Paper 125-2024
Fifty Shades of SAS® Programming,
or 53 (+3) Syntax Snippets for a Table Look-up Task,
or How to Learn SAS by Solving Only One Exercise!

Bartosz Jabtoniski - yabwon / Warsaw University of Technology

Quentin McMullen - Siemens Healthineers

ABSTRACT

It is said that a good programmer should be lazy. And what about a good programming teacher? We
dare to say the same is true. This article will show that you can be lazy and also be able to teach an
entire SAS course at the same time!

The aim of the article is to present a variety of examples of how to do one of the most common data
processing programming tasks, table look-up, in SAS. We don’t assess these methods from a bench-
marking or performance perspective but rather present them as an intellectual puzzle. Our goal is to
explore how much SAS syntax (statements, PROCs, functions, etc.) could be taught using only one
exercise. If you are a fan of unorthodox SAS programming, curious to learn about the variety and
flexibility of the SAS language, or an innovative SAS teacher - this article is for you!

INTRODUCTION

Table look-up has been discussed in multiple articles across many years and at various SAS global,
regional, and local conferences and meet-ups. Though the first "officially” titled table look-up re-
lated SUGI article by Don Henderson dates back to 1982, see [Henderson 1982], the process was dis-
cussed already at SUGI.ONE conference in [Mays 1976] article. And a few recent ones we can cite are
[Carpenter 2001]], [[Carpenter 2014]], [[Yang et al. 2014], or [Iyengar & Horstman 2020]]. The drill
is well known and we are not going to play in presenting any benchmarks or performance tests for
different table look-up methods. We rather focus ourselves on the perspective of a teacher, or more
precisely, the task of teaching SAS syntax. By pushing fifty shades of grey matter in our brains to
the limits, in the article we are going to present as many SAS statements, procedures, functions, and
programming techniques as we can to solve this single programming task. While it is well known that
SAS is a flexible language, and creative use of the SAS language often provides multiple ways to solve
a problem, we were truly surprised at the number of table look-up methods we could develop. We hope
you will enjoy reading the article even longer than 365 days...

THE EXERCISE TO BE SOLVED

So, imagine you are a SAS programming teacher and you are developing a brand new SAS programming
class. The exercise we are going to solve is a classic table look-up task, i.e., we have two tables:

e BIG containing a key variable (ID) and some data variables (date, value). The table has several
thousand rowsE], each value of the key variable can appear multiple times in the data. We assume
that the key variable is numeric.

e SMALL containing only one variable and a list of a few random ID values from the table BIG.

We want to select only those rows from the BIG table for which values of the key variable are in the
SMALL table. Possible next steps, like: to do some summarization, e.g., calculate a sum or an average of
the value variable, which could provide an additional bunch of SAS code snippets, will not be discussed
in detail.

"The table is not really big. By modern data standards it is tinny, but is big enough to depict the context, so we call it BIG.
1



Jablonski & McMullen - Fifty Shades of SAS Programming

A note about this paper. As you can observe, the article is vast in terms of both content and concepts.

The discussed topics span across fifty pages. We did our best to highlight fundamental ideas for the

code presented. But our goal is not to teach these methods, it is to briefly illustrate the amazing variety

of techniques that could be used for table look-up, and hopefully inspire readers to dive deeper into

approaches they are curious about. This is an unusual goal for a user group paper. We do realize that

for

less experienced readers some of the explanatory comments may look too brief or be too general.

That is why, regardless of whether you are an experienced or novice SAS practitioner, we prepared an
extensive list of REFERENCES|to provide you with all the necessary supportive resources to make your
reading time more enjoyable and your "skills-boost” more efficient.

DATA

We
(1)

(2)

10
11
12
13

14

16
17
18
19
20
21
22
23

24

will work with the following data:
a text file containing 11 values, generated by the following snippet (for the coloring convention

check[Appendix A - code coloring guide)):
code: small data to play with

/* the small data */

data _null_;
file "Ysysfunc(pathname (WORK))/small.txt";
put "1 2 3 6 13 17 42 101 303 555 9999";

run;

a table located in PostgreSQL databaseﬂ generated by the following snippet:
code: BIG data to play with

/* the BIG data */
/* you can use a standard SAS library, PostgreSQL is just as example */
libname PUB POSTGRES
server="x#xkxk  kkk  kkk  kokx"
port=kk*x
user="s*xx*x*x*x"
password=" *x*k*x"
database="**x***x*"
schema="sk*xx**" ;
libname PUB list;
/*
proc delete data=PUB.BIG; run;
*/
data PUB.BIG;
call streaminit(42);
do year = 2020 to 2024;
do id = 12345 to 1 by -1;
date = rand("integer", MDY(1,1,year), MDY(12,31,year));
value = round(rand("uniform", 100, 200), 0.01);
if ranuni(17) < 0.9 then output;
end;
end;
format date yymmddi10. value dollarl0.2;
drop year;

run;

2PostgreSQL was chosen just as an example, Oracle, Teradata, or any other database would be perfectly fine, eventually

even an Excel spreadsheet would work. In fact the BIG can be just stored as a SAS data set.

2



Jablonski & McMullen - Fifty Shades of SAS Programming

Those two snippets, though short, allow us to teach an overview of a wide range of SAS language

concepts, e.g.,

DATA steps, PROC steps, and open code,

idea of SAS libraries

possibility of using data from both external databases and simple text files,

the difference between imperative programming in DATA steps and declarative procedures,
conditional (if-then) and iterative (do-loop) statements,

functions and call subroutines,

idea of formats, and

awareness of the macro language existence.

Supportive reading for many of the fundamental concepts can be found for example in
[Henderson 1983]], [Whitlock 1997, [Howard 2004], [Whitlock 2006], [Whitlock 2007],
[Kahane 2011]], or [Dorfman 2013]].

BRINGING DATA TO SAS

As the first step we will bring the data into the SAS session:

(1)

10
11
12
13
14
15
16
17
18
19
20
21

22

Get the BIG data to SAS:
code: bring the BIG data into the SAS session

/* get the BIG data into SAS x/
data WORK.BIG;

set PUB.BIG;

format date yymmdd10. value dollarl0.2;
run;
/* order the data */
proc sort data=WORK.BIG;

by ID date value;
run;
/* know your data */
proc print data=WORK.BIG(obs=42);
run;
proc contents data=WORK.BIG varnum;
run;
proc means data=WORK.BIG;

run;

ods graphics / antialiasmax=45000;

proc sgplot data=WORK.BIG;
scatter x=date y=value / colorresponse=id
markerattrs=(size=1 symbol=trianglefilled);

run;

Here we can discuss the power of the library engine and its simplicity in use when we want to
integrate data from various sources, like an external database for instance. In that context the
uniqueness of SAS formats can be highlighted (i.e., the fact that they are very "SAS thing” and
external databases cannot honor them). Next we can present some basic SAS procedures and their
use in the exploratory (aka, know your data) analysis.

This little piece of code presents the fundamental concept of the DATA step and how the data from

one data set can be transformed and moved to the other data set. It also shows that sorting is
3



Jablonski & McMullen - Fifty Shades of SAS Programming

(2)

10
11
12
13

14

16
17
18
19
20
21

22

53

very easy to perform in SAS with a little help of our friend, the SORT procedure. Basic procedures
which allow you to preview data, like the PRINT procedure, or the one to see the metadata and the
structure of the data set we are using in the process are also shown, the CONTENTS procedure. The
MEANS procedure gives us descriptive statistics and a general overview of numeric variables. Finally
the SGPLOT procedure allow us to create a simple graph depicting our data. It is always a good idea
to plot your data!

Get the small data to SAS:
code: bring the small data into the SAS session

/* get the small DATA into SAS */
data WORK.small_wide;
infile "Ysysfunc(pathname (WORK))/small.txt";

input idsl - idsli;

run;

proc print data=WORK.small_wide;

run;

/*

proc transpose
data=WORK.small_wide
out=WORK.small_from_wide;

var ids:;

run;

proc print data=WORK.small_from_wide;

run;

*/

data WORK.small;
infile "Y%sysfunc(pathname (WORK))/small.txt";
input ids @Q;

run;

proc print data=WORK.small;

run;

This little snippet gives us a chance to introduce the infile and input statements. We also demon-
strate the DATA step’s flexibility in reading in text data. The first DATA step produces a data set
with one observation and eleven variables (that is why it is called "wide”). The second DATA step
produces a data set with one variable and eleven observations. And, commented out, is a simple
example of data transposing (more about it and the TRANSPOSE procedure will be shown in later
examples).

WAYS FOR TABLE LOOK-UP

In this section we are starting the discussion about 53 ways to solve a table look-up task. The list is

more or less ordered from "easier” to "harder” programs, but not always! Some of those examples are

very practical and production ready, others are purely academic, and sometimes even a "scratch your

left
bro

ear with your right... foot”, but we stick to our fundamental idea which is to present possibly the
adest SAS syntax preview as we can!



Jablonski & McMullen - Fifty Shades of SAS Programming

NAIVE APPROACH

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

Let us start with something simple. Since we have only 11 values to look-up in our data the naive
approach is not a bad idea for the beginning. Naive does not mean it has no educational value!

code: naive approach
/* look-up O, PAINFULLY naive approach */
data WORK.RESULTO;

set WORK.BIG;

IF id = 1
or id = 2
or id = 3
or id = 6
or id = 13
or id = 17
or id = 42
or id = 101
or id = 303
or id = 555
or id = 9999

THEN OUTPUT;
run;
proc print data=WORK.RESULTO;

run;

/* look-up 1, naive selection */
data WORK.RESULTI1;
set WORK.BIG;

IF id in (1 2 3 6 13 17 42 101 303 555 9999) THEN OUTPUT;
/* if id in (...); <- IF-subsetting */

run;

/* look-up 2, naive selection, a bit faster */
data WORK.RESULT2;

set WORK.BIG;

WHERE id in (1 2 3 6 13 17 42 101 303 555 9999);

/* set WORK.BIG(WHERE=( id in (...) )); <- data set option */

run;

Those three snippets allow us to discuss conditional processing with IF-THEN-ELSE logic, construction
of SAS expressions, ideas of IF-subsetting and WHERE clauses (also to show a comparison of their
behavior), as well as the difference between the WHERE statement and the WHERE= data set option. Of
course this is also a good place to talk about the DATA and SET statements, their behavior inside the
implicit data step loop (aka. the main loop), and the implicit OUTPUT statement at the bottom of a DATA
step. This is also a good place to talk about the DATA step compilation phase and execution phase (in
the context of IF-subsetting vs. WHERE timing). And of course the Program Data Vector, illustrated
with help of the SAS data step debugger, for DMS see [Riba 2000] and [Lavery 2011]], for Enterprise
Guide see [Bayliss & Flynn 2017]] and [Kim 2018].

5



Jablonski & McMullen - Fifty Shades of SAS Programming

SQL APPROACH

10

11

12

13

14

15

16

17

19

20

21

22

23

24

Many new SAS programmers have had some previous exposure to the SQL language, it is rather obvious
idea to use this experience as a linker between the two worlds. SQL-heads may be reassured to realize
that SAS does SQL.

code: obvious approach

/* look-up 3, obvious way, SQL 1 - sub-query */
proc SQL feedback;
create table WORK.RESULT3 as
select B.*
from WORK.BIG as B
where B.ID in (select s.IDS from WORK.small as s);
quit;
/* look-up 4, obvious way, SQL 2 - Cartesian product */
proc SQL _method;
create table WORK.RESULT4 as
select B.x*
from WORK.BIG as B
,WORK.small as s
where B.ID = s.IDS;
quit;
/* look-up 5, obvious way, SQL 3 - JOIN */
proc SQL _tree;
create table WORK.RESULTS as
select B.x*
from WORK.BIG as B
JOIN /* NATURAL JOIN %/
WORK.small as s
ON B.ID = s.IDS; /* <no clause> */
quit;

When introducing PROC SQL we can explain how combining data can be done using sub-queries, Carte-
sian product of data sets, and of course joins. But also we can mention about some "SASsy deviations”
like the natural join or more or less official options, e.g., feedback. This snippet on its own could ex-
pand into an article or a day long training. Fortunately there are plenty of introductory and advanced
papers about the SQL procedure, for example [Lafler 1992] or [Lafler 2017]].

MERGING DATA

Use of the MERGE statement is a classic SAS way of doing table look-ups.

code: SAS obvious approach
/* look-up 6, the SAS way, MERGE */
data WORK.RESULT6;
MERGE
WORK.BIG(in=B)
WORK . small(in=S RENAME=(IDS=ID));
BY ID;
if S and B;

run;

The MERGE statement was discussed in the SUGI.ONE conference article [Mays 1976], but it was avail-

able since SAS72, watch [IBarr 2018]], so it is even older then the SAS Institute itself (see[Appendix EJ).
6



Jablonski & McMullen - Fifty Shades of SAS Programming

The snippet is a good starting place (not the best though) for introductory discussion about the first.
and last. variables, BY-group processing, and of course the very useful IN= data set option. And of
course we have to remember to mention that sorting data over BY variable(s) is necessary. Papers
describing how MERGE really works are [Virgile 1999] and [Kahane(2) 2011]].

POINTING OBSERVATIONS
The next snippet introduces non-sequential data reading.

code: pointing observations
1| /* look-up 7, pointing observations, POINT= */

2| data WORK.RESULT7;

3 SET WORK.BIG;

5 do POINT = NOBS to 1 by -1;

6 set WORK.small POINT=POINT NOBS=NOBS;
7 if ID=IDS then

8 do;

9 OUTPUT WORK.RESULTT7;

10 GOTO exit;

11 end;

12 end;

13 exit:

14 drop IDS;

15| run;

The program introduces several useful statements and options. First of them all is the output state-
ment with the name of a data set to which data are written. The NOBS= compile time option provides
information about the number of observations in the read-in data set. The POINT= option allows us
to read data sets in non sequential/random order (reversed in this particular case, and without re-
sorting!) The "infamous” GOTO statement, see [Dijkstra 1968]], mentioned rather as a fun fact, because
the in depth discussion would require a dedicated article, or a part of one, e.g., [[Luo 2001]]. And the
final element, this is the first example of a DATA step that reads data from two data sets with use of two
separate SET statements. For many programmers, the realization that a DATA step can have multiple
SET statements opens the door to creative programming. The efficiency of the program is rather far
from optimal and even jumping out (with the GOTO) from the do-loop as soon as possible does not help
here a lot. Some interesting points about the POINT= option can be found in [[Shi & Zhang 1999]].

ARRAYS, VARIABLE LISTS, AND SAS FUNCTIONS
The next few programs try to make the naive approach a bit more robust with the help of arrays, SAS
variables lists, and various SAS functions.

code: arrays and variables lists
1| /* look-up 8, conditional SET and ARRAY/VARIABLES LIST */
2| data WORK.RESULTS8_A;

3 IF 1 = _N_ then SET WORK.small_wide;

4 ARRAY IDS[*] IDS:;

5 /* ARRAY IDS[*] IDS1 - IDS11; */ /* or IDSl-numeric-IDS11 x*/
6/ DROP IDS:;

8 SET WORK.BIG;
9 if ID in IDS;

10| run;




11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Jablonski & McMullen - Fifty Shades of SAS Programming

/* WHICHN and VARIABLES LIST */

data WORK.RESULT8_B;
IF 1 = _N_ then SET WORK.small_wide;
DROP IDS:;

SET WORK.BIG;
if WHICHN(ID, of IDS1-IDS11);
run;
/* FINDW and CATX */
data WORK.RESULT8_C;
IF 1 = _N_ then SET WORK.small_wide;
DROP IDS:;

SET WORK.BIG;
if FINDW(catx("|", of IDS:), cats(ID), "I|");

run;

In each case a wide version of the small data set is conditionally read in the first iteration of the main-
loop (1 = _N_). In the first one, all IDS1 to IDS11 variables are grouped under one label (the SAS
array) and then the array is used with the IN operator. The concept of the SAS array, both the regular
one and the temporary array, is fundamental to a SAS programmer becoming a professional. A quick
view at www.lexjansen.com gives tons of articles about arrays, to name a few like [Virgile 1998],
[Woolridge & Lau 1998], [Keelan 2002[], [[Suhr 2005], [First & Schudrowitz 2005], [Pillay 2015]] or
[Kuligowski & Mendez 2016]]. The second uses a numbered range variable list and the WHICHN () func-
tion to do the look-up, see [Watson & Hadden 2021]]. The third uses a name prefix list inside CATX (),
see [Horstman(2) 2019], to create a pipe separated string and then search the string with the FINDW ()
function, see [Horstman 2015]].

PLAYING WITH TEXT FILES

Not only a data set can be read conditionally, text files can be too.

code: taking data directly from text file
1| filename f8D "Ysysfunc(pathname(WORK))/small.txt";

2| data WORK.RESULTS8_D;

3 infile £8D;

4 if 1 = _N_ then input QQ;

6 set WORK.BIG;
7 if findw(_INFILE_, cats(ID), " ") then output;
s| run;

9| filename f8D clear;

16

17

18

19

filename f8E DUMMY;
data WORK.RESULT8_E;
FILE f8E;

if 1 = _N_ then
do;
set WORK.small end=EQF;
PUT IDS1-IDS11 Q@;
drop IDS:;




Jablonski & McMullen - Fifty Shades of SAS Programming

20

21

22

23

24

25

/*PUTLOG _FILE_;*/ /* won’t work here */
end;
set WORK.BIG;
if findw(_FILE_, cats(ID), " ") then output;
run;

filename f8E clear;

The first program reads in the list of values directly from a text file and uses the _infile_ internal
variable. The second conditionally puts data into the _file_ internal variable, also the DUMMY filename
can be introduced. Details available in [Zdeb 2016].

PEEKING THE SOLUTION
The last example in this sub-series shows how to directly PEEK at data from memory.

10

11

12

13

14

15

16

17

18

19

20

code: taking data directly from memory
data WORK.RESULT8_F;

IF 1 = _N_ then SET WORK.small_wide;

DROP IDS:;

SET WORK.BIG;
if index (PEEKCLONG(ADDRLONG(IDS1), 88), put(ID, rb8.));

IF 1 = _N_ then
do;

array X IDS:;
do over X;
A = ADDRLONG(X) ;
Y = put (X, rb8.);
put X=6. @12 Y= binary. / @12 a= $hex16. @32 a=;

end;

The only new thing here is the fact that SAS allows us to extract the content of the memory directly
with help of ADDRLONG and PEEKLONG functions. The conditional snippet at the end of the program was
added just to present how memory addressing looks. See [Dorfman 2009] for details.

TRYING DOW-LOOP

The next example introduces several ideas, but the DoW-loop is the central one.
code: the DoW-loop
1| /* look-up 9, double SET and DOW-loop, and ARRAY x/

2| data _null_;

3 put NOBS=;

4 call symputX("NOBS9", nobs, "G");
5 stop;

6 set WORK.small NOBS=NOBS;

7| run;




16

Jablonski & McMullen - Fifty Shades of SAS Programming

o| data WORK.RESULT9;
10 ARRAY _IDS_[&NOBS9.] _TEMPORARY_; /#* &NOBS9. = 11 <- from NOBS */

do until(EQF_S);
SET WORK.small end=EOF_S curobs=curobs;

13 _IDS_[curobs] = IDS;
14 drop IDS;

end;

17 do until (EOF_B);

18 SET WORK.BIG end=EOF_B;

19 if ID in _IDS_ then output;
20 end;

21| stop;

22| run;

11

12

13

14

15

16

17

18

3 put NOBS=;
4 call symputX("NOBS10", nobs, "G");

The first data step shows how macro variables can be generated from data using the CALL SYMPUTX ()
subroutine. The second introduces the concept of a _TEMPORARY_ array that, in contrary to a "regular”
SAS array being just a PDV variables quick "referencer”, is a dedicated memory block allocated during
the DATA step compilation phase. Two do-until loops are examples of the so called DoW-loop, a
technique of conditional sequential data reading introduced by Ian Whitlock and exceptionally well
described in [[Dorfman & Vyverman 2009]]. The first do-until loop populates the temporary array
using data from the small data set, and the second one iterates over BIG data set. The STOP statement
is an explicit termination of the DATA step. Discussion of macro variables can be found in [Zender 2013]]
or [Lavery 2007]]. And the ultimate source of macro language knowledge is the [[Carpenter 2016].

MULTIPLE DATA SETS

Up to now we have shown DATA steps multiple SET statements, but each reading one data set. When
multiple data sets are provided to the SET statement it reads the data sets sequentially, one after
another. This functionality combined with the IN= data set option and temporary arrays gives us a very
interesting program (again CALL SYMPUTX() is used).

code: multiple data sets read at once
/* look-up 10, SET and multiple data sets */
data _null_;

stop;
set WORK.small NOBS=NOBS;

run;

data WORK.RESULT10;
ARRAY _IDS_[&NOBS10.] _TEMPORARY_;

SET WORK.small(in=S) WORK.BIG curobs=curobs;
if S then _IDS_[curobs] = IDS;
else

if ID in _IDS_ then output;

drop ids;

run;

10



Jablonski & McMullen - Fifty Shades of SAS Programming

INTERLEAVING DATA SETS

When the SET statement reading multiple data sets is combined with the BY statement the process of
reading data is alternated. Instead of reading data from the two data sets sequentially like in the pre-
vious example, the records from both data sets are read in order defined by values of the BY statement
variables. These two programs present the concept of data set interleaving.

17

18

19

20

21

22

23

24

25

26

27

code: interleaving

/* look-up 10, cont., interleaving data in SET statement */
data WORK.RESULT10_A;
SET
WORK . small (in=S RENAME=IDS=ID)
WORK.BIG(in=B);
BY ID;

if S and FIRST.ID then _check+ID;
if B and _check=ID then output;
if LAST.ID then _check=.;

drop _:;

run;

data WORK.RESULT10_B;
DO UNTIL(last.id);
set
WORK.small(in=S RENAME=IDS=ID)
WORK.BIG(in=B);
by ID;

if FIRST.ID then _check=S;
if B and _check then output;
END;

drop _:;

run ;

The interleaving process reads data from multiple data sets in order dictated by variables in the BY
statement. The first data step uses the first. and last. logic to select the observations to be output.
The second one additionally executes the process in a DoW-loop which allows us to avoid explicitly
setting the value of the _check variable to missing.

SOME MORE DOW-LOOPING
The subsequent snippets provide more examples of how the DoW-loop can be used to perform a table
look-up.

code: the DoW-loop, continued

/* look-up 11, DoW-loop, cont. */

2| /* (extra assumption that all IDs exist in BIG) */
3| data WORK.RESULT11_A;

4 SET WORK.small;

5 drop IDS;

7 do until(last.ID and ID=IDS);
11



10

11

12

18

19

20

21

22

23

24

25

26

Jablonski & McMullen - Fifty Shades of SAS Programming

SET WORK.BIG;
by ID;
if ID = IDS then output;
end;
run;
/* (NO extra assumption that all IDs exist in BIG) */
/* options mergenoby=nowarn; */
data WORK.RESULT11_B;
SET WORK.small;
drop IDS nextID;

do until (nextID>IDS) ;
MERGE
WORK.BIG
WORK.BIG(FIRSTOBS=2 keep=ID rename=(ID=nextID));
if ID=IDs then output;
end;
run;

/* options mergenoby=error; */

Data step number one uses the SMALL data set as a driving file which determines DoW-loop iterations
over the BIG data set read by the set statement. An additional assumption here is that all values from
the SMALL data set have to be in the BIG one. Data step number two does not need that additional
assumption since it utilizes the "future reading” of observations with the by-less MERGE statement and
the firstobs= data set option. Since in some industries the by-less MERGE statement is a bit infamous
the mergenoby option can help. The approach of using the MERGE statement with the firstobs= data
set option is discussed in [Keintz 2017]).

USER DEFINED FORMATS
User defined formats have tons of use cases, table look-up being one among them.

10

11

12

13

14

15

code: formats
/* look-up 12, User Defined Format */
proc format;
VALUE myFormat
1, 2, 3, 6, 13, 17, 42, 101, 303, 555, 9999 = "Y"
OTHER = "N"

run;

data WORK.RESULT12;
SET WORK.BIG;
where put(ID,myFormat.) = "Y";

run;

/* look-up 13, User Defined Format from data */
data input_control_SAS_data_set;

set WORK.small END=EOQOF;

rename IDS=START;

FMTNAME="myFormatFromData";

LABEL="Y";
12




Jablonski & McMullen - Fifty Shades of SAS Programming

20 TYPF="F";
21 output;
22 IF EOF;
23
24 LABEL="N";
25 HLO="0";
26 output;

27| run;

28
29| proc format CNTLIN=input_control_SAS_data_set;
30| run;

31
32| data WORK.RESULT13;

33 SET WORK.BIG;

34 where put(ID,myFormatFromData.) = "Y";
35| run;

36| /*

37| proc format LIB=WORK;

38 select myFormat myFormatFromData;

39| run;

10| */

The first program uses an explicitly defined format where the programmer provides a list of values and
labels. The second one uses a data-driven approach where a specific control data set is prepared and
then used by the FORMAT procedure. Use cases for the FORMAT procedure are so popular that there are
tons of articles dedicated to it, to name a few [[Patton 1998], [Shoemaker 2001]], [Shoemaker 2002]],
[Eason 2005]], [Wright 2007], or [Bilenas 2008].

DIRECT ADDRESSING
Since the ID variable is numeric we can easily use a technique called direct addressing.

code: direct addressing - array
1] /* look-up 14 A, ARRAY and direct addressing */

2| options symbolgen;

3| data _null_;

4 set WORK.small END=EOQOF;

5 retain min max;

6 max = max(max, IDS);

7 min = min(min, IDS);

8 if EQOF;

9 put max= min=;

10 call symputX("max14",max,"G");

11 call symputX("minl4" ,min,"G");

12| run;

13
14| data WORK.RESULT14_A;

ARRAY T[&minl4.:&max14.] _temporary_;
16 do until(EQOF_S);

[un
ot

17 set WORK.small end=EQF_S;
18 T[IDS] = 1;
19 end;

13




20

21

22

23

24

25

26

27

28

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Jablonski & McMullen - Fifty Shades of SAS Programming

do until(EOF_B);
SET WORK.BIG end=EOF_B;
if &minl4. <= ID <= &max14. then
if T[ID] then output; /* this is direct addressing */
end;
stop;
drop IDS;

run;

The technique uses the fact that values of the ID variable can be used to directly point to array cells.
The cells contain binary information (1 or null) indicating whether the given ID exists in the small data
set. The &min. and &max. macro variables are used to optimize the array’s size. To calculate minimum
and maximum we are using min() and max () functions and SAS distinguishes them from nin and max
variables (a side note, for variables defined in data step code we use the retain statement to prevent
their values from being set to missing at the beginning of each iteration of the implicit DATA step loop).
And the symbolgen option allows us to preview the values of macro variables used in the program.
The idea of direct addressing, a direct predecessor of the idea of hash tables, was described by Paul
Dorfman in [Dorfman 2001] article.

We can also go one step further and instead of using an array, we can use a bitmap for direct addressing.
Instead of using all eight bytes of an array cell for storing one value of 1, we can use 32 (or, after
some modifications, even 53Eb bits from each cell of an array to mark a value. This approach gives us
significant memory savings (32 or 53 times).

code: direct addressing - bitmap
/* look-up 14 B, BITMAP and direct addressing */

%let M = 32; /* bitmap size (32 bits) */

%let KL = 1; /+ ID (key) low value */

%let KH = 12345; /* ID (key) high value */

%let R = Yeval (&KH - &KL + 1); /* keys range */

%let D = Ysysfunc (ceil (&R / &M)); /* dim of bitmap array*/
f%put &=M. &=KL. &=KH. &=R. &=D.;

data WORK.RESULT14_B ;
/* Initialization of bitmap and bitmask */
array BM [&D] _temporary_ (&D.*0);
array bitmask [0:&M] _temporary_;
do B = 0 to &M;
bitmask[B] = 2*xB;
end;
/* Mapping IDs to Bitmap */
do until(EOF_S);
set WORK.small end=EQF_S;

C = int (divide (IDS - 1, &M)) + 1; /* find bitmap cell */
B=1+mod (IDS - 1, &M); /* find bit in cell */
BM[C] = BOR (BM[C], bitmask[B - 1]); /* activate bit */
N_mapped + 1;

end;

3Hmm... 53... coincidence?
14



25

27 SET WORK.BIG end=EOF_B;
28 C = int (divide (ID - 1, &M)) + 1;
29 B=1+mod (ID - 1, &M);

31

32

33 end;

35

37| run;

10

11

12

13

14

26 do until(EQOF_B);

30 ActiveBit = BAND (BM[C], bitmask[B - 1]) ne 0;

34  put N_Mapped= N_found=; /* Number of mapped and found values */

36| keep ID date value;

Jablonski & McMullen - Fifty Shades of SAS Programming

/* Searching IDs in Bitmap */

N_found + ActiveBit;
if ActiveBit then output;

stop;

Macro variables were used to increase code maintainability. Bitmap size is calculated based on ID val-
ues range in the BIG data set. As can be seen, bitmaps are not internal SAS data structure, but with a
few additional lines of code, they can be implemented in data step based on arrays. The snippet pre-
sented is just one example of all palette of bitmaps, in-depth and precise explanation of the technique
can be found in [[Dorfman & Shajenko 2019]]. Though it seems very advanced, in fact the principles
are much easier to grasp than it may seem. It is a very powerful technique worth learning.

HASH TABLES
Hash tables are execution phase dynamic objects which have proven their extraordinary usefulness in
SAS programs, one common use-case being a table look-up.
code: hash tables

/* look-up 15, HASH TABLES */
data WORK.RESULT15;

if O then set WORK.small;

DECLARE HASH H(dataset:"WORK.small");
H.defineKey("IDS");

/* H.defineData("IDS"); */
H.defineDone() ;

do until (EOF_B);
SET WORK.BIG end=EQOF_B;

if 0=H.CHECK(key:ID) then output;
end;
stop;
drop IDS;

run;

The DECLARE statement is used to initiate the hash object H. The hash object H is built from the SMALL
data set with variable IDS as a key of the object. The .check() method tests if a given value of
the ID variable exists in H. A successful check returns zero as a value. There are many articles and
a few books discussing hash objects and their properties starting with [Dorfman & Snell 2002 and
[Dorfman & Snell 2003]], [[Secosky & Bloom 2007]], [[Dorfman 2014/, [Dorfman & Henderson 2015],
and ending with [[Carpenter 2012]] and [Dorfman & Henderson 2018]] being among the most valuable.

Just to highlight it one more time, table look-up is just a surface scratching of hash table functionality!
15



Jablonski & McMullen - Fifty Shades of SAS Programming

SMART-NAIVE WITH MACRO VARIABLES
We have seen a few ways to automate the naive approach, here are a few more.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

code: macro variable lists and arrays

/* look-up 16, naive selection - but smart, vl */

/* macro variable with values list */

proc SQL noprint;
select distinct IDS

into :IDS16_A separated by " "

from WORK.small;
quit;

data WORK.RESULT16_A;
set WORK.BIG;
WHERE id in (

run;

/* macro variable array
proc SQL noprint;
select distinct IDS
into :IDS16_B1-
from WORK.small
%let N16B=&sqlobs.;
quit;

%macro loop(n);
%do n = 1 Y%to &n.;
&&IDS16_B&n.
%end;

Y%mend ;

data WORK.RESULT16_B;
set WORK.BIG;
WHERE id in (

)

run;

*/

A macro variable with a list of values can be created, among many other ways, with help of the SQL
procedure and the INTO clause. The separated by part informs SAS that values read in from the data
set should be separated by a space character. Version "B” also uses SQL but, instead of creating one
macro variable with a space separated list of values, it creates a list of macro variables with a com-
mon prefix and numeric suffix. Such lists are commonly called macro variable arrays. A very good
introduction to the subject of macro variable arrays can be found in [Fehd 2003]], [Horstman 2019],
[Renauldo 2018], [[Carpenter 2017]], or [Jablonski 2024].

CALLING THE EXECUTIONER
While the macro language is a common way to generate SAS code, SAS also provides other ways to
generate code. First of them uses the CALL EXECUTE() subroutine.

16



10

11

12

13

Jablonski & McMullen - Fifty Shades of SAS Programming

code: call execute

/* look-up 17, naive selection - but smart, v2 */
data _null_;

call execute(

)

do until (EOF);
set WORK.small end=EQF;
call execute(IDS);

end;

call execute( )
stop;

run;

Data step code is fed in the form of a text string to the CALL EXECUTE() subroutine, including the
list of values from the SMALL data set provided by a DoW-loop. The CALL EXECUTE() subroutine is
a well known tool in every SAS programmer’s toolbox. Its usage was discussed in [Whitlock(2) 1997]],
[Virgile 1997]], and [Michel 2005]].

INCLUDING CODE

©

10

11

12

13

14

15

16

17

18

20

The next one is the %include statement which despite the fact it contains the percent sign, is not
a macro language statement.

code: %include

/* look-up 18, naive selection - but smart, v3 */
filename F18 TEMP;
data _null_;

file F18 ;

put H

do until (EOF);
set WORK.small end=EQF;
put IDS;

end;

put ;
stop;

run;

data WORK.RESULT18;
set WORK.BIG;

run;

filename F18 CLEAR;

The first DATA step generates a text file which contains a valid SAS statement (this is a requirement

for the % INCLUDE to work) and in the second step the %INCLUDE statement is used to include the file's
17



7 set WORK.small end=EQF;

8 text = catx(" ", text, IDS);

9 end;

10

11 text = catx(" ", text, )

12 put text;

13 rc = DOSUBL(text);

14| stop;

15| run;

16) proc print data = WORK.RESULT19;

17| run;

10

11

2| data _null_;
3 length text $ 32767;

4 text = 5

6 do until (EQOF);

3 function F20(x);
4 array A[1] / NOSYMBOLS;

Jablonski & McMullen - Fifty Shades of SAS Programming

content into the program. The source2 option instructs SAS to print out the included file content in
the log. Information about the %INCLUDE statement ca be found in [[Carpenter 2002]).

SUBMITTING A LINE
The last but not least code generation technique to be shown, DOSUBL()function, is a younger sibling
of the CALL EXECUTE() subroutine.

code: dosubl

/* look-up 19, naive selection - but smart, v4 */

Similar to CALL EXECUTE(), DATA step code is constructed in a text variable and then passed as an
argument to the DOSUBL () function. The differences are: 1) in CALL EXECUTE() code text can be pro-
vided "in parts” to multiple calls vs. in DOSUBL() it has to be one snippet, 2) CALL EXECUTE() writes
provided code to an input stack and the code is executed after the DATA step ends vs. DOSUBL () creates
a "magical side SAS session” and executes the provided code on the fly, during the execution of the
calling DATA step. In depth discussion about the DOSUBL () function can be found in [Langston 2013]]
and [McMullen 2020]].

USER DEFINED FUNCTIONS
If you think that formats, arrays or hash tables have tons of use cases you have not seen the power of
User Defined Functions.

code: udf
/* look-up 20, User Defined Functions, vl */
proc FCMP outlib=WORK.F20.P;

static A XX;

if NOT xx then

do;
rc = READ_ARRAY("WORK.small", A, ’>IDS’);
xx = 1;

end;

4ThenameDoSuchomesfromthe”DoSubmitLine"phrase.
18



12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

36

37

38

39

40

41

42

43

44

45

Jablonski & McMullen - Fifty Shades of SAS Programming

/* small is sorted, so binary search is possible */
1=1; h=dim(A);
do while(1<=h);
i = int((1+h)/2);
if A[i] = x then return(l);
else if A[i] < x
then 1=i+1;
else h=i-1;
end;
return(0) ;
endfunc;

run;

options append=(cmplib=WORK.F20);
data WORK.RESULT20;

set WORK.BIG;

WHERE 1 = F20(id);

run;

/* look-up 21, User Defined Functions, v2 */
proc FCMP outlib=WORK.F21.P;
function F21(IDS);
DECLARE HASH H(dataset: "WORK.small");
rc = H.defineKey("IDS");
rc = H.defineDone();
return (NOT H.CHECK(Q));
endfunc;

run;

options append=(cmplib=WORK.F21);
data WORK.RESULT21;

set WORK.BIG;

WHERE 1 = F21(id);

run;

The FCMP procedure (Function CoMPiler) allows us to write functions and subroutines which can be used
in DATA steps or even SQL queries. The FCMP procedure provides dedicated tools which allow us to read
data from data sets, for example the READ_ARRAY () function, and hash tables too. Functions defined
with those tools behave like dictionaries and can be used in filtering conditions. The nosymbols option
instructs SAS to treat the array analogously to a DATA step _temporary_ array. The static keyword
corresponds to DATA step’s retain (this can be a good occasion to discuss and compare them). To
learn more about user defined functions you can reach out to [[Secosky 2007]], [Eberhardt 2009],
[Secosky 2012], [Rhoads 2012, [Henrick et al. 2013]], [McNeill et al. 2018]], [Carpenter 2018]], and
[Hughes 2024] book.

KEYS TO SOLUTION
Since the advent of hash tables or even earlier, PROC SQL, the next technique might be less popular
but it is still helpful to teach students about indexing in SAS.

19



11

Jablonski & McMullen - Fifty Shades of SAS Programming

code: key=
/* look-up 22, INDEXED SET + KEY= + KEYRESET= */

N

proc datasets 1ib=WORK noprint;

3 modify BIG;

4 INDEX CREATE ID; /* index delete ID; */
5| run;

6| quit;

8| data WORK.RESULT22;

9| set WORK.small(rename=(IDS=ID));
10 reset = 1;

do while (NOT _iorc_);

12 set WORK.BIG key=ID keyreset=reset;
13 if NOT _iorc_ then output;

14 end;

15 _error_ = 0; _iorc_ = O;

16| run;

The program use the DATASETS procedure to create an index on the ID variable to improve the speed
of indirect data access done with the KEY= option. The SMALL data set provides values which are
searched in the BIG data set when KEY= is used, since there can be multiple observations with one
value of the ID variable the process is looped over until the _iorc_ variable is different than zero. This
type of table look-up is discussed in [Aker 2000]. More about the DATASETS procedure can be found
in [Raithel 2018]] and SAS indexes are best described in [Clifford 2005]).

MODIFYING RESULT
The same level of popularity decrease for table look-up task can be observed with the MODIFY statement,
but beware and do not underestimate the power of in place modifications.

10

11

12

13

14

15

16

17

18

19

20

code: modify
/* look-up 23 A, MODIFY */
data WORK.RESULT23_A;

set WORK.BIG(obs=0) WORK.small(rename=(IDS=ID));

run;

proc datasets 1ib=WORK noprint;
modify RESULT23_A;
index create ID;
run;

quit;

data WORK.RESULT23_A;
MODIFY WORK.RESULT23_A WORK.BIG;
by ID;

if _iorc_=0 then output;
_error_ = 0; _iorc_ = O;
run;
proc print data=WORK.RESULT23_A(where=(value)); /* !

run;

*/

20




Jablonski & McMullen - Fifty Shades of SAS Programming

Additional pre-processing is needed to concoct the driving data set with data out of SMALL and the
structure taken from BIG. The concocted data set has the list of required IDS values but both date and
value are missing. Whenever an ID value already existing in the result is encountered in the BIG data set
a new observation is added to the result. So we have to remember to ignore observations with missing
dates and values in the result data set (the where= data set option with filtering condition). Read more
about the MODIFY statement in [Mack 2008]], and for some unorthodox use cases see [Dorfman 2018]|
and [Bremser 2022].

INTEGRITY OF IT ALL

10

11

12

13

14

15

16

17

18

19

20

10

11

12

Since we already mentioned the DATASETS procedure and SAS data sets’ indexes we cannot forget about
their siblings, integrity constraints. Next two snippets use different types of integrity constraints (IC
for short). This first uses the check type IC which, as the name suggests, checks data with provided
where condition. The condition data are provided in form of already mentioned macro variable list.

code: IC of type check
/* look-up 23 B, Integrity Constraints - CHECK with where condition */
proc SQL noprint;

select distinct IDS

into :IDS23_B separated by " "

from WORK.small;
quit;
data WORK.RESULT23_B;

stop;

set WORK.BIG;

run;

proc datasets 1ib=WORK noprint;
modify RESULT23_B;
IC create IC_of_type_check = check(where=(ID in (&IDS23_B.)));
run;
quit;
proc append
base=WORK.RESULT23_B
data=WORK.BIG;

run;

The second focuses on using the small data set as a "gate keeper” dictionary which allows us to append
data only if values are in the small data set.

code: IC of type foreign key
/* look-up 23 C, Integrity Constraints - FOREIGN KEY */
proc SQL noprint;

create table work.IC_PK_small as

select distinct IDS

from WORK.small;

create unique index IDS on work.IC_PK_small(IDS);

alter table work.IC_PK_small add primary key (IDS);
quit;
data WORK.RESULT23_C;

stop;

set WORK.BIG;

run;
21




13

14

16

17

18

19

20

21

22

23

24

Jablonski & McMullen - Fifty Shades of SAS Programming

proc datasets 1ib=WORK noprint;
modify RESULT23_C;
IC create IC_of_type_foreignkey =
FOREIGN KEY (ID) REFERENCES work.IC_PK_small ON UPDATE RESTRICT;
run;

quit;

options msglevel=i;

proc append
base=WORK.RESULT23_C
data=WORK.BIG;

run;

A common part for both snippets is the fact that when we are trying to add improper data to the result
data set SAS will give us a WARNING: message that our data violated rules. Also the MSGLEVEL=i option
provides interesting insights on the APPEND procedure behavior.

The data validation process can be greatly improved and simplified with use of ICs, example of such
solutions can be found in [[Raithel(2) 2018]] Integrity constraints can be created both by DATASETS and
SQL procedures, see [[Franklin & Jensen 2000], or [[Fickbohm 2006]] and [Fickbohm 2007].

FETCHING THE ANSWER
If you have not had the chance to work with SAS SCL (Screen Control Language) input/output functions
the next example my be something new for you.

10

11

12

13

14

code: I/0 functions

/* look-up 24, OPEN + FETCH */
data WORK.RESULT24;
set WORK.BIG(obs=0) WORK.small;

did = OPEN( I'l put(IDS,best32.) !! )
if did then
do;
CALL SET(did);
do while (0O=FETCH(did));
output;
end;
end;
did = CLOSE(did);

run;

The approach used here is somehow similar to that in interleaving of data sets where the SMALL data
set is used as a driving file which dictates which values should be extracted from the BIG one. The
difference is that in this case the 1/0 functions play the main role. More about those functions can be
found here in [[Scerbo 1992]], [Manickam 2012], or [Mukherjee 2019].

YOUNGER SIBLING
Hollywood loves sequels, also SAS Institute seemed to adopt the trend when SAS introduced the DS2
(Data Step Two) procedure.

22



10

11

12

14

15

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Jablonski & McMullen - Fifty Shades of SAS Programming

/* look-up 25, PROC DS2 */
PROC DS2;
data WORK.RESULT25_A / overwrite=yes;
method run();
SET {select B.*
from WORK.BIG as B
join
WORK.small as s
on B.ID = s.IDS
}s
output;
end;
enddata;

run;

data WORK.RESULT25_B / overwrite=yes;
method run();
MERGE
WORK .BIG(in=B)
WORK . small (in=S rename=(IDS=ID))
/ RETAIN; /* ! =/
BY ID;
if (B and S ) then output;
end;
enddata;

run;

data WORK.RESULT25_C/ overwrite=yes;
declare double IDS rc;
declare package hash H(8,’WORK.small’);
drop IDS rc;

method init();
rc = H.defineKey(’IDS’);
/*rc = H.defineData(’IDS’) ;*/
rc = H.defineDone();
end;
method run();
set WORK.BIG;
if (0 = H.check([ID])) then output;
end;
enddata;
run;
QUIT;
proc print data=WORK.RESULT25_A;
proc print data=WORK.RESULT25_B;
proc print data=WORK.RESULT25_C;

run;

23

code: proc ds2




Jablonski & McMullen - Fifty Shades of SAS Programming

The DS2 procedure feels like a "spin-off” to the "classic” DATA step. The majority of concepts overlap
with the DATA step, but some things that look similar work differently (e.g. merging), there are some
new features introduced (e.g. object oriented approach and thread processing), but also some "good
old ones” missing (interaction with external files). Because of the rather vast overlap with the DATA
step we present only three snippets. They highlight interesting or surprising features like 1) inline
SQL queries, 2) a difference in the MERGE statement, and 3) the concept of the DS2 procedure specific
packages. An interesting discussion comparing the DATA step and the DS2 procedure can be found in
[Hughes 2019]. The ultimate handbook of DS2 is [Jordan 2018]].

YOUNGER SIBLING’S FRIEND

Like Joey Tribbiani to Chandler Bing, in the context of external databases connectivity the DS2 procedure
seems to be entangled with the FedSQL procedure. FedSQL provides the SAS implementation of the ANSI
SQL:1999 core standard (while the SQL procedure follows most of the guidelines set by the ANSI:1992
standard).

code: fedsql
1| /* look-up 26, PROC FedSQL; */

2| PROC FedSQL;

3 drop table WORK.RESULT26 FORCE;

4 create table WORK.RESULT26 as

5 select B.x*

6 from WORK.BIG as B
7 join

8 WORK.small as s

9 on B.ID = s.IDS;
10| QUIT;

11| proc print data=WORK.RESULT26;

12| run;

Here we present only one JOIN example. Discussion of FedSQL (in various configurations) can be found
in [Mohammed et al. 2015]], [Huffman et al. 2018]], or [Morioka 2019]].

THE MATRIX

In a 4GL we are accustomed to using loops (implicit or explicit) to process data, either in data sets (with
SET statement) or in arrays, but if you ever wanted to try vectorized programming the IML procedure
is the answer. The IML stands for Interactive Matrix Language.

code: iml

1] /* look-up 27, PROC IML; */

2| PROC IML;

3 use WORK.BIG;

4 read all var {id date value};
5 close WORK.BIG;

6 use WORK.small;

7 read all var {ids};

8 close WORK.small;

o| TF = LOC(ELEMENT(ID, IDS));

| id = id[TF];

11 date = date[TF];

12 mattrib date format=yymmddio.;
13 value = valuel[TF];

14 mattrib value format=dollari10.2;

24




Jablonski & McMullen - Fifty Shades of SAS Programming

create WORK.RESULT27 var {"id" "date" "value"};
append from id date value;
close WORK.RESULT27;
QUIT;
proc print data=WORK.RESULT27;

run;

Interaction between IML and 4GL works in both directions, so data can be read-in and written-out. The
variables are read into vectors, observations we are looking for are located with help of the Loc() and
ELEMENT() functions, a logical vector TF (True/False) is created and used to filter out only interesting
elements. If you are thinking about learning IML there is only one name to mention - Rick Wicklin, his
blog "The DO Loop” (https://blogs.sas.com/content/iml/) is an infinite source of IML knowledge,
also the [Wicklin 2010] book is an excellent source.

TRANSPOSING GIVES FLEXIBILITY

At the beginning of this article we wrote that some of the examples we present are a bit like "scratching
left ear with right... foot”. You may say it is quite uncomfortable on one side but on the other when you
see a man doing such thing you may think: "that’s flexibility!” The upcoming three examples may look
like such a case. But we want to discuss them just to show how flexible the SAS language is!

The first one uses the TRANSPOSE and APPEND procedures.

10

11

12

13

14

15

16

17

18

20

21

22

23

24

25

26

27

28

code: transpose

/* look-up 28, PROC TRANSPOSE and APPEND; */
proc sort

data = WORK.BIG

out = WORK.BIGSORTED2S8;
by date id value;

run;

proc transpose

data = WORK.BIGSORTED28

out = WORK.BIGTRANSPOSED28(drop=_:)

prefix = ID;

by DATE;

id ID;

var value;
run;
proc transpose

data = WORK.small
WORK . smallTRANSPOSED28 (drop=_:)

out
prefix = ID;
var ids;
id ids;

run;

/* shell data set */

data WORK.smallTRANSPOSED2S;
date = .; format date yymmddi1o0.;
set WORK.smallTRANSPOSED28;
stop;

run;
25




29

30

31

32

33

34

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

Jablonski & McMullen - Fifty Shades of SAS Programming

PROC APPEND

BASE = WORK.smallTRANSPOSED28
DATA = WORK.BIGTRANSPOSED28
FORCE;

RUN;

proc transpose
WORK . smallTRANSPOSED28
WORK .RESULT28 (where=(valuel))

data

out
name = ID
prefix = value;
by DATE;
var id:;

run;

proc sort
data = WORK.RESULT28
SORTSEQ=LINGUISTIC(NUMERIC_COLLATION=0N);
by id date valuel;
run;
Y
data WORK.RESULT28;
length newID 8;
set WORK.RESULT28;
newID = input(compress(ID, , "KD"), best32.);
drop ID;
rename newlID=ID valuel=value;

run;

The presented program uses the TRANSPOSE and the APPEND procedures. First, the BIG data set is
re-sorted by the date variable. Then the TRANSPOSE procedure re-shapes data in groups by the date
variable values, in such a way that each value of the ID variable is used to create a new variable named
from concatenation of constant text prefix "ID” and the value of ID. Result looks more or less like this:

date ID1 | ID2 | ID3 | ID4 | ID5 | ID6
2024-09-03 . 1 . 2
2024-09-04 | 3 . . 4
2024-09-05 . . 5 6 . 7
2024-09-06 . 8 9

with respect to the variables’ order. Two subsequent steps, the TRANSPOSE and data step, transform the
SMALL data set to a similar form, which in our case is: data set with O (zero) observations and exactly
those variables named: date, ID1, ID2, ID3, ID6, ID13, ID17, ID42, ID101, ID303, ID555, ID9999. Next
step, the APPEND procedure is the place where the magic happens, "the Jedi knight tricks” to be precise,
after all we are using the FORCE. The APPEND procedure, by default, does not allow us to attach new data
to the old one if their structures are different, but if the FORCE option is used, for those variables which
are common, data are appended. So all observations from the transposed BIG data set are appended to

a shell data set created from the SMALL, but only for variables date, ID1, ID2, ID3, ID6, ID13, ID17, ID42,
26



Jablonski & McMullen - Fifty Shades of SAS Programming

ID101, ID303, ID555, and ID9999. So we are basically cutting off (like with a lightsaber) variables that
we do not want in the result. The process of forcing SAS to append incompatible data sets has a price.
The price is an avalanche of warning messages in the L0OG, thus we wrap-up the APPEND procedure with
the "dummy file & proc printto” sandwich, which redirects all that ugliness to the void. Eventually we
end up with a data set which looks, again more or less, like that:

date ID1 | ID2 | ID3 | ID6 | --- | ID555 | ID9999
2024-09-03 . 1 . . . . 9999.1
2024-09-04 | 3 . . . . | 555.1 .
2024-09-05 . . 5 7 . | 555.2 | 9999.2
2024-09-06 | . 8 9 . . | 555.3

which is almost what we want. One more transposition and sorting, and we will almost get what we
need. The famous Rolling Stones song goes: You can’t always get what you want; But if you try some-
times, well, you might find; You get what you need;

In our case, with one extra little DATA step we can get what we want. An additional note has to be
added! Though this process is pretty automatic, in a sense that we do not have to provide a number of
metadata information, it is not very 1/0 efficient. The transposition step "explodes” our BIG(1.4MB)
data set to 176.3MB, more than hundred and twenty-five times! But, as we mentioned earlier, this one
is not about production ready code, it is about SAS "flexibility”.

PIVOTING POINT OF VIEW
The next one uses the TABULATE and MEANS procedures with the CLASSDATA= option.

code: classdata=

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

/* look-up 29, PROC TABULATE and MEANS - CLASSDATA= */
proc sort

data=WORK.BIG

out=WORK.SORTED29;
by date id value;

run;

proc tabulate
CLASSDATA=WORK. small (rename=(IDS=ID)) EXCLUSIVE
data=WORK.SORTED29
OUT=WORK.RESULT29_A(drop=_: rename=value_sum=value where=(.z<value));
class ID;
by DATE;
var value;
table ID,valuexsum=" ";

run;

proc print data=WORK.RESULT29_A;

run;

data WORK.BIGview29 / view = WORK.BIGview29;
set WORK.BIG;
_obs = _n_;

-

run;
27




Jablonski & McMullen - Fifty Shades of SAS Programming

27| proc means

28 CLASSDATA=WORK. small (rename=(ids=id)) EXCLUSIVE
29 data=WORK.BIGview29

30 noprint nway;

31 class ID;

32 by _obs date;

33 var value;

34 OUTPUT

35 out=WORK.RESULT29_B(drop=_: where=(not missing(value))) sum=;
36| run;

37| proc print data=WORK.RESULT29_B;

38| run;

Programs in this snippet use procedures which traditionally are considered to be sum-
mary/reporting/statistical ones. The TABULATE procedure is SAS’ version of Excel’s Pivot table (but
better), the MEANS procedure is a summarizing procedure, in its basic use case similar to R's summary
function. By the way, in SAS, the Proc MEANS has a twin named Proc SUMMARY. In both cases the trick
here is done with use of the CLASSDATA= and the EXCLUSIVE options. The first points the small data
set values to be class variables to analyze, the second that they are the only one. This gives us the fil-
tering. Both procedures provide a result data set with the out= option, but, similarly to the TRANSPOSE
procedure, the TABULATE procedure has to be wrapped-up inside the “select none, dummy & proc
printto” sandwich. These examples, in contrary to the previous one, are not resources hungry. Good
introductory reading about the TABULATE procedure is [Winn Jr. 2008]](exceptional references list) or
[Wright 2008]]. And about the MEANS procedure see [Karp 2004].

SORT THE PROBLEM OUT
The next one uses the SORT procedure.

code: sorting

1| /* look-up 30, unique values */
2| /* set a technical macro variable with */
3| /% expected maximum observations in one ID group */

4| %let maxDup=7;

6| data WORK.smallDup / view = WORK.smallDup;
7 set WORK.small (rename=(IDS=ID));
8 do d = 1 to &maxDup.;

9 output;
10 end;
11| run;

12
13| data WORK.BIGview30 / view = WORK.BIGview30;
14 set WORK.BIG;

15 by ID;

16 if first.ID then d=0; d+1;

17| run;

18
19| /* a view built on views */

20| data WORK.BSv30 / view = WORK.BSv30;
21 set WORK.smallDup WORK.BIGview30 ;

22 run ;
28



23

24

26

27

28

29

30

31

32

Jablonski & McMullen - Fifty Shades of SAS Programming

proc sort

NODUPKEY

data = WORK.BSv30

out = _null_

DUPOUT = WORK.RESULT30(drop=d) ;
by id 4d;
run;

proc print data=WORK.RESULT30;

run;

This snippet’s "magic” is in the DUPOUT= option. An option which indicates where all observations
with duplicated sorting key values should be stored. The first pre-processing data step creates a view
based on the SMALL data set with each value multiplied &maxDup. times and the d variable stores the
sequence of numbers for each IDS variable value. The maxDup macro variable stores a number which is
an expected maximum number of observations for a single ID variable group in the BIG data set. The
second pre-processing data step just adds the new variable d which stores the observation number
in each ID variable group. Now we have a new "artificial” primary key built on variables ID and d in
both views. The third pre-processing data step creates a view which combines data from the first and
the second. Finally we do the sorting. The only ID and d pairs which have duplicates are those which
exists in both the SMALL view and the BIG view, but since SMALL goes first, the duplicates from BIG
are "dupout-ed”.

MACRO VARIABLES

10

11

12

13

This example gets us back to the macro language.

code: macro variables

/* look-up 31, unique markers in macro variables */
%let uniqueMarker=Ysysfunc(datetime() ,hex16.);
%put &=uniqueMarker. ;
data _null_;
set WORK.small;
call symputX(cats("_31_&uniqueMarker._",IDS),"I am here","G");
run;

%put _user_;

data WORK.RESULT31;
set WORK.BIG;
where symexist(cats("_31_&uniqueMarker._",ID));

run;

The &uniqueMarker. is just a technical macro variable, generated based on the execution timestamp,
which ensures that created macro variables will be unique for a particular run. Both DATA steps use the
CATS function to create a macro variable name based on string constant "_31_&uniqueMarker._" and
the value of the ID/IDS variable. For example, if the code was run on September 9*®, 2024 at 12:34:56,
the ID value 42 would create a macro variable named _31_41DE6ABB9C000000_42. The first DATA step
creates a list of macro variables with arbitrary values, "I am here” in our case, which are stored in the
SAS global macro variables table. The second DATA step uses the symexist function which checks if a
macro variable with a particular name exists in the SAS global symbol table. If the macro variable does

exist it means that it was created in the first DATA step.
29



Jablonski & McMullen - Fifty Shades of SAS Programming

Use of the symexist function is not the only option here, though it is the cleanest in the setup we have.
We get a similar result with use of the symget () function or the resolve () function. The first function
allows us to retrieve macro variable value on the DATA step level. A snippet like this:

code: symget

where symget(cats("_31_&uniqueMarker._",ID)) is not null;

does the job when used in the WHERE clause (if used in the IF-subsetting condition it produces data
errors for not existing variables). The second function gives us possibility to resolve all elements of
macro language (not only macro variables) in a DATA step. A snippet like that:

code: resolve

where resolve(cats("&","_31_&uniqueMarker._",ID)) = "I am here";

does the job but also produces tons of "Apparent symbolic reference not resolved” warnings. Though
a bit clumsy in this particular setup, the resolve () function is extremely powerful tool, interesting use
cases can be found in [[Carpenter(2) 2018](also look-up related) and [Jablonski(2) 2023]).

GOING ABROAD - TRAVEL BROADENS THE MIND

10

11

12

13

14

Now let us play a bit with "foreign languages”, R, Python, and Lua for a start. In all three cases we are
going to use SAS procedures to get programming interfaces to the external language. In the first case
it is, already introduced, the IML procedure, in the second, also well known, the FCMP procedure, and
the third has its own dedicated LUA procedure.

Attempts to set communication between SAS and R have been discussed and presented in the user
community, see for example [Holland 2005]] or [Wei 2012], but the most comfortable way to go is
with the help of the IML procedure. To communicate with R some additional setup is needed. First
of all, the RLANG option has to be enabled (it is a run time option, so it has to be enabled in the SAS
configuration file), the second option, R_HOME, indicates R home directory location.

code: talking in R
/* look-up 32, "foreign languages" - R */

/* Check if RLANG is on and set environment variable */
proc options option=RLANG; run;

options set=R_HOME="/path/to/R/R-4.3.1/";

PROC IML;
/* note about R 4.3.0 and later: https://support.sas.com/kb/70/253.html */
call ExportDataSetToR("WORK.BIG", "BIG");
call ExportDataSetToR("WORK.small", "small");
submit / R;
RESULT32 <- BIG[BIG$id %in}% small$ids,1:3]
head (RESULT32)
tail (RESULT32)
endsubmit;
call ImportDataSetFromR("WORK.RESULT32", "RESULT32");
QUIT;
proc print data=WORK.RESULT32;

run;

The SAS Support note mentioned in the comment above points to a HotFix dedicated for SAS and R later

than 4.3.0. The call ExportDataSetToR() (creates an R data frame from a SAS data set) and call
30



10

11

12

13

14

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Jablonski & McMullen - Fifty Shades of SAS Programming

ImportDataSetFromR() (creates a SAS data set from an R data frame) give us seamless communica-
tion/data exchange between both tools. The submit code block contains R code doing data selection.
The head and tail are just for results previewing. More details about how to play with R from the IML

procedure level can be found in [Bewerunge 2011]], [Bulaienko 2016]], or [Gilsen 2023]].

The "traveling” between SAS and R feels like traveling between countries in Schengen Area, both the
configuration and data transfer effort are minimal. For Python it is more like "you need a visa”, you
have to put a bit more effort: you have to set up two environment variables, download two packages,
and modify saspy.py configuration file.

code: talking in Python
/* look-up 33, "foreign languages" - Python */

/* Set environment variables:

options set=MAS_M2PATH="C:/SAShome/SASFoundation/9.4/tkmas/sasmisc/mas2py.py";
options set=MAS_PYPATH="/path/to/Python/Python312/python.exe";

/* Install packages:
python -m pip install pandas saspy

Setup SASPY.PY config file, located for example in:
/path/to/Python/Python312/Lib/site-packages/saspy/sascfg.py

For local SAS on Windows:

default={’saspath’ : ’C:/SASHome/SASFoundation/9.4’,

’encoding’ : ’utf8’,
’java’ : ’C:/SASHome/SASPrivateJavaRuntimeEnvironment/9.4/jre/bin/java’
}

*/

PROC FCMP;

length libpath fileBIG filesmall fileresult33 $ 512 output $ 42;

libpath = pathname (’WORK’) ;

fileBIG = catx("/", libpath, ’big.sas7bdat’);

filesmall = catx("/", libpath, ’small.sas7bdat’);

fileresult33 = catx("/", libpath, ’result33.csv’);

declare object py(python);

submit into py;

def lookup33(BIGpath, smallpath, CSVpath, libpath):
"""Output: outputKey"""

import pandas

import saspy

#/* read data sets to pandas data frames */

BIGdf = pandas.read_sas(BIGpath)

smalldf = pandas.read_sas(smallpath)

RESULT33 = BIGAf.merge(smalldf, left_on=’id’, right_on=’ids’, how=’inner’)
#/* create CSV file for import */
RESULT33[["id","date","value"]].to_csv(CSVpath, index=False)

#/* create data set with SASPY */

sas = saspy.SASsession(cfgname=’default’)

sas.saslib(libref = ’out’, path = libpath)
31



41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

60

61

62

10

11

12

Jablonski & McMullen - Fifty Shades of SAS Programming

dataSet = sas.dataframe2sasdata(
df = RESULT33[["id","date","value"]],
libref = ’out’,
table = ’RESULT33’)
sas.endsas()
return dataSet.table
endsubmit;
rc = py.publish();
rc = py.call(’lookup33’, fileBIG, filesmall, fileresult33, libpath);
output = py.results[’outputKey’];
put "output:" output;
RUN;

proc import
file="Ysysfunc(pathname (WORK)) /result33.csv"
out=csv_version_of_result33
dbms=csv replace;

run;

proc print data=csv_version_of_result33;

run;

proc print data=RESULT33;

run;

When the configuration is ready, we create some temporary variables pointing to the input data loca-
tion. Communication between SAS and Python is done with help of the so-called python object. The
submit block contains Python code, you have to remember about indentations and that SAS comments
are not honored, so to comment out code you have to use the # symbol. The pandas package is used
to read SAS data sets into data frames. Next, the pandas data frame’s merge method sub-selects data.
The result is created in two ways. One, just a csv file is created and then the IMPORT procedure makes
it a SAS data set. Two, the saspy package is used to create a SAS data set directly. More reading about
"house Slytherin” can be found in [Lankham & Slaughter 2023]]. For the sake of a complete picture,
the FCMP procedure is not the only interface to Python language available in SAS ecosystem. If you hap-
pen to have access to the SAS Viya platform, you are able to use the PYTHON procedure which makes
things much easier. See [[Box 2023]] for details.

Staying in the traveling parallel, going between SAS and Lua would be like traveling between states, no
effort required, the only thing to remember is that rules change between states.

code: talking in Lua
Proc LUA restart;
submit;

--- /* get data from SMALL */

local small = {}

local dsid = sas.open("WORK.small")

for row in sas.rows(dsid) do

for n,v in pairs(row) do

if n == "ids" then
small [#small+l] = v
end;
end

end
32



13

14

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Jablonski & McMullen - Fifty Shades of SAS Programming

sas.close(dsid)
print(table.tostring(small))
print (type(small))

—-—— /% load BIG x*/
local BIG = sas.read_ds("WORK.BIG")
print (type (BIG))
local result34 = {}
print(table.tostring(result34))
local cnt = 0
local find = 0
--- /* loop over rows of BIG and ... */
for _,rowBIG in ipairs(BIG) do
cnt = cnt + 1
-—— /% ... check if value of ID is in small */
if (table.contains(small, rowBIG.id)) then
find = find + 1
vars = {}
vars.id=rowBIG. id
vars.date=rowBIG.date
vars.value=rowBIG.value
result34[#result34+1] = vars
end
end;
print ("cnt=", cnt)

print ("find=", find)

-- /*write LUA table to SAS data set */

sas.write_ds(result34, "work.result34")

print(table.tostring(result34))
endsubmit;
run;
proc print data=RESULT34;

format date yymmddio.;

run;

Inside the LUA procedure we use the submit block to provide Lua code. SAS provides a bunch of utility
functions out of the box to help us in moving data between SAS data sets and Lua tables, back and
forth. Similarly to Python in the FCMP procedure, SAS comments are not respected, a double dash (--)
has to be used. An introduction to SAS and Lua cooperation can be found in the following articles
[Tomas 2015]], [Hu 2016]], [Vijayaraghavan 2017]], and [Khorlo 2019]].

MY PRIVATE PHONE-BOOK

Use of SAS indexes can significantly increase the processing speed of sub-setting data sets. The sim-
plest experiment confirming the fact is to run one of the first examples (those "naive” ones) which uses
the WHERE clause like for example this one:

code: WHERE clause
where ID in (1 2 3 6 13 17 42 101 303 555 9999);

33



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

36

37

38

39

40

41

Jablonski & McMullen - Fifty Shades of SAS Programming

If the filtered data set is indexed and we are sub-setting a small amount of data (a rule of thumb says:
less then 5%), the process takes much less time. Additionally the MSGLEVEL= option, when set to i,
shows a log info about index use. Though SAS indexes are very practical, sometimes with a specific
data setup or filtering condition, their out of the box version does not solve the issue. Interesting
discussion about such cases can be found in [[Keintz 2009]] or [Jablonski 2019]]. The next snippet we
discuss is inspired by the first of those two references.

code: user made index

/* look-up 35, SAS indexes and user defined indexes */
data work.userDefinedIndex(

index=(key)

keep=key start end dataSet);

set WORK.BIG /* WORK.BIG2 WORK.BIG3 ... - works with multiple data sets too */
curobs=curobs indsname=indsname end=eof;

lag_co = lag(curobs);

lag_INDS = lag(indsname);

lag ID = lag(id);

newDS = indsname NE lag_INDS;

newBY = id NE lag_ID;

if EOF OR ((newDS OR newBY) AND 1 < _N_) then

do;
key = coalesce(lag_ID,ID);
dataSet = coalescec(lag_INDS,indsname);
start = (start<>1);
end = coalesce(lag_co,curobs);

output userDefinedIndex;
start=.;
start+curobs;
end;
run;
/* proc print data=userDefinedIndex(firstobs=12340 obs=12350); run; */
proc sql noprint;
select IDS
into :IDS separated by " "

from work.small;

quit;

/* options msglevel=i; */
data _null_;
call execute('"data RESULT35; set'");
do until(eof);
set work.userDefinedIndex end=EQF;
where KEY in (&IDS.);
call execute(catx(" ",dataSet,"(firstobs=",start,"obs=",end,")"));
end;
call execute("open=defer;run;");
stop;

run;

34



Jablonski & McMullen - Fifty Shades of SAS Programming

We use the fact that the BIG data set is sorted by the ID variable. Based on that, in the snippet we create
additional data set which works for us like an index telling us which IDs occupy which observations.
Further more, this user hand-made index can combine information on data from multiple data sets (as
the snippet shows). We additionally put an index on the ID variable in the user-index data set. Then we
use our small data set for indirect selection from the user hand-made index data set. In the final stage
those sub-select observations of the user-index data set allow us to create the final, data-selecting,
data step. The log looks like this:

the log - result
1| data RESULT35;

2 set

3 WORK.BIG(firstobs=1 obs=4) WORK.BIG(firstobs=5 obs=9)

| WORK.BIG(firstobs=10 obs=11) WORK.BIG(firstobs=20 obs=23)

5 WORK.BIG(firstobs=52 obs=56) WORK.BIG(firstobs=70 obs=73)

6 WORK.BIG(firstobs=183 obs=186) WORK.BIG(firstobs=455 obs=459)

7 WORK.BIG(firstobs=1375 obs=1379) WORK.BIG(firstobs=2514 obs=2518)
8 WORK.BIG(firstobs=45011 obs=45014)

9 open=defer;

10| run;

&&&EZR&&

When working with macro programming the indirect reference technique (already mentioned earlier) is
considered to be an advance topic. Even though considered advanced, examples of code using double
ampersand (&&) are very popular, even three (&&&) can be found easily. Much rarer case is the one where
four (&&&&) or more are used, and the use is not a symptom of macroitis disease (see [Schrempf 1995]])
but is a justified case.

An exercise like: "Having the following setup:

code: indirect referencing - exercise setup

1| %let VeryImportantMessage=This, is, WUSS!!!;
2| %let Ti1=Very;

3| %let T2=Important;

4| %let T3=Message;

5| hlet letter=T;

6| %hlet one=1;

7| %hlet two=2;

8| %let three=3;

print out the 'This, 4s, WUSS!!!’ textin the log, but using only(!) macro variables: letter, one, two,
and three in your code”, that can by the way be resolved with the following line of code:
code: indirect referencing - the answer

hput &&&&&&&letter&one&&&letter&twolk&&letter&three;

-

happens almost exclusively as an academic exercise! (see|]Appendix D - "sevenfold” indirect referencing|
for a visual explanation, read [[Gerlach 1997]], [Molter 2004], and [Matise 2015] for understanding)
That is why the next snippet can be considered interesting.

The code, like the previous one, also relies on the fact that the data are sorted (interesting read about
different approaches to sorted data sets can be found in [Lavery 2013])).

35



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Jablonski & McMullen - Fifty Shades of SAS Programming

code: quadruple indirect referencing

/* look-up 36, SAS macro indirect referencing */
data _null_;
set WORK.BIG curobs=co;
by ID;
if first.ID then call symputX(cats("_st36_",ID),co,"G");
if last.ID then call symputX(cats("_en36_",ID),co,"G");
run;
data _null_;
set WORK.small end=eof;
call symputX(cats("_i36_",_N_),IDS,"G");

- s _N_

if eof then call symputX("_n36_",_N_,"G");

run;

%macro lookup36();
data RESULT36;
set
%local i;
%do i = 1 %to &_n36_.;
WORK.BIG(firstobs=&&&&_st36_&&_i36_&i obs=&&&&_en36_&&_1i36_&i)
%end;
open=defer;
run;

%mend lookup36;

options mprint symbolgen mlogic;
%lookup36()

options nomprint nosymbolgen nomlogic;

Because we want to use a similar trick to the one we just used, i.e. selection by observation number, the
first data step goes through the BIG data set and for every value of the ID variable creates two macro
variables: the _st36_x contains the observation number for a group start, the _en36_x contains the
observation number for a group end. The second data step creates eleven macro variables: _i36_1,
_i36_2, ..., _i36_11 containing the IDS variable values we want to look-up in the BIG data set, and
_n36_=11 macro variable.

The %1lookup36 () macro loops from one to eleven. In the eleventh %,do-1loop iteration (i=11, IDS=9999),
for example for &&&&_st36_&&_i36_&i, we have:

e after the first macro processor pass: &&_st36_&_i36_11
e after the second macro processor pass: &_st36_9999, and
¢ after the third macro processor pass: 45011

so eventually the 4GL we produce became a very familiar looking:

the log - result
WORK.BIG(firstobs=1 obs=4) WORK.BIG(firstobs=5 obs=9)
WORK.BIG(firstobs=10 obs=11) WORK.BIG(firstobs=20 obs=23)
WORK.BIG(firstobs=52 obs=56) WORK.BIG(firstobs=70 obs=73)
WORK.BIG(firstobs=183 obs=186) WORK.BIG(firstobs=455 obs=459)
WORK.BIG(firstobs=1375 obs=1379) WORK.BIG(firstobs=2514 obs=2518)
WORK.BIG(firstobs=45011 obs=45014)

36




Jablonski & McMullen - Fifty Shades of SAS Programming

WE HAVE TO GO DEEPER
In an early SEUG]E| conference paper A.D. Forbes discuss a FUNCTN procedure, see [[Forbes 1984]]. Ac-

10

11

12

13

14

15

16

17

18

19

20

21

22

23

cording to the article, in a nutshell, the procedure takes a data set of (argument,value) pairs that

represents a function in mathematical sense and (as the name suggests) creates a table look-up func-

tion, which use binary search over arguments and returns corresponding value. In our setup we could

consider the following approach:

DATA work.functionData;
set work.small;
rename IDS=arg;
value=1;
run;
PROC SORT data=work.functionData;
BY arg;

run;

PROC FUNCTN
DATA=work.functionData
NAME=myFunc
DDNAME=work
TYPE=1

ID value;
VAR arg;

run;

DATA work.RESULT37;
set work.BIG;
if myFunc(ID);

run;

code: attempt to use PROC FUNCTN

Unfortunately for us, in the SAS9 system the result printed in the log is very unsatisfactory:

11 PROC FUNCTN
12 DATA=work.functionData

ERROR: Procedure FUNCTN not found.

13 NAME=myFunc
14 DDNAME=work
15 TYPE=1

16 ;

17 ID value;
18 VAR arg;

19 run;

the log - unsatisfactory result

NOTE: The SAS System stopped processing this step because of errors.

As we have already seen, when talking about the FCMP procedure, the use of data set and a binary search

of a sorted list of values is implementable. But... there is one more way to implement a binary search

5SEUGI was the European version of SUGI, held, accroding to lexjansen. com, from 1983 through 2003.

37




10

11

12

13

14

15

16

17

18

20

21

22

23

24

25

26

27

28

29

Jablonski & McMullen - Fifty Shades of SAS Programming

over a given list of sorted values. Such a search can be implemented as a nested set of if-then-else
statements, in our case of the form:

code: fixed binary search

data work.RESULT37;
set work.BIG;
if (ID < 17) then
do;
if (ID < 3) then
do;
return=( ID=1 | ID=2 );
end;
else if (ID = 3) then return=(1);
else if (ID > 3) then
do;
return=( ID=6 | ID=13 );
end;
end;
else if (ID = 17) then return=(1);
else if (ID > 17) then

do;
if (ID < 303) then
do;
return=( ID=42 | ID=101 );
end;

else if (ID = 303) then return=(1);
else if (ID > 303) then
do;
return=( ID=555 | ID=9999 );
end;
end;
if return;

run;

How we could write such code if our values list is a dynamically changing one? Well, the answer is
pretty obvious. The SAS language component responsible for the language "dynamicity” is the macro
language. We have seen a few simple, though very practical, macros that used the %do-loop iterative
processing. The example which generated the above snippet is an opportunity not only to discuss
%hdo-loops, but also:

(1) positional and key-value macro parameters,

(2) macro language options (minoperator and mprint)

(3) conditional processing (%if-%then-%else statements),

(4) local and global variable scope (%local statement),

(5) macro functions (%scan()),

(6) macro variable arithmetic (%eval () macro function),

(7) use of 4GL functions on a macro programming level (%sysfunc () macro function),

(8) recursion (call to %binSrch() inside %binSrch definition, "Inception”), and

(9) special characters masking (aka. macro quoting, %str () and %superq() macro functions).

38



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

Jablonski & McMullen - Fifty Shades of SAS Programming

code: SAS macro recursion for binary search

Jmacro binSrch(var,list,sep==)/minoperator;
%local 1 h i j v;

%let 1=1;

%let h=Ysysfunc(countw()superq(list),%str( )));
hlet i = Y%eval((&1l.+&h.)/2);

%let v = Yscan(&list.,&i.,%str( ));

%if &h. = 1 Ythen

hdo;
return&sep. ( &var.=&list. );
%end;
%helse %if &h. = 2 Ythen
hdo;

return&sep. ( &var.=Yscan(&list.,1,%str( )) | &var.=Yscan(&list.,-1,%str( )) );
%end;
%helse %if NOT Ysysevalf (Ysuperq(v)=,boolean) %then
hdo;
if (&var. < &v.) then
do;

end;
else if (&var. = &v.) then return&sep.(1);
else if (&var. > &v.) then

do;

end;
%end;

%mend binSrch;

options mprint;
data work.RESULT37;
set work.BIG;

if return;

run;

When the sep= parameter of the macro is set to missing, then a call to the macro can be also embed-
ded inside an FCMP procedure function definition. Other examples of recursive macros can be found in
[Adams 2003], [Itoh 2003]], [Chung 2004], or [Watts 2010]. As already mentioned, the macro lan-
guage is exceptionally well explained in [[Carpenter 2016]], but three more articles discussing macro
quoting are "must read” for a SAS professional, they are: [[0’Connor 1999](!), [Whitlock 2010]], and
[Chung & King 2009].

THAT (+3) EXTRA

As we have already seen SAS is a very flexible and versatile tool, and provides a very wide range of
different programming approaches to table look-ups. But wait, that is not all. The additional three
examples present functionality called SAS Packages introduced in [[Jablonski 2020]] and further dis-

cussed for example in [Jablonski 2021]]. For an introduction about how to install and use the SAS
39



Jablonski & McMullen - Fifty Shades of SAS Programming

Packages Framework and packages see the When the SAS Packages Framework (SPF) and

packages are ready for use, run the following snippet to enable SPF:
code: sas packages framework

1| /* enable SPF */
2| filename packages "/path/to/SAS/PACKAGES";

W

%include packages (SPFinit.sas);

Having the framework ready we can look at examples. The first two are variations about the naive
approach we discussed already, the third shows how macros can extend the power of the DATA step as
a data processing tool.

THE BASEPLUS PACKAGE

The first one uses the Yminclude () macro from the basePlus package. The macro is a workaround for
the % INCLUDE statement’s limitation, i.e., the fact that only valid SAS statements can be included. The
%»minclude () macro allows including arbitrary text from a file into SAS code. In this case the "1 23 6
131742101 303 555 9999” text string is taken literally from the small. txt file and is included inside
the WHERE statement.

code: packages 1

1] /* look-up 97, naive selection, with basePlus */

3| filename f97 "Y%workPath()/small.txt";
4| data WORK.RESULTO7;

5 set WORK.BIG;

6/ WHERE id in ( )

7| run;

8| filename f97 clear;

The %minclude () macro from the basePlus package, though implemented using a different approach,
was influenced by the "Embedding any code anywhere into SAS programs” blog post by Leonid Batkhan
(https://blogs.sas.com/content/sgf/2023/05/30/).

THE MACROARRAY PACKAGE

The second example uses the macroArray package which is designed to make work with macro variable
arrays (MVAs) easier and more convenient. In the code, first the %ARRAY () macro is used to create a
macro variable array named IDS98_ directly from the SMALL data set, and next the %D0_0OVER () macro
retrieves and pastes values of the MVA into the WHERE statement.

code: packages 2

1| /* look-up 98, naive selection, with Macro Variable Arrays */

4| %put %IDS98_(1) %IDS98_(5) %IDS98_(11);
5| data WORK.RESULT9S;

6 set WORK.BIG;

7|  WHERE id in ( );

8| run;

The macroArray package, though implemented from scratch, was influenced by works of Ted Clay and
David Katz (see [[Clay 2004] and [[Clay 2006])), and itself is described in details in [Jablonski 2024]).

40



Jablonski & McMullen - Fifty Shades of SAS Programming

THE SQLINDS PACKAGE

10

11

12

13

14

16

17

18

19

20

21

22

23

The third example shows that from a programmer point of view, it is not only the DS2 procedure which
allows us to "have” an SQL query as a data source in a data step. The SQLinDS package utilizes macros,
user defined functions, and SQL views under the hood, but thanks to the form the solution is provided,
i.e. a SAS package, from a user perspective at the end everything reduces to writing %SQL(<here goes
my query>). And it works!

code: packages 3

/* look-up 99, SQLinDS - Macro Function Sandwich approach */
%loadPackage (SQLinDS)
data WORK.RESULT99;
SET %SOL(select B.*
from WORK.BIG as B
,WORK.small as s
where B.ID = s.IDS);

run;

The SQLinDS package, though fully developed and production usage ready, was developed as a hobby
project being a tribute to Mike Rhoads’ macro-function-sandwich idea presented in [Rhoads 2012]].

A BIT OF SUMMARY

At this point we have 53 (+3) data sets (named work.RESULT***) with observations selected from the
BIG data set. We can say that we successfully finished the first step of the process, i.e. the data
selection. Usually at this point further summary of the data is done. We execute the aggregation by
running the next snippet that randomly selects one of those 53 (+3) data sets end executes a brief

summary.
code: short summary

/* get list of data sets named "RESULT..." %/
options obs=1;
data list;
set WORK.RESULT: indsname=i;
indsname=i;
keep indsname;
run;

options obs=MAX;

proc sort data = list
SORTSEQ=LINGUISTIC(NUMERIC_COLLATION=0N) ;
by i:;
run;
/* randomly select one of data sets */
data _null_;
point = rand("integer",1,NOBS);
set list POINT=point NOBS=NOBS;
call symputX("EXAMPLE_DATA",indsname,"G");
stop;
run;
/* aggregate data */
%put "Results from &EXAMPLE_DATA.";

title "Results from &EXAMPLE_DATA.";
41



24

25

26

27

28

29

Jablonski & McMullen - Fifty Shades of SAS Programming

proc tabulate data=&EXAMPLE_DATA.;
class ID;
var value;
table id,value*(sum n mean);
run;

title;

The TABULATE procedure is used here to generate the summary table which looks more or less like this:

1D Sum N | Mean
1 519.61 | 4 | 129.90
2 668.47 | 5| 133.69
3 219.09 | 2 | 109.55
6 518.47 | 4 | 129.62
13 | 884.55 | 5| 176.91
17 | 657.75 | 4 | 164.44
42 | 561.61 | 4 | 140.40
101 | 745.05 | 5 | 149.01
303 | 774.74 | 5 | 154.95
555 | 643.80 | 5 | 128.76
9999 | 648.60 | 4 | 162.15

Of course we can easily assume, from the number of code snippets in previous sections, that this is
not the only way we can aggregate our data. Except already used Proc TABULATE the list, among other,
includes:

Proc Means/Summary,

e Proc Univariate,

Proc SQL,

Data Step with BY-group processing, or
Data Step with Hash Table.

Soin factin many cases the aggregation could be easily incorporated into the process at the first stage.

CONCLUSION

One obvious conclusion we can state is that SAS is a very syntax rich and flexible language. In the
article, we refreshed our memory about how the table look-up task can be solved and how many ways
to do it are out there. Also we "experimentally proved” that you can be a lazy teacher but still provide
a full SAS course to your students, even having just one exercise to solve for them.

The End

REFERENCES

As we think of these references as something of a historical collection, we ordered them by year, and
then alphabetically by author within year. The links to each paper are hyperlinks (if a link is broken into
multiple lines remember to copy all of it). For your convenience all the articles listed here were also
collected in two places. Visit:

https://pages.mini.pw.edu.pl/” jablonskib/SASpublic/WUSS2024_125/

or
https://github.com/yabwon/WUSS2024_PAPER125/
42


https://pages.mini.pw.edu.pl/~jablonskib/SASpublic/WUSS2024_125/
https://github.com/yabwon/WUSS2024_PAPER125/

Jablonski & McMullen - Fifty Shades of SAS Programming

to download them if you wish. Also a file with all code snippets presented in this article can be found
in those locations.

ARTICLES AND BOOKS

[Dijkstra 1968] Edsger Dijkstra, "Go To Statement Considered Harmful”, Communications of the ACM. 11 (3): 147-148, 1968,
https://doi.org/10.1145%2F362929.362947, https://homepages.cwi.nl/ storm/teaching/reader/Dijkstra68.pdf
[Mays 1976] Steven Mays, "NON-STATISTICAL USES OF SAS”, SUGI.ONE Proceedings, 1976,
https://support.sas.com/resources/papers/proceedings-archive/SUGI76/Sugi-76-16%20Mays . pdf
[Henderson 1982] Don Henderson, "SAS Tutorial: Table Lookup Techniques”, SUGI Proceedings, 1982,
https://support.sas.com/resources/papers/proceedings-archive/SUGI82/Sugi-82-146%20Henderson. pdf
[Henderson 1983] Don Henderson, "The SAS Supervisor”, SUGI Proceedings, 1983,
https://communities.sas.com/t5/SAS-Communities-Library/The-SAS-Supervisor/ta-p/429216
[Forbes 1984] A. D. Forbes, "A Procedure for Creating Table Look-Up Functions from SAS Data Sets”, SEUGI Proceedings, 1984,
https://support.sas.com/resources/papers/proceedings-archive/SEUGI1984/
A%,20Procedure’,20for%20Creating)20Table’20Look-Up7%20Functions?,20from},20SAS%20Data%20Sets . pdf
[Lafler 1992] Kirk Paul Lafler, "Using the SQL Procedure”, SUGI Proceedings, 1992,
https://support.sas.com/resources/papers/proceedings-archive/SUGI92/Sugi-92-90%20Lafler.pdf
[Scerbo 1992] Marge Scerbo, "Dataset Manipulation with Screen Control Language (SCL)”, SUGI Proceedings, 1992,
https://support.sas.com/resources/papers/proceedings-archive/SUGI92/Sugi-92-41%20Scerbo.pdf
[Schrempf 1995] Margaret K. Schrempf, "Macroitis - A Virus or a Drug”, SUGI Proceedings, 1995,
https://support.sas.com/resources/papers/proceedings-archive/SUGI95/Sugi-95-13720Schrempf . pdf
[Gerlach 1997] John R. Gerlach, "The Six Ampersand Solution”, NESUG Proceedings, 1997,
https://www.lexjansen.com/nesug/nesug97/posters/gerlach.pdf
[Whitlock 1997] Ian Whitlock, "A SAS Programmer’s View of the of the SAS Supervisor”, SUGI Proceedings, 1997,
https://support.sas.com/resources/papers/proceedings/proceedings/sugi22/ADVTUTOR/PAPER34 . PDF
[Whitlock(2) 1997] Ian Whitlock, "CALL EXECUTE: How and Why”, SUGI Proceedings, 1997,
https://support.sas.com/resources/papers/proceedings/proceedings/sugi22/CODERS/PAPER70.PDF
[Virgile 1997] Bob Virgile, "MAGIC WITH CALL EXECUTE", SUGI Proceedings, 1997,
https://support.sas.com/resources/papers/proceedings/proceedings/sugi22/CODERS/PAPER86 . PDF
[Patton 1998] Nancy K. Patton, "IN & OUT of CNTL with PROC FORMAT”, SUGI Proceedings, 1998,
https://support.sas.com/resources/papers/proceedings/proceedings/sugi23/Coders/p68.pdf
[Woolridge & Lau 1998] Greg M. Woolridge, Winnie Lau, "Happiness is Using Arrays to Make Your Job Easier”,
PharmaSUG Proceedings, 1998, https://www.lexjansen.com/pharmasug/1998/TECH/WOOLRIDG.PDF
[Virgile 1998] Bob Virgile, "Introduction to Arrays”, PharmaSUG Proceedings, 1998,
https://www.lexjansen.com/pharmasug/1998/DATA_VAL/VIRGILE1.PDF
[0’Connor 1999] Susan 0’Connor, "Secrets of Macro Quoting Functions — How and Why”, NESUG Proceedings, 1999,
https://www.lexjansen.com/nesug/nesug99/bt/bt185. pdf
[Shi & Zhang 1999] Jingren Shi, Shiling Zhang, "Tips about Using Data Step Option Point access”,
MWSUG Proceedings, 1999, https://www.lexjansen.com/mwsug/1999/paper08.pdf
[Virgile 1999] Bob Virgile, "How MERGE Really Works”, NESUG Proceedings, 1999,
https://www.lexjansen.com/nesug/nesug99/ad/ad155. pdf
[Aker 2000] Sandra Lynn Aker, "Using KEY= to Perform Table Look-up”, SUGI Proceedings, 2000,
https://support.sas.com/resources/papers/proceedings/proceedings/sugi25/25/po/25p234.pdf
[Franklin & Jensen 2000] Gary Franklin, Art Jensen, "Integrity Constraints and Audit Trails Working Together”,
PharmaSUG Proceedings, 2000, https://www.lexjansen.com/pharmasug/2000/DMandVis/dm18.pdf
[Riba 2000] S. David Riba, "How to Use the Data Step Debugger”, SUGI Proceedings, 2000,
https://support.sas.com/resources/papers/proceedings/proceedings/sugi25/25/btu/25p052. pdf
[Carpenter 2001] Arthur L. Carpenter, "Table Lookups: From IF-THEN to Key-Indexing”, SUGI Proceedings, 2001,
https://support.sas.com/resources/papers/proceedings/proceedings/sugi26/p158-26.pdf
[Dorfman 2001] Paul M. Dorfman, "Table Look-Up by Direct Addressing: Key-Indexing - Bitmapping - Hashingpdf document”,
SUGI Proceedings, 2001, https://support.sas.com/resources/papers/proceedings/proceedings/sugi26/p008-26.pdf
[Luo 2001] Haiping Luo, "That Mysterious Colon (:)”,
SUGI Proceedings, 2001, https://support.sas.com/resources/papers/proceedings/proceedings/sugi26/p073-26.pdf
[Shoemaker 2001] Jack Shoemaker, "Eight PROC FORMAT Gems”,
SUGI Proceedings, 2001, https://support.sas.com/resources/papers/proceedings/proceedings/sugi26/p062-26.pdf
[Carpenter 2002] Arthur L. Carpenter, "Building and Using Macro Libraries”, SUGI Proceedings, 2002,

https://support.sas.com/resources/papers/proceedings/proceedings/sugi27/p017-27.pdf
43


https://homepages.cwi.nl/~storm/teaching/reader/Dijkstra68.pdf
https://support.sas.com/resources/papers/proceedings-archive/SUGI76/Sugi-76-16%20Mays.pdf
https://support.sas.com/resources/papers/proceedings-archive/SUGI82/Sugi-82-146%20Henderson.pdf
https://communities.sas.com/t5/SAS-Communities-Library/The-SAS-Supervisor/ta-p/429216
https://support.sas.com/resources/papers/proceedings-archive/SEUGI1984/A%20Procedure%20for%20Creating%20Table%20Look-Up%20Functions%20from%20SAS%20Data%20Sets.pdf
https://support.sas.com/resources/papers/proceedings-archive/SEUGI1984/A%20Procedure%20for%20Creating%20Table%20Look-Up%20Functions%20from%20SAS%20Data%20Sets.pdf
https://support.sas.com/resources/papers/proceedings-archive/SUGI92/Sugi-92-90%20Lafler.pdf
https://support.sas.com/resources/papers/proceedings-archive/SUGI92/Sugi-92-41%20Scerbo.pdf
https://support.sas.com/resources/papers/proceedings-archive/SUGI95/Sugi-95-13%20Schrempf.pdf
https://www.lexjansen.com/nesug/nesug97/posters/gerlach.pdf
https://support.sas.com/resources/papers/proceedings/proceedings/sugi22/ADVTUTOR/PAPER34.PDF
https://support.sas.com/resources/papers/proceedings/proceedings/sugi22/CODERS/PAPER70.PDF
https://support.sas.com/resources/papers/proceedings/proceedings/sugi22/CODERS/PAPER86.PDF
https://support.sas.com/resources/papers/proceedings/proceedings/sugi23/Coders/p68.pdf
https://www.lexjansen.com/pharmasug/1998/TECH/WOOLRIDG.PDF
https://www.lexjansen.com/pharmasug/1998/DATA_VAL/VIRGILE1.PDF
https://www.lexjansen.com/nesug/nesug99/bt/bt185.pdf
https://www.lexjansen.com/mwsug/1999/paper08.pdf
https://www.lexjansen.com/nesug/nesug99/ad/ad155.pdf
https://support.sas.com/resources/papers/proceedings/proceedings/sugi25/25/po/25p234.pdf
https://www.lexjansen.com/pharmasug/2000/DMandVis/dm18.pdf
https://support.sas.com/resources/papers/proceedings/proceedings/sugi25/25/btu/25p052.pdf
https://support.sas.com/resources/papers/proceedings/proceedings/sugi26/p158-26.pdf
https://support.sas.com/resources/papers/proceedings/proceedings/sugi26/p008-26.pdf
https://support.sas.com/resources/papers/proceedings/proceedings/sugi26/p073-26.pdf
https://support.sas.com/resources/papers/proceedings/proceedings/sugi27/p017-27.pdf

Jablonski & McMullen - Fifty Shades of SAS Programming

[Dorfman & Snell 2002] Paul M. Dorfman, Gregg P. Snell, "Hashing Rehashed”, SUGI Proceedings, 2002,
https://support.sas.com/resources/papers/proceedings/proceedings/sugi27/p012-27.pdf
[Keelan 2002] Stephen Keelan, "Off and Running with Arrays in SAS”, NESUG Proceedings, 2002,
https://www.lexjansen.com/nesug/nesug02/bt/bt002.pdf
[Shoemaker 2002] Jack Shoemaker, "PROC FORMAT in Action”, SUGI Proceedings, 2002,
https://support.sas.com/resources/papers/proceedings/proceedings/sugi27/p056-27.pdf
[Dorfman & Snell 2003] Paul M. Dorfman, Gregg P. Snell, "Hashing: Generations”, SUGI Proceedings, 2003,
https://support.sas.com/resources/papers/proceedings/proceedings/sugi28/004-28.pdf
[Adams 2003] John H. Adams, "The power of recursive SAS macros - How can a simple macro do so much”,
SUGI Proceedings, 2003,| https://support.sas.com/resources/papers/proceedings/proceedings/sugi28/087-28.pdf
[Fehd 2003] Ronald Fehd, "ARRAY: construction and usage of arrays of macro variables”,
NESUG Proceedings, 2003, https://www.lexjansen.com/nesug/nesug03/cc/cc015.pdf
[Ttoh 2003] Yohji Itoh, "A Recursive SAS Macro Technique and its Application to Statistics”, Conference: SUGI-J, 2003,
https://wuw.researchgate.net/publication/344314192_A_Recursive_SAS_Macro_Technique_and_its_Application_to_Statistics
[Chung 2004] Chang Y. Chung, "Recursive Subroutine Macros”, NESUG Proceedings, 2004,
https://wuw.lexjansen.com/nesug/nesug04/po/po02.pdf
[Clay 2004] Ted Clay, "Macro Arrays Make %DO0-Looping Easy”, WUSS Proceedings, 2004,
https://www.lexjansen.com/wuss/2004/coders_corner/c_cc_macro_arrays_make_doloo.pdf
[Howard 2004] Neil Howard, "How SAS Thinks or Why the DATA Step Does What It Does”, SUGI Proceedings, 2004,
https://support.sas.com/resources/papers/proceedings/proceedings/sugi29/252-29.pdf
[Molter 2004] Michael J. Molter, "The Role of Consecutive Ampersands in Macro Variable Resolution and the Mathematical Pat-
terns that Follow”, SUGI Proceedings, 2004,
https://support.sas.com/resources/papers/proceedings/proceedings/sugi29/063-29.pdf
[Karp 2004] Andrew H. Karp, "Steps to Success with PROC MEANS”, SUGI Proceedings, 2004,
https://support.sas.com/resources/papers/proceedings/proceedings/sugi29/240-29.pdf
[Clifford 2005] Billy Clifford, "Frequently Asked Questions about SAS Indexes”, SUGI Proceedings, 2005,
https://support.sas.com/resources/papers/proceedings/proceedings/sugi30/008-30.pdf
[Eason 2005] Jenine Eason, "Proc Format, a Speedy Alternative to Sort/Merge”, SUGI Proceedings, 2005,
https://support.sas.com/resources/papers/proceedings/proceedings/sugi30/054-30.pdf
[First & Schudrowitz 2005] Steve First, Teresa Schudrowitz, "Arrays Made Easy: An Introduction to Arrays and Array Processing”,
SUGI Proceedings, 2005,| https://support.sas.com/resources/papers/proceedings/proceedings/sugi30/242-30.pdf
[Holland 2005] Philip R. Holland, "SAS to R to SAS”, PHUSE Proceedings, 2005,
https://www.lexjansen.com/phuse/2005/cc/cc03.pdf
[Suhr 2005] Diana Suhr, "Arrays by example”, WUSS Proceedings, 2005,
https://www.lexjansen.com/wuss/2005/sas_essentials/ess_arrays_by_example.pdf
[Michel 2005] Denis Michel, "CALL EXECUTE: A Powerful Data Management Tool”, SUGI Proceedings, 2005,
https://support.sas.com/resources/papers/proceedings/proceedings/sugi30/027-30.pdf
[Clay 2006] Ted Clay, "Five Easy (To Use) Macros”, PNWSUG Proceedings, 2006,
https://www.lexjansen.com/pnwsug/2006/PN22TedClayFiveMacros.pdf
[Fickbohm 2006] David Fickbohm, "Using the DATASETS Procedure”, SUGI Proceedings, 2006,
https://support.sas.com/resources/papers/proceedings/proceedings/sugi31/032-31.pdf
[Whitlock 2006] Ian Whitlock, "How to Think Through the SAS DATA Step”, SUGI Proceedings, 2006,
https://support.sas.com/resources/papers/proceedings/proceedings/sugi31/246-31.pdf
[Fickbohm 2007] David Fickbohm, "Using the DATASETS Procedure Part II”, SGF Proceedings, 2007,
https://support.sas.com/resources/papers/proceedings/proceedings/forum2007/070-2007 . pdf
[Lavery 2007] Russell Lavery, "An Animated Guide: The Map of the SAS Macro Facility”, PHUSE Proceedings, 2007,
https://www.lexjansen.com/phuse/2007/is/IS01.pdf
[Secosky 2007] Jason Secosky, "User-Written DATA Step Functions”, SGF Proceedings, 2007,
https://support.sas.com/resources/papers/proceedings/proceedings/forum2007/008-2007 . pdf
[Secosky & Bloom 2007] Jason Secosky, Janice Bloom, "Getting Started with the DATA Step Hash Object”,
SGF Proceedings, 2007, http://www2.sas.com/proceedings/forum2007/271-2007 . pdf
[Whitlock 2007] Marianne Whitlock, "The program Data Vector AS an Aid to DATA Step Reasoning”, NESUG Proceedings, 2007,
https://www.lexjansen.com/nesug/nesug07/£f/££20.pdf
[Wright 2007] Wendi L. Wright, "Creating a Format from Raw Data or a SAS Dataset”, SGF Proceedings, 2007,
https://support.sas.com/resources/papers/proceedings/proceedings/forum2007/068-2007 . pdf
[Bilenas 2008] Jonas V. Bilenas, "I Can Do That With PROC FORMAT", SGF Proceedings, 2008,
https://support.sas.com/resources/papers/proceedings/pdfs/sgf2008/174-2008.pdf
[Mack 2008] Curtis Mack, "MODIFY The Most Under-Appreciated of the Data Step File Handling Statements”,
PNWSUG Proceedings, 2008,| https://www.lexjansen.com/pnwsug/2008/CurtisMack-Modify.pdf

44


https://support.sas.com/resources/papers/proceedings/proceedings/sugi27/p012-27.pdf
https://www.lexjansen.com/nesug/nesug02/bt/bt002.pdf
https://support.sas.com/resources/papers/proceedings/proceedings/sugi27/p056-27.pdf
https://support.sas.com/resources/papers/proceedings/proceedings/sugi28/004-28.pdf
https://support.sas.com/resources/papers/proceedings/proceedings/sugi28/087-28.pdf
https://www.lexjansen.com/nesug/nesug03/cc/cc015.pdf
https://www.researchgate.net/publication/344314192_A_Recursive_SAS_Macro_Technique_and_its_Application_to_Statistics
https://www.lexjansen.com/nesug/nesug04/po/po02.pdf
https://www.lexjansen.com/wuss/2004/coders_corner/c_cc_macro_arrays_make_doloo.pdf
https://support.sas.com/resources/papers/proceedings/proceedings/sugi29/252-29.pdf
https://support.sas.com/resources/papers/proceedings/proceedings/sugi29/063-29.pdf
https://support.sas.com/resources/papers/proceedings/proceedings/sugi29/240-29.pdf
https://support.sas.com/resources/papers/proceedings/proceedings/sugi30/008-30.pdf
https://support.sas.com/resources/papers/proceedings/proceedings/sugi30/054-30.pdf
https://support.sas.com/resources/papers/proceedings/proceedings/sugi30/242-30.pdf
https://www.lexjansen.com/phuse/2005/cc/cc03.pdf
https://www.lexjansen.com/wuss/2005/sas_essentials/ess_arrays_by_example.pdf
https://support.sas.com/resources/papers/proceedings/proceedings/sugi30/027-30.pdf
https://www.lexjansen.com/pnwsug/2006/PN22TedClayFiveMacros.pdf
https://support.sas.com/resources/papers/proceedings/proceedings/sugi31/032-31.pdf
https://support.sas.com/resources/papers/proceedings/proceedings/sugi31/246-31.pdf
https://support.sas.com/resources/papers/proceedings/proceedings/forum2007/070-2007.pdf
https://www.lexjansen.com/phuse/2007/is/IS01.pdf
https://support.sas.com/resources/papers/proceedings/proceedings/forum2007/008-2007.pdf
http://www2.sas.com/proceedings/forum2007/271-2007.pdf
https://www.lexjansen.com/nesug/nesug07/ff/ff20.pdf
https://support.sas.com/resources/papers/proceedings/proceedings/forum2007/068-2007.pdf
https://support.sas.com/resources/papers/proceedings/pdfs/sgf2008/174-2008.pdf
https://www.lexjansen.com/pnwsug/2008/CurtisMack-Modify.pdf

Jablonski & McMullen - Fifty Shades of SAS Programming

[Wright 2008] Wendi L. Wright, "PROC TABULATE and the Neat Things You Can Do With It", SGF Proceedings, 2008,
https://support.sas.com/resources/papers/proceedings/pdfs/sgf2008/264-2008.pdf
[Winn Jr. 2008] Thomas J. Winn Jr., "Introduction to PROC TABULATE”, SGF Proceedings, 2008,
https://support.sas.com/resources/papers/proceedings/pdfs/sgf2008/171-2008.pdf
[Chung & King 2009] Chang Y. Chung, John King, "Is This Macro Parameter Blank?”, SGF Proceedings, 2009,
https://support.sas.com/resources/papers/proceedings09/022-2009. pdf
[Dorfman 2009] Paul M. Dorfman, "From Obscurity to Utility: ADDR, PEEK, POKE as DATA Step Programming Tools”,
SGF Proceedings, 2009, | https://support.sas.com/resources/papers/proceedings09/010-2009.pdf
[Dorfman & Vyverman 2009] Paul M. Dorfman, Koen Vyverman, "The DOW-Loop Unrolled”, SGF Proceedings, 2009,
https://support.sas.com/resources/papers/proceedings09/038-2009. pdf
[Eberhardt 2009] Peter Eberhardt, "A Cup of Coffee and Proc FCMP: I Cannot Function Without Them”,
SGF Proceedings, 2009,| https://support.sas.com/resources/papers/proceedings09/147-2009.pdf
[Keintz 2009] Mark Keintz, "A Faster Index for Sorted SAS Datasets”, SGF Proceedings, 2009,
https://support.sas.com/resources/papers/proceedings09/024-2009.pdf
[Watts 2010] Perry Watts, "Using Recursion to Trace Lineages in the SAS ODS Styles.Default Template”,
NESUG Proceedings, 2010, https://www.lexjansen.com/nesug/nesugl0/bb/bb13.pdf
[Wicklin 2010] Rick Wicklin, "Statistical Programming with SAS/IML Software”,
SAS Institute Press, 2010
[Whitlock 2010] Ian Whitlock, "A Serious Look Macro Quoting”, NESUG Proceedings, 2010,
https://www.lexjansen.com/nesug/nesugl0/bb/bb16.pdf
[Bewerunge 2011] Peter Bewerunge, "Calling R Functions from SAS”, PHUSE Proceedings, 2011,
https://www.lexjansen.com/phuse/2011/cs/CSO7.pdf
[Kahane 2011] Dalia C. Kahane, "SAS DATA Step — Compile, Execution, and the Program Data Vector”,
NESUG Proceedings, 2011, https://www.lexjansen.com/nesug/nesugll/ds/ds04.pdf
[Kahane(2) 2011] Dalia C. Kahane, "SAS DATA Step Merge — A Powerful Tool”, NESUG Proceedings, 2011,
https://www.lexjansen.com/nesug/nesugll/ds/ds03.pdf
[Lavery 2011] Russ Lavery, "An Animated Guide: The SAS Data Step Debugger”, NESUG Proceedings, 2011,
https://wuw.lexjansen.com/nesug/nesugll/ds/ds10.pdf
[Carpenter 2012] Arthur L. Carpenter, "Carpenter’s Guide to Innovative SAS Techniques”,
SAS Institute Press, 2012
[Manickam 2012] Airaha Chelvakkanthan Manickam, "Interesting technical mini-bytes of Base SAS - From Data step to Macros”,
SGF Proceedings, 2012, https://support.sas.com/resources/papers/proceedings12/222-2012.pdf
[Rhoads 2012] Mike Rhoads, "Use the Full Power of SAS in Your Function-Style Macros”,
SGF Proceedings, 2012,| https://support.sas.com/resources/papers/proceedings12/004-2012.pdf
[Secosky 2012] Jason Secosky, "Executing a PROC from a DATA Step”, SGF Proceedings, 2012,
https://support.sas.com/resources/papers/proceedings12/227-2012.pdf
[Wei 2012] Xin Wei, "%PROC_R: A SAS Macro that Enables Native R Programming in the Base SAS Environment”,
Journal of Statistical Software, 46(2), 1-13., 2012, https://www.jstatsoft.org/article/view/v046c02,
doi: https://doi.org/10.18637/jss.v046.c02
[Dorfman 2013] Paul M. Dorfman, "The Magnificent DO”, SGF Proceedings, 2013,
https://support.sas.com/resources/papers/proceedings13/126-2013.pdf
[Henrick et al. 2013] Andrew Henrick, Donald Erdman, Stacey Christian, "Hashing in PROC FCMP to Enhance Your Productivity”,
SGF Proceedings, 2013,| http://support.sas.com/resources/papers/proceedings13/129-2013. pdf
[Langston 2013] Rick Langston, "Submitting SAS Code On The Side”, SGF Proceedings, 2013,
https://support.sas.com/resources/papers/proceedings13/032-2013. pdf
[Lavery 2013] Russ Lavery, "Fast Access Tricks for Large Sorted SAS Files”, MWSUG Proceedings, 2013,
https://www.mwsug.org/proceedings/2013/HW/MWSUG-2013-HW02 . pdf
[Zender 2013] Cynthia L. Zender, "Macro Basics for New SAS Users”, SGF Proceedings, 2013,
https://support.sas.com/resources/papers/proceedings13/120-2013. pdf
[Carpenter 2014] Arthur L. Carpenter, "Table Lookup Techniques: From the Basics to the Innovative”,
WUSS Proceedings, 2014, https://www.lexjansen.com/wuss/2014/15_Final_Paper_PDF.pdf
[Dorfman 2014] Paul M. Dorfman, Don Henderson, "The SAS Hash Object in Action”, WUSS Proceedings, 2014,
http://www.lexjansen.com/wuss/2014/113_Final_Paper_PDF.pdf
[Yang et al. 2014] Weili Yang, Fang Chen, Liping Zhang, Wenyu Hu, "Table Lookup in SAS ”,
NESUG Proceedings, 2010, https://www.lexjansen.com/nesug/nesugl0/cc/cc37.pdf
[Dorfman & Henderson 2015] Paul M. Dorfman, Don Henderson, "Data Aggregation Using the SAS Hash Object”,
SGF Proceedings, 2015, https://support.sas.com/resources/papers/proceedings15/2000-2015.pdf
[Horstman 2015] Joshua M. Horstman, "Find your Way to Quick and Easy Table Lookups with FINDW”,
MWSUG Proceedings, 2015, https://www.mwsug.org/proceedings/2015/RF/MWSUG-2015-RF-12.pdf

45


https://support.sas.com/resources/papers/proceedings/pdfs/sgf2008/264-2008.pdf
https://support.sas.com/resources/papers/proceedings/pdfs/sgf2008/171-2008.pdf
https://support.sas.com/resources/papers/proceedings09/022-2009.pdf
https://support.sas.com/resources/papers/proceedings09/022-2009.pdf
https://support.sas.com/resources/papers/proceedings09/038-2009.pdf
https://support.sas.com/resources/papers/proceedings09/147-2009.pdf
https://support.sas.com/resources/papers/proceedings09/024-2009.pdf
https://www.lexjansen.com/nesug/nesug10/bb/bb13.pdf
https://support.sas.com/content/dam/SAS/support/en/books/statistical-programming-with-sas-iml-software/63119_excerpt.pdf
https://www.lexjansen.com/nesug/nesug10/bb/bb16.pdf
https://www.lexjansen.com/phuse/2011/cs/CS07.pdf
https://www.lexjansen.com/nesug/nesug11/ds/ds04.pdf
https://www.lexjansen.com/nesug/nesug11/ds/ds03.pdf
https://www.lexjansen.com/nesug/nesug11/ds/ds10.pdf
https://support.sas.com/publishing/pubcat/chaps/62454.pdf
https://support.sas.com/resources/papers/proceedings12/222-2012.pdf
https://support.sas.com/resources/papers/proceedings12/004-2012.pdf
https://support.sas.com/resources/papers/proceedings12/227-2012.pdf
https://www.jstatsoft.org/article/view/v046c02
https://support.sas.com/resources/papers/proceedings13/126-2013.pdf
http://support.sas.com/resources/papers/proceedings13/129-2013.pdf
https://support.sas.com/resources/papers/proceedings13/032-2013.pdf
https://www.mwsug.org/proceedings/2013/HW/MWSUG-2013-HW02.pdf
https://support.sas.com/resources/papers/proceedings13/120-2013.pdf
https://www.lexjansen.com/wuss/2014/15_Final_Paper_PDF.pdf
http://www.lexjansen.com/wuss/2014/113_Final_Paper_PDF.pdf
https://www.lexjansen.com/nesug/nesug10/cc/cc37.pdf
https://support.sas.com/resources/papers/proceedings15/2000-2015.pdf
https://www.mwsug.org/proceedings/2015/RF/MWSUG-2015-RF-12.pdf

Jablonski & McMullen - Fifty Shades of SAS Programming

[Matise 2015] Joe Matise, "Unravelling the Knot of Ampersands”, SGF Proceedings, 2015,
https://support.sas.com/resources/papers/proceedings15/3285-2015.pdf
[Mohammed et al. 2015] Zabiulla Mohammed, Ganesh K. Gangarajula, Pradeep Kalakota, "Working with PROC FEDSQL in SAS 9.4”,
SGF Proceedings, 2015, https://support.sas.com/resources/papers/proceedings15/3390-2015.pdf
[Pillay 2015] Rahul G. Pillay, "Doing More with SAS Arrays”, WUSS Proceedings, 2015,
https://www.lexjansen.com/wuss/2015/85_Final_Paper_PDF.pdf
[Tomas 2015] Paul Tomas, "Driving SAS with Lua”, SGF Proceedings, 2015,
https://support.sas.com/resources/papers/proceedings15/SAS1661-2015. pdf
[Bulaienko 2016] Diana Bulaienko, "SAS and R - stop choosing, start combining and get benefits!”,
PharmaSUG Proceedings, 2016, https://www.pharmasug.org/proceedings/2016/QT/PharmaSUG-2016-QT14.pdf
[Carpenter 2016] Arthur L. Carpenter, "Carpenter’s Complete Guide to the SAS Macro Language, Third Edition”}
SAS Institute Press, 2016
[Hu 2016] Jiangtang Hu, "New Game in Town: SAS Proc Lua with Applications”,
SESUG Proceedings, 2016,| https://www.lexjansen.com/sesug/2016/AD-133_Final_PDF.pdf
[Kuligowski & Mendez 2016] Andrew T. Kuligowski, Lisa Mendez, "An Introduction to SAS Arrays”,
SGF Proceedings, 2016, https://support.sas.com/resources/papers/proceedings16/6406-2016.pdf
[Zdeb 2016] Mike Zdeb, "Some _FILE_ Magic”, SESUG Proceedings, 2016,
https://analytics.ncsu.edu/sesug/2016/CC-171_Final_PDF.pdf
[Bayliss & Flynn 2017] Andy Bayliss, Joe Flynn, "SAS DATA Step Debugger in SAS Enterprise Guide”,
PHUSE Proceedings, 2017, https://www.lexjansen.com/phuse/2017/ct/CT06.pdf
[Carpenter 2017] Arthur L. Carpenter, "Five Ways to Create Macro Variables: A Short Introduction to the Macro Language”,
SGF Proceedings, 2017, https://support.sas.com/resources/papers/proceedings17/1516-2017.pdf
[Keintz 2017] Mark Keintz, "Leads and Lags: Static and Dynamic Queues in the SAS DATA STEP, 2nd ed.”,
SGF Proceedings, 2017, https://support.sas.com/resources/papers/proceedings17/1277-2017 .pdf
[Lafler 2017] Kirk Paul Lafler, "Advanced Programming Techniques with PROC SQL”,
SGF Proceedings, 2017, https://support.sas.com/resources/papers/proceedings17/0930-2017 . pdf
[Vijayaraghavan 2017] Anand Vijayaraghavan, "A Comparison of the LUA Procedure and the SAS Macro Facility”,
SGF Proceedings, 2017, https://support.sas.com/resources/papers/proceedings17/SAS0212-2017 . pdf
[Carpenter 2018] Arthur L. Carpenter, "Using PROC FCMP to the Fullest: Getting Started and Doing More”,
SGF Proceedings, 2018, https://www.lexjansen.com/wuss/2018/41_Final_Paper_PDF.pdf
[Carpenter(2) 2018] Arthur L. Carpenter, "Using Memory Resident Hash Tables to Manage Your Sparse Lookups”,
WUSS Proceedings, 2018, https://support.sas.com/resources/papers/proceedings18/2403-2018.pdf
[Dorfman 2018] Paul M. Dorfman, "Efficient Elimination of Duplicate Data Using the MODIFY Statement”,
SGF Proceedings, 2018,| https://support.sas.com/resources/papers/proceedings18/2426-2018.pdf
[Dorfman & Henderson 2018] Paul M. Dorfman, Don Henderson, "Data Management Solutions Using SAS Hash Table Operations:
A Business Intelligence Case Study”, SAS Institute Press, 2018
[Huffman et al. 2018] Cuyler R. Huffman, Matthew M. Lypka, Jessica L. Parker, "Anythin You Can Do I Can Do Better: PROC FEDSQL VS PROC SQL",
SGF Proceedings, 2018,| https://support.sas.com/resources/papers/proceedings19/3734-2019.pdf
[Jordan 2018] Mark Jordan, "Mastering the SAS DS2 Procedure: Advanced Data Wrangling Techniques, Second Edition”,
SAS Institute Press, 2018
[Kim 2018] Kevin Kim, "Introducing Interactive Data Step Debugger: What you can do with SAS Data Step Debugger (SAS
Enterprise Guide 7.13)"”, PharmaSUG Proceedings, 2018,
https://wuw.pharmasug.org/proceedings/2018/AD/PharmaSUG-2018-AD33.pdf
[McNeill et al. 2018] Bill McNeill, Andrew Henrick, Mike Whitcher, Aaron Mays, "FCMP: A Powerful SAS Procedure You Should Be Using”,
SGF Proceedings, 2018,| https://support.sas.com/resources/papers/proceedings18/2125-2018.pdf
[Raithel 2018] Michael A. Raithel, "PROC DATASETS; The Swiss Army Knife of SAS Procedures”, WUSS Proceedings, 2018,
https://www.lexjansen.com/wuss/2018/144_Final_Paper_PDF.pdf
[Raithel(2) 2018] Michael A. Raithel, "Validating User-Submitted Data Files with Base SAS”, SGF Proceedings, 2018,
https://support.sas.com/resources/papers/proceedings18/1662-2018.pdf
[Renauldo 2018] Veronica Renauldo, "Efficiency Programming with Macro Variable Arrays”, MWSUG Proceedings, 2018,
https://www.lexjansen.com/mwsug/2018/SP/MWSUG-2018-SP-62.pdf
[Dorfman & Shajenko 2019] Paul M. Dorfman, Lessia S. Shajenko, "Re-Mapping A Bitmap”,
SGF Proceedings, 2019, https://support.sas.com/resources/papers/proceedings19/3101-2019.pdf
[Horstman 2019] Joshua M. Horstman, "Using Macro Variable Lists to Create Dynamic Data-Driven Programs”,
MWSUG Proceedings, 2019, https://www.lexjansen.com/mwsug/2019/SP/MWSUG-2019-SP-053. pdf
[Horstman(2) 2019] Joshua M. Horstman, "Fifteen Functions to Supercharge Your SAS Code”,
SESUG Proceedings, 2019,| https://www.lexjansen.com/sesug/2019/SESUG2019_Paper-204_Final_PDF.pdf

46


https://support.sas.com/resources/papers/proceedings15/3285-2015.pdf
https://support.sas.com/resources/papers/proceedings15/3390-2015.pdf
https://www.lexjansen.com/wuss/2015/85_Final_Paper_PDF.pdf
https://support.sas.com/resources/papers/proceedings15/SAS1561-2015.pdf
https://www.pharmasug.org/proceedings/2016/QT/PharmaSUG-2016-QT14.pdf
https://support.sas.com/content/dam/SAS/support/en/books/carpenters-complete-guide-to-the-sas-macro-language/67815_excerpt.pdf
https://www.lexjansen.com/sesug/2016/AD-133_Final_PDF.pdf
https://support.sas.com/resources/papers/proceedings16/6406-2016.pdf
https://analytics.ncsu.edu/sesug/2016/CC-171_Final_PDF.pdf
https://www.lexjansen.com/phuse/2017/ct/CT06.pdf
https://support.sas.com/resources/papers/proceedings17/1516-2017.pdf
https://support.sas.com/resources/papers/proceedings17/1277-2017.pdf
https://support.sas.com/resources/papers/proceedings17/0930-2017.pdf
https://support.sas.com/resources/papers/proceedings17/SAS0212-2017.pdf
https://www.lexjansen.com/wuss/2018/41_Final_Paper_PDF.pdf
https://support.sas.com/resources/papers/proceedings18/2403-2018.pdf
https://support.sas.com/resources/papers/proceedings18/2426-2018.pdf
https://support.sas.com/content/dam/SAS/support/en/books/data-management-solutions-using-sas-hash-table-operations/69153_excerpt.pdf
https://support.sas.com/content/dam/SAS/support/en/books/data-management-solutions-using-sas-hash-table-operations/69153_excerpt.pdf
https://support.sas.com/resources/papers/proceedings19/3734-2019.pdf
https://support.sas.com/content/dam/SAS/support/en/books/mastering-the-sas-ds2-procedure-second-edition/71728_excerpt.pdf
https://www.pharmasug.org/proceedings/2018/AD/PharmaSUG-2018-AD33.pdf
https://support.sas.com/resources/papers/proceedings18/2125-2018.pdf
https://www.lexjansen.com/wuss/2018/144_Final_Paper_PDF.pdf
https://support.sas.com/resources/papers/proceedings18/1662-2018.pdf
https://www.lexjansen.com/mwsug/2018/SP/MWSUG-2018-SP-62.pdf
https://support.sas.com/resources/papers/proceedings19/3101-2019.pdf
https://www.lexjansen.com/mwsug/2019/SP/MWSUG-2019-SP-053.pdf
https://www.lexjansen.com/sesug/2019/SESUG2019_Paper-204_Final_PDF.pdf

Jablonski & McMullen - Fifty Shades of SAS Programming

[Hughes 2019] Troy Martin Hughes, "User-Defined Multithreading with the SAS DS2 Procedure: Performance Testing DS2
Against Functionally Equivalent DATA Steps”,
PharmaSUG Proceedings, 2019, https://www.pharmasug.org/proceedings/2019/AD/PharmaSUG-2019-AD-228.pdf
[Jablonski 2019] Bartosz Jabtonski, "Use the Advantage of INDEXes Even If a WHERE Clause Contains an OR Condition”,
SGF Proceedings, 2019, https://support.sas.com/resources/papers/proceedings19/3722-2019.pdf
[Khorlo 2019] Igor Khorlo, "Automating Migration from the SAS Macro Language to the LUA Procedure Using Transpiling”,
SGF Proceedings, 2019,| https://support.sas.com/resources/papers/proceedings19/3824-2019.pdf
[Lafler 2019] Kirk Paul Lafler, ”"PROC SQL: Beyond the Basics Using SAS, Third Edition”,
SAS Institute Press, 2019
[Morioka 2019] Yutaka Morioka, "DOSUBL Function + SQL View + Hash Object FedSQL + PROC DS2 Hash Package”,
SGF Proceedings, 2019,| https://support.sas.com/resources/papers/proceedings19/3128-2019.pdf
[Mukherjee 2019] Chad Mukherjee, "FETCH()ing Use Cases for the Data Access Functions”, SGF Proceedings, 2019,
https://support.sas.com/resources/papers/proceedings19/3607-2019.pdf
[Iyengar & Horstman 2020] Jay Iyengar, Josh Horstman, "Look Up Not Down: Advanced Table Lookups in Base SAS”,
SESUG Proceedings, 2020,| https://www.lexjansen.com/sesug/2020/SESUG2020_Paper_150_Final_PDF.pdf
[Jablonski 2020] Bartosz Jabtoriski, "SAS Packages: The Way to Share (a How To)”, SGF Proceedings, 2020, 4725-2020
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2020/4725-2020.pdf
extended version available at: https://github.com/yabwon/SAS_PACKAGES/blob/main/SPF/Documentation
[McMullen 2020] Quentin McMullen, "A Close Look at How DOSUBL Handles Macro Variable Scope”,
SGF Proceedings, 2020,| https://support.sas.com/resources/papers/proceedings20/4958-2020.pdf
[Jablonski 2021] Bartosz Jabtoriski, "My First SAS Package - a How To”, SGF Proceedings, 2021, 1079-2021
https://communities.sas.com/kntur85557/attachments/kntur85557/proceedings-2021/59/1/Paper_1079-2021.pdf
also available at: https://github.com/yabwon/SAS_PACKAGES/tree/main/SPF/Documentation/Paper_1079-2021
[Watson & Hadden 2021] Richann Watson, Louise Hadden, "What Kind of WHICH Do You CHOOSE to be?”,
SESUG Proceedings, 2021, https://www.lexjansen.com/sesug/2021/SESUG2021_Paper_37_Final_PDF.pdf
[Bremser 2022] Kurt Bremser, "Talking to Your Host Interacting with the Operating System and File System from SAS”,
WUSS Proceedings, 2022,| https://www.lexjansen.com/wuss/2022/WUSS-2022-Paper-24.pdf
[Box 2023] Jim Box, "Running Python Code Inside a SAS Program”, PharmaSUG Proceedings, 2023,
https://wuw.pharmasug.org/proceedings/2023/QT/PharmaSUG-2023-QT-165.pdf
[Gilsen 2023] Bruce Gilsen, "Using the R interface in SAS to Call R Functions and Transfer Data”,
PharmaSUG Proceedings, 2023, https://www.pharmasug.org/proceedings/2023/AP/PharmaSUG-2023-AP-079.pdf
[Jablonski 2023] Bartosz Jabtonski, "Share your code with SAS Packages a Hands-on-Workshop”,
WUSS 2023 Proceedings, 208-2023, https://www.lexjansen.com/wuss/2023/WUSS-2023-Paper-208.pdf
[Jablonski(2) 2023] Bartosz Jabtonski, "A SAS Code Hidden in Plain Sight”,
WUSS 2023 Proceedings, 208-2023, https://www.lexjansen.com/wuss/2023/WUSS-2023-Paper-189.pdf
[Lankham & Slaughter 2023] Isaiah Lankham, Matthew T. Slaughter, "Friends are better with Everything: A User’s Guide to
PROC FCMP Python Objects in Base SAS”,
PharmaSUG Proceedings, 2023, https://www.lexjansen.com/pharmasug/2023/AP/PharmaSUG-2023-AP-049.pdf
[Hughes 2024] Troy Martin Hughes,|"PROC FCMP User-Defined Functions: An Introduction to the SAS Function Compiler”,
SAS Institute Press, 2024
[Jablonski 2024] Bartosz Jabtoriski, "Macro Variable Arrays Made Easy with macroArray SAS Package”,
PharmaSUG Proceedings, 2024, https://www.lexjansen.com/pharmasug/2024/AP/PharmaSUG-2024-AP-108.pdf

RECORDINGS

[Barr 2018] Anthony James Barr, "From Sir Ronald Fisher to SAS76”, The 14*h SUGUKI meetup, 2018, (start at 29:04)
Recording: https://www.youtube.com/watch?v=—qa_vufvjbg
Event details: https://www.meetup.com/suguki/events/247371376/

ACKNOWLEDGMENTS

We would like to thank Norbert Trojan for his contribution to idea in look-up 10 (the set statement with
multiple data sets).
We would like to thank Philip Holland and Ron Fehd for help in "polishing” this text.

47


https://www.pharmasug.org/proceedings/2019/AD/PharmaSUG-2019-AD-228.pdf
https://support.sas.com/resources/papers/proceedings19/3722-2019.pdf
https://support.sas.com/resources/papers/proceedings19/3824-2019.pdf
https://support.sas.com/content/dam/SAS/support/en/books/proc-sql-beyond-the-basics-using-sas-third-edition/71650_excerpt.pdf
https://support.sas.com/resources/papers/proceedings19/3128-2019.pdf
https://support.sas.com/resources/papers/proceedings19/3607-2019.pdf
https://www.lexjansen.com/sesug/2020/SESUG2020_Paper_150_Final_PDF.pdf
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2020/4725-2020.pdf
https://github.com/yabwon/SAS_PACKAGES/blob/main/SPF/Documentation
https://support.sas.com/resources/papers/proceedings20/4958-2020.pdf
https://communities.sas.com/kntur85557/attachments/kntur85557/proceedings-2021/59/1/Paper_1079-2021.pdf
https://github.com/yabwon/SAS_PACKAGES/tree/main/SPF/Documentation/Paper_1079-2021
https://www.lexjansen.com/sesug/2021/SESUG2021_Paper_37_Final_PDF.pdf
https://www.lexjansen.com/wuss/2022/WUSS-2022-Paper-24.pdf
https://www.pharmasug.org/proceedings/2023/QT/PharmaSUG-2023-QT-165.pdf
https://www.pharmasug.org/proceedings/2023/AP/PharmaSUG-2023-AP-079.pdf
https://www.lexjansen.com/wuss/2023/WUSS-2023-Paper-208.pdf
https://www.lexjansen.com/wuss/2023/WUSS-2023-Paper-189.pdf
https://www.lexjansen.com/pharmasug/2023/AP/PharmaSUG-2023-AP-049.pdf
https://support.sas.com/content/dam/SAS/support/en/books/proc-fcmp-user-defined-functions-an-introduction-to-the-sas-function-compiler/proc-fcmp-user-defined-functions-an-introduction-to-the-sas-function-compiler-excerpt-hughes-troy.pdf
https://www.lexjansen.com/pharmasug/2024/AP/PharmaSUG-2024-AP-108.pdf
https://www.youtube.com/watch?v=-qa_vufvj5g
https://www.meetup.com/suguki/events/247371376/

Jablonski & McMullen - Fifty Shades of SAS Programming

CONTACT INFORMATION

Your comments and questions are valued and encouraged!

Contact Bart at one of the following e-mail addresses:
yabwonfMgmail.com or bartosz.jablonskifMpw.edu.pl
or via the following LinkedIn profile: www.linkedin.com/in/yabwon or at the communities.sas.com by
mentioning @yabwon.
Contact Quentin at e-mail address:
gmcmullenfMgmail. com
or via the following LinkedIn profile: www.linkedin.com/in/quentinmcmullen or at the

communities.sas.com by mentioning @Quentin.

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks
of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are trademarks of their respective companies.

Appendix A - code coloring guide

The best experience for reading this article is in color and the following convention is used:

e The code snippets use the following coloring convention:
code: is surrounded by a black frame

1| In general we use black ink for the code but:
2| - for reading clarity we sometimes mark code in orange ink,

3| — and comments pertaining to code are in a bluish ink for easier reading.

e The LOG uses the following coloring convention:
the log - is surrounded by a blueish frame

1| The source code and general log text are blueish.
2| Log NOTEs are green.

3| Log WARNINGs are violet.

4 Log ERRORs are red.

5/ Log text generated by the user is purple.

Appendix B - install the SAS Packages Framework and packages

To install the SAS Packages Framework and a SAS Package we execute the following steps:
e First we create a directory to install SPF and Packages, for example: /home/user/packages or
C:/packages
e Next, depending if the SAS session has access to the internet:

o if it does - we run the following code:
code: install from the internet

1| filename packages "/home/user/packages";

3| filename SPFinit url
4 "https://raw.githubusercontent.com/yabwon/SAS_PACKAGES/main/SPF/SPFinit.sas";
5| hinclude SPFinit;

7| hinstallPackage (SPFinit)
s| %hinstallPackage (packageNameYouWant)

o If the SAS session does not have access to the internet we go to the framework repository:
48



[

[

Jablonski & McMullen - Fifty Shades of SAS Programming

https://github.com/yabwon/SAS_PACKAGES
next (if not already) we click the stargazer button [¥] ;-) and then we navigate to the SPF
directory and we copy the SPFinit.sas file into the directory from step one (direct link:
https://raw.githubusercontent.com/yabwon/SAS_PACKAGES/main/SPF/SPFinit.sas ).
And for packages - we just copy the package zip file into the directory from step one.

e From now on, in all subsequent SAS session, it is enough to just run:
code: enable framework and load packages

1| filename packages "/home/user/packages";

%include packages(SPFinit.sas);

M

%loadPackage (packageNameYouWant)

w

to enable the framework and load packages. To update the framework or a package to the latest
version we simply run:

code: update from the internet

Jun

%installPackage (SPFinit packageNamel packageName2 packageName3)

Appendix C - safety considerations

The SPF installation process, in a "nutshell”, reduces to copying the SPFinit.sas file into the packages
directory. It is the same for a packages too.

You may ask: is it safe to install?

Yes, it’s safe! When you install the SAS Packages Framework, and later when you install packages, the
files are simply copied into the packages directory that you configured above. There are no changes
made to your SAS configuration files, or autoexec, or registry, or anything else that could somehow
"break SAS.” As you saw, you can perform a manual installation simply by copying the files yourself.
Furthermore the SAS Packages Framework is:

e written in 100% SAS code, it does not require any additional external software to work,

o full open source (and MIT licensed), so every macro can be inspected.

When we work with a package, before we even start thinking about loading content of one into the SAS
session, both the help information and the source code preview are available.

To read help information (printed in the log) you simply run:
code: get help info

%helpPackage (<packageName>, <*|componentName|license>)

To preview source code of package components (also printed in the log) you simply run:

code: get code preview

hpreviewPackage (<packageName>, <*|componentName>)

The asterisk means "print everything”, the componentName is the name of a macro, or a function, or a
format, etc. you want see.

Appendix D - "sevenfold” indirect referencing

code: sevenfold indirect referencing

%let VeryImportantMessage=This, is, WUSS!!!;
%hlet Ti=Very;
%let T2=Important;

%let T3=Message;
49



Jablonski & McMullen - Fifty Shades of SAS Programming

5| hlet letter=T;

6| %let one=1;

7| %hlet two=2;

8| %let three=3;

o hput &&&&&&&letter&one&&&letter&twolk&&letter&three;

How the resolution goes? The {} are added to indicate grouping.
code: first grouping and resolving
{&&}{&&}{&&}{&letter}{&one}{&&}{&letter} {&two}{&&}{&letter}{&three}

[

the log - first intermediate result

{eHEHEH{THIHEH{TH2HEH{TH3}

-

code: second grouping and resolving
{&&}{&T1}{&T2}{&T3}

-

the log - second intermediate result

{&}{Very}{Important}{Message}

[un

code: third grouping and resolving

-

{&VeryImportantMessage}

the log - result

1| This, is, WUSS!'!!

Appendix E - SAS releases history

Figure 1: SAS releases history

Releases of SAS Software

Version
Big Bang Ancient Modern
9.4m8
9.4m7
9.4m6
9.4m5
9.4m4
9.4m3
9.4m2
9.4m1

72 9 72
SAS Project G SAS Project

SAS Institute

1966 1968 1970 1972 1974 1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 2022 2024
Year

50



	ABSTRACT
	INTRODUCTION
	THE EXERCISE TO BE SOLVED
	DATA
	BRINGING DATA TO SAS
	53 WAYS FOR TABLE LOOK-UP
	NAIVE APPROACH
	SQL APPROACH
	MERGING DATA
	POINTING OBSERVATIONS
	ARRAYS, VARIABLE LISTS, AND SAS FUNCTIONS
	PLAYING WITH TEXT FILES
	PEEKING THE SOLUTION
	TRYING DOW-LOOP
	MULTIPLE DATA SETS
	INTERLEAVING DATA SETS
	SOME MORE DOW-LOOPING
	USER DEFINED FORMATS
	DIRECT ADDRESSING
	HASH TABLES
	SMART-NAIVE WITH MACRO VARIABLES
	CALLING THE EXECUTIONER
	INCLUDING CODE
	SUBMITTING A LINE
	USER DEFINED FUNCTIONS
	KEYS TO SOLUTION
	MODIFYING RESULT
	INTEGRITY OF IT ALL
	FETCHING THE ANSWER
	YOUNGER SIBLING
	YOUNGER SIBLING'S FRIEND
	THE MATRIX
	TRANSPOSING GIVES FLEXIBILITY
	PIVOTING POINT OF VIEW
	SORT THE PROBLEM OUT
	MACRO VARIABLES
	GOING ABROAD - TRAVEL BROADENS THE MIND
	MY PRIVATE PHONE-BOOK
	&&&&&&&
	WE HAVE TO GO DEEPER

	THAT (+3) EXTRA
	THE BASEPLUS PACKAGE
	THE MACROARRAY PACKAGE
	THE SQLINDS PACKAGE

	A BIT OF SUMMARY
	CONCLUSION
	REFERENCES
	ARTICLES AND BOOKS
	RECORDINGS

	ACKNOWLEDGMENTS
	CONTACT INFORMATION
	—
	Appendix A - code coloring guide
	Appendix B - install the SAS Packages Framework and packages
	Appendix C - safety considerations
	Appendix D - "sevenfold" indirect referencing
	Appendix E - SAS releases history

