR);

44 103 104 203 204

See the documentation where all remaining details about additional parameters, not mentioned here,
are given. Also many more examples are presented there.

The %mcDictionary()macro.
Regarding the list of questions that were presented at the beginning of this paper that led to the
development of the macroArray package, one more question can be added: Does the ”suffix”
(array’s index) have to always be an integer? Can we, instead writing for example %myArray(1),
write %myDictionary(Bart) and get the value, let’s say ”180cm”, extracted for key ”Bart”? Yes, the
macroArray package also provides such functionality. Let’s talk about macro dictionaries.

Macro dictionary (aka MD) is a concept similar to the macro variable array, but instead ”integer-value”
pairs like MVAs have, it allows for a ”key-value” relations between macro variables values. The ”key”
in this case can be arbitrary text string associated with a value and the value is retrieved from macro
dictionary by providing the key. In the essence, the MD behavior is similar to the way formats or hash
tables behaves (though the mechanism under the hood is different). Worth to mention is that a macro
dictionary works according to the ”one key - one value” assumption.

BARTOSZ JABŁOńSKI - MACRO VARIABLE ARRAYS MADE EASY WITH MACROARRAY SAS PACKAGE 36

The macroArray package facilitates macro dictionaries by the %mcDictionary() macro. A dictionary is
created by calling the %mcDictionary() macro with a name to be used by the dictionary. The naming
convention is ”SAS standard” with the respect to the following restrictions: cannot be empty, cannot
be underscore, cannot be longer than 13 symbols. First, we create an empty macro dictionary named
myDict:

code: simple (and empty) dictionary

1 %mcDictionary(myDict)

The log does not show us anything interesting but it does not mean nothing happened. In fact quite
a lot has happened. Under the hood a macro named %myDict() was generated, similar way when
we used macarray= parameter in the %array() macro, which instantiate the MD and its use. The
%myDict() macro, and also any other macro created by the %mcDictionary() macro, has three pa-
rameters. One positional and two ”key-value” type. The first, positional parameter named method, is to
tell the %myDict() macro what work to execute in particular under the hood. It accepts the following
list of values: LIST [L], ADD [A], FIND [F], CHECK [C], DEL [D], and CLEAR (in square brackets are aliases).
We discuss them in a moment, but let’s finish describing parameters first. The ”key-value” parameters
are: key= and data= and whether they are used or not depends on the value of the method parameter.

Let’s talk about the method parameter values (also referred simply as ”methods”). When method is
empty then a table with list of accepted values is printed in the log.

The first method we discuss is the LIST [L], which makes %myDict() to print out in the log all its
elements (keys, values, and hash digest associated with key). In our case since the %myDict() has no
elements yet, the printout will be just:

the log - list of empty dictionary

1 1 %myDict(List)

2

3 Content of the dictionary:

4

5 --------------------------

To populate our MD with new data we use the ADD [A] method (this is one of two ways of populating
MD with data). When we use ADD [A] the key= provides value for the key in the MD and the data=

provides value for the data portion in the MD. For example, the following code adds three entries to the
%myDict() MD we created:

code: adding data to MD

1 %myDict(ADD,key=A,data=I)

2 %myDict(A ,key=B,data=<3)

3 %myDict(A ,key=C,data=SAS)

4 %myDict(L)

And in the log we can see:
the log - three entries and listing

1 1 %myDict(ADD,key=A,data=I)

2 2 %myDict(A ,key=B,data=<3)

3 3 %myDict(A ,key=C,data=SAS)

4 4 %myDict(L)

5

6 Content of the dictionary:

7

8 key=C

BARTOSZ JABŁOńSKI - MACRO VARIABLE ARRAYS MADE EASY WITH MACROARRAY SAS PACKAGE 37

9 hash=0D61F8370CAD1D41

10 val=SAS

11

12 key=A

13 hash=7FC56270E7A70FA8

14 val=I

15

16 key=B

17 hash=9D5ED678FE57BCCA

18 val=<3

19

20 --------------------------

As we can see, the process of adding data to the MD does not reveal too much but yields of the process
can be verified by the LIST [L] method.

When the MD is not empty we can try to use the data. This can be done in two ways. The first, we can
just check if a given key exists in the MD, the CHECK [C] method does that. For example, the following
code returns zeros and ones of existing and non existing keys:

code: checking keys

1 %put

2 A:%myDict(CHECK,key=A)

3 B:%myDict(C,key=B)

4 C:%myDict(C,key=C)

5 D:%myDict(C,key=D)

6 ;

The log shows:

the log - checking keys

1 A:1 B:1 C:1 D:0

The second, we can for a given key extract associated data portion, the FIND [F] method does that. For
example, to get: ”I ♡ SAS” in the log we run:

code: collecting data values

1 %put

2 "%myDict(FIND,key=A)

3 %myDict(F,key=B)

4 %myDict(F,key=C)

5 %myDict(F,key=D)"

6 ;

The log shows (mind there is a space character at the beginning of lines 3, 4, and 5 in the code):

the log - collecting data values

1 "I <3 SAS "

As we can see the value of not existing key ”D” is empty (the space is the one from between the bracket
and the percent in ...=C) %myD...).

We discuss two final methods in one thread since both are dedicated to removing data from a MD. The
methods are: DEL [D], and CLEAR. The difference between them is that the DEL [D] removes data for only

BARTOSZ JABŁOńSKI - MACRO VARIABLE ARRAYS MADE EASY WITH MACROARRAY SAS PACKAGE 38

a particular key (so key= parameter is needed) and the CLEAR just deletes them all and CLEAR does not
have an alias. Let’s see it on the following example:

code: deleting entries from MD

1 %myDict(DEL,key=B)

2 %myDict(L)

3

4 %myDict(CLEAR)

5 %myDict(L)

In the log we can see:

the log - deleting entries from MD

1 1 %myDict(DEL,key=B)

2 2 %myDict(L)

3

4 Content of the dictionary:

5

6 key=C

7 hash=0D61F8370CAD1D41

8 val=SAS

9

10 key=A

11 hash=7FC56270E7A70FA8

12 val=I

13

14 --------------------------

15 3

16 4 %myDict(CLEAR)

17 5 %myDict(L)

18

19 Content of the dictionary:

20

21 --------------------------

In both cases, under the hood macro variables of the form myDict_****************_K and
myDict_****************_V are looked up, the ”****************” indicates a sixteen symbols of
alphanumeric hash digest of the key. But for the DEL [D] method only ”that one” is deleted, while
the CLEAR methods removes them all. As a side note, by looking at the internal representation of MD
variables, we now know why the naming convention limits the name to 13 characters (32 - (16+3)).

When we were discussing the ADD method a second method of populating MD with data was mentioned.
The method, similarly as in the macro arrays case is based on taking data from the data set. To use
data set we have to indicate the fact when we execute the %mcDictionary() macro. Three dedicated
parameters: ds=, k=, and d= can be use for the process. The ds= indicates data set, the k= indicates key
variable (one variable!) in the data set, and the d= indicates data portion variable (also one variable!)
in the data set. Default values for k= and d= are ”Key” and ”Data” so if the data set contains such
variables and we want use them we can skip k= and d=. The following code present an example:

code: populating MD from data set

1 data work.have;

2 input kVar :$1. dVar :$3.;

3 cards;

BARTOSZ JABŁOńSKI - MACRO VARIABLE ARRAYS MADE EASY WITH MACROARRAY SAS PACKAGE 39

4 A I

5 B <3

6 C SAS

7 ;

8 run;

9

10 %mcDictionary(myDSdict, DCL, ds=work.have, k=kVar, d=dVar)

11

12 %myDSdict(L)

Notes in the log confirm everything:
the log - populating MD from data set

1 1 data work.have;

2 2 input kVar :$1. dVar :$3.;

3 3 cards;

4 NOTE: The data set WORK.HAVE has 3 observations and 2 variables.

5 ...

6 7 ;

7 8 run;

8 9

9 10 %mcDictionary(myDSdict, DCL, ds=work.have, k=kVar, d=dVar)

10 NOTE:[MCDICTIONARY] Populating dictionary myDSdict.

11 NOTE:[MCDICTIONARY] -----------------------------

12 11

13 12 %myDSdict(L)

14

15 Content of the dictionary:

16

17 key=C

18 hash=0D61F8370CAD1D41

19 val=SAS

20

21 key=A

22 hash=7FC56270E7A70FA8

23 val=I

24

25 key=B

26 hash=9D5ED678FE57BCCA

27 val=<3

28

29 --------------------------

Except the parameters mentioned above, one more thing can be observed in call to
%mcDictionary(..., DCL,...) macro. The DCL value (also DECLARE or just null) in the second
parameter tells the %mcDictionary() macro that either a macro dictionary is to be created (when
parameter is DCL) or a macro dictionary is to be deleted (when parameter is DELETE). If the DELETE

is used not only MD’s macro variables are deleted but the MD macro itself is removed from the SAS
session.

BARTOSZ JABŁOńSKI - MACRO VARIABLE ARRAYS MADE EASY WITH MACROARRAY SAS PACKAGE 40

EXAMPLE

In the last section we will take a look at some more ”advanced” examples that illustrate the use of both
macro arrays and macro dictionaries.

As the first step we will prepare ”driving” data sets:
code: creating "driving" data sets

1 /* project driving data */

2 /* data set with list of functions to "run over data" */

3 data work.functions;

4 input fName $12.;

5 cards;

6 sum

7 mean

8 median

9 min

10 max

11 nmiss

12 std

13 range

14 stderr

15 var

16 ;

17 run;

18

19 /* data set with project metadata */

20 data work.projectMetadata;

21 infile cards dsd dlm=",";

22 input key :$16. data :$128.;

23 cards;

24 ID,ABC-123-XYZ

25 TITLE,Use case of the MacroArray package

26 PATH,/path/to/study/data

27 INDATASET,sashelp.cars

28 OUTDATASET,work.results

29 VARIABLE,invoice

30 GROUPBY,origin

31 STARTDT,2020-01-01

32 ENDDT,2024-12-31

33 ;

34 run;

The log confirms data sets creation:

the log - creating "driving" data sets

1 1 /* project driving data */

2 2 /* data set with list of functions to "run over data" */

3 3 data work.functions;

4 4 input fName $12.;

5 5 cards;

6

BARTOSZ JABŁOńSKI - MACRO VARIABLE ARRAYS MADE EASY WITH MACROARRAY SAS PACKAGE 41

7 NOTE: The data set WORK.FUNCTIONS has 10 observations and 1 variables.

8 ...

9

10 16 ;

11 17 run;

12 18

13 19 /* data set with project metadata */

14 20 data work.projectMetadata;

15 21 infile cards dsd dlm=",";

16 22 input key :$16. data :$128.;

17 23 cards;

18

19 NOTE: The data set WORK.PROJECTMETADATA has 9 observations and 2 variables.

20 ...

21

22 33 ;

23 34 run;

The driving data allows us to execute the ”project code” and the use of macro array and macro dictio-
nary makes the project code only ”data driven”. Here is the code:

code: data driven project

1 /* project code */

2 /* create macro array FN and macro dictionary PRJ */

3 %array(ds=work.functions, vars=fName#fN, macarray=Y)

4 %mcDictionary(prj, DCL, DS=work.projectMetadata)

5

6 %put _user_;

7

8 title1 "Title: %prj(F,key=TITLE)";

9 title2 "Project %prj(F,key=ID), located at: %prj(F,key=PATH)";

10 title3 "starts %prj(F,key=STARTDT) and ends %prj(F,key=ENDDT)";

11 footnote1 "Input data set: %prj(F,key=INDATASET)";

12 footnote2 "Output data set: %prj(F,key=OUTDATASET)";

13 footnote3 "Analyzed variable: %prj(F,key=VARIABLE)";

14 /* check if the grouping variable exists */

15 footnote4

16 %if %prj(C,key=GROUPBY) %then

17 %do; "Analysis in groups by: %prj(F,key=GROUPBY)" %end;

18 ;

19

20 /* aggregate data */

21 Proc SQL;

22 create table %prj(F,key=OUTDATASET) as

23 select

24 /* check if the grouping variable exists */

25 %if %prj(C,key=GROUPBY) %then %do; %prj(F,key=GROUPBY), %end;

26 /* loop over aggregating functions */

27 %do_over(fN

28 ,phrase=%NRSTR(

29 /* apply function to analysisVariable

BARTOSZ JABŁOńSKI - MACRO VARIABLE ARRAYS MADE EASY WITH MACROARRAY SAS PACKAGE 42

30 and name the result "analysisVariable_functionName" */

31 %fN(&_i_.)(%prj(F,key=VARIABLE)) as %prj(F,key=VARIABLE)_%fN(&_i_.)

32)

33 ,between=%str(,)

34)

35

36 from

37 %prj(F,key=INDATASET)

38

39 /* check if the grouping variable exists */

40 %if %prj(C,key=GROUPBY) %then

41 %do;

42 group by

43 %prj(F,key=GROUPBY)

44 %end;

45 ;

46 Quit;

47

48 /* print data */

49 proc print data = %prj(F,key=OUTDATASET) ;

50 run;

51

52 title;

53 footnote;

54

55 /* end of project code */

The log from the process is the following:
the log - data driven project

1 1 /* project code */

2 2 /* create macro array FN and macro dictionary PRJ */

3 3 %array(ds=work.functions, vars=fName#fN, macarray=Y)

4 NOTE:[ARRAY] 10 macrovariables created

5 4 %mcDictionary(prj, DCL, DS=work.projectMetadata)

6 NOTE:[MCDICTIONARY] Populating dictionary prj.

7 NOTE:[MCDICTIONARY] -----------------------------

8 5

9 6 %put _user_;

10 GLOBAL FN1 sum

11 GLOBAL FN2 mean

12 GLOBAL FN3 median

13 GLOBAL FN4 min

14 GLOBAL FN5 max

15 GLOBAL FN6 nmiss

16 GLOBAL FN7 std

17 GLOBAL FN8 range

18 GLOBAL FN9 stderr

19 GLOBAL FN10 var

20 GLOBAL FNHBOUND 10

21 GLOBAL FNLBOUND 1

BARTOSZ JABŁOńSKI - MACRO VARIABLE ARRAYS MADE EASY WITH MACROARRAY SAS PACKAGE 43

22 GLOBAL FNN 10

23 GLOBAL PRJ_5FFB5F0D0DE78321_K PATH

24 GLOBAL PRJ_5FFB5F0D0DE78321_V /path/to/study/data

25 GLOBAL PRJ_6F9DCCD85B2E0786_K TITLE

26 GLOBAL PRJ_6F9DCCD85B2E0786_V Use case of the MacroArray package

27 GLOBAL PRJ_815250411C5E7F5E_K STARTDT

28 GLOBAL PRJ_815250411C5E7F5E_V 2020-01-01

29 GLOBAL PRJ_97C6507873878CEA_K GROUPBY

30 GLOBAL PRJ_97C6507873878CEA_V origin

31 GLOBAL PRJ_9B54A6B75069B38A_K OUTDATASET

32 GLOBAL PRJ_9B54A6B75069B38A_V work.results

33 GLOBAL PRJ_AC8C59A0734680FB_K ENDDT

34 GLOBAL PRJ_AC8C59A0734680FB_V 2024-12-31

35 GLOBAL PRJ_B718ADEC73E04CE3_K ID

36 GLOBAL PRJ_B718ADEC73E04CE3_V ABC-123-XYZ

37 GLOBAL PRJ_D519071E56F75CF8_K INDATASET

38 GLOBAL PRJ_D519071E56F75CF8_V sashelp.cars

39 GLOBAL PRJ_E61AD9B2553A293B_K VARIABLE

40 GLOBAL PRJ_E61AD9B2553A293B_V invoice

41 GLOBAL PRJ_KEYSNUM 0

42

43 7

44 8 title1 "Title: %prj(F,key=TITLE)";

45 9 title2 "Project %prj(F,key=ID), located at: %prj(F,key=PATH)";

46 10 title3 "starts %prj(F,key=STARTDT) and ends %prj(F,key=ENDDT)";

47 11 footnote1 "Input data set: %prj(F,key=INDATASET)";

48 12 footnote2 "Output data set: %prj(F,key=OUTDATASET)";

49 13 footnote3 "Analyzed variable: %prj(F,key=VARIABLE)";

50 14 /* check if the grouping variable exists */

51 15 footnote4

52 16 %if %prj(C,key=GROUPBY) %then

53 17 %do; "Analysis in groups by %prj(F,key=GROUPBY)" %end;

54 18 ;

55 19

56 20 /* aggregate data */

57 21 Proc SQL;

58 22 create table %prj(F,key=OUTDATASET) as

59 MPRINT(PRJ): work.results

60 23 select

61 24 /* check if the grouping variable exists */

62 25 %if %prj(C,key=GROUPBY) %then %do; %prj(F,key=GROUPBY), %end;

63 MPRINT(PRJ): origin

64 26 /* loop over aggregating functions */

65 27 %do_over(fN

66 28 ,phrase=%NRSTR(

67 29 /* apply function to analysisVariable

68 30 and name the result "analysisVariable_functionName" */

69 31 %fN(&_i_.)(%prj(F,key=VARIABLE)) as %prj(F,key=VARIABLE)_%fN(&_i_.)

70 32)

BARTOSZ JABŁOńSKI - MACRO VARIABLE ARRAYS MADE EASY WITH MACROARRAY SAS PACKAGE 44

71 33 ,between=%str(,)

72 34)

73 MPRINT(DO_OVER): sum(invoice) as invoice_sum,

74 MPRINT(DO_OVER): mean(invoice) as invoice_mean,

75 MPRINT(DO_OVER): median(invoice) as invoice_median,

76 MPRINT(DO_OVER): min(invoice) as invoice_min,

77 MPRINT(DO_OVER): max(invoice) as invoice_max,

78 MPRINT(DO_OVER): nmiss(invoice) as invoice_nmiss,

79 MPRINT(DO_OVER): std(invoice) as invoice_std,

80 MPRINT(DO_OVER): range(invoice) as invoice_range,

81 MPRINT(DO_OVER): stderr(invoice) as invoice_stderr,

82 MPRINT(DO_OVER): var(invoice) as invoice_var

83 35

84 36 from

85 37 %prj(F,key=INDATASET)

86 MPRINT(PRJ): sashelp.cars

87 38

88 39 /* check if the grouping variable exists */

89 40 %if %prj(C,key=GROUPBY) %then

90 41 %do;

91 42 group by

92 43 %prj(F,key=GROUPBY)

93 MPRINT(PRJ): origin

94 44 %end;

95 45 ;

96 NOTE: Table WORK.RESULTS created, with 3 rows and 11 columns.

97

98 46 Quit;

99 NOTE: PROCEDURE SQL used (Total process time):

100 real time 0.03 seconds

101 cpu time 0.03 seconds

102

103 47

104 48 /* print data */

105 49 proc print data = %prj(F,key=OUTDATASET) ;

106 MPRINT(PRJ): work.results

107 50 run;

108

109 NOTE: There were 3 observations read from the data set WORK.RESULTS.

110 NOTE: PROCEDURE PRINT used (Total process time):

111 real time 0.01 seconds

112 cpu time 0.01 seconds

113

114 51

115 52 title;

116 53 footnote;

117 54

118 55 /* end of project code */

BARTOSZ JABŁOńSKI - MACRO VARIABLE ARRAYS MADE EASY WITH MACROARRAY SAS PACKAGE 45

The code with help of macro array and macro dictionary generated from data sets is fully data driven.
No changes in the code are needed, user need only modify driving data sets to either change list of
aggregating functions or the project itself. And the output looks like this:

CONCLUSION

In the article, we learned how to simplify the problem of creating SAS macro variable arrays with a help
of the macroArray package. But before ”the end” two more things require emphasis!

The first, for advanced SAS programmer, experienced in the art of ”multi-ampersanding”, who fully
understand the process of indirect referencing, you can still benefit from the package by making your
code easier to read and more straightforward in some cases. You can enjoy ”syntactic sugar” of the
%array() and %mcDictionary() macros the same way you enjoy the IF-subsetting (if <conditio>;)
or the SUM-statement (variable + <expression>;).

The second, for a ”junior” SAS programmer. The package is design to support inexperienced users
walking their ”multi-ampersands” path and the author encourages them to use the macroArray pack-
age for their benefit, but... at the same time the author highly recommends you to put an effort and
attention in a deep understanding of ”how does it work?”. End then, when understood, to check the
previous paragraph ;-)

The End

BARTOSZ JABŁOńSKI - MACRO VARIABLE ARRAYS MADE EASY WITH MACROARRAY SAS PACKAGE 46

REFERENCES
[Widawski 2000] Mel Widawski, ”Beginners Guide to Flexibility: Macro Variables”,

WUSS Proceedings, 2000, https://www.lexjansen.com/wuss/2000/WUSS00084.pdf

[First 2001] Steven First, ”Advanced Macro Topics”,
SCSUG Proceedings, 2001, https://www.lexjansen.com/scsug/2001/SCSUG01131.pdf

[Widawski 2002] Mel Widawski, ”Flexible Code the Easy Way: SAS Macro Variables”,
WUSS Proceedings, 2002, https://www.lexjansen.com/wuss/2002/WUSS02124.pdf

[Fehd 2003] Ronald Fehd, ”ARRAY: construction and usage of arrays of macro variables”,
NESUG Proceedings, 2003, https://www.lexjansen.com/nesug/nesug03/cc/cc015.pdf

[Carpenter & Smith 2003] Arthur L. Carpenter & Richard O. Smith, ”Data Management: Building a Dynamic Application”,
MWSUG Proceedings, 2003, https://www.lexjansen.com/mwsug/2003/MWSUG03021.pdf

[Clay 2004] Ted Clay, ”Macro Arrays Make %DO-Looping Easy”,
WUSS Proceedings, 2004, https://www.lexjansen.com/wuss/2004/coders_corner/c_cc_macro_arrays_make_doloo.pdf

[Carpenter 2005] Arthur L. Carpenter, ”Make ’em %LOCAL: Avoiding Macro Variable Collisions”,
WUSS Proceedings, 2005, https://www.lexjansen.com/wuss/2005/sas_solutions/sol_make_em_local_avoiding.pdf

[Clay 2006] Ted Clay, ”Five Easy (To Use) Macros”,
PNWSUG Proceedings, 2006, https://www.lexjansen.com/pnwsug/2006/PN22TedClayFiveMacros.pdf

[Lavery 2007] Russell Lavery, ”An Animated Guide: The Map of the SAS Macro Facility”,
PHUSE Proceedings, 2007, https://www.lexjansen.com/phuse/2007/is/IS01.pdf

[Philp 2008] Stephen Philp, ”SAS MACRO: Beyond the Basics”,
SGF Proceedings, 2008, https://support.sas.com/resources/papers/proceedings/pdfs/sgf2008/045-2008.pdf

[Rosson 2009] Jennifer Rosson, ”The Next Step with Macros – Double Ampersand Macros &&helpme&i”,
WUSS Proceedings, 2009, https://www.lexjansen.com/wuss/2009/cod/COD-Rosson.pdf

[Russell & Tyndall 2010] Kevin Russell & Russ Tyndall, ”SAS System Options: The True Heroes of Macro Debugging”,
SGF Proceedings, 2010, https://support.sas.com/resources/papers/proceedings10/147-2010.pdf

[Gilsen 2011] Bruce Gilsen, ”SAS Code and Macros: How They Interact”,
SGF Proceedings, 2011, https://support.sas.com/resources/papers/proceedings11/243-2011.pdf

[Li 2012] Arthur Li, ”Is Your Failed Macro Due To Misjudged “Timing”?”,
SGF Proceedings, 2012, https://support.sas.com/resources/papers/proceedings12/228-2012.pdf

[Zender 2013] Cynthia L. Zender, ”Macro Basics for New SAS Users”,
SGF Proceedings, 2013, https://support.sas.com/resources/papers/proceedings13/120-2013.pdf

[Langston 2013] Rick Langston, ”Submitting SAS Code On The Side”,
SAS Global Forum 2013 Proceedings, 032-2013, https://support.sas.com/resources/papers/proceedings13/032-2013.pdf

[Werner 2014] Nina L. Werner, ”Understanding Double Ampersand [&&] SAS Macro Variables”,
MWSUG Proceedings, 2014, https://www.lexjansen.com/mwsug/2014/BI/MWSUG-2014-BI03.pdf

[Nayak 2015] Amar Nayak, ”The Ampersand (&) Challenge, Single, Double or more?”,
PHUSE Proceedings, 2015, https://www.lexjansen.com/phuse/2015/cc/CC08.pdf

[Wong & Short 2016] Kalina Wong & Sarah A. Short, ”An Array of Fun: Macro Variable Arrays”,
WUSS Proceedings, 2016, https://www.lexjansen.com/wuss/2016/88_Final_Paper_PDF.pdf

[Carpenter 2016] Arthur L. Carpenter, ”Carpenter’s Complete Guide to the SAS Macro Language, Third Edition”,
SAS Institute Press, 2016

[Carpenter 2017] Arthur L. Carpenter, ”Five Ways to Create Macro Variables: A Short Introduction to the Macro Language”,
SGF Proceedings, 2017, https://support.sas.com/resources/papers/proceedings17/1516-2017.pdf

[Renauldo 2018] Veronica Renauldo, ”Efficiency Programming with Macro Variable Arrays”,
MWSUG Proceedings, 2018, https://www.lexjansen.com/mwsug/2018/SP/MWSUG-2018-SP-62.pdf

[Horstman 2019] Joshua M. Horstman, ”Using Macro Variable Lists to Create Dynamic Data-Driven Programs”,
MWSUG Proceedings, 2019, https://www.lexjansen.com/mwsug/2019/SP/MWSUG-2019-SP-053.pdf

[Huang 2020] Siqi Huang, ”One Macro to create more flexible Macro Arrays and simplify coding”,
PharmaSUG Proceedings, 2020, https://www.lexjansen.com/pharmasug/2020/AP/PharmaSUG-2020-AP-093.pdf

[McMullen 2020] Quentin McMullen, ”A Close Look at How DOSUBL Handles Macro Variable Scope”,
SAS Global Forum 2020 Proceedings, 4958-2020, https://support.sas.com/resources/papers/proceedings13/032-2013.pdf

[Jablonski 2020] Bartosz Jabłoński, ”SAS Packages: The Way to Share (a How To)”, SGF Proceedings, 2020, 4725-2020
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2020/4725-2020.pdf

extended version available at: https://github.com/yabwon/SAS_PACKAGES/blob/main/SPF/Documentation
[Wang 2021] Mindy Wang, ”Writing Out Your SAS Program Without Manually Writing it Out- Let Macros Do the Busy Work”,

SGF Proceedings, 2021, https://communities.sas.com/t5/SAS-Global-Forum-Proceedings/

Writing-Out-Your-SAS-Program-Without-Manually-Writing-it-Out-Let/ta-p/726365

BARTOSZ JABŁOńSKI - MACRO VARIABLE ARRAYS MADE EASY WITH MACROARRAY SAS PACKAGE 47

[Jablonski 2021] Bartosz Jabłoński, ”My First SAS Package - a How To”, SGF Proceedings, 2021 , 1079-2021
https://communities.sas.com/kntur85557/attachments/kntur85557/proceedings-2021/59/1/Paper_1079-2021.pdf

also available at: https://github.com/yabwon/SAS_PACKAGES/tree/main/SPF/Documentation/Paper_1079-2021
[Walker 2022] Andrew E. Walker, ”Why Write Base SAS Code When the Macro Processor Can Do It for You”,

SESUG Proceedings, 2022, https://www.lexjansen.com/sesug/2022/SESUG2022_Paper_213_Final_PDF.pdf

[Roudneva 2023] Ekaterina Roudneva, ”Automating Reports Using Macros and Macro Variables”,
WUSS Proceedings, 2023, https://www.lexjansen.com/wuss/2023/WUSS-2023-Paper-172.pdf

[Jablonski(1) 2023] Bartosz Jabłoński, ”A SAS Code Hidden in Plain Sight”,
WUSS 2023 Proceedings, 189-2023, https://www.lexjansen.com/wuss/2023/WUSS-2023-Paper-189.pdf

[Jablonski(2) 2023] Bartosz Jabłoński, ”Share your code with SAS Packages a Hands-on-Workshop”,
WUSS 2023 Proceedings, 208-2023, https://www.lexjansen.com/wuss/2023/WUSS-2023-Paper-208.pdf

[Jablonski 2024] Bartosz Jabłoński, ”Macro Variable Arrays Made Easy with macroArray SAS package”,
PharmaSUG 2024 Proceedings, 108-2024, https://www.pharmasug.org/proceedings/2024/AP/PharmaSUG-2024-AP-108.pdf

ACKNOWLEDGMENTS

The author would like to acknowledge Ted Clay and David Katz, they work was the inspiration.
The author would like to acknowledge Richann Watson (DataRich Consulting) and Quentin McMullen,
the proofreading and linguistic contribution made this paper look and feel as it should!

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at one of the following
e-mail addresses:

yabwonQ gmail.com or bartosz.jablonskiQ pw.edu.pl

or via the following LinkedIn profile: www.linkedin.com/in/yabwon or at the communities.sas.com by
mentioning @yabwon.—

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks
of SAS Institute Inc. in the USA and other countries. R⃝ indicates USA registration.
Other brand and product names are trademarks of their respective companies.

BARTOSZ JABŁOńSKI - MACRO VARIABLE ARRAYS MADE EASY WITH MACROARRAY SAS PACKAGE 48

Appendix A - code coloring guide

The best experience for reading this article is in color and the following convention is used:
● The code snippets use the following coloring convention:

code: is surrounded by a black frame

1 In general we use black ink for the code but:

2 - code of interest is in red ink so that it can be highlighted,

3 - and comments pertaining to code are in a bluish ink for easier reading.

● The LOG uses the following coloring convention:
the log - is surrounded by a blueish frame

1 The source code and general log text are blueish.

2 Log NOTEs are green.

3 Log WARNINGSs are violet.

4 Log ERRORSs are red.

5 Log text generated by the user is purple.

Appendix B - install the SAS Packages Framework and the macroArray package

To install the SAS Packages Framework and a SAS Package we execute the following steps:
● First we create a directory to install SPF and Packages, for example: /home/user/packages or
C:/packages.
● Next, depending if the SAS session has access to the internet:

○ if it does - we run the following code:
code: install from the internet

1 filename packages "/home/user/packages";

2

3 filename SPFinit url

4 "https://raw.githubusercontent.com/yabwon/SAS_PACKAGES/main/SPF/SPFinit.sas";

5 %include SPFinit;

6

7 %installPackage(SPFinit)

8 %installPackage(macroArray)

○ If the SAS session does not have access to the internet we go to the framework repository:
https://github.com/yabwon/SAS_PACKAGES

next (if not already) we click the stargazer button [☀] ;-) and then we navigate to the SPF

directory and we copy the SPFinit.sas file into the directory from step one (direct link:
https://raw.githubusercontent.com/yabwon/SAS_PACKAGES/main/SPF/SPFinit.sas).
And for packages - we just copy the package zip file into the directory from step one.

● From now on, in all subsequent SAS session, it is enough to just run:
code: enable framework and load packages

1 filename packages "/home/user/packages";

2 %include packages(SPFinit.sas);

3 %loadPackage(macroArray)

to enable the framework and load packages. To update the framework or a package to the latest
version we simply run:

code: update from the internet

1 %installPackage(SPFinit macroArray)

BARTOSZ JABŁOńSKI - MACRO VARIABLE ARRAYS MADE EASY WITH MACROARRAY SAS PACKAGE 49

Appendix C - safety considerations

The SPF installation process, in a ”nutshell”, reduces to copying the SPFinit.sas file into the packages
directory. It is the same for a packages too.

You may ask: is it safe to install?

Yes, it’s safe! When you install the SAS Packages Framework, and later when you install packages, the
files are simply copied into the packages directory that you configured above. There are no changes
made to your SAS configuration files, or autoexec, or registry, or anything else that could somehow
”break SAS.” As you saw, you can perform a manual installation simply by copying the files yourself.
Furthermore the SAS Packages Framework is:

● written in 100% SAS code, it does not require any additional external software to work,
● full open source (and MIT licensed), so every macro can be inspected.

When we work with a package, before we even start thinking about loading content of one into the SAS
session, both the help information and the source code preview are available.

To read help information (printed in the log) you simply run:
code: get help info

1 %helpPackage(<packageName>, <*|componentName|license>)

To preview source code of package components (also printed in the log) you simply run:
code: get code preview

1 %previewPackage(<packageName>, <*|componentName>)

The asterisk means ”print everything”, the componentName is the name of a macro, or a function, or a
format, etc. you want see.

	ABSTRACT
	INTRODUCTION
	MACRO VARIABLE ARRAYS
	STANDING ON THE SHOULDERS OF GIANTS
	THE macroArray PACKAGE
	The %array() macro
	The %deleteMacArray() macro
	The %sortMacroArray() macro
	The %appendArray() and the %concatArrays() macros
	The %do_over() macro
	The %do_overN() and the %make_do_over() macros
	The %zipArrays() and the %QzipArrays() macros
	The %mcDictionary() macro

	EXAMPLE
	CONCLUSION
	REFERENCES
	ACKNOWLEDGMENTS
	CONTACT INFORMATION
	—
	Appendix A - code coloring guide
	Appendix B - install the SAS Packages Framework and the macroArray package
	Appendix C - safety considerations

