Getting Started With

SAS’ Packages

(how to use them - in seven steps + appendix)

Bartosz Jablonski
& yabwon(Q) gmail . com

February 7th, 2023

This presentation shows, in few simple steps,
how to:

B start working with SAS Packages Framework
B and using SAS Packages.

Shall we?

ORpy:

b
J/Bap[osz Jablog; N
iski

SAS package!

A SAS package is an automatically generated, single, stand alone zip file
containing organised and ordered code structures, created by the developer and
extended with additional automatically generated "driving” files (i.e. description,
metadata, load, unload, and help files).

The purpose of a package is to be a simple, and easy to access, code sharing
medium, which will allow: on the one hand, to separate the complex code
dependencies created by the developer from the user experience with the final
product and, on the other hand, reduce developer’s and user’s unnecessary
frustration related to a remote deployment process.

SAS Packages Framework

The SAS Packages Framework (SPF) is a set of macros which allow to use and
to develop SAS packages.

1"[‘he idea presented here should not be confused with other occurrences of "package” concept which could be found in the SAS ecosystem, e.g.
Proc DS2 ges, SAS/IML ges, SAS ODS ges, SAS Integration Technologies Publishing Framework packages, ora *. egp file.

files and folders

Both the SAS Packages Framework (SPF) file and all packages we want to use
have to be stored in the same folder.

The first step is to create such a directory on your computer, e.g.
B under Windows OS family it could be C: /SAS_PACKAGES or

B under Linux/UNIX OS family it could be /home/<username>/SAS_PACKAGES.

For our convenience lets assume that the C:/PCKG is the one we created.

Few additional "features” are described in Appendix 12 and Appendix 13.

download the framework

The SAS Packages Framework is available under the following address:

https://github.com/yabwon/SAS_PACKAGES

Under the SAS_PACKAGES repository the SPF folder contains the framework.
Download the SPFinit.sas file into the C:/PCKG directory.

& yabwon / SAS_PACKAGES

<> Code Issues Pull requests Actions Projects Wiki

¥ master ~ SAS_PACKAGES / SPF/

@ yabwon version ...

Documentation

- [y SPFinitsas

[licensesas

Step 3

install the package
SAS packages are available under the following address:
https://github.com/SASPAC

Under the SASPAC each package has its own dedicated repository. Download the
zip file with the package of choice into the C:/PCKG directory.

SASPAC - SAS Packages Archive

() Overview [] Repositories [Projects) Packages A Teams A People 6 Settings

Type ~ Language ~

baseplus
The B/

enable the framework

To enable the SAS Packages Framework we run the following code:

filename packages "C:/PCKG";
%hinclude packages(SPFinit.sas);
The first line assigns the packages fileref to the C:/PCKG directory.

The second includes content of the SPFinit.sas file (i.e. the framework
content) into the SAS session.

Since the framework’s macros rely on the packages fileref we have to
remember to keep it assigned through entire SAS session.

Hint. If we paste the above two lines of code into the autoexec.sas file the
framework will be automatically available from the beginning of the session.

load the package

Lets assume that the SAS Package we installed (i.e. downloaded into the
C:/PCKG directory) was the baseplus.zip.

To load the package into SAS session we run the following code:
%loadPackage (BasePlus)

This line of code loads package content (e.g. macros, functions, data sets,
formats, etc.) into the SAS session and prints out in the SAS log a short
information about the loading process and the package.

help about the package

Lets assume that the SAS Package we installed (i.e. downloaded into the
C:/PCKG directory) was the baseplus.zip.

To get help about the package printed in the SAS log we run the following code:
%helpPackage (BasePlus)

This line of code prints out in the SAS log the help information about the

package and its elements.

To learn about the package license we run: /helpPackage (BasePlus, License).

To learn about particular element of the package, e.g. a function named
arrFill(), we run: %helpPackage (BasePlus, arrFill).

To learn about all available components of the package we run:
/helpPackage (BasePlus, *).

unload the package

Lets assume that the SAS Package we installed (i.e. downloaded into the
C:/PCKG directory) was the baseplus.zip.

To unload the package from SAS session we run the following code:
%unloadPackage (BasePlus)

This line of code removes all package content (e.g. macros, functions, data sets,
formats, etc.) from the SAS session and prints out in the SAS log a short
information about unloaded elements.

Summary

in “short” words, an example

B Create the C:/PCKG directory,
B Go to the https://github. com/yabwon/SAS_PACKAGES

B Download the framework file SPFinit.sas and the package of choice (e.g
BasePlus) into the C:/PCKG directory.

B Run the following code:
filename packages "C:/PCKG"; /* set the directory */
%include packages(SPFinit.sas); /* enable the framework */
%loadPackage (BasePlus) /* load the package content */
/helpPackage (BasePlus) /* get help for the package */
%unloadPackage (BasePlus) /* unload the package */

appendix

If you would like to learn more about
using packages see upcoming pages.

Appendix 0

documentation

The documentation for the SAS Packages Framework is located under the following
address:

https://github.com/yabwon/SAS_PACKAGES/tree/main/SPF/Documentation

The current version is in the file:

SAS(r) packages - the way to share (a how to)- Paper 4725-2020 - extended.pdf

Appendix 1

how SPF interacts with SAS session

Since the framework’s macros rely on the packages fileref we have to
remember to keep it assigned and unchanged through entire SAS session.

When we enable the framework the following macros are generated:
%installPackage (), %loadPackage (), %loadPackageS(), %helpPackage(),
%unloadPackage (), %verifyPackage (), %previewPackage (), %listPackages(),
%hextendPackagesFileref (), and /generatePackage ().

When we load the first package, e.g. run the %loadPackage (somePackage)
macro for the first time, the SYSLoadedPackages macrovariable is created and
populated. It stores the list of loaded packages in the current SAS session.

Appendix 2

help for SPF macros

When we run the framework macros without arguments or with HELP
keyword, like:

%installPackage(),

%loadPackage (HELP),

/helpPackage (),

/%unloadPackage (HELP),

or

fgeneratePackage ()

the help information (for five listed macros) is printed out into the SAS log.

Since the %1listPackages() has no arguments we run
%listPackages (HELP)
to see the help for the macro.

For the JiextendPackagesFileref () we run
fextendPackagesFileref (HELP)
to see the help for the macro.

Appendix 3

lazy data

Sometimes the developer may provide packages for which data are not
automatically loaded into the SAS session, they are so-called lazydata.

When we want to load such data the following code has to be executed:
B to see lazy data available we run: /helpPackage (myPackage) and read
information in the SAS log,

B to load lazy data we copy the data set name and run:
%loadPackage (myPackage, lazydata=nameOfTheDatasetToBeLoaded)
We can provide a space separated list of datasets to load (e.g. lazydata=A B C)
or if we want to load all lazy data we can use an asterisk (i.e. lazydata=+)

When a regular data set provided with the package has to be reloaded (e.g. it
was corrupted) the lazydata= may be used for that purpose.

Appendix 4

alternative to steps 2 & 4

If the SAS session allows us to use URL file reference we can enable the SAS Packages Framework
with the following code:

filename packages "C:/PCKG";

filename SPFinit URL
"https://raw.githubusercontent.com/yabwon/SAS_PACKAGES/main/SPF/SPFinit.sas";

%include SPFinit;

But we have to remember that the code above does not create a copy of the SPFinit.sas file in
the C:/PCKG directory. It only enables the framework for the current session.

Current default packages repository address is:
https://raw.githubusercontent.com/yabwon/SAS_PACKAGES/main/
but it could be altered with the sourcePath= parameter.

To have the SPFinit.sas file downloaded into the packages folder (for future use even without the
internet access) run:

%installPackage (SPFinit)

Appendix 5

alternative to step 3

If the SAS session allows us to use URL file reference we can, affer enabling the SAS Packages
Framework, download packages with use of the following code:

%installPackage (BasePlus)

During the installation a copy of the baseplus.zip file is created in the C:/PCKG directory so it
allows us to use the package in future (even if we don’t have access to the network).

The installPackage macro allows multiple packages to be installed at one run, space separated list
should be provided, e.g. %installPackage (somePackagel somePackage?2).

Also the mirror= parameter allows to alter source for repository.

Value mirror=0 indicates: https://raw.github.com/SASPAC/

Value mirror=1 indicates: https://raw.githubusercontent.com/yabwon/SAS_PACKAGES/main
value mirror=2 indicates: https://pages.mini.pw.edu.pl/~ jablonskib/SASpublic/SAS_PACKAGES
The default value is 0.

Default packages repository address can be altered with the sourcePath= parameter.

The version parameter indicates which historical version of a package to install (available only
when mirror is 0).

Appendix 6

in "short” words, an example no. two

B Create the C:/PCKG directory,
B Go to the https://github.com/yabwon/SAS_PACKAGES
B Download the framework file SPFinit.sas into the C:/PCKG directory.

B Run the following code:
filename packages "C:/PCKG"; /* set the directory */

hinclude packages(SPFinit.sas); /* enable the framework */

%installPackage (BasePlus) /* download the package zip from the github */
%loadPackage (BasePlus) /* load the package content */

JhelpPackage (BasePlus) /* get help for the package */

%unloadPackage (BasePlus) /* unload the package */

Appendix 7

in "short” words, an example no. three

Run the following code:
filename packages "Ysysfunc(pathname(WORK))"; /* set the directory */

filename SPFinit URL

"https://raw.githubusercontent.com/yabwon/SAS_PACKAGES/main/SPF/SPFinit.sas";
%include SPFinit; /* enable the framework */

%installPackage (BasePlus) /* download the package zip from the github */
%loadPackage (BasePlus) /* load the package content */

%helpPackage (BasePlus) /* get help for the package */

%unloadPackage (BasePlus) /* unload the package */

Appendix 8

loading multiple packages with one macro

It is possible to load multiple packages with one run. The %loadPackageS()
macro (mind the S at the end!) is a wrapper for the %loadPackage () macro.

A comma separated list of packages is required. The version of the package
may be added in brackets. It works only with the zipped packages with default
options.

Example of loading multiple packages:
%loadPackageS (somePackagel(1.7) ,somePackage2, somePackage3(4.2))

Appendix 9

verify package content

For SAS 9.4M6 and later it is possible to verify if a package content is genuine,
i.e. not altered by third parties, with the JverifyPackageS() macro.

The Developer provides the User with hash digest of the zip file which is
required to verify the package.

Example of verifying package:
%verifyPackageS (myPackage,
hash=VBKSH93VB39RBKJBVCOLBVJBU21RASDL80BBK221HMBIOP)

Appendix 10

more about searching help for a package

If a package contains a macro, an IML module, a format/informat, or a function
which are sharing the same name , e.g. abc, then the following help search:
JhelpPackage (packageName, abc) will print out help info for all of them.

But if we want to learn only about particular one we can do it writing the help
search in the following way:
B for the function or the IML module: /helpPackage (packageName, abc()),

B for the macro: /helpPackage (packageName, ’%abc()’), with single quotes to
prevent resolving macro name,

B for the format/informat: /helpPackage (packageName, $abc.), regardless it is
a numeric or a character format/informat.

Appendix 11

previewing the code of a package

If we want to preview the package content, e.g. code of a macro, an IML module,
a format/informat, or a function then the:

hpreviewPackage (packageName, searchedElement)

will print out the code of searched element (including all comments).

Behaviour and searching rules are exactly the same as for the }helpPackage ()
macro, except for the License keyword which is ignored.

Appendix 12

point to multiple directories with packages

If we want to point to multiple directories containing packages it is possible with
the packages filename:

filename packages ("/dir/mmbr/one" "/dir/nmbr/two");

The directories list is searched from left to right both for the framework and for
packages.

If we want to add new directory to existing packages filename we can use the
hextendPackagesFileref () macro, e.g. assuming the above code was executed and
we want to add /new/dir directory we do it in the following way:

filename packages ("/new/dir" %extendPackagesFileref());

Appendix 13

local characters in directories with packages

Because of a bug described in https://support.sas.com/kb/68/708.html it is not
recommended, for SAS earlier than 9.4M7, to store packages in folders containing
local characters, e.g.

filename packages "/folder/ZOLC/pckg";

or

filename packages "C:\folder\Z%ZF\pckg";

The directories with such local characters cause error in work of the framework
and packages.

Appendix 14

accessing SAS Packages Framework through SASAUTOS facility

If you put the SPFinit.sas file directly into your machine SASAUTOS it, as you for
sure know, won’t work as expected...

But, fortunately, all macros constituting the SAS Packages Framework are available
as separate files under:
https://github.com/yabwon/SAS_PACKAGES/tree/main/SPF/Macros

Each SAS file in that location contains appropriate code of one macro extracted
from the SPFinit.sas file. Embed those files in your SASAUTO0S directory and you
are good to go.

Appendix 15

installing multiple SAS packages

Starting October 2022 the JinstallPackages () macro allows to install multiple
packages with version requirement. The functionality works with mirror=0
parameter.

The following list of example calls is accepted:
%installPackage (baseplus macroarray dfa GSM)
%installPackage (baseplus macroarray dfa GSM, version=1.17 1.0 0.5)
%installPackage (baseplus(1.17) macroarray(1.0) dfa(0.5) GSM)
%installPackage (SPFinit macroarray(1.0) dfa, version=20200801)
%installPackage (SPFinit (20200801) macroarray(1.0) dfa(0.5) GSM)

Appendix 16

cherry picking

Starting the end of November 2022 the 7loadPackage () macro allows to “cherry
pick” elements of the package for loading.

For example, execution of the following code:
%loadPackage (BasePlus, cherryPick=rainCloudPlot getVars)
results with loading only the rainCloudPlot and the getVars elements.

If several object types (e.g., a macro and a format) share the same name all will be
loaded.

Appendix 17

utility macros for proc IML and proc CAS

If a package contains IML modules or CASL user defined functions additional, utility
macros for IML Modules and CASL UDFs, are generated when package is loaded.

Macros are generated with the following names: /,<packageName>IML () and
%<packageName>CASLudf ().

Run them, accordingly, as the first line in the proc IML or proc CAS to access the
package content.

Appendix 18

additional content for a package

Sometimes a package may contain additional content e.g., a pdf with extended

documentation.
To verify if a package has an additional content available run the %helpPackage ()

macro and read the log.
Read the documentation for details (see Appendix 0).

use packages!

	Intro
	Package
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5
	Step 6
	Step 7
	Summary
	theend
	appendix
	Appendix 0
	Appendix 1
	Appendix 2
	Appendix 3
	Appendix 4
	Appendix 5
	Appendix 6
	Appendix 7
	Appendix 8
	Appendix 9
	Appendix 10
	Appendix 11
	Appendix 12
	Appendix 13
	Appendix 14
	Appendix 15
	Appendix 16
	Appendix 17
	Appendix 18
	usepackages

