
Paper 3722-2019

Use the Advantage of INDEXes
Even If a WHERE Clause Contains an OR Condition

Bartosz Jablloński
Warsaw University of Technology / Citibank Europe PLC Poland

ABSTRACT

The advantage of an indexed Base SASr engine’s dataset
is that when the dataset is queried with a WHERE clause the
process may be optimized and index-subsetting will work
faster than a sequential read. Unfortunately the Base SAS
engine is unable to use more than one index at a time to op-
timize a WHERE clause. Especially if a WHERE clause contains
an OR condition between two di�erent (indexed) variables
the Base SAS engine won’t optimize it and will execute a se-
quential read.

The main idea of this paper is to o�er a solution to the
following question: How to handle a situation in which we
have a WHERE clause with an OR condition between two dif-
ferent indexed variables and want to use the advantage of
indexing to subset the data faster? The solution is datastep
based and uses hash-tables. But foremost it is both simple
to implement and e�cient.

INTRODUCTION

When we are working with datasets in the SAS Base engine
we often try to use some optimization techniques which al-
low us to improve performance. There are dozens of such
techniques but some of the most basic approaches could
be described with the following steps:
• narrow the data, i.e. select an observation only IF it is

necessary for the process,
• even better, use a WHERE clause instead of a subsetting
IF statement, as you will reduce the data before it is in-
serted into PDV,

• if a WHERE clause subsets only a small part of the dataset
(and the dataset is big enough, i.e. spans across more
than 3 pages) add an INDEX to the dataset,

• if your INDEX file is big and the dataset is quite ”static”
(i.e. doesn’t change to often) consider Mark Keintz’s
compressed indexes (see [8]).

Unfortunately there’s a limit to index usage as SAS Base
engine can’t use more than one index to optimize a WHERE

clause. It is explained in the question 22: ”Why can’t an
index be used if there is an OR in the WHERE expression?” in
Billy Cli�ord’s paper [6].

But are we 100% sure that we can’t do this, i.e. to use
the advantage of INDEXes when a WHERE clause contains an
OR condition? In fact we can. If we incorporate some small
additional programming e�ort we are able to overcome the
obstacle described above.

There are two basic steps behind the process. The first
is to realize that a WHERE clause with an OR condition can be
split into separate clauses which can be executed indepen-
dently (and use di�erent INDEXes). The second is to realize
that if we can e�ciently manage information on which ob-
servations have already been read we won’t have a problem
with consolidating the data and will avoid potential dupli-
cates.

For the sake of clarity, from now on, any further phrases
such as ”SAS is doing something” will be related to the Base
SAS engine unless explicitly noted.

TOOLS

Before we start the main topic let’s take a quick look at two
basic concepts we are going to work with, i.e. indexes and
hash-tables.

Indexes. The concept of SAS index, from a user point
of view, is very simple and intuitive. We can think of an in-
dex as a list of ”key-value” pairs. ”Keys” are values of the
variable on which the index is built. ”Values” are lists of row
identifiers, a.k.a. RIDs, which are the pointers to location
of observations containing a given value in a dataset. The
most natural analogy would be a book and... its index. For
example, if our dataset looks as follows:

1

2

A dataset with two variables
Obs. VarA VarB

1 A 10

2 B 20

3 C 10

4 A 20

5 B 10

6 C 20

7 A 10

we can think of an index constructed for variable VarA as:
An index for variable VarA

Key: {RIDs}
A: {1, 4, 7}
B: {2, 5}
C: {3, 6}

and for variable VarB as:
An index for variable VarB

Key: {RIDs}
10: {1, 3, 5, 7}
20: {2, 4, 6}

We have already mentioned that indexes are used to opti-
mize data selection in WHERE clauses. When we write the
code:

WHERE VarA = "B";

SAS estimates the number of observations read by the
clause from the dataset, and if it is worth it, SAS uses the
index. What does it mean ”uses the index”? Well, instead of
a sequential read through the dataset, SAS will look at a list
of record identifiers for that given value "B" of variable VarA

and will read only the observations pointed by RIDs.
Just as a reminder, this is only ”a user point of view”. Of

course, under the hood it is more complex than the descrip-
tion above. Starting for example with the fact that indexes
are stored in a separate file, and they are tree-shaped data
structures, and the ”estimation of the number of observa-
tions to be read” is a complicated process, and eventually
optimization of WHERE clauses is not the only purpose of in-
dexes existence. But the intuition we already have is good
enough for the beginning. Very good references to discover
indexes in details are: Billy Cli�ord’s paper [6] and Michael
A. Raithel’s book [7], and of course SAS on-line documen-
tation.

Hash-tables. The concept of a hash-table is very user
friendly as long as we start with good intuition. Users which
are not familiar with object oriented programming notation

may, at the first glance, consider hash-table’s syntax a bit
awkward, but do not judge a book by its cover!

From a user perspective a hash-table can be considered
as a younger and smarter sibling of a classical, well known,
SAS temporary array. Let’s take a quick look at arrays and
declare a temporary array ARR. We can do it for example by
calling the following code:

array ARR[6] $ 1 temporary ;

We can visualise ARR as a pre-allocated, in-memory, and
fixed-size set of adjacent cells, with integer pointer address-
ing each cell, waiting for the data. Like in the figure below:

A temporary array ARR
waiting for the data

cell
key

cell
value

[1] " "

[2] " "

[3] " "

[4] " "

[5] " "

[6] " "

To populate ARR with the data we can run the following code:

k = 2; v = "B"; ARR[k] = v; Ê

k = 1; v = "A"; ARR[k] = v; Ë

k = 4; v = "D"; ARR[k] = v; Ì

and after each line of code the array can be visualised as
presented in the figure below:

temporary array ARR
populated with the data

after Ê
cell
key

cell
value

[1] " "

[2] "B"

[3] " "

[4] " "

[5] " "

[6] " "

after Ë
cell
key

cell
value

[1] "A"

[2] "B"

[3] " "

[4] " "

[5] " "

[6] " "

after Ì
cell
key

cell
value

[1] "A"

[2] "B"

[3] " "

[4] "D"

[5] " "

[6] " "

To retrieve a cell’s value we are using a corresponding key’s
value in array’s reference as for example:

k = 2; v = ARR[k]; put v=;

and as a result in the SAS log we will see: v=B printed out.
In case of a hash-table (again, from a user point of view)

the process, modulo the syntax, looks similar. Let’s declare

3

a hash-table HSH. We can do it for example by calling the
following code:

length k 8 v $ 1;

declare hash HSH(ordered:"ascending",

hashexp:8);

HSH.DefineKey("k");

HSH.DefineData("v");

HSH.DefineDone();

Before we continue a note about syntax’s analogies. In
the declare hash statement we are giving a hash-table a
name (it is an array statement’s analogy). With the ordered

option we are forcing keys to be in the ascending order (in
the array keys are ordered by default since they are ascend-
ing integers). The hashexp option establishes maximum size
of a hash-table (it could be very very loosely compared to ar-
ray’s size declaration). The .DefineKey() method indicates
variables which are used as a key (an analogy of k in the v =

ARR[k] code) and the .DefineData()method indicates vari-
ables which are used to hold the data portion (an analogy of
v in the v = ARR[k]). And the .DefineDone() method is the
equivalent of a semicolon at the end of array’s definition.

We can visualise HSH as a not-pre-allocated, in-memory,
and not-fixed-size set of ”key-data” pairs, with (not nec-
essary integer) key-pointers addressing each data portion.
Hence after the declaration HSH looks like in the figure below
and it is awaiting to be populated with the data.

Hash-table HSH
waiting for the data

key data
* *

The process of inserting data into HSH uses the .add()

method1 and to populate HSH with the data we can run the
following code:

k = 2; v = "B"; HSH.add(); Ê

k = 1; v = "A"; HSH.add(); Ë

k = 4; v = "D"; HSH.add(); Ì

and after each line of code the hash-table can be visualised
as presented in the figure below (notice how the order of
keys is changing due to the ordered:"ascending" tag):

1A method in object oriented programming terminology may be con-
sidered as a function associated with an object.

hash-table HSH
populated with the data

after Ê

key data
[2] "B"

after Ë

key data
[1] "A"

[2] "B"

after Ì

key data
[1] "A"

[2] "B"

[4] "D"

When a hash-table has been populated retrieving data
is as simple as 2+2. All we need to do is to set the key’s value
and call HSH’s .find() method, as in the following example:

k = 2; HSH.find(); put v=;

and in the SAS log we will see: v=B printed out. We don’t
even have to use any assignment statement since the hash-
table will handle it itself. If the .find() method will be suc-
cessful then variable v will be populated with data automat-
ically.

As a side note, the above process of adding the data to
the hash-table HSH can also be executed with a do loop in
a similar fashion as with arrays. Code for arrays would look
as follows:

k = 0;

do v = "A", "B", "C", "D", "E", "F";

k + 1;

ARR[k] = v;

end;

while for hash-tables it would be:

k = 0;

do v = "A", "B", "C", "D", "E", "F";

k + 1;

HSH.add();

end;

A hash-table doesn’t have to use integers as keys and,
what is even more comfortable, we can have a more complex
data portion than a single cell. For example we can declare
a hash-table HT and populate it with data in the following
way:
Code:
length k1 8 k2 $ 1 v1 $ 1 v2 8;

declare hash HT(ordered:"ascending");

HT.DefineKey("k1", "k2");

HT.DefineData("v1", "v2", "k1");

HT.DefineDone();

k1 = 1; k2 = "m"; v1 = "A"; v2 = 13; HT.add();

k1 = 2; k2 = "i"; v1 = "B"; v2 = 17; HT.add();

k1 = 3; k2 = "n"; v1 = "C"; v2 = 42; HT.add();

k1 = 4; k2 = "i"; v1 = "D"; v2 = 66; HT.add();

4

k1 = 5; k2 = "p"; v1 = "E"; v2 = 78; HT.add();

k1 = 6; k2 = "w"; v1 = "F"; v2 = 82; HT.add();

Visualisation:
hash-table HT

key
k1, k2

data
v1, v2, k1

[1, ”m”] "A", 13, 1

[2, ” i ”] "B", 17, 2

[3, ” n ”] "C", 42, 3

[4, ” i ”] "D", 66, 4

[5, ” p ”] "E", 78, 5

[6, ” w ”] "F", 82, 6

What’s even more useful is that hash-tables allow
to load data straight from an external dataset within
declare hash statement. For example, assuming that
dataset work.SomeDataset contains tree numeric variables
k, d1, and d2we could load it into a hash-table with following
code:
length k d1 d2 8;

declare hash HfrmDS(dataset:"work.SomeDataset");

HfrmDS.DefineKey("k");

HfrmDS.DefineData("d1", "d2");

HfrmDS.DefineDone();

So, the punch line here is that a hash-table is a flexible
and dynamically allocated data structure, with a very e�-
cient data access time and a ”dictionary” kind of behaviour.

Again, as a reminder, this is only ”a user point of view”.
As in the case of indexes, also in the case of hash-tables
there is much more happening under the hood than in the
description above. Starting for example with the fact that
there is an internal hashing function involved, and data are
kept in tree-shaped data structures (AVL-trees). But also
in this case the intuition we already have is good enough.
References to discover hash-tables in more details are: Paul
Dorfman’s paper [5], Paul Dorfman’s and Don Henderson’s
book [4], Chris Schacherer’s paper [3], Paul Dorfman’s and
Koen Vyverman’s paper [2], Art Carpenter’s book [1], and
of course SAS on-line documentation.

THE PROCESS

Now, when we covered all prerequisites, we can begin the
process of modifying our code in a way that will allow us to
handle a WHERE clause with an OR condition and at the same
time use the advantage of INDEXes.

The Dataset. At the very beginning let’s turn-on some
additional options which will give us extended logging fea-
tures.

options 1

FULLSTIMER Ê 2

MSGLEVEL = I Ë 3

; 4

In Ê we specify whether to write extended system per-
formance statistics to the SAS log (e.g memory usage, real
time, cpu time, etc.) In Ë we specify the level of details in
messages that are written to the SAS log and value ”I” in-
dicates to print additional notes pertaining to index usage,
merge processing, sort utilities, etc.

Using Wikipedia2 as a data base we are going to prepare
a randomly ordered (Ì) dataset of countries names (248
observations) which will be used as a base for data prepa-
ration in the main code.

libname mysets BASE "..."; 5

6

data mysets.countries; 7

infile cards dlm = ’0A’x; 8

input country $:50.; 9

call streaminit(2222); 10

sort = rand("uniform"); Ì 11

cards; 12

Afghanistan [AFG] 13

Aland Islands [ALA] 14

Albania [ALB] 15

... ...

Virgin Islands, US [VIR] 255

Wallis and Futuna Islands [WLF] 256

Western Sahara [ESH] 257

Yemen [YEM] 258

Zambia [ZMB] 259

Zimbabwe [ZWE] 260

; 261

run; 262

263

proc sort 264

data = MySets.Countries 265

out = MySets.Countries(drop = sort) 266

; 267

by sort; 268

run; 269

As the next step we are going to create a bigger dataset
which we will use in the process.

data mysets.INDEXX_OR(270

INDEX = (271

country Í 272

date Î 273

2https://en.wikipedia.org/wiki/ISO 3166-1

5

) 274

); 275

set Ï 276

mysets.countries 277

... ...

mysets.countries 288

; 289

290

format date yymmdds10.; 291

do date = ’1jan1960’d to ’28apr2019’d; Ð 292

y = year(date); 293

m = month(date); 294

d = day(date); 295

296

call streaminit(123); Ñ 297

measurement = 456+round(rand("Normal")*78); Ò 298

output; 299

300

if rand("Uniform") > 0.9 then output; Ó 301

end; 302

run /*cancel*/ ; 303

The INDEXX OR dataset has two simple indexes:
country (Í) and date (Î), created in lines 271 to 274. The
dataset is build in the following way: for each country (re-
peated a dozen times Ï) a bunch of records, with dates (Ð)
and random measurements (Ò, the Ñ sets seed for rand()
function) and with about 10% of ”natural” duplicates (Ó),
is generated. Two following procedures will give us the
dataset’s shape and metadata.

proc contents 304

data = mysets.INDEXX_OR; 305

run; 306

proc print 307

data = mysets.INDEXX_OR(obs=3); 308

where country = ’Yemen [YEM]’ 309

and date = ’28apr2019’d 310

; 311

run; 312

The output shows:

The CONTENTS Procedure

Data Set Name MYSETS.INDEXX_OR

Member Type DATA

Engine V9

Created 04/28/2019 09:00:00

Last Modified 04/28/2019 09:00:00

Data Representation WINDOWS_64

Encoding utf-8

Observations 70935765

Variables 6

Indexes 2

Observation Length 96

Deleted Observations 0

Compressed NO

Sorted NO

Engine/Host Dependent Information

Data Set Page Size 65536

Number of Data Set Pages 104166

First Data Page 1

Max Obs per Page 681

Obs in First Data Page 665

Index File Page Size 4096

Number of Index File Pages 293461

Number of Data Set Repairs 0

ExtendObsCounter YES

Filename indexx_or.sas7bdat

Release Created 9.0401M4

Host Created X64_10PRO

Owner Name sasmaniandevil

File Size 6GB

File Size (bytes) 6826688512

Alphabetic List of Variables and Attributes

Variable Type Len Format

1 country Char 50

5 d Num 8

2 date Num 8 YYMMDDS10.

4 m Num 8

6 measurement Num 8

3 y Num 8

Alphabetic List of Indexes and Attributes

Index # of Unique Values

1 country 248

2 date 21668

The PRINT Procedure

Obs country date y m d measu-

rement

1763886 Yemen [YEM] 2019/04/28 2019 4 28 398

7675202 Yemen [YEM] 2019/04/28 2019 4 28 328

13585810 Yemen [YEM] 2019/04/28 2019 4 28 388

Now let’s do some testing.

Indexes usage test. We are going to summarize mea-
surements in variable SoM (Ê) and count them in variable
i (Ë) for observations selected with a WHERE clause. We will
do it for both SQL and datastep processing. To prove that
proc SQL really uses an index to work the WHERE clause out
we will run the following code:

6

proc sql; 313

select 314

sum(measurement) as SoM format best32. Ê 315

, count(1) as i Ë 316

from 317

mysets.INDEXX_OR 318

where 319

country = ’Poland [POL]’ 320

; 321

quit; 322

When we look into the SAS log, thanks to the
MSGLEVEL = I option, we can see the following information:

INFO: Index country selected for

WHERE clause optimization

Just for completeness, if we use a WHERE clause to subset
data in the datastep:

data _NULL_; 323

set mysets.INDEXX_OR END = eof; 324

where 325

date between ’01may2015’d and ’30may2015’d 326

; 327

328

SoM + measurement; 329

i + 1; 330

331

if eof then 332

do; 333

put SoM= best32. i=; 334

end; 335

run; 336

we will receive an equivalent INFO notification relating to in-
dex date.

In the next test we will see that when the WHERE clause
contains the OR condition on two di�erent variables SAS
won’t use any index to optimize subsetting, regardless we
use the WHERE clause in proc SQL (Ì) or in a datastep (Í).

proc sql; 337

select 338

sum(measurement) as SoM format best32. 339

, count(1) as i 340

from 341

mysets.INDEXX_OR 342

where Ì 343

date between ’01may2015’d and ’30may2015’d 344

OR 345

country = ’Poland [POL]’ 346

; 347

quit; 348

349

data _NULL_; 350

set mysets.INDEXX_OR END = eof; 351

where Í 352

date between ’01may2015’d and ’30may2015’d 353

OR 354

country = ’Poland [POL]’ 355

; 356

357

SoM + measurement; 358

i + 1; 359

360

if eof then 361

do; 362

put SoM= best32. i=; 363

end; 364

run; 365

After running the above code the SAS log contains the
following notes for proc SQL:

NOTE: PROCEDURE SQL used (Total process time):

real time 1:32.40

user cpu time 8.79 seconds

system cpu time 5.45 seconds

memory 5478.53k

OS Memory 20724.00k

and for the datastep:

SoM=174856439 i=383492

NOTE: There were 383492 observations read

from the data set MYSETS.INDEXX_OR.

WHERE (date>=’01MAY2015’D

and date<=’30MAY2015’D)

or

(country=’Poland [POL]’);

NOTE: DATA statement used (Total process time):

real time 48.16 seconds

user cpu time 5.39 seconds

system cpu time 4.29 seconds

memory 724.56k

OS Memory 15856.00k

There is no information about index usage during code
execution. In both cases a sequential read took place.

General Overview. Ok, so how to solve the ”OR issue”?
The solution is datastep based and uses hash-tables, but we
will go through it step-by-step starting with arrays approach
and than jumping into ”hashes”.

Before we dive into details, first and the most important
thing is to realise that we can split the WHERE clause around
the OR condition into two separate clauses. After that we can
execute both WHERE clauses independently - what ensures

7

that indexes will be used since we are having only simple
conditions. Eventually, as the final step, we have to some-
how bring the results (i.e. subsetted data) together. But
we have to do it in such a way that the combined dataset
will not contain duplicated observations coming from both
WHERE clauses. The idea to prevent duplicates is to keep the
record of already read observations.

Example. Let’s consider the following WHERE clause

WHERE VarL="B" OR VarN=20;

and the following dataset:

A dataset with two indexed variables
Obs. VarL VarN

1 A 10

2 A 10

W
H
E
R
E
V
a
r
L
=
"
B
"
o
r
V
a
r
N
=
2
0

3 A 20

W
H
E
R
E
V
a
r
N
=
2
0

4 B

W
H
E
R
E
V
a
r
L
=
"
B
"

20

5 B 20

6 B 30

7 C 30

8 C 30

9 C 40

with both variables indexed. If we split the WHERE clause
into two independent clauses: WHERE VarL="B" and WHERE

VarN=20, as in the figure above, and execute them under two
separate set statements in one datastep we will get dupli-
cated records in the produced dataset. In the figure below
they are marked withê symbol. The ”Current Obs.” column
keeps track of the observation’s number that was read-in.

Dataset with observations read by
WHERE VarL="B" and WHERE VarN=20

Current
Obs. VarL VarN

4 B 20 Ë

5 B 20 Ë

6 B 30 Ë

3 A 20 Ë

4 B 20 ê

5 B 20 ê

As we wrote the idea is to keep a record of observations
read during execution of the first part of the WHERE clause.
Hence, in the example we are considering, after executing
WHERE VarL="B" clause we have the following observations
in the output dataset:

Observations read with WHERE VarL="B"

Current
Obs. VarL VarN

4 B 20 Ë

5 B 20 Ë

6 B 30 Ë

and a list of observations numbers read from the input
dataset:

A list of read observations
observation

number "4" "5" "6"

When we execute the second clause each time before send-
ing an observation to the output dataset we are checking if
its number is on the list. In the example we are using the
WHERE VarN=20 clause which fetches observations 3, 4, and
5. Since observations number 4 and 5 were already on the
list hence they are not outputted and only the observation
number 3 is. The final dataset contains only four observa-
tions marked with tick-mark � for observations from the
first WHERE clause part and with Ë for observations from
the second and duplicated observations omitted (marked
with é).

Observations added by WHERE VarN=20

Current
Obs. VarL VarN

4 B 20 �

5 B 20 �

6 B 30 �

3 A 20 Ë

XXX4 XXXB XXX20 é

XXX5 XXXB XXX20 é

Now when we have a general overview of the process
and we tested it with an example we can jump right into the
code.

Programming. The first attempt considers using a tem-
porary ARRAY. To be able to do that we have to do some ”pre-
processing”. We have to get the number of observations to
set the ARRAY’s size and in consequence allocate memory.

data _null_; 366

if 0 then set mysets.INDEXX_OR nobs = nobs; 367

call symputx("_NOBS_", nobs, "G"); 368

stop; 369

run; 370

Having the metadata (i.e. the number of observations,
NOBS macrovariable) collected we are:

8

Ê declaring a temporary ARRAY to be a list to mark visited
observations,

Ë executing a DoW-loop3 in which we are reading-in data
for the first part of our WHERE clause (lines 374 to 384),

Ì using the CUROBS option to create a variable that con-
tains the observation number that was just read from the
dataset,

Í marking the ARRAY’s cell which key equals to the current
value of curobs variable,

Î starting to aggregate the data (lines 382 and 383),
Ï executing a second DoW-loop in which we are reading-in

data for the second part of the WHERE clause (lines 387
to 399),

Ð verifying if a visited observation was already read and if
that’s the case, going to the next iteration and skipping
the aggregation,

Ñ and eventually if the visited observation wasn’t already
read marking it in the temporary array (line 395, it al-
lows to add third, fourth and further WHERE conditions in
a very simple way just by copying the second DoW-loop
and changing the condition) and updating aggregated
data (lines 396 and 397).

data _NULL_; 371

ARRAY _obs_[&_NOBS_.] _temporary_; Ê 372

373

do until(eof); Ë 374

set 375

mysets.INDEXX_OR END=eof CUROBS=curobs Ì 376

; 377

where date between ’01may2015’d 378

and ’30may2015’d; 379

380

obs[curobs] = 1; Í 381

SoM + measurement; Î 382

i + 1; 383

end; 384

385

eof = 0; 386

do until(eof); Ï 387

set 388

mysets.INDEXX_OR END=eof CUROBS=curobs 389

; 390

where country = ’Poland [POL]’; 391

392

if _obs_[curobs] NE 1 then Ð 393

do; 394

obs[curobs] = 1; Ñ 395

3See Paul Dorfman’s paper [9] to learn more details about this won-
derful programming technique.

SoM + measurement; 396

i + 1; 397

end; 398

end; 399

400

put SoM= best32. i=; 401

stop; 402

run; 403

The result is the same as in the case of the previous,
index-less, ones but now the SAS log shows totally di�erent
notes and infos.

INFO: Index date selected for WHERE

clause optimization.

INFO: Index country selected for WHERE

clause optimization.

SoM=174856439 i=383492

NOTE: There were 98206 observations read

from the data set MYSETS.INDEXX_OR.

WHERE (date>=’01MAY2015’D

and

date<=’30MAY2015’D);

NOTE: There were 285681 observations read

from the data set MYSETS.INDEXX_OR.

WHERE country=’Poland [POL]’;

NOTE: DATA statement used (Total process time):

real time 4.78 seconds

user cpu time 0.68 seconds

system cpu time 1.78 seconds

memory 555102.21k

OS Memory 570044.00k

We can see that indexes were used, which decreased the
execution time. Unfortunately the ARRAY approach has one
drawback. The consequence of using a temporary array is
that we have to preallocate the memory to handle markers
for all observations even-though only a small part of ARRAY’s
cells will be used, which is ine�cient.

A solution for ARRAY’s memory issue would be a data
structure which can dynamically modify its size. And in such
a case a hash-table appears to be the perfect candidate.
A hash-table allows us to add elements without previous
memory allocation and in terms of searching works very e�-
ciently (not as fast as array’s direct access but fast enough).

To use a hash-table our previous code needs only slight
changes:

Ê an array declaration is replaced with a hash-table dec-
laration (lines 406 to 409),

9

Ë in the first DoW-loop direct marking of visited observa-
tions is replaced with hash-table’s .add() method (line
416),

Ì in the second DoW-loop in the if statement direct access
is replaced with hash-table’s .find() method (line 426),

Í in the second DoW-loop direct marking of visited ob-
servations is replaced with hash-table’s .add() method
(line 428, our previous observation, made in the array

approach, about adding new conditions remains).

data _NULL_; 404

405

length curobs 8; 406

declare HASH _obs_(hashexp:16); Ê 407

obs.DefineKey("curobs"); 408

obs.DefineDone(); 409

410

411

do until(eof); 412

set mysets.INDEXX_OR END=eof CUROBS=curobs; 413

where date between ’01may2015’d 414

and ’30may2015’d; 415

rc = _obs_.add(); Ë 416

SoM + measurement; 417

i + 1; 418

end; 419

420

eof = 0; 421

do until(eof); 422

set mysets.INDEXX_OR END=eof CUROBS=curobs; 423

where country = ’Poland [POL]’; 424

425

if _obs_.find() NE 0 then Ì 426

do; 427

rc = _obs_.add(); Í 428

SoM + measurement; 429

i + 1; 430

end; 431

end; 432

433

put SoM= best32. i=; 434

stop; 435

run; 436

The result is the same as in the previous cases. The log
shows following notes and infos.

INFO: Index date selected for WHERE

clause optimization.

INFO: Index country selected for WHERE

clause optimization.

SoM=174856439 i=383492

NOTE: There were 98206 observations read

from the data set MYSETS.INDEXX_OR.

WHERE (date>=’01MAY2015’D

and

date<=’30MAY2015’D);

NOTE: There were 285681 observations read

from the data set MYSETS.INDEXX_OR.

WHERE country=’Poland [POL]’;

NOTE: DATA statement used (Total process time):

real time 1.99 seconds

user cpu time 0.68 seconds

system cpu time 1.31 seconds

memory 26409.81k

OS Memory 41148.00k

Again we can see that indexes were used, which signif-
icantly decreased the execution time. In case of the hash-
table approach memory footprint is much smaller than in the
array case (~26MB vs. ~555MB). To be clear, the memory foot-
print is still bigger than the one from index-less processing
but now it looks like fair trade-o� between time and RAM.

There is another approach which uses hash-tables, sim-
plifies the code and makes it execute faster. Just to di�eren-
tiate it from the previous approach let’s name it ”hash ap-
proach 2”. Changes in the code are:

Ê two DoW-loops are replaced with a single set statement
with input dataset used twice,

Ë and Ì the WHERE clauses are moved into dataset options
(lines 450 and 454),

Í the .find() method is replaced with the .check()

method which doesn’t retrieve the data but only checks
if the key’s value exists in the hash-table,

Î the goto statement is used to skip aggregation if we en-
counter an already read observation.

data _NULL_; 437

438

if _N_ = 1 then 439

do; 440

length curobs 8; 441

drop curobs; 442

declare HASH _obs_(hashexp:16); 443

obs.DefineKey("curobs"); 444

obs.Definedone(); 445

end; 446

447

set Ê 448

mysets.INDEXX_OR(449

where = (date between ’01may2015’d Ë 450

and ’30may2015’d) 451

) 452

mysets.INDEXX_OR(453

10

where = (country = ’Poland [POL]’) Ì 454

) 455

CUROBS = CUROBS 456

end = end 457

; 458

459

if _obs_.check() NE 0 then Í 460

do; 461

rc = _obs_.add(); 462

end; 463

else goto SKIPAGGR; Î 464

465

SoM + measurement; 466

i + 1; 467

468

SKIPAGGR: 469

if end then 470

do; 471

put SoM= best32. i=; 472

stop; 473

end; 474

run; 475

The SAS log shows similar notes:

INFO: Index date selected for WHERE

clause optimization.

INFO: Index country selected for WHERE

clause optimization.

SoM=174856439 i=383492

NOTE: There were 98206 observations read

from the data set MYSETS.INDEXX_OR.

WHERE (date>=’01MAY2015’D

and

date<=’30MAY2015’D);

NOTE: There were 285681 observations read

from the data set MYSETS.INDEXX_OR.

WHERE country=’Poland [POL]’;

NOTE: DATA statement used (Total process time):

real time 1.92 seconds

user cpu time 0.59 seconds

system cpu time 1.32 seconds

memory 26405.78k

OS Memory 41148.00k

An additional advantage of that last approach is that it al-
lows us to extend the WHERE clause with multiple ORs in the
easiest way by just adding a dataset name with a new WHERE

part in the set statement. Which brings the idea of wrapping
it into a convenient macro (see the last section for a pointer
to details).

BENCHMARKING

The code from the previous section was executed on a lap-
top with following characteristics:
Lenovo Y700,

Intel(R) Core(TM) i7-6700HQ CPU @2.60GHZ,

16GB RAM, SSD + HDD disk drive,

Windows 10 Pro N,

Base SAS 9.4M4 with memsize 8GB.

To compare execution times and e�ciency the code was
also executed on two di�erent data setups and machines:
one on a desktop and the other on a server.

Desktop machine characteristics were:

HP EliteDesk 800 G1 SFF,

Intel(R) Core(TM) i5-4590 CPU @3.30GHz,

8GB RAM, HDD disk drive,

Windows 7 Enterprise - ServicePack 1,

Base SAS 9.4M4 with memsize 6GB.

Datasets were:

Small:

Observations 3’668’464

File Size (bytes) 353173504 ~ 337MB

Medium:

Observations 70’304’151

File Size (bytes) 6765871104 ~ 6GB

Big:

Observations 378’833’440

File Size (bytes) 36457152512 ~ 34GB

Common attributes:

Variables 6

Indexes 2

Observation Length 96

The results (in terms of time) were as follows:
Average (Standard Deviation)

sql no index
datastep no

index
hash appr. 1 hash appr. 2

Small:

real time
0:00.32

(0:00.02)
0:00.27

(0:00.03)
0:00.30

(0:00.08)
0:00.30

(0:00.03)

user cpu
0:00.11

(0:00.01)
0:00.10

(0:00.03)
0:00.04

(0:00.02)
0:00.05

(0:00.04)

system
cpu

0:00.16
(0:00.03)

0:00.17
(0:00.03)

0:00.20
(0:00.00)

0:00.18
(0:00.02)

Medium:

real time
1:07.23

(0:07.56)
1:27.32

(0:49.28)
0:23.76

(0:01.79)
0:02.55

(0:00.48)

user cpu
0:08.35

(0:00.89)
0:07.32

(0:00.56)
0:00.80

(0:00.07)
0:00.63

(0:00.04)

system
cpu

0:07.77
(0:01.08)

0:08.84
(0:02.90)

0:02.53
(0:00.14)

0:01.73
(0:00.16)

Big:

real time
8:22.38

(0:47.58)
10:09.25
(3:24.73)

1:15.04
(0:09.41)

0:07.33
(0:02.22)

user cpu
0:44.23

(0:03.56)
0:36.22

(0:04.46)
0:03.16

(0:00.23)
0:02.37

(0:00.01)

system
cpu

0:42.12
(0:03.54)

1:17.15
(0:10.16)

0:05.71
(0:00.27)

0:03.88
(0:00.29)

11

Server machine characteristics were:
ProLiant DL380 Gen9 HP,

Intel(R) Xeon(R) CPU E5-2667 v3 @3.20GHz,

256GB RAM,

Red Hat Linux,

EG sesion on SAS 9.4M3 with memsize 8GB.

Datasets were:
Small:

Observations 4’4019’606

File Size (bytes) 6709182464 ~ 6GB

Medium:

Observations 246’134’809

File Size (bytes) 37513396224 ~ 35GB

Big:

Observations 1’917’837’577

File Size (bytes) 292296458240 ~ 272GB

Common attributes:

Variables 13

Indexes 2

Observation Length 152

Average (Standard Deviation)

sql no index
datastep no

index
hash appr. 1 hash appr. 2

Small:

real time
0:03.12

(0:00.34)
0:03.52

(0:00.50)
0:03.23

(0:00.75)
0:01.87

(0:00.22)

user cpu
time

0:01.79
(0:00.25)

0:02.00
(0:00.32)

0:00.45
(0:00.07)

0:00.48
(0:00.07)

system
cpu time

0:01.32
(0:00.09)

0:01.43
(0:00.12)

0:02.45
(0:00.52)

0:01.37
(0:00.16)

Medium:

real time
0:17.34

(0:01.44)
0:21.41

(0:00.41)
0:12.58

(0:02.35)
0:07.29

(0:00.95)

user cpu
time

0:10.04
(0:01.02)

0:12.50
(0:00.18)

0:02.17
(0:00.31)

0:02.22
(0:00.30)

system
cpu time

0:07.20
(0:00.41)

0:08.42
(0:00.13)

0:09.24
(0:01.73)

0:04.88
(0:00.60)

Big:

real time
10:43.32
(0:02.86)

10:22.74
(0:07.88)

0:51.08
(0:14.57)

0:54.05
(0:12.01)

user cpu
time

2:15.39
(0:01.03)

2:06.92
(0:05.31)

0:14.21
(0:02.58)

0:15.24
(0:02.16)

system
cpu time

1:40.26
(0:02.91)

1:30.86
(0:05.07)

0:35.44
(0:10.96)

0:35.96
(0:08.04)

In both cases index usage in hash-table approaches im-
proved performance time. But to be non-judgemental we
have to admit that in the case of ”small” sets di�erences in
times weren’t as impressive as in the case of ”big” ones.

THE CODE

If you are interested in testing approaches presented above
yourself and want to play a bit with the code and data you
can download SAS codes which were the motivation for this
paper under the following ”world wild web” address:

http://www.mini.pw.edu.pl/~bjablons/SASpublic/

you can find code with data: Countries.sas and a bunch of
OR-condition-in-WHERE-clause-with-INDEX-[...].sas

codes (the ”[...]” extends the discussion).

REFERENCES

[1] Art Carpenter,
”Carpenter’s Guide to Innovative SAS Techniques”,
SAS Press

[2] Paul M. Dorfman, Koen Vyverman,
”Data Step Hash Objects as Programming Tools”,
SUGI 30 Proceedings,
www2.sas.com/proceedings/sugi30/236-30.pdf

[3] Chris Schacherer,
”Introduction to SAS Hash Objects”, SAS GF 2015 Proceedings,
support.sas.com/resources/papers/proceedings15/3024-2015.pdf

[4] Paul M. Dorfman, Don Henderson,
”Data Management Solutions Using SAS Hash Table Operations:
A Business Intelligence Case Study”,
SAS Press

[5] Paul M. Dorfman,
”Fundamentals of the The SAS Hash Object”,
SESUG 2016 Proceedings,
analytics.ncsu.edu/sesug/2016/HOW-195 Final PDF.pdf

[6] Billy Cli�ord,
”Frequently Asked Questions about SAS Indexes”,
SUGI 30 Proceedings,
www2.sas.com/proceedings/sugi30/008-30.pdf

[7] Michael A. Raithel,
”The Complete Guide to SAS Indexes”,
SAS Press

[8] Mark Keintz,
”A Faster Index for Sorted SAS Datasets”,
SAS GF 2009 Proceedings,
support.sas.com/resources/papers/proceedings09/024-2009.pdf

[9] Paul M. Dorfman,
”The Magnificent DO”,
support.sas.com/resources/papers/proceedings13/126-2013.pdf

ACKNOWLEDGMENTS
Author would like to acknowledge Filip Kulon, Krzysztof

Socki and Allan Bowe for their contribution and e�ort to
make this paper looks and feel as it should. Thanks Filip!
Thanks Krzysztof! Thanks Allan!

Author would like to acknowledge the Citibank Europe
PLC Poland for the support in the performance benchmark-
ing execution.

CONTACT INFORMATION
Your comments and questions are valued and encouraged.
Contact the author at one of the following e-mail address:
yabwonQ gmail.com

bartosz1.jablonskiQ citi.com

or via the following LinkedIn profile:
www.linkedin.com/in/yabwon

12

SAS and all other SAS Institute Inc. product or service
names are registered trademarks or trademarks of SAS In-
stitute Inc. in the USA and other countries. r indicates USA
registration.

Other brand and product names are trademarks of their
respective companies.

	ABSTRACT
	INTRODUCTION
	TOOLS
	Indexes
	Hash-tables

	THE PROCESS
	The Dataset
	Indexes usage test
	General Overview
	Example
	Programming

	BENCHMARKING
	THE CODE
	REFERENCES
	ACKNOWLEDGMENTS
	CONTACT INFORMATION

