Paper 3722-2019
Use the Advantage of INDEXes
Even If a WHERE Clause Contains an OR Condition

Bartosz Jabtonski

Warsaw University of Technology / Citibank Europe PLC Poland

ABSTRACT

The advantage of an indexed Base SAS® engine’s dataset
is that when the dataset is queried with a WHERE clause the
process may be optimized and index-subsetting will work
faster than a sequential read. Unfortunately the Base SAS
engine is unable to use more than one index at a time to op-
timize a WHERE clause. Especially if a WHERE clause contains
an OR condition between two different (indexed) variables
the Base SAS engine won't optimize it and will execute a se-
guential read.

The main idea of this paper is to offer a solution to the
following question: How to handle a situation in which we
have a WHERE clause with an OR condition between two dif-
ferent indexed variables and want to use the advantage of
indexing to subset the data faster? The solution is datastep
based and uses hash-tables. But foremost it is both simple
to implement and efficient.

INTRODUCTION

When we are working with datasets in the SAS Base engine
we often try to use some optimization techniques which al-
low us to improve performance. There are dozens of such
techniques but some of the most basic approaches could
be described with the following steps:

e narrow the data, i.e. select an observation only IF it is
necessary for the process,

e even better, use a WHERE clause instead of a subsetting
IF statement, as you will reduce the data before it is in-
serted into PDV,

o if a WHERE clause subsets only a small part of the dataset
(and the dataset is big enough, i.e. spans across more
than 3 pages) add an INDEX to the dataset,

o if your INDEX file is big and the dataset is quite "static”
(i.e. doesn’t change to often) consider Mark Keintz's
compressed indexes (see [8]).

Unfortunately there’s a limit to index usage as SAS Base
engine can’t use more than one index to optimize a WHERE
clause. It is explained in the question 22: "Why can’t an
index be used if there is an OR in the WHERE expression?” in
Billy Clifford’s paper [6].

But are we 100% sure that we can’t do this, i.e. to use
the advantage of INDEXes when a WHERE clause contains an
OR condition? In fact we can. If we incorporate some small
additional programming effort we are able to overcome the
obstacle described above.

There are two basic steps behind the process. The first
is to realize that a WHERE clause with an OR condition can be
split into separate clauses which can be executed indepen-
dently (and use different INDEXes). The second is to realize
that if we can efficiently manage information on which ob-
servations have already been read we won’t have a problem
with consolidating the data and will avoid potential dupli-
cates.

For the sake of clarity, from now on, any further phrases
such as "SAS is doing something” will be related to the Base
SAS engine unless explicitly noted.

TOOLS

Before we start the main topic let's take a quick look at two
basic concepts we are going to work with, i.e. indexes and
hash-tables.

Indexes. The concept of SAS index, from a user point
of view, is very simple and intuitive. We can think of an in-
dex as a list of "key-value” pairs. "Keys” are values of the
variable on which the index is built. "Values” are lists of row
identifiers, a.k.a. RIDs, which are the pointers to location
of observations containing a given value in a dataset. The
most natural analogy would be a book and... its index. For
example, if our dataset looks as follows:

A dataset with two variables

Obs. VarA VarB
1 A 10
2 B 20
3 C 10
4 A 20
5 B 10
6 C 20
7 A 10

we can think of an index constructed for variable VarA as:
An index for variable VarA

Key: {RIDs}
A {1, 4, 7}
B: {2, 5}
c: {3, 6}

and for variable VarB as:
An index for variable VarB

Key: {RIDs}
10: {1, 3, 5, 7}
20: {2, 4, 6}

We have already mentioned that indexes are used to opti-
mize data selection in WHERE clauses. When we write the
code:

WHERE VarA = "B";

SAS estimates the number of observations read by the
clause from the dataset, and if it is worth it, SAS uses the
index. What does it mean "uses the index”? Well, instead of
a sequential read through the dataset, SAS will look at a list
of record identifiers for that given value "B" of variable VarA
and will read only the observations pointed by RIDs.

Just as a reminder, this is only "a user point of view”. Of
course, under the hood it is more complex than the descrip-
tion above. Starting for example with the fact that indexes
are stored in a separate file, and they are tree-shaped data
structures, and the "estimation of the number of observa-
tions to be read” is a complicated process, and eventually
optimization of WHERE clauses is not the only purpose of in-
dexes existence. But the intuition we already have is good
enough for the beginning. Very good references to discover
indexes in details are: Billy Clifford’s paper [[6] and Michael
A. Raithel’s book [[7], and of course SAS on-line documen-
tation.

Hash-tables. The concept of a hash-table is very user
friendly as long as we start with good intuition. Users which
are not familiar with object oriented programming notation

2

may, at the first glance, consider hash-table’s syntax a bit
awkward, but do not judge a book by its cover!

From a user perspective a hash-table can be considered
as a younger and smarter sibling of a classical, well known,
SAS temporary array. Let’s take a quick look at arrays and
declare a temporary array ARR. We can do it for example by
calling the following code:

array ARR[6] $ 1 _temporary_;

We can visualise ARR as a pre-allocated, in-memory, and
fixed-size set of adjacent cells, with integer pointer address-
ing each cell, waiting for the data. Like in the figure below:

A temporary array ARR
waiting for the data

cell cell
key value

[1]
2] [
(31 [
(41 [
(5] [
6] [

To populate ARR with the data we can run the following code:

k = 2; v = "B"; ARR[k] = v; (1]

k =1; v ="A"; ARR[kK] =v; @

k =4; v ="D"; ARR[k] = v; ©

and after each line of code the array can be visualised as
presented in the figure below:

temporary array ARR
populated with the data

after @ after @ after ©
cell cell cell cell cell cell
key value key value key value
(11 [(1] [rar (1] [rar
[2] |"B" [2] |"B" [2] "B
(31 [(31 [(31 [
[4] [[4] [" [4] [0
[5] non [5] non [5] non
(61 [(61 [(61 ["

To retrieve a cell’s value we are using a corresponding key’s
value in array’s reference as for example:

k = 2; v = ARR[k]; put v=;

and as a result in the SAS log we will see: v=B printed out.
In case of a hash-table (again, from a user point of view)
the process, modulo the syntax, looks similar. Let’s declare

a hash-table HSH. We can do it for example by calling the
following code:

length k 8 v $ 1;

declare hash HSH(ordered:'"ascending",
hashexp:8);

HSH.DefineKey ("k") ;

HSH.DefineData("v");

HSH.DefineDone() ;

Before we continue a note about syntax’s analogies. In
the declare hash statement we are giving a hash-table a
name (it is an array statement’s analogy). With the ordered
option we are forcing keys to be in the ascending order (in
the array keys are ordered by default since they are ascend-
ing integers). The hashexp option establishes maximum size
of a hash-table (it could be very very loosely compared to ar-
ray’s size declaration). The .DefineKey () method indicates
variables which are used as a key (an analogy of kinthev =
ARR[k] code) and the .DefineData () method indicates vari-
ables which are used to hold the data portion (an analogy of
ARR[k]). And the .DefineDone () method is the
equivalent of a semicolon at the end of array’s definition.

vinthev =

We can visualise HSH as a not-pre-allocated, in-memory,
and not-fixed-size set of "key-data” pairs, with (not nec-
essary integer) key-pointers addressing each data portion.
Hence after the declaration HSH looks like in the figure below
and it is awaiting to be populated with the data.

Hash-table HSH
waiting for the data

key data

* *

The process of inserting data into HSH uses the .add()
methodﬂ and to populate HSH with the data we can run the
following code:

k = 2; v = "B"; HSH.add(); (1)
k =1; v = "A"; HSH.add(); O
k =4; v ="D"; HSH.add(); ©

and after each line of code the hash-table can be visualised
as presented in the figure below (notice how the order of
keys is changing due to the ordered: "ascending" tag):

A method in object oriented programming terminology may be con-
sidered as a function associated with an object.

hash-table HSH
populated with the data

after @ after ® after ®
key data key data key data
[2] (1] [rar (1] [rar
[21 ["B" [21 ["B
[4] [0

When a hash-table has been populated retrieving data
is as simple as 2+2. Allwe need to do is to set the key’s value
and call HSH’s . find () method, as in the following example:

k = 2; HSH.find(); put v=;

and in the SAS log we will see: v=B printed out. We don't
even have to use any assignment statement since the hash-
table will handle it itself. If the .find () method will be suc-
cessful then variable v will be populated with data automat-
ically.

As a side note, the above process of adding the data to
the hash-table HSH can also be executed with a do loop in
a similar fashion as with arrays. Code for arrays would look
as follows:

k = 0;
do v = "A", "B", "C", "D", "E", "F";
k + 1;

ARR[k] = v;
end;

while for hash-tables it would be:
k = 0;
do v = "A", "B", "C", "D", "E", "F";
k +1;
HSH.add () ;
end;

A hash-table doesn’t have to use integers as keys and,
what is even more comfortable, we can have a more complex
data portion than a single cell. For example we can declare
a hash-table HT and populate it with data in the following
way:

Code:

length k1 8 k2 $ 1 vl $ 1 v2 8;
declare hash HT(ordered:"ascending");

HT.DefineKey ("k1", "k2");

HT.DefineData("v1", "v2", "k1");
HT.DefineDone();

k1 =1; k2 = "m"; vl = "A"; v2 = 13; HT.add();
ki1 =2; k2 = "i"; vl = "B"; v2 = 17; HT.add();
k1 = 3; k2 = "n"; vl = "C"; v2 = 42; HT.add();
ki1 =4; k2 = "i"; vl = "D"; v2 = 66; HT.add();

k1 = 5; k2 = "p"; vl = "E"; v2 = 78; HT.add();
k1 =6; k2 = "w"; vl = "F"; v2 = 82; HT.add();
Visualisation:
hash-table HT
key data
k1, k2 vi,v2, ki

[1,"m” "A", 13, 1

[2,7i"] "B", 17, 2

[3,"n"] "c", 42, 3

[4,7i"] |"D", 66, 4

[5,"p™"] | "E", 78, 5

[6,"w” "F", 82, 6

What's even more useful is that hash-tables allow
to load data straight from an external dataset within
declare hash statement. For example, assuming that
dataset work.SomeDataset contains tree numeric variables
k, d1, and d2 we could load it into a hash-table with following
code:

length k d1 42 8;

declare hash HfrmDS(dataset:"work.SomeDataset");
HfrmDS.DefineKey ("k") ;
HfrmDS.DefineData("d1",
HfrmDS.DefineDone() ;

lld2ll) ;

So, the punch line here is that a hash-table is a flexible
and dynamically allocated data structure, with a very effi-
cient data access time and a "dictionary” kind of behaviour.

Again, as a reminder, this is only "a user point of view”.
As in the case of indexes, also in the case of hash-tables
there is much more happening under the hood than in the
description above. Starting for example with the fact that
there is an internal hashing function involved, and data are
kept in tree-shaped data structures (AVL-trees). But also
in this case the intuition we already have is good enough.
References to discover hash-tables in more details are: Paul
Dorfman’s paper [5], Paul Dorfman’s and Don Henderson’s
book [4]], Chris Schacherer’s paper [3]], Paul Dorfman’s and
Koen Vyverman'’s paper [2], Art Carpenter’s book [1]], and
of course SAS on-line documentation.

THE PROCESS

Now, when we covered all prerequisites, we can begin the
process of modifying our code in a way that will allow us to
handle a WHERE clause with an OR condition and at the same
time use the advantage of INDEXes.

The Dataset. At the very beginning let’s turn-on some
additional options which will give us extended logging fea-
tures.

|
|
|
|
|
\ call streaminit(2222);
|
|
|
|
|

‘options 1
\ FULLSTIMER © 2
\ MSGLEVEL = I @ 3

> 4

In © we specify whether to write extended system per-
formance statistics to the SAS log (e.g memory usage, real
time, cpu time, etc.) In @ we specify the level of details in
messages that are written to the SAS log and value "I"” in-
dicates to print additional notes pertaining to index usage,
merge processing, sort utilities, etc.

Using WikipediaE|as a data base we are going to prepare
a randomly ordered (®) dataset of countries names (248
observations) which will be used as a base for data prepa-
ration in the main code.

libname mysets BASE "..."; 5
6

data mysets.countries; 7
infile cards dlm = ’0A’x; 8
input country $:50.; 9

sort = rand("uniform"); © 11
Afghanistan [AFG]
Aland Islands [ALA]
Albania [ALB]

Virgin Islands, US [VIR]
Wallis and Futuna Islands
Western Sahara [ESH]
Yemen [YEM]

Zambia [ZMB] 259
Zimbabwe [ZWE]

[WLF]

260

; 261
run; 262
263

proc sort 264
data = MySets.Countries 265
out = MySets.Countries(drop = sort) 266

; 267
by sort; 268
run; 269

As the next step we are going to create a bigger dataset

which we will use in the process.

data mysets.INDEXX_OR(

INDEX = (271
country @ 272
date (5] 273

2https://en.wikipedia.org/wiki/ISO,3166—1

set O

mysets.countries

mysets.countries

’

format date yymmddsl10.;

do date = ’1jan1960’d to ’28apr2019°d; @
y = year(date);

month (date) ;

day(date) ;

m
d

call streaminit(123); ©
measurement = 456+round(rand("Normal")*78); ©

output;

if rand("Uniform") > 0.9 then output; ®
end;

run /*cancelx*/ ;

The INDEXX_OR dataset has two simple

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

indexes:

country (@) and date (@), created in lines 271 to 274. The
dataset is build in the following way: for each country (re-
peated a dozen times ®) a bunch of records, with dates (@)
and random measurements (®, the ® sets seed for rand ()
function) and with about 10% of "natural” duplicates (@),
is generated. Two following procedures will give us the
dataset’s shape and metadata.

‘proc contents

‘ data = mysets.INDEXX_OR;

‘ run;

‘proc print

| data = mysets.INDEXX_OR(obs=3);
‘ where country = ’Yemen [YEM]’

| and date = ’28apr2019°d

|

|

5 31

run;
The output shows:

The CONTENTS Procedure

Data Set Name MYSETS . INDEXX_OR

Member Type DATA

Engine Vo

Created 04/28/2019 09:00:00
Last Modified 04/28/2019 09:00:00
Data Representation WINDOWS_64

Encoding utf-8

Observations 70935765

304

305

306

307

308

309

310

312

Variables 6
Indexes 2
Observation Length 96
Deleted Observations O
Compressed NO
Sorted NO

Engine/Host Dependent Information

Data Set Page Size 65536

Number of Data Set Pages 104166

First Data Page 1

Max Obs per Page 681

Obs in First Data Page 665

Index File Page Size 4096

Number of Index File Pages 293461

Number of Data Set Repairs O
ExtendObsCounter YES

Filename indexx_or.sas7bdat
Release Created 9.0401M4

Host Created X64_10PRO
Owner Name sasmaniandevil
File Size 6GB

File Size (bytes) 6826688512

Alphabetic List of Variables and Attributes

Variable Type Len Format

1 country Char 50

5 d Num 8

2 date Num 8 YYMMDDS10.
4 m Num 8

6 measurement Num 8

3 y Num 8

Alphabetic List of Indexes and Attributes

Index # of Unique Values
1 country 248
2 date 21668

The PRINT Procedure

Obs country date y m d measu-
rement
398
328

388

1763886 Yemen [YEM] 2019/04/28 2019 4 28
7675202 Yemen [YEM] 2019/04/28 2019 4 28
13585810 Yemen [YEM] 2019/04/28 2019 4 28

Now let’s do some testing.

Indexes usage test. We are going to summarize mea-
surements in variable SoM (@) and count them in variable
i (@) for observations selected with a WHERE clause. We will
do it for both SQL and datastep processing. To prove that
proc SQL really uses an index to work the WHERE clause out
we will run the following code:

proc sql;

313

select 314
‘ sum(measurement) as SoM format best32. @ 315
‘ , count(1) as i (2] 316
‘ from 317
| mysets . INDEXX_OR 318
‘ where 319
‘ country = ’Poland [POL]’ 320
‘ 5 321
‘ quit; 322

When we look into the SAS log, thanks to the
MSGLEVEL = I option, we can see the following information:

INFO: Index country selected for
WHERE clause optimization

Just for completeness, if we use a WHERE clause to subset
data in the datastep:

data _NULL_; 323
set mysets.INDEXX_OR END = eof; 4
where

date between ’01may2015’d and ’30may2015°’d

325
326
; 327
328
SoM + measurement; 329
330
331
if eof then 3

do; 333
put SoM= best32. i=; :

end; 3

2

w

3

3
34

35

\ i+ 1;

run; 336

we will receive an equivalent INFO notification relating to in-
dex date.

In the next test we will see that when the WHERE clause
contains the OR condition on two different variables SAS
won't use any index to optimize subsetting, regardless we
use the WHERE clause in proc SQL (®) or in a datastep (@®).

337
338
sum(measurement) as SoM format best32. 339

, count(1) as i 34(

from 341
342

where © 343
date between ’01may2015’d and ’30may2015’°d 344
OR 345

country = ’Poland [POL]’ 346

; 347

|
|
|
|
|
| mysets . INDEXX_OR
|
|
|
|
|
‘ 348

‘ 349

| data _NULL_; 350

set mysets.INDEXX_OR END = eof; 351
‘ where @ 352
‘ date between ’01may2015°’d and ’30may2015°d 353
‘ OR 354

country = ’Poland [POL]’ 355
; 356

357
SoM + measurement;

i+ 1;

358

if eof then
do;
put SoM= best32. i=;

end;

361
362
363
364

run; 365

‘ 360

After running the above code the SAS log contains the
following notes for proc SQL:

NOTE:
‘ real time

PROCEDURE SQL used (Total process time):
1:32.40
8.79 seconds

‘ user cpu time
5.45 seconds
5478.53k
20724 .00k

‘ system cpu time
‘ memory
‘ 0S Memory

and for the datastep:

‘SoM=174856439 1=383492
‘NDTE: There were 383492 observations read
‘ from the data set MYSETS.INDEXX_OR.
WHERE (date>=’01MAY2015°D

and date<=’30MAY2015°D)

or
(country=’Poland [POL]’);

: DATA statement used (Total process time):

48.16 seconds

5.39 seconds

4.29 seconds

724 .56k

15856.00k

real time

system cpu time

|

|

|

|

‘ user cpu time
|

‘ memory

|

0S Memory

There is no information about index usage during code
execution. In both cases a sequential read took place.

General Overview. Ok, so how to solve the "OR issue”?
The solution is datastep based and uses hash-tables, but we
will go through it step-by-step starting with arrays approach
and than jumping into "hashes”.

Before we dive into details, first and the most important
thing is to realise that we can split the WHERE clause around
the OR condition into two separate clauses. After that we can
execute both WHERE clauses independently - what ensures

that indexes will be used since we are having only simple
conditions. Eventually, as the final step, we have to some-
how bring the results (i.e. subsetted data) together. But
we have to do it in such a way that the combined dataset
will not contain duplicated observations coming from both
WHERE clauses. The idea to prevent duplicates is to keep the
record of already read observations.

Example. Let’s consider the following WHERE clause
WHERE VarL="B" OR VarN=20;

and the following dataset:

A dataset with two indexed variables

Obs. VarL VarN
o
& 1 A 10
% 2
A 10 =
= = 20 B
=%
- <
ne ? - B
3 5 B 5 20 =
; w8 s
o
g 6 " 30
2 7 c < 30
=
= 8 C 30
9 C 40

with both variables indexed. If we split the WHERE clause
into two independent clauses: WHERE VarL="B" and WHERE
VarN=20, as in the figure above, and execute them under two
separate set statements in one datastep we will get dupli-
cated records in the produced dataset. In the figure below
they are marked with ® symbol. The "Current Obs.” column
keeps track of the observation’s number that was read-in.

Dataset with observations read by
WHERE VarL="B" and WHERE VarN=20

C‘(‘)rgg_”t VarL varN
4 B 20 v
5 B 20 v
6 B 30 v
3 A 20 v
4 B 20 ®
5 B 20 ®

As we wrote the idea is to keep a record of observations
read during execution of the first part of the WHERE clause.
Hence, in the example we are considering, after executing
WHERE VarL="B" clause we have the following observations
in the output dataset:

Observations read with WHERE VarL="B"

Clérgg‘nt VarL VarN
4 B 20 v
5 B 20 v
6 B 30 v

and a list of observations numbers read from the input
dataset:

A list of read observations

observation
number

[+] [=] [=]

When we execute the second clause each time before send-
ing an observation to the output dataset we are checking if
its number is on the list. In the example we are using the
WHERE VarN=20 clause which fetches observations 3, 4, and
5. Since observations number 4 and 5 were already on the
list hence they are not outputted and only the observation
number 3 is. The final dataset contains only four observa-
tions marked with tick-mark & for observations from the
first WHERE clause part and with « for observations from
the second and duplicated observations omitted (marked
with X).

Observations added by WHERE VarN=20

Cl(,_l)rbrgnt VarL VarN
4 B 20
5 B 20
6 B 30
3 A 20 v
| | e 20 | x
s | e R

Now when we have a general overview of the process
and we tested it with an example we can jump right into the
code.

Programming. The first attempt considers using a tem-
porary ARRAY. To be able to do that we have to do some "pre-
processing”. We have to get the number of observations to
set the ARRAY's size and in consequence allocate memory.

‘ data _null_; 366
‘ if O then set mysets.INDEXX_OR nobs = nobs; 367
‘ call symputx("_NOBS_", nobs, "G"); 368
‘ stop; 369
‘ run; 370

Having the metadata (i.e. the number of observations,
NOBS macrovariable) collected we are:

(1]

2}

declaring a temporary ARRAY to be a list to mark visited
observations,

executing a DoW—Ioorﬁ in which we are reading-in data
for the first part of our WHERE clause (lines 374 to 384),
using the CUROBS option to create a variable that con-
tains the observation number that was just read from the
dataset,

marking the ARRAY’s cell which key equals to the current
value of curobs variable,

starting to aggregate the data (lines 382 and 383),
executing a second DoW-loop in which we are reading-in
data for the second part of the WHERE clause (lines 387
to 399),

verifying if a visited observation was already read and if
that’s the case, going to the next iteration and skipping
the aggregation,

and eventually if the visited observation wasn't already
read marking it in the temporary array (line 395, it al-
lows to add third, fourth and further WHERE conditions in
a very simple way just by copying the second DoW-loop
and changing the condition) and updating aggregated
data (lines 396 and 397).

data _NULL_; 371
ARRAY _obs_[&_NOBS_.] _temporary_; @ 372

do until(eof); @ 374

set 375
mysets.INDEXX_OR END=eof CUROBS=curobs © 376

5 377

where date between ’0lmay2015°’d 378

and ’30may2015°d; 379

380

obs[curobs] = 1; @ 381

SoM + measurement; @ 382
i+ 1;

385

3See Paul Dorfman’s paper [9] to learn more details about this won-

derful programming technique.

SoM + measurement; 396

i+ 1; 397
end; 398
end; 399
400

put SoM= best32. i=; 401
stop; 402
run; 403

The result is the same as in the case of the previous,
index-less, ones but now the SAS log shows totally different
notes and infos.

INFO: Index date selected for WHERE
clause optimization.

INFO: Index country selected for WHERE
clause optimization.

SoM=174856439 i=383492
NOTE: There were 98206 observations read
from the data set MYSETS.INDEXX_OR.
WHERE (date>=’01MAY2015°D
and
date<=’30MAY2015°D);
NOTE: There were 285681 observations read
from the data set MYSETS.INDEXX_OR.
WHERE country=’Poland [POL]’;
NOTE: DATA statement used (Total process time):

real time 4.78 seconds
user cpu time 0.68 seconds
system cpu time 1.78 seconds
memory 555102.21k
0S Memory 570044 .00k

We can see that indexes were used, which decreased the
execution time. Unfortunately the ARRAY approach has one
drawback. The consequence of using a temporary array is

“* that we have to preallocate the memory to handle markers
end; 384

for all observations even-though only a small part of ARRAY’s
cells will be used, which is inefficient.

eof = 0; 386
do until(eof): @ . A solution for ARRAY’'S memory issue would be a data
set 45 Structure which can dynamically modify its size. And in such
mysets.INDEXX_OR END=eof CUROBS=curobs 350 @ case a hash-table appears to be the perfect candidate.
; 300 A hash-table allows us to add elements without previous
where country = ’Poland [POL]’; 3901 memory allocation and in terms of searching works very effi-
392 ciently (not as fast as array’s direct access but fast enough).
if _obs_[curobs] NE 1 then @ 393 To use a hash-table our previous code needs only slight
do; 394 .
changes:
obs[curobs] = 1; © 395

O an array declaration is replaced with a hash-table dec-
laration (lines 406 to 409),

@ in the first DoW-loop direct marking of visited observa-
tions is replaced with hash-table’s .add () method (line

416),

© inthe second DoW-loopinthe if statement direct access
is replaced with hash-table’s .find () method (line 426),
® in the second DoW-loop direct marking of visited ob-
servations is replaced with hash-table’s .add () method
(line 428, our previous observation, made in the array

approach, about adding new conditions remains).

data _NULL_;

length curobs 8;

declare HASH _obs_(hashexp:16); @
obs.DefineKey("curobs");
obs.DefineDone() ;

do until(eof);
set mysets.INDEXX_OR END=eof CUROBS=curobs;
where date between ’0lmay2015°’d
and ’30may2015°’d;
obs.add(); @
SoM + measurement;

i+ 1;

rc =

end;

eof = 0;
do until(eof);

set mysets.INDEXX_OR END=eof CUROBS=curobs;
where country = ’Poland [POL]’;

if _obs_.find() NE O then ©
do;
rc = _obs_.add(); O
SoM + measurement;
i+ 1

end;

end;

put SoM= best32. i=;
stop;

The result is the same as in the previous cases. The log

shows following notes and infos.

INFO: Index date selected for WHERE
clause optimization.
INFO: Index country selected for WHERE

clause optimization.

SoM=174856439 1=383492

‘ : There were 98206 observations read
‘ from the data set MYSETS.INDEXX_OR.
‘ WHERE (date>=’01MAY2015°D

‘ and

\ date<=’30MAY2015°D) ;

‘ : There were 285681 observations read

‘ from the data set MYSETS.INDEXX_OR.

\ WHERE country=’Poland [POL]’;

‘ : DATA statement used (Total process time):
‘ real time 1.99 seconds
‘ user cpu time 0.68 seconds
‘ 1.31 seconds
26409.81k

41148.00k

system cpu time

memory
0S Memory

Again we can see that indexes were used, which signif-
o icantly decreased the execution time. In case of the hash-
iz table approach memory footprint is much smaller thanin the
,,, array case (~26MB vs. ~555MB). To be clear, the memory foot-
110 Print is still bigger than the one from index-less processing
113 but now it looks like fair trade-off between time and RAM.

414 There is another approach which uses hash-tables, sim-
415 plifies the code and makes it execute faster. Just to differen-
416 tiate it from the previous approach let’s name it "hash ap-

“!7 proach 2”. Changes in the code are:

418
O two DoW-loops are replaced with a single set statement

1: with input dataset used twice,
1 © and © the WHERE clauses are moved into dataset options
422 (lines 450 and 454),

123 @ the .find() method is replaced with the .check()
424 method which doesn’t retrieve the data but only checks
425 if the key’s value exists in the hash-table,

2% @ the goto statement is used to skip aggregation if we en-

"7 counter an already read observation.

428

100 | data _NULL_; a3
430 ‘ e
| if _N_ =1 then 439
w52 | do; 440
4%‘ length curobs 8; 441
%4‘ drop curobs; 442
s declare HASH _obs_(hashexp:16); 443
a6 _obs_.DefineKey("curobs") ; 444
‘ _obs_.Definedone() ; 445
‘ end; 446
‘ 447
‘ set @ 448
| mysets . INDEXX_OR (449
‘ where = (date between ’0lmay2015°d @ 450
| and ’30may2015°d) 451
‘) 452
|

mysets . INDEXX_OR(453

where = (country = ’Poland [POL]’) ©
)
CUROBS = CUROBS

end = end

if _obs_.check() NE O then @
do;
rc = _obs_.add();
end;

else goto SKIPAGGR; ©

SoM + measurement;

i+ 1;

SKIPAGGR:

if end then

do;
put SoM= best32. i=;
stop;

end;

run;

The SAS log shows similar notes:

INFO: Index date selected for WHERE
clause optimization.
INFO: Index country selected for WHERE

clause optimization.

SoM=174856439 i=383492

NOTE: There were 98206 observations read
from the data set MYSETS.INDEXX_OR.
WHERE (date>=’01MAY2015°D
and
NOTE: There were 285681 observations read
from the data set MYSETS.INDEXX_OR.
WHERE country=’Poland [POL]’;
NOTE: DATA statement used (Total process time):

1.92 seconds
0.59 seconds
1.32 seconds
26405.78k
41148.00k

|

|

|

|

|

|

|

|

|

|

‘ date<=’30MAY2015°D) ;
|

|

|

|

‘ real time

‘ user cpu time

‘ system cpu time
‘ memory

|

0S Memory

10

154 The code from the previous section was executed on a lap-

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

An additional advantage of that last approach is that it al-

lows us to extend the WHERE clause with multiple ORs in the

easiest way by just adding a dataset name with a new WHERE

partinthe set statement. Which brings the idea of wrapping

it into a convenient macro (see the last section for a pointer

to details).

BENCHMARKING

top with following characteristics:

| Lenovo Y700,

‘ Intel(R) Core(TM) i7-6700HQ CPU ©2.60GHZ,
‘16GB RAM, SSD + HDD disk drive,

| Windows 10 Pro N,

‘ Base SAS 9.4M4 with memsize 8GB.

To compare execution times and efficiency the code was

also executed on two different data setups and machines:

one on a desktop and the other on a server.

Desktop machine characteristics were:

HP EliteDesk 800 G1 SFF,

Intel(R) Core(TM) i5-4590 CPU @3.30GHz,
8GB RAM, HDD disk drive,

Windows 7 Enterprise - ServicePack 1,
Base SAS 9.4M4 with memsize 6GB.

Datasets were:

Small:

Observations 3’668’464

File Size (bytes) 353173504 ~ 337MB
Medium:

Observations 70’304°151

File Size (bytes) 6765871104 ~ 6GB
Big:

Observations 378’833’7440

File Size (bytes) 36457152512 ~ 34GB

Common attributes:
Variables 6

Indexes 2

Observation Length 96

The results (in terms of time) were as follows:

Average (Standard Deviation)

datastep no
sql no index X P hash appr. 1 hash appr. 2
index
Small:
. 0:00.32 0:00.27 0:00.30 0:00.30
real time
(0:00.02) (0:00.03) (0:00.08) (0:00.03)
0:00.11 0:00.10 0:00.04 0:00.05
user cpu
(0:00.01) (0:00.03) (0:00.02) (0:00.04)
system 0:00.16 0:00.17 0:00.20 0:00.18
cpu (0:00.03) (0:00.03) (0:00.00) (0:00.02)
Medium:
. 1:07.23 1:27.32 0:23.76 0:02.55
real time
(0:07.56) (0:49.28) (0:01.79) (0:00.48)
0:08.35 0:07.32 0:00.80 0:00.63
user cpu
(0:00.89) (0:00.56) (0:00.07) (0:00.04)
system 0:07.77 0:08.84 0:02.53 0:01.73
cpu (0:01.08) (0:02.90) (0:00.14) (0:00.16)
Big:
. 8:22.38 10:09.25 1:15.04 0:07.33
real time
(0:47.58) (3:24.73) (0:09.41) (0:02.22)
0:44.23 0:36.22 0:03.16 0:02.37
user cpu
(0:03.56) (0:04.46) (0:00.23) (0:00.01)
system 0:42.12 1:17.15 0:05.71 0:03.88
cpu (0:03.54) (0:10.16) (0:00.27) (0:00.29)

Server machine characteristics were:

ProLiant DL380 Gen9 HP,

Intel(R) Xeon(R) CPU E5-2667 v3 @3.20GHz,
256GB RAM,

Red Hat Linux,

EG sesion on SAS 9.4M3 with memsize 8GB.

Datasets were:

Small:

Observations 4°4019°606
File Size (bytes) 6709182464 ~ 6GB
Medium:

Observations 246°134°809
File Size (bytes) 37513396224 ~ 35GB
Big:

Observations 1°917°837°577

File Size (bytes) 292296458240 ~ 272GB

Common attributes:
Variables 13
Indexes 2

152

Observation Length

Average (Standard Deviation)

datast
sql no index a ,as epno hash appr. 1 hash appr. 2
index
Small:
. 0:03.12 0:03.52 0:03.23 0:01.87
real time
(0:00.34) (0:00.50) (0:00.75) (0:00.22)
user cpu 0:01.79 0:02.00 0:00.45 0:00.48
time (0:00.25) (0:00.32) (0:00.07) (0:00.07)
system 0:01.32 0:01.43 0:02.45 0:01.37
cpu time (0:00.09) (0:00.12) (0:00.52) (0:00.16)
Medium:
. 0:17.34 0:21.41 0:12.58 0:07.29
real time
(0:01.44) (0:00.41) (0:02.35) (0:00.95)
user cpu 0:10.04 0:12.50 0:02.17 0:02.22
time (0:01.02) (0:00.18) (0:00.31) (0:00.30)
system 0:07.20 0:08.42 0:09.24 0:04.88
cpu time (0:00.41) (0:00.13) (0:01.73) (0:00.60)
Big:
_ 10:43.32 10:22.74 0:51.08 0:54.05
real time
(0:02.86) (0:07.88) (0:14.57) (0:12.01)
user cpu 2:15.39 2:06.92 0:14.21 0:15.24
time (0:01.03) (0:05.31) (0:02.58) (0:02.16)
system 1:40.26 1:30.86 0:35.44 0:35.96
cpu time (0:02.91) (0:05.07) (0:10.96) (0:08.04)

In both cases index usage in hash-table approaches im-
proved performance time. But to be non-judgemental we
have to admit that in the case of "small” sets differences in
times weren’t as impressive as in the case of "big” ones.

THE CODE

If you are interested in testing approaches presented above
yourself and want to play a bit with the code and data you
can download SAS codes which were the motivation for this
paper under the following "world wild web” address:
http://www.mini.pw.edu.pl/~bjablons/SASpublic/

11

you can find code with data: Countries.sas and a bunch of
OR-condition-in-WHERE-clause-with-INDEX-[...].sas
codes (the "[...]"” extends the discussion).

REFERENCES

[1] Art Carpenter,
"Carpenter’s Guide to Innovative SAS Techniques”,
SAS Press
[2] Paul M. Dorfman, Koen Vyverman,
"Data Step Hash Objects as Programming Tools”,
SUGI 30 Proceedings,
www2.sas.com/proceedings/sugi30/236-30.pdf
[3] Chris Schacherer,
"Introduction to SAS Hash Objects”, SAS GF 2015 Proceedings,
support.sas.com/resources/papers/proceedings15/3024-2015.pdf
[4] Paul M. Dorfman, Don Henderson
"Data Management Solutions Using SAS Hash Table Operations:
A Business Intelligence Case Study”,
SAS Press
[5] Paul M. Dorfman,
"Fundamentals of the The SAS Hash Object”,
SESUG 2016 Proceedings,
analytics.ncsu.edu/sesug/2016/H0W-195_Final PDF.pdf
[6] Billy Clifford,
"Frequently Asked Questions about SAS Indexes”,
SUGI 30 Proceedings,
www2.sas.com/proceedings/sugi30/008-30.pdf
[7] Michael A. Raithel,
"The Complete Guide to SAS Indexes”,
SAS Press
[8] Mark Keintz,
"A Faster Index for Sorted SAS Datasets”,
SAS GF 2009 Proceedings,
support.sas.com/resources/papers/proceedings09/024-2009. pdf
[9] Paul M. Dorfman,
"The Magnificent DO",
support.sas.com/resources/papers/proceedings13/126-2013.pdf

ACKNOWLEDGMENTS

Author would like to acknowledge Filip Kulon, Krzysztof
Socki and Allan Bowe for their contribution and effort to
make this paper looks and feel as it should. Thanks Filip!
Thanks Krzysztof! Thanks Allan!

Author would like to acknowledge the Citibank Europe
PLC Poland for the support in the performance benchmark-
ing execution.

CONTACT INFORMATION
Your comments and questions are valued and encouraged.
Contact the author at one of the following e-mail address:
yabwonfgmail. com
bartoszl.jablonskifciti.com
or via the following LinkedIn profile:

www.linkedin.com/in/yabwon

SAS and all other SAS Institute Inc. product or service
names are registered trademarks or trademarks of SAS In-
stitute Inc. in the USA and other countries. ® indicates USA
registration.

Other brand and product names are trademarks of their
respective companies.

	ABSTRACT
	INTRODUCTION
	TOOLS
	Indexes
	Hash-tables

	THE PROCESS
	The Dataset
	Indexes usage test
	General Overview
	Example
	Programming

	BENCHMARKING
	THE CODE
	REFERENCES
	ACKNOWLEDGMENTS
	CONTACT INFORMATION

