
Paper 4725-2020 J Extended Version, 2025.07.29 I

SAS◦R Packages - The Way To Share (a How To)

Bartosz Jablloński, Warsaw University of Technology

ABSTRACT

When working on Base SAS◦R code, especially when it becomes more and more complex, there is a point

in time when a developer decides to break it into small pieces. The developer creates separate files for

macros, formats/informats, and for functions or data too. Eventually the code is ready and tested and

it is time for the deployment. The issue is that the code had been written on a local Windows machine

and the deployment is on a remote Linux server. Folders
1
and files have to be created with the proper

structure, code has to be run in the right order and not mixed up. Moreover it is not the developer who

is deploying... Small challenge, isn’t it?

How nice it would be to have it all (i.e. the code and its structure) wrapped up in a sin-

gle file - a portable SAS package - which could be copied and deployed with a one-liner like:

%loadPackage(MyPackage)?

In this article an idea of how to create such a SAS package in a fast and convenient way will be

proposed/shared. We will discuss:

• a concept of how to build a package,

• the tools required to do so (framework), and

• a ”how to” of the process (i.e. generating packages, loading, and using them).

The intended readers for the following document are intermediate SAS users (i.e. with good knowl-

edge of Base SAS and practice in macro programming, see [1]) who want to learn how to share their

code with others.

INTRODUCTION and CONTEXT

In the world of programmers, software developers, and ”computer people” the concept of a package

is well known and common. To give an evidence of this statement let us consider four very popular

examples: Linux, Python, TEX, and R software, and as an endorsement the following quotes.

According to [6]:

”In Linux distributions, a package refers to a compressed file archive containing all

of the files that come with a particular application. [...] Most packages also contain

installation instructions for the OS, as well as a list of any other packages that are

dependencies (prerequisites required for installation).

Common types of Linux packages include .deb, .rpm, and .tgz. Since Linux

packages do not usually contain the dependencies necessary to install them, many

Linux distributions use package managers that automatically read dependencies

files and download the packages needed before proceeding with the installation.”

According to [5]:

”[In Python] modular programming refers to the process of breaking a large, un-

wieldy programming task into separate, smaller, more manageable subtasks or

modules. Individual modules can then be cobbled together like building blocks to

create a larger application. Packages allow for a hierarchical structuring of the

module [...].”

1
Folders - also known as Directories

1

SAS PACKAGES - THE WAY TO SHARE J EXTENDED VERSION, 2025.07.29 I 2

According to [4]:

”Many LATEX commands [...] are not specific to a single class but can be used with

several classes. A collection of such commands is called a package and you inform

LATEX about your use of certain packages in the document by placing one or more

\usepackage commands after \documentclass.

Just like the \documentclass declaration, \usepackage has a mandatory argu-

ment consisting of the name of the package and an optional argument that can

contain a list of package options that modify the behaviour of the package.”

As of January 2020, there were over 5,700 packages available on the Comprehensive TEX Archive Net-

work! More than a dozen of TEX packages were used while writing this article.

According to [3]:

”In R, the fundamental unit of shareable code is the package. A package bundles

together code, data, documentation, and tests, and is easy to share with others. As

of January 2015, there were over 6,000 packages available on the Comprehensive

R Archive Network, or CRAN, the public clearing house for R packages. This huge

variety of packages is one of the reasons that R is so successful: the chances are

that someone has already solved a problem that you’re working on, and you can

benefit from their work by downloading their package.”

As of January 2020, there were over 15,000 packages available on the CRAN!

The SAS/IML offers (limited) version of functionality similar to concept of a package in programming

languages and environments mentioned above but such functionality is not available in the Base SAS.

The main goal of this article is to propose, describe, explain, and discuss an original idea of a process

and tools required to build SAS packages. In subsequent sections we introduce the concept of a SAS

package from both user and developer point of view. What is worth to mention, and what is one of

the biggest advantages of using SAS packages, is that the work to be done on the user’s side to use a

package is almost none. The last section provides an example of package creation.

WHAT IS a SAS PACKAGE?

A SAS package
2
is an automatically generated, single, stand alone zip file containing organised and

ordered code structures, created by the developer and extended with additional automatically gener-

ated ”driving” files (i.e. description, metadata, load, unload, and help files).

The purpose of a package is to be a simple, and easy to access, code sharing medium, which will allow:

on the one hand, to separate the code complex dependencies created by the developer from the user

experience with the final product and, on the other hand, reduce developer’s and user’s unnecessary

frustration related to a remote deployment process.

In this article we are presenting a standalone Base SAS framework which allows to develop and use

SAS packages.

To create a package the developer must prepare the code files and a description file, fit them into a

structured form (see next sections for details), download %SPFinit.sas (the SAS Packages Framework)

file and execute the %generatePackage() macro (see ”TUTORIAL” subsection).

To use a package the user should download the package zip file into the packages folder (containing

also downloaded SPFinit.sas file). And, in the SAS session, the user should run the following code:

filename packages "<directory/containing/packages>";
%include packages(SPFinit.sas);
%loadPackage(packageName)

to have the package available.

2
The idea presented in this article should not be confused with other occurrences of ”package” concept which could be

found in the SAS ecosystem, e.g. Proc DS2 packages, SAS/IML packages, SAS ODS packages, or SAS Integration Technologies

Publishing Framework packages.

SAS PACKAGES - THE WAY TO SHARE J EXTENDED VERSION, 2025.07.29 I 3

THE USER: HOW TO and THE RULES

User’s files and folders. Since the idea of a SAS package is to take off (from the user’s shoulders)

the burden of ”necessity to know how it is all connected and dependent” there are only a few simple

steps to be done on the user’s end. The user’s part of work required to use a package starts with

setting a packages folder. The work goes as follows:

• Create a folder for your packages, e.g. under Windows OS family C:/SAS_PACKAGES or under

Linux/UNIX OS family /home/<username>/SAS_PACKAGES.

User’s session. When folder is ready the user, to enjoy the package in a SAS session, executes the

following steps.

• Assigns the packages filename to the packages folder:

filename packages "<directory/containing/packages/>";

• There are two ways to enable the framework (i.e. set up the SAS session for using packages):

◦ for a ”one-time-only” set up (framework is enabled only for current SAS session) the user runs:

filename SPFInit url
"https://raw.githubusercontent.com/yabwon/SAS_PACKAGES/main/SPF/SPFinit.sas";

%include SPFInit; /* enables the framework */

◦ for a ”permanent” set up (the framework file is downloaded for use in the current and future SAS

sessions) user: downloads the SPFinit.sas file into the packages folder (see ”TUTORIAL” subsec-

tion for details) and, to enable framework for the SAS session (current or in future), runs:

%include packages(SPFinit.sas);

• To install the package the user either downloads the package zip file into the packages folder manually

(see ”TUTORIAL” subsection for details) or executes the following code (assuming the framework is

already enabled):

%installPackage(packageName)

to download the package automatically from the Internet repository.

• To get help about the package printed in the log:

◦ for general information about the package the user runs:

%helpPackage(packageName)

◦ for all available information about the package the user runs:

%helpPackage(packageName,*)

◦ for a particular element of the package, e.g. a function or a macro, help the user runs:

%helpPackage(packageName, helpKeyword)

where helpKeyword is a single word which is used for context search. ”License” prints out license

text.

• To load the package into current SAS session the user runs:

%loadPackage(packageName)

• For removing (a.k.a. unloading) the package content from the current SAS session the user runs:

%unloadPackage(packageName)

For a detailed list of macro parameters either see the ”Appendix B” or from the SAS session level run

macros with empty parameter list, e.g. %loadPackage().

After loading a package for the first time it is a good practice to read the log to find out more about

package content and the list of loaded elements.

The %loadPackage() is provided with an extra macro wrapper named %loadPackageS() (mind the S at

the end). The wrapper allows to load multiple packages with one run, list of packages for loading has

to be comma separated, e.g. %loadPackageS(muPackage, otherPackage, PiPackage).

Caution! There is one important restriction regarding the SAS session! Words ”package” and

”packages” are restricted as a file reference for the FILENAME statement and the FILENAME() func-

tion. These words are file references used internally by the %loadPackage(), %helpPackage(), and

SAS PACKAGES - THE WAY TO SHARE J EXTENDED VERSION, 2025.07.29 I 4

%unloadPackage() macros. Using them may cause unexpected results and may jeopardise package

stability!

Note. The code executed behind the scenes is designed to affect the user session environment in an ”as

small as possible” way. The required minimum is compilation of the SAS Packages Framework macros

(%generatePackage(), %installPackage(), %loadPackage(), %unloadPackage(), %helpPackage(),

%listPackages(), %loadPackageS(), %verifyPackage(), %extendPackagesFileref(), and

%loadPackageAddCnt()) and setting a global macrovariable SYSloadedPackages. When the

%loadPackage() macro is executed for the first time the SYSloadedPackages macrovariable is

created and its value is updated with package name and version for each new loaded package. If

a package contains IML modules or CASL user defined functions additional macros are generated

too, those macros are named %<packageName>IML() and %<packageName>CASLudf() respectively (see

User’s ”under the hood”).

Note. The packages filename can point to multiple directories, e.g.

filename packages ("/dir/nmbr/one" "/dir/nmbr/two");

The directories list is searched from left to right both for the framework and for packages. During

installation the first directory is used. To extend an existing packages filename with a new directory

the %extendPackagesFileref() utility-macro can be used, e.g. to add /new/dir directory the following

code can be executed: filename packages ("/new/dir" %extendPackagesFileref());

Note. Because of a bug described in https://support.sas.com/kb/68/708.html it is not recom-

mended, for SAS earlier than 9.4M7, to store packages in folders containing local characters, e.g.

filename packages "/dir/
.
ZÓ/LĆ/pckg"; or filename packages "C:\folder\��\pckg";

The directories with such local characters cause error in work of the framework and packages.

Package additional content. Usually a package is a ”code container” with plain text files with code

inside, but sometimes a package may also contain so called ”additional content”. Additional content

is provided by a Developer who want to include, for example: a 150 pages long pdf file with detailed

documentation, or a bunch of jpg files with figures depicting relations between package macros, or

something else. Basically content that can’t be delivered in the ”standard” way. By default this addi-

tional content is not deployed automatically e.g., from security point of view, or production job doesn’t

need it to run, etc. But if there is a need for it there are three ways to get it:

The first one (”by-the-book”), and also the recommended one. The additional content is ex-

tracted during the automatic installation process using the %installPackage() macro. For this to

work the loadAddCnt= parameter has to be set to 1. The additional content is extracted to the

<packageName>_AdditionalContent directory into the same location where the package is installed

i.e., inside packages fileref location.

The second one (”by-the-work”), when the additional content is extracted during the loading process

with the %loadPackage()macro. For this to work also the loadAddCnt= parameter has to be set to 1.

The additional content is extracted to the <packageName>_AdditionalContent directory inside the

Work library location.

The third one (”by-the-user”), when the additional content is extracted with dedicated

%loadPackageAddCnt() macro. By default the additional content is extracted to the

<packageName>_AdditionalContent directory inside the Work library location too, but it can

be altered by changing the target= parameter, which indicates the location.

If done ”by-the-book”, or ”by-the-user” with target= parameter, the additional content is not auto-

matically deleted when SAS session ends, in this case the ”additionals” have to be deleted manually

by the User.

To verify if a package has an additional content available read the log after running the %helpPackage()

macro.

SAS PACKAGES - THE WAY TO SHARE J EXTENDED VERSION, 2025.07.29 I 5

User’s ”under the hood”. The above steps are all that is necessary to use and work with a package.

There are also some additional things happening in the background. This section explains them in more

details.

• The %installPackage() macro installs a package, i.e. it downloads the package zip file from the

Internet repository into the folder pointed by the packages filename. Successful installation ends

with return code 0 in the log. By default if the package is already installed the macro will overwrite

existing package file. A space separated list of packages may be provided to install multiple

packages at once, e.g. %installPackage(somePackage PiPackage myPackage) If the SPFinit or

SASPackagesFramework is used as the macro argument then the SAS Packages Framework file

SPFinit.sas is downloaded into the packages folder. Current default packages repository address

is: https://raw.githubusercontent.com/SASPAC/ but it could be altered with the sourcePath=

parameter, The sourcePath= parameter value for path can be in quotes or not. Also the mirror=

parameter allows to alter source for repository.

Value mirror=0 indicates: https://raw.github.com/SASPAC/

Value mirror=1 indicates: https://raw.githubusercontent.com/yabwon/SAS_PACKAGES/main

value mirror=2 indicates: https://pages.mini.pw.edu.pl/~jablonskib/SASpublic/SAS_PACKAGES

Value mirror=3 indicates: https://raw.github.com/PharmaForest/ (since July 2025)

The default value is 0.

The version parameter indicates which historical version of a package to install. Historical version

are available only if mirror parameter is set to 0. Default value is null which means ”install the

latest”.

Starting October 2022 the %installPackages() macro allows to install multiple packages

with version requirement. The functionality works for mirror=0 parameter, for example:

%installPackage(SPFinit(20201002) macroarray(1.0) dfa(0.5) GSM). For mirror 1 and 2 a note

about lack of version support is printed in the log.

Starting September 2024 the %installPackages()macro allows to create a macrovariable contain-

ing information about successful and failed installations. Name of the macrovariable is provided

with SFRCVN parameter, a global macrovariable is created. The format of returned value is <number

of successes>.<number of failures>, e.g. value 4.2 means four successes and 2 failures out of

6 requests.

Starting December 2024 the %installPackages() macro allows during the installation process to

download the markdown file with package’s documentation (assuming that one was provided by the

developer). Process in triggered by the instDoc= parameter, its default value of 0 - means ”do not

download”, when set to 1 means ”download”.

Starting July 2025 the %installPackages() macro allows to point particular GitHub loca-

tion to install package from it. Parameter github= points to a user or an organization to

search for package file under: https://raw.github.com/<github>/<packagename>/raw/main/ or

https://raw.github.com/<github>/<packagename>/raw/<vers>/ if version is provided.

The sourcePath= and the github= parameters are empty by default, but when those parameters are

not empty then precedence goes as follows: as the first the sourcePath= parameter is honored, the

second is the github= and the last one is the mirror=‘ parameter.

• The %loadPackage() macro loads all components of the package as a primary job. Additionally in-

formation from the package description file is printed into the log. Whenever an element of the

package is loaded an appropriate note is printed into the log. If a macro is loaded and a macro

with the same name is found in the sasmacr catalog a note about this fact is printed. If there were

any requirements provided they will be tested at this point. If required element of the SAS sys-

tem is missing the loading process is aborted with an error message. If required package is not

loaded (SYSloadedPackages macrovariable is tested) SAS tries to load that required package, in

SAS PACKAGES - THE WAY TO SHARE J EXTENDED VERSION, 2025.07.29 I 6

case of failure loading process is aborted with an error message. If the loading process is suc-

cessful the SYSloadedPackages macrovariable is updated with new entry. If a particular version of

a package is required then the %loadPackage() macro has to be executed with additional param-

eter requiredVersion, e.g. %loadPackage(PiPackage, requiredVersion=3.1415). By default the

macro tests if the provided version is greater o equal then the required version, in case of failure load-

ing is aborted with an error message (this condition implicite assumes that packages are backward

compatible). In case when the required version is provided with a comparison operator (e.g., =, <=,

=<, etc.) then the macro uses provided operator to compare version, and only if the condition is true

the package is loaded. The condition is checked the same way independently if the operator is pro-

vided before or after the version number. For example, those two calls: %loadPackage(PiPackage,

requiredVersion=3.1415<=) and %loadPackage(PiPackage, requiredVersion=<=3.1415) will be

checked as 3.1415 <= providedVersion. In this example it is interpreted as ”Package version has

to be at least 3.1415”. To force check if a package has exact version the equal sign should be used,

e.g., %loadPackage(PiPackage, requiredVersion=1.2.3=).

Note. The package may contain datasets as so called ”lazy loading datasets”. Such datasets

are not automatically loaded when the %loadPackage() macro is executed. To load such dataset

the user has to call the %loadPackage() macro with non missing lazyData= parameter, e.g

%loadPackage(PiPackage, lazyData=work.first1E6digits) (list of multiple elements separated

by space is allowed, an asterisk(*) means ”load all data”). In case when regular dataset provided

during loading process has to be reloaded the lazyData= parameter can be used to do that.

Note. Sometimes a package offers so many features that the number may be ”overwhelming”. In

such case only some of them may be selected for loading. Such process is called a ”cherry picking”.

The feature is provided by the %loadPackage() macro which uses a cherryPick= parameter.

For example, execution of the following code:

%loadPackage(BasePlus, cherryPick=rainCloudPlot getVars)

results with loading only the rainCloudPlot and the getVars elements. If several object types (e.g.,

a macro and a format) share the same name all will be loaded.

The expected value of the cherryPick= parameter is a space separated list of selected elements of

the package to be loaded into the SAS session. Default value of an asterisk (*) means: ”load all

elements of the package”. Also the empty list is equivalent to default.

What is the trade-off?

– Since the cherry picking selects only a part of the package the SYSloadedPackages macrovari-

able is not updated with the package name (unless the package was already loaded).

– Dependencies i.e., packages from the ReqPackages list, are not loaded automatically, so they

have to be loaded manually.

– The %unloadPackage()macro executed on such partially loaded package may sometimes issue

some irrelevant warnings e.g., ”Subroutine ’XYZ’ cannot be found for deletion”.

If a package contains exec type files they loading can be suppressed by setting the suppressExec=

parameter to one.

• The %helpPackage() macro prints out into the log help information attached to the package con-

tent. The %helpPackage() macro is independent from the %loadPackage() macro what means that

it can be executed even if the %loadPackage() was not executed. The user can read about a pack-

age before loading it! When no second argument is provided only the package description, list of

package elements, list of required components, and version of the %generatePackage()macro used

are printed out. When the second argument is provided, if it is an asterisk (”*”) all help content is

printed out (for datasets also proc contents is run), if it is a helpKeyword then content search is

executed based on its value and only selected parts of help content are printed out. If helpKeyword

value is ”License” then package license is printed out. List of components of a package can be saved

SAS PACKAGES - THE WAY TO SHARE J EXTENDED VERSION, 2025.07.29 I 7

into a dataset named work.packageName_content by setting paramater packageContentDS= to one.

• The %unloadPackage() macro cleans up the session. All objects created by the package (except

execs) are deleted. If clean files were provided their content is executed too. If the unloading

process is successful the SYSloadedPackagesmacrovariable is updated. If a package required addi-

tional packages to be loaded then during unload a list of calls to %unloadPackage() for this additional

packages is printed in the log, to allow their manual execution.

• The %listPackages() macro prints in the log list of SAS packages availabe in the packages fileref.

• The %verifyPackages() macro, for SAS 9.4M6 and later, allows to verify if given package has

the same hash (SHA256) digest as the one provided. The Developer provides the User with

hash digest of the zip file which is required to verify the package. The hashing_file() func-

tion is used to generate hash identifier. Example of use would be: %verifyPackageS(myPackage,

hash=F*VBKSH93VB39RBKJBVC0LBVJBU21RASDL80BBK221HMBIOP)

• The %previewPackage() macro prints in the log the code of SAS package elements. Everything,

including comments, is printed out so the code can be inspected without necessity of unzipping

package files by hand. The macro behaviour is analogues to the behaviour of the %helpPackage()

macro. The second argument is exactly the same helpKeyword which is used by the %helpPackage()

macro (except for the License keyword which is ignored).

User’s utility macros for loading package content. During execution of the %loadPackage()macro,

if a package contains IML modules or CASL user defined functions additional utility macros for IML

Modules and CASL UDFs are generated when package is loaded. Macros are generated with the follow-

ing names: %<packageName>IML() and %<packageName>CASLudf(). Their purpose is to make loading

of Modules or UDFs (with potentially multiple dependencies) easy in Proc IML and Proc CAS.

Run them, accordingly, as the first line in the Proc IML or Proc CAS to access the package content.

For Proc IML the use is as follows:
proc IML;
%<packageName>IML()
<... your code using IML modules from the package ...>

quit;

For Proc CAS the use is as follows:

proc CAS;
%<packageName>CASLudf()
<... your code using CASL UDFs from the package ...>

quit;

If a utility macro is generated appropriate note and a code snippet is printed in the log of the package

loading process. In 99% cases macros are used with default parameters values but, in case when

deeper insight about macros parameters is needed, help info is printed in the log when the following

code is run: %<packageName>IML(list=HELP) or %<packageName>CASLudf(list=HELP)

If created, those macros are automatically deleted when the %unloadPackage() macro is run.

User’s ”in case of emergency”. This section covers ”emergency” situations that user may come

across when for the first time loads a package.

The first one is backward compatibility. The package file is a zip file so at least SAS9.4 is required to

use it. But it is also possible to use earlier versions of SAS software if it is needed. When the SAS ses-

sion does not support ZIP fileref the following solution could be used: unzip the packagename.zip file

content into a packagename.disk folder and run loading, helping, and unloading macros with following

options:

%loadPackage(packageName, zip=disk, options=)
%helpPackage(packageName, helpKeyword, zip=disk, options=)
%unloadPackage(packageName, zip=disk, options=)

SAS PACKAGES - THE WAY TO SHARE J EXTENDED VERSION, 2025.07.29 I 8

The second one is no access to the SPFinit.sas framework file. When user has only the

packagename.zip file with the package but does not have an access to the SPFinit.sas file with

the %loadPackage() macro the following solution could be used: each package generated by

%generatePackage() macro contains %ICEloadPackage() macro, which is a simplified version of the

%loadPackage() macro, and can be used for an ”emergency” load. To use it: a) make file reference to

the package zip file, b) include iceloadpackage.sas, c) make file reference to the package folder, and

d) load package.

filename ice ZIP "<directory/containing/packages>/packagename.zip";
%include ice(iceloadpackage.sas);
filename packages "<directory/containing/packages>/";
%ICEloadPackage(packageName)

SAS PACKAGES - THE WAY TO SHARE J EXTENDED VERSION, 2025.07.29 I 9

THE DEVELOPER: HOW TO and THE RULES

Developer’s files and folders. The developer’s part of work to build a package starts with prepar-

ing a set of files and folders. This part goes as follows:

• Create a folder for your package a.k.a. package folder (hint: name it the same as your package).

• Create a description file, named description.sas, and copy it into the package folder. The file is

mandatory, has simple structure, and it contains package metadata and (short) description (compare

[3]). The simple structure of the description.sas file can be seen in Figure 1.

/* This is the description file for the package. */
/* The colon (:) is a field separator and is restricted */
/* in lines of the header part. */

/* **HEADER** */ Ê

Type: Package : Ë

Package: ThePackageName : Ì

Title: Short description, single sentence. : Í

Version: x.y.z : Î

Author: Fname1 Lname1 (xxx1@yyy.zz), Fname2 Lname2 (xxx2@yyy.zz) : Ï

Maintainer: Fname3 Lname3 (xxx3@yyy.zz) : Ð

License: XYZ17 : Ñ

Encoding: UTF8 : Ò

Required: "Base SAS Software", "SAS/Xxx", "SAS/ACCESS Interface to Yyyy" : À

ReqPackages: "somePackage (3.14)", "otherPackage (42)" : Á

/* **DESCRIPTION** */ Ó

/* All the text below will be used in help */
DESCRIPTION START:

Lorem ipsum dolor sit amet, ThePackageName consec tetur
adipis cingelit. Nullamdapibus lacus a elit congue
elementum. Suspendisse iaculis ipsum nec ante luctus
volutpat. Donec iaculis laoreet tristique.

DESCRIPTION END:

Figure 1: Package description structure.

The meaning of entries (a.k.a. tags) inside the description.sas file are the following (the dark bullet

marks an element which is mandatory):

(Ê) /* **HEADER** */ - marks the header start (it is optional comment). Each of the following lines

is a key:value pair and such a pair must be a single line of text. The colon (:) is a field separator

and is restricted in lines of the header.

(Ë) Type - is a constant (i.e. ”Package”), required, and not null value.

(Ì) Package - is the package name. It is required, not null, up to 24 characters long, and shares

naming restrictions like those for a SAS dataset name.

(Í) Title - is the short title of a package (i.e. one phrase). It is required and not null.

(Î) Version - is the package version, it is required, not null, and a positive number (i.e.>0). The

preferred form is: an integer value for a stable version, a decimal value for a non-stable one. Since

the %loadPackage() macro contains a dedicated macrovariable requiredVersion to tests if the

provided version of a package is greater or equal then the required version - a very important,

in line with the ”SAS way”, assumption must be highlighted! The assumption is: packages are

assumed to be backward compatible. The major.minor.patch approach is also accepted. A

package version can be: X, X.Y, or X.Y.Z. Missing parts are treated as 0, e.g. 1 is equivalent with

1.0.0, 1.2 is 1.2.0, and .2 is 0.2.0, etc.

SAS PACKAGES - THE WAY TO SHARE J EXTENDED VERSION, 2025.07.29 I 10

(Ï) and (Ð) Author, Maintainer - are comma separated lists of package author(s) and main-

tainer(s). Elements of lists are of the form: ”Firstname Lastname (email@address.com)”.

(Ñ) License - is the license under which the package is distributed. It is required, not null, possible

values are: MIT, GPL2, BSD, PROPRIETARY, etc. The license text itself should be inserted into the

license.sas file (see further steps).

(Ò) Encoding - is the information about SAS sessions encoding the package files were created in. It

is required and not null. Possible values are: UTF8, WLATIN1, LATIN2, etc. and the values should

satisfy requirements for the encoding= option of the filename statement.

(Ó) /* **DESCRIPTION** */ - Marks the description start (it is optional comment). The package

description is the last required part. It is a free text bounded between the ”DESCRIPTION START:”

and the ”DESCRIPTION END:” tags. It could be multi-line. It should elaborate about the package

and its components (e.g. macros, functions, datasets, etc.) Text outside the tags is ignored.

(À) Required - is a quoted and comma separated list of licensed SAS products required for the SAS

session under which the package will be used. Possible values inserted into the list should be

the same as these the proc setinit prints in the log, e.g. "Base SAS Software", "SAS/IML",

"SAS/ACCESS Interface to Teradata". The ”Required” tag is optional, when it is empty or not

provided in the description the testing code is not generated. Though, it is recommended to add

this one.

(Á) ReqPackages - is a quoted and comma separated list of names and versions (in parentheses)

of other SAS packages required for the package to work. Possible values inserted into the list

should be formatted like e.g. "SQLinDS (0.1)". The ”ReqPackages” tag is optional, when it is

empty or not provided in the description the testing code is not generated.

The description.sas file without additional comments could look like that:

Type: Package
Package: ThePackageName
Title: Short description, single sentence.
Version: x.y
Author: Fname1 Lname1 (xxx1@yyy.zz)
Maintainer: Fname2 Lname2 (xxx2@yyy.zz)
License: MIT
Encoding: UTF8
Required: "Base SAS Software", "SAS/IML"
ReqPackages: "somePackage (3.14)", "otherPackage (42)"

DESCRIPTION START::::::::::::::::::::::::::::::::::::::

Lorem ipsum dolor sit amet, ThePackageName consec tetur
adipis cingelit. Nullamdapibus lacus a elit congue
elementum. Suspendisse iaculis ipsum nec ante luctus
volutpat. Donec iaculis laoreet tristique.

DESCRIPTION END::

Based on the header information, the following internal macrovariables are generated: packageName,

packageVersion, packageTitle, packageAuthor, packageMaintainer, packageEncoding,

packageLicense.

• Inside the package folder create subfolders for the code files. A subfolder name has to be structured

as follows:

a) it contains only lower case letters, digits, and underscore (”_”)

b) it is composed of two parts separated by an underscore (”_”), i.e.

◦ the first part is a series of digits (with leading zeros, e.g. 001, 002, . . ., 123, 124, . . .); its purpose

is to keep execution sequence in case the code must be ordered to run properly;

SAS PACKAGES - THE WAY TO SHARE J EXTENDED VERSION, 2025.07.29 I 11

◦ the second part, called folder type, indicates subfolder content. The type has to be one of the

following:

libname (for libraries assignments),

macro (for macros),

function (for proc fcmp functions),

functions (mind the ”s” at the end, for proc fcmp functions),

format (for formats and informats),

formats (mind the ”s” at the end, for formats and informats),

imlmodule (for IML modules),

casludf (for CASL user defined functions),

proto (for proc proto external C functions),

data (for the code generating datasets),

lazydata (for the code generating datasets which will be loaded on demand, so called ”lazy

loading datasets”),

exec (for so called ”free code”),

clean (for the code cleaning up the session after execs),

kmfsnip (for the code of KMF-abbreviation snippets for DMS or EG sessions),

ds2pck (for the code of PROC DS2 packages),

ds2thr (for the code of PROC DS2 threads),

test (for developer code with package tests) or

addcnt (for additional content for the package).

An example of a package subfolders structure can be found in Figure 2. In case the order of code

execution is irrelevant the first part (i.e. digits and underscore) may be skipped.

In case when the order of code execution is important, e.g. format $efg. must be defined before

function abc(), two folders of type format and function with two different sequences of digits have

to be created in a way that digits indicate execution order, e.g. 017_format for the code of the format

$efg. and 042_function for the code of the function abc().

Note. The list of types may be extended in the future if need be.

Note. If folder name starts with ! (e.g., !ignore_me) or type of the folder is ”unknown” (e.g., not

supported one) the content of such folder is ignored during package generation process.

• Copy the files with the code into package subfolders in accordance with types and the following set

of rules:

◦ One-file-one-object, e.g. macro %abc() definition has to be contained in a single file without any

definitions of other objects. The only exception are formats/informats, in this case one file has

to contain all definitions of formats/informats sharing the same name, e.g. numeric format abc.,

character format $abc., numeric informat abc., and character informat $abc. all have to be kept

in one file.

◦ An object name is a file name, e.g. a definition of a macro named %abc() has to be contained in

a file named abc.sas.

◦ All files have to have .sas extension. Other files are ignored.

◦ When the function type is used a definition of a function has to be enclosed in the following

template of the FCMP procedure:

proc fcmp
inlib = work.&packageName.fcmp /* optional */
outlib = work.&packageName.fcmp.package
<... other options ...>

;
<... function or subroutine body ...>

run;
quit;

SAS PACKAGES - THE WAY TO SHARE J EXTENDED VERSION, 2025.07.29 I 12

The inlib= and outlib= options are, literally, set to: ”work.&packageName.fcmp”

and ”work.&packageName.fcmp.package” respectively. In case when functions from

other packages are required to be used the inlib= option may be extended e.g.

inlib=(work.&packageName.fcmp work.OnePackagefcmp work.SecondPackagefcmp).

◦ When the functions type (mind the ”s”!) is used a definition of a functionmust not to be enclosed

in the FCMP procedure. In this case it has to be plain code of the function. All functions defined

in the ..._functions subfolder will be compiled with one Proc FCMP execution. An example of

such ”plain” subroutine code could be as follows:

subroutine increaseByOne(a[*]);
outargs a;

do i = 1 to dim(a);
a[i] = a[i] + 1;

end;
return;

endsub;

◦ When type format is used then a definition of a format/informat has to be enclosed in the fol-

lowing template of the FORMAT procedure:

proc format
lib = work.&packageName.format
<... other options ...>

;
<... numeric format definition ...>
<... character format definition ...>
<... numeric informat definition ...>
<... character informat definition ...>

run;

The lib= option is, literally, set to: ”work.&packageName.format”.

◦ When the formats type (mind the ”s”!) is used a definition of a format/informat must not to be

enclosed in the FORMAT procedure. In this case it has to be plain code of the format/informat.

All format/informat defined in the ..._formats subfolder will be compiled with one Proc FORMAT

execution. An example of such ”plain” format/informat code could be as follows:

value abc
low -< 0 = "negative"

0 = "zero"
0 <- high = "positive"

other = "missing"
;

◦ A definition of a imlmodule has to be plain code of the IML module. All modules defined in

the ..._imlmodule subfolder are compiled with one Proc IML execution and are stored in the

work.&packageName.iml catalog.

◦ A definition of a casludf has to be plain code of the CASL user defined function. An example of

such ”plain” CASL UDF code could be as follows:

function myFunction(x, y, z);
result = x + y + z;
return (result);

end func;

SAS PACKAGES - THE WAY TO SHARE J EXTENDED VERSION, 2025.07.29 I 13

All UDFs defined in all ..._casludf subfolders are included with into Proc CAS by execution

of single utility macro (see ”User’s utility macros for loading package content” subsection for

details). UDFs definitions are stored inside the package and are loaded ”on the fly” when the

utility macro is called.

◦ A definition of a proto external C function has to be plain code of the PROTO C function. All

functions defined in the ..._proto subfolder are compiled with one Proc Proto execution and

are stored in the work.&packageName.proto dataset. Function code has to contain the header,

and the body of the function between externc and externcend, for example:

int doublePlusOne(int x);

externc doublePlusOne;
int doublePlusOne(int x)

return (2*x + 1);
externcend;

If there are multiple directories with PROTO C functions then the content of each directory is

marked by subsequent number in the work.&packageName.proto dataset with values: package1,

package2, etc.

◦ exec folders are for so-called ”free code”, i.e. if a package, to be ready and usable, requires some

additional code to be run (code not fitting provided types) - this code has to be inserted into a

file inside one of the exec subfolders.

◦ clean folders are for cleaning after execs, i.e. if a code from one of exec folders creates some

object (e.g. a catalog, a macro, or a dataset) the appropriate code inside a clean subfolder has

to be developed to remove that created object.

Note: Each exec file should have clean file counterpart and vice versa. If the number of exec

files and clean files differs but both are positive a warning is issued. But if execs are positive and

cleans are zero (or other way around) an error is issued!

◦ kmfsnip folders are dedicated for kmf (keybord-macro-file) files. Those files contain the code of

KMF-abbreviation snippets which can be imported in SAS DMS or EG session. Structure of this

type file is a bit special. It has the following form:

/*** HELP START ***//*
<Part for help info notes.>

*//*** HELP END ***/

kmfCodeDesc: <The snippet single line description text.>

kmfCodeStart:
<Code of the snippet,
can be in multiple
lines long.>

kmfCodeEnd:

The kmfCodeStart: and kmfCodeEnd: special tags indicate (respectively) the beginning and the

end of the snippet. Code between those two can be multiple lines long. The kmfCodeDesc: is a

single line description text of the snippet. The name of the snippet is taken from the file name

and is kept i lower case letters. During package loading the snippets are not load automatically

(there is no such functionality). Instead the packageName.kmf file is generated in the WORK library

location. Also an information note instructing how to import the snippets file is printed in the

log. The code generating the kmf file was inspired by article [8].

◦ ds2pck folders are dedicated for the code of PROC DS2 packages. Structure of the file should be:

SAS PACKAGES - THE WAY TO SHARE J EXTENDED VERSION, 2025.07.29 I 14

package PackageName / overwrite=yes;
<... DS2 package code ...>

endpackage;

By default, if there exist a SAS data set (which is not a DS2 package file) a warning is issued and

the package data set is not generated. To force overwrite, set the DS2force= parameter of the

%loadPackage() macro to 1.

◦ ds2thr folders are dedicated for the code of PROC DS2 threads. Structure of the file should be:

thread ThreadName (<...parameters...>) / overwrite=yes;
<... DS2 thread code ...>

endthread;

By default, if there exist a SAS data set (which is not a DS2 thread file) a warning is issued and

the thread data set is not generated. To force overwrite, set the DS2force= parameter of the

%loadPackage() macro to 1.

◦ addcnt folder (there can be only one such folder) contains all possible additional content which

the Developer want to add to the package e.g., a pdf file with documentation, files with graphs,

plots, and figures, an html page, a markdown md file, etc. Structure inside that folder can be

arbitrary, it can contains files and subfolders, also nested. The content of the addcnt folder

is transported into the package zip in binary form. Part of the code generating the additional

content was inspired by article [7].

◦ Parts of code files which are to be used to generate help information must be enclosed be-

tween following text tags: ”/*** HELP START ***/” and ”/*** HELP END ***/”. The tags are

not mandatory but if they are missing in a file a warning is printed into the log during package

generation. If help tags are present in a file they have to be in proper order (start - end) and

cannot be nested or overlap. If such situation takes place an error is printed into the log during

package generation and the process is aborted. An example could be the following file containing

a macro code, a help text, and other comment:

SAS PACKAGES - THE WAY TO SHARE J EXTENDED VERSION, 2025.07.29 I 15

/*** HELP START ***/
/* >>> %ABC() macro: <<<
*
* Main macro which allows to do this and that...
**/
/*** HELP END ***/

/* macro definition */
/*** HELP START ***/
%MACRO ABC(
param1 /* parameter 1 is used for ... */

,param2 /* parameter 2 is used for ... */
);
/*** HELP END ***/

<... multi-line ...>
<... body ...>
<... of a macro ...>

%MEND ABC;

/*** HELP START ***//*
EXAMPLE 1: use in datastep

data class;
set sashelp.class;
%ABC(age, weight)

run;
*//*** HELP END ***/

only the following parts of text will be extracted for help purpose:

/* >>> %ABC() macro: <<<
*
* Main macro which allows to do this and that...
*
**/
%MACRO ABC(
param1 /* parameter 1 is used for ... */

,param2 /* parameter 2 is used for ... */
);

EXAMPLE 1: use in datastep

data class;
set sashelp.class;
%ABC(age, weight)

run;

• Create a license.sas file containing license information for the package. Place the file in the package

folder (together with the description.sas and subfolders). If no file is provided the license.sas will

be generated with standard MIT license (read ”GENERATING PACKAGE IN PRACTICE - a USECASE”

section and ”Appendix A” to see the MIT license text).

• Create a folder for packages, e.g. under Windows OS family C:/SAS_PACKAGES or under Linux/UNIX

OS family /home/<username>/SAS_PACKAGES and copy the SPFinit.sas file into this folder.

Developer’s session. When all files and folders are ready the developer runs SAS session and

executes the following code:

SAS PACKAGES - THE WAY TO SHARE J EXTENDED VERSION, 2025.07.29 I 16

filename packages "<directory/containing/packages/>";
%include packages(SPFinit.sas);
/*ods html;*/
%generatePackage(filesLocation=<directory/with/package/files/>)

When the %generatePackagemacro ends its execution the packagename.zip file, containing all package

content inside it, is created inside the ”<directory/with/package/files/>”.

Developer’s ”under the hood”. Before reading this subsection further we highly recommend (for

a better view) to have subsections ”User’s files and folders” and ”User’s session” of the ”THE USER:

HOW TO and THE RULES” section read.

When the packagename.zip file is created, by the %generatePackage() macro, a lot of things is hap-

pening behind the scenes. This section explains them in more details.

The first information the developer receives after the process ends is a summary report displaying basic

information about the package content. In this summary the following elements are displayed: the

package location (i.e. folder), developer’s &sysuserid., creation timestamp, SAS version, the package

encoding information (based on the description.sas file), and current SAS session encoding. From

the description.sas file the package name, version, and license type are extracted and printed. Also

the list of required elements is printed if any were provided. The last part of the summary is a table

displaying a list of files used to build up the package.

But the summary is only the tip of an iceberg. The following steps are executed when the macro

runs. At the beginning the description.sas file is tested for existence and when the result is

positive the file is read otherwise process is stopped with error. The following macrovariables

(descriptors): packageName, packageVersion, packageTitle, packageAuthor, packageMaintainer,

packageEncoding, packageLicense, packageRequired (optional), packageReqPackages (optional) are

created and obligatory ones (i.e. first seven) are tested for values. If at least one of the descriptors is

missing the process is aborted with an error. If the package name is more than 24 characters or con-

tains illegal symbols (non alphanumeric or underscore) the process is aborted with an error too. Value

of the package version should be in the major.minor.patch form or major.minor or major, where each

component i.e., major, minor or patch is an integer, hence this is also tested.

If a zip file with package name exists inside the package folder the zip file is deleted and the new fileref

is generated.

In the next step the package folder is scanned and structure of files and subfolders is extracted. Since

files and subfolders with code have to be named only with lower case letters - it is tested, if the test

fails the process is aborted with an error.

At this point the summary mentioned above is generated.

Further steps create so called ”driving” files. The description.sas is copied into the zip file. The

license.sas is either copied or MIT license is generated. The packagemetadata.sas file with de-

scriptors macrovariables is created. The list of macrovariables generated by the code from the

packagemetadata.sas contains the following variables: packageName, packageVersion, packageTitle,

packageAuthor, packageMaintainer, packageEncoding, packageLicense, and packageGenerated.

The firs seven contains values extracted from the description.sas file. The packageGenerated

macrovariable contains timestamp when the package was generated in the ISO8601 form (YYYY-MM-

DDThh:mm:ss).

At this point the iceloadpackage.sas file containing the %ICEloadPackage() ”emergency” macro (de-

scribed in the ”User’s ”in case of emergency” section) is generated.

The next one is the load.sas file. If packageRequired or packageReqPackages macrovariables are

present two parts of code for testing requirements are generated, respectively. Both codes are de-

sign to set up the packageRequiredErrors macrovariable to 1 (one) if requirements are not met. The

first test compares the proc setinit output with provided list of required licensed SAS products. The

second test compares the SYSloadedPackages macrovariable with provided list of required packages.

SAS PACKAGES - THE WAY TO SHARE J EXTENDED VERSION, 2025.07.29 I 17

If a package from the list is not in the SYSloadedPackages then, to try to load required package, the

%loadPackage() macro is called. If the packageRequiredErrors is positive the loading of the pack-

age is aborted with the following error message ”ERROR: Loading package &packageName. will be

aborted! Required SAS components are missing.”

After requirements testing all ”includes” are generated. In case of functions or formats/informats, if

the first one is detected, a code to update cmplib or fmtsearch is generated. If the subfolders of the

exec type are detected a snippet code to print their content is added. As the final part of the load.sas

code for creating/updating the SYSloadedPackages global macrovariable is added.

After that a code snippet for loading ”lazy datasets” is generated into a lazydata.sas code file.

The process continues with generation of the unload.sas code. As the first part the code to print and

execute the clean type is assembled. As the second step the code for the macros and formats/infor-

mats deletion is generated. Deletion of functions follows after. And the last is the code for libraries

unassignment and the SYSloadedPackages update.

In the third file, help.sas, following snippets are generated. The first to print out content of the

description.sas file, namely the description part and list of required components if any are provided.

The second to print out content of the license.sas file. The third snippet creates a data step used for

content search and print out of the help text from the package files (macros, functions, etc.)

Content of the preview.sas file is similar to the content of the help.sas. The difference is that the

code is printing out not the help portion of selected elements of the package but, to assure full and

easy code transparency, prints out (into the log) all content of the file of a macro, a function, etc.

The final part of the %generatePackage macro is a series of data steps copying package code files into

the zip file and testing existence, parity, and potential overlapping of help tags. If no tags are found a

warning is printed in the log. If tags are mismatched or overlapping an error is printed.

Eventually within the package zip file we will find:
• Copies of all files from package subfolders but with modified names, what is needed to keep the

ordering in place. Each code file name is extended with a prefix of a form: underscore, subfolder

name, and dot. For example if a file name is abc.sas and a subfolder name is 007_macro then the new

name is _007_macro.abc.sas.

• The description.sas file (the one described earlier) and the license.sas file.

• The packagemetadata.sas file containing definitions of internal macrovariables used by the

%loadPackage(), %helpPackage(), and %unloadPackage() macro.

• The load.sas file containing the code executed by the %loadPackage() macro. The file content is

built based on the subfolders and files structure provided by the developer. The file is a series of

requirements tests, %includes (with additional automatic note comments in %put statements), and,

if need be, set of options modifications e.g. inserts to fmtsearch option for formats/informats or

appends to cmplib option for functions. If files of type exec are inside the package a code printing

out their content into the log is also attached.

• The help.sas file containing the code executed by the %helpPackage() macro. The file contains 1)

code which displays general package description, 2) code which searches for a content based on

helpKeyword and prints out the information, and 3) code which, if helpKeyword is ”License”, prints

out the license text.

• The preview.sas file containing the code executed by the %previewPackage() macro. The file con-

tains 1) code which displays content of the description file, 2) code which searches for a content based

on helpKeyword and prints out the the content of files found, and 3) code which, if helpKeyword is

”License”, prints out the license file.

• The unload.sas file containing the code executed by the %unloadPackage() macro. The file content

is built based on the subfolders and files structure provided by the developer. Code inside the file

removesmacros, functions, formats, datasets and libraries created during loading process. It restores

fmtsearch and cmplib options. If clean type subfolder is provided files from within the folder are

%included (they are executed at the beginning).

SAS PACKAGES - THE WAY TO SHARE J EXTENDED VERSION, 2025.07.29 I 18

• The addcnt.zip file containing the additional content extracted by the %loadPackageAddCnt()macro.

The file content is built based on the addcnt subfolder (if one was provided by the developer). This

file is not used automatically during installation or loading a package. See the ”Package additional

content” to learn how to extract its content.

When the package zip file is ready, withe the help of the HASHING_FILE() function, a SHA256 hash

digest of the package is generated. Two types digest are generated. One, with a prefix ”F*”, is generated

based on the entire zip file using direct file location i.e.:

SHA256 = SHA256 = 'F*' !! HASHING_FILE("SHA256", pathname("&_PackageFileref_.",'F'), 0);

The other, with a prefix ”C*”, is generated based on the content of the zip file using file reference i.e.:

SHA256 = SHA256 = 'C*' !! HASHING_FILE("SHA256", "&_PackageFileref_.", 4);

In both snippets the &_PackageFileref_. macrovariable contains value of the fileref to the zip, but in

the first one the value is resolved by the pathname() function.

As the ”pre-final” part of the process the testing of the package is executed. Details about the testing

process are provided in the next section.

The last code is executed optionally and runs when the markdownDoc= parameter is set to 1

(default is 0). The markdownDoc indicates if a markdown file named packagename.md with doc-

umentation be generated from help info blocks prepared by the developer. The process as-

sumes that help info provided is formatted according to the markdown rules (see for exam-

ple: https://www.markdownguide.org/basic-syntax/ or https://github.github.com/gfm/). If

for some reason developer want some of the files to be excluded when generating the doc-

umentation file, e.g., ”internal functions” or ”utility macros”, it can be done by inserting an

”exclusion comment” in the first line of the file. The ”exclusion comment” can be one from

the following list: /*##DoNotUse4Documentation##*/, /*##ExcludeFromDocumentation##*/, or

/*##ExcludeFromMarkdownDoc##*/. They are case sensitive!

The last step of documentation generation was added for developers convenience. When the

packagename.zip and the packagename.md are ready the easyArch= parameter set to 1 triggers cre-

ation a copy of the zip and markdown files with the version number. Basically the packagename.zip and

the packagename.md are copied as the packagename_XXX_.zip and the packagename_XXX_.md where

XXX is replaced by version number. This step is optional but was added so that developers could easy

keep track or historical versions of the package.

SAS PACKAGES - THE WAY TO SHARE J EXTENDED VERSION, 2025.07.29 I 19

..<packageName>
|
+-000_libname [one file one libname]
| |
| +-abc.sas [a file with a code creating libname ABC]
|
+-001_macro [one file one macro]
| |
| +-hij.sas [a file with a code creating macro HIJ]
| +-xyz.sas [a file with a code creating macro XYZ]
|
+-002_function [one file one function,
| | option OUTLIB= should be: work.&packageName.fcmp.package
| | option INLIB= should be: work.&packageName.fcmp
| | (both literally with macrovariable name and "fcmp" sufix)]
| |
| +-efg.sas [a file with a code creating function EFG]
|
+-003_functions [mind the S at the end!, one file one function,
| | only plain code of the function, without a "fcmp" header]
| |
| +-ijk.sas [a file with a code creating function IJK]
|
+-004_format [one file one format,
| | option LIB= should be: work.&packageName.format
| | (literally with macrovariable name and "format" sufix)]
| |
| +-efg.sas [a file with a code creating format EFG and informat EFG]
|
+-005_data [one file one dataset]
| |
| +-abc.efg.sas [a file with a code creating dataset EFG in library ABC]
|
+-006_exec [so called "free code", content of these files will be printed
| | to the log before execution]
| |
| +-<if no file - folder may be skipped>
|
+-007_format [if your codes depend on each other you can order them in folders,
| | e.g. code from 003_... will be executed before 006_...]
| |
| +-abc.sas [a file with a code creating format ABC,
| using the definition of the format EFG]
|
+-008_lazydata [one file one dataset]
| |
| +-klm.sas [a file with a code creating dataset KLM in the WORK library
| created on demand with the call: %loadPackage(packagename, lazyData=klm)]
|
+-010_imlmodule [one file one IML module, only plain code of the module]
| |
| +-abc.sas [a file with a code creating IML module ABC]
|
+-011_proto [one file one PROTO function, only plain code of the function]
| |
| +-pqr.sas [a file with a code creating externC function PQR]
|
+-012_casludf [one file one CASL user defined function, only plain code of the function]
| |
| +-fgh.sas [a file with a code creating CASL UDF function FGH]
|
+-013_ds2pck [one file one PROC DS2 package]
| |
| +-library.xyz.sas [a package LIBRARY.XYZ stored in LIBRARY.XYZ data set]
|
+-...<sequential number>_<type [in lower case]>
|
+-00n_clean [if you need to clean something up after an exec file execution,
| | content of these files will be printed to the log before execution]
| |
| +-<if no file - folder may be skipped>
|
+-00n+1_test [code for testing the package, used only in the developer's session]
...

Figure 2: Example of a package’s subfolders structure.

SAS PACKAGES - THE WAY TO SHARE J EXTENDED VERSION, 2025.07.29 I 20

Developer’s tests. When all elements of the package are ready and zipped into a zip file a good

practice is to execute tests which will verify if and how the package works. This subsection describes

what possibilities of testing are provided by the %generatePackage() macro and how to use them.

All tests are executed in clean and separate SAS sessions hence the XCMD option has to be turned on.

A separate session means that a systask statement is used to call SAS binary and run new session

in a batch mode. The !SASROOT folder is searched for SAS binary file as the default one. A clean

session means that no configuration file (e.g. the one located in the !SASROOT folder) is used to

run the testing session. The default behaviour can be altered with the following parameters of the

%generatePackage() macro:

• the sasexe= points a folder where the SAS binary file is located.

• the sascfgfile= points either a file containing testing session configuration parameters, or if it is

set to DEF value then the !SASROOT/sasv9.cfg is used.

By default the %generatePackage() macro executes test for loading, helping, and unloading a pack-

age. The %loadPackage(), %helpPackage(), %previewPackage(), and %unloadPackage() macros are

called in such way that location of the package is the one provided by the filesLocation macropa-

rameter. If there are any dependencies (i.e. additional packages are required), unless the packages

fileref is assigned, the developer has to use the packages= macroparameter to point to the folder con-

taining required packages and also a copy of the SPFinit.sas file. If the XCMD option is off then the

%generatePackage() macro prints into the log code for testing loading.

Results of this test (and all other provided by the developer), i.e. log and listing, are stored in a subfolder

of the maim session WORK library, the subfolder name has the following form: test_YYYYMMDDtHHMMSS.

The default WORK folder can be altered with the testResults= parameter of the %generatePackage()

macro which points developer’s location where tests results should be stored.

When the test is done the log is scanned for any error or warning messages. As a summary the de-

veloper gets short output with a table presenting: exit status of the systask statement, value of the

sysrc macrovariable after execution of the systask, the number of error messages from the log, and

the number of warnings messages from the log.

If the developer wants to execute additional tests the following ”files and folders” steps have to be

performed:

• Create a subfolder of type test in the package folder, e.g 999_test.

• Copy all files with the code for tests into the subfolder.

The test file does not require a code to load package, this code is provided in a separate autoexec.sas

file so only the testing code should be in the file. There is no formal form of the test file but a good

practice would be to call explicit error or warning if the test fails.

Since each file in the test subfolder is executed in a separate session the developer can chose to keep

all tests in one file or splits tests into separate files.

Each test file invokes separate SAS session, to keep the WORK of that session the delTestWork parameter

in the generatePackage macro should be set to 0.

To suppress any testing the developer has to set up the testPackage= macroparmeter to any value

different than ”Y”, e.g. ”N” is preferred.

To redirect location of testing results the developer has to set up the testResults= macroparmeter to

a valid directory, e.g. C:\testsresults . Default value is null and means that the WORK is used.

The following list presents file references and libnames created during the testing process in the main

developer’s session: sasroot, currdir, TEST, TESTWORK.

Developer’s laziness. A silent assumption in all previous sections was that the developer prepares

a package content in separate files and organize those files in ordered directories. What if a developer

has all the code prepared and tested but it is all in one file? Does the developer have to ”cut & paste”

everything by hand? Short answer is: No. But as it usually is, the devil is in details. A utility macro

SAS PACKAGES - THE WAY TO SHARE J EXTENDED VERSION, 2025.07.29 I 21

named %splitCodeForPackage() can be helpful in situations when there is labor some process of cre-

ating separate files from one to do. The macro has two main parameters:

• the codeFile= points a file where ”the-SAS-code-to-be-split” is located.

• the packagePath= points a folder where the package structure is generated.

The package structure is build based on a group of text tags added by the developer to the file with

code. Those tags have very precise structure that is:

• ”/*####$####-code-block-start-####$#### <tag spec> */” for the opening one and:

• ”/*####$####-code-block-end-####$#### <tag spec> */” for the closing one

Tags are case insensitive. The ”<tag spec>” inside tags can be a space-separated list of

the form: ”type1(object1) type2(object2) ... typeN(objectN)”, but usually (99% cases) it

will be just one, e.g., /*####$####-code-block-start-####$#### 001_macro(myMacroOne) */ and

/*####$####-code-block-end-####$#### 001_macro(myMacroOne) */. The ”<tag spec>” tells the

macro into what files and folders given code snippet surrounded by a particular ”start-end” pair of

tags suppose to be copied.

For example when the %splitCodeForPackage() macro is executed on a file containing the following

content:

/*##$##-code-block-start-##$## 01_macro(abc) */
%macro abc();

% put I am "abc".;
%mend abc;
/*##$##-code-block-end-##$## 01_macro(abc) */

/*##$##-code-block-start-##$## 01_macro(efg) */
%macro efg();

% put I am "efg".;
%mend efg;
/*##$##-code-block-end-##$## 01_macro(efg) */

proc FCMP outlib=work.f.p;
/*##$##-code-block-start-##$## 02_functions(xyz) */
function xyz(n);

return(n**2 + n + 1)
endfunc;
/*##$##-code-block-end-##$## 02_functions(xyz) */
quit;

two directories (01_macro and 02_functions) are crated. The first one contains two files: abc.sas and

efg.sas, and the second contains file xyz.sas.

Three special cases of ”<tag spec>” are supported.

• When the ”_all_(_all_)” tag is used a code snippet surrounded by such tag will be copied over

to all files in all folders,

• When the ”type(_all_)” tag is used a code snippet surrounded by such tag will be copied over to

all files in a particular folder.

• When the ”_all_(object)” tag is used a code snippet surrounded by such tag will be copied over

to all files named ”object.sas” in package folders.

When the process is executed dedicated summary tables are printed in the output window. If there are

any problems during the execution, warnings or errors are printed in the log.

In the current version of the framework, if the process is executed multiple times files are not over-

written automatically. Each execution’s content is ”appended” to what already is in the packagePath=

directory. If the developer want to start over, the packagePath= directory has to be manually purged

from the previous execution’s ”leftovers”.

Each file created with help of the %splitCodeForPackage() macro has the following line of

comment: ”/* File generated with help of SAS Packages Framework, version YYYYMMDD. */”

added at the very first line of the file.

SAS PACKAGES - THE WAY TO SHARE J EXTENDED VERSION, 2025.07.29 I 22

Note: Though the %splitCodeForPackage() macro is labeled as a utility one, consider it more like a

”helping-hand” tool rather then ”the-way-to-go” approach to packages programming.

GENERATING PACKAGE IN PRACTICE - a USECASE

The practical example will be build based on one of the author’s favourite SAS article, namely Mike

Rhoads’ ”Use the Full Power of SAS in Your Function-Style Macros” [2], which introduces the macro-

function-sandwich programming approach. The idea is to allow user to execute SQL ”select” code

within a data step, e.g.

data class_subset;
set %SQL(select

name, sex, height
from

sashelp.class
where

age > 12
)
(rename=(height=heightInch));

heightCm = 2.54 * heightInch;
run;

Thus the package name will be SQLinDS and it will be providing the %SQL() macro which will allow

users to write queries like the one above. Internally the %SQL() macro uses a user defined function,

another macro, and stores intermediate data (views) inside a predefined library (pointing to a subdirec-

tory of the work). Package will be built with 5 files: description.sas, two macros, one function, and

one library (test files are not included). Let’s assume we have created the following package folder

C:/SAS_PACKAGES/SQLinDS/ and we have copied the SPFinit.sas file into the C:/SAS_PACKAGES/ di-

rectory. The structure of subfolders created for the package is presented in Figure 3.

..<C:/SAS_PACKAGES/SQLinDS/>
|
+-description.sas Ê

|
+-000_libname
| |
| +-dssql.sas Ë

+-001_macro
| |
| +-dssql_inner.sas Ì

| +-sql.sas Î

|
+-002_function
| |
| +-dssql.sas Í

+-999_test
| |
| +-test1.sas Ï

| +-test2.sas Ð

|
+-license.sas Ñ

Figure 3: SQLinDS package - subfolders structure.

Details of the package files (including license) can be found in the ”Appendix A” or on the web (see

”TUTORIAL” section).

When all files are placed inside proper subfolders we start a new SAS session and we execute the

following code:

filename packages "C:/SAS_PACKAGES/";
%include packages(SPFinit.sas);
/*ods html;*/
%generatePackage(filesLocation=C:/SAS_PACKAGES/SQLinDS/)

SAS PACKAGES - THE WAY TO SHARE J EXTENDED VERSION, 2025.07.29 I 23

As a result, extra the summary report, we receive (inside the C:/SAS_PACKAGES/SQLinDS/ folder) the

sqlinds.zip file. Our package is prepared. And ready for sharing!

THE CODE

If you are interested in testing the approach presented above yourself and want to play a bit with the

code and data you can download SAS programs which were the motivation for this paper under the

following ”world wild web” address:

http://www.mini.pw.edu.pl/~bjablons/SASpublic/SAS_PACKAGES

or from authors GitHub:

https://github.com/yabwon/SAS_PACKAGES
Also the future versions of this article will be uploaded there.

TUTORIAL

If you are interested in learning how to work with SAS packages and the SPF visit the following tutorial:

https://github.com/yabwon/HoW-SASPackages

REFERENCES

[1] Art Carpenter, ”Carpenter’s Guide to Innovative SAS Techniques”, SAS Press

[2] Mike Rhoads, ”Use the Full Power of SAS in Your Function-Style Macros”,

SAS Global Forum 2012 Proceedings, https://support.sas.com/resources/papers/proceedings12/004-2012.pdf

[3] Hadley Wickham, ”R Packages: Organize, Test, Document, and Share Your Code”,

O’Reilly Media 2015, http://r-pkgs.had.co.nz/description.html

[4] Frank Mittelbach, Michel Goossens, ”The LATEX Companion, Second Edition”, Addison-Wesley 2004, ISBN 0-201-36299-6

[5] https://realpython.com/python-modules-packages/ as of October 2019

[6] https://www.internetblog.org.uk/post/1520/what-is-a-linux-package/ as of October 2019

[7] Kurt Bremser, ”Talking to Your Host”, WUSS 2022 Proceedings,

https://communities.sas.com/t5/SAS-User-Groups-Library/WUSS-Presentation-Talking-to-Your-Host/ta-

p/838344

[8] Tom Van Campen and Benny Haemhouts, ”Dynamically generating macro invocations using SAS keyboard abbreviations”,

PhUSE 2012 Proceedings, https://www.lexjansen.com/phuse/2012/cc/CC03.pdf

ACKNOWLEDGMENTS

Author would like to acknowledge Filip Kulon, Krzysztof Socki, Allan Bowe, Quentin McMullen,

PiotrWójcik,MichałWojtasiewicz, Richard DeVenezia, and Christian Graffeuille for their contribution!

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at one of the following

e-mail address:

yabwon� gmail.com

or via the following LinkedIn profile:

www.linkedin.com/in/yabwon

—

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks

of SAS Institute Inc. in the USA and other countries. r indicates USA registration.

Other brand and product names are trademarks of their respective companies.

SAS PACKAGES - THE WAY TO SHARE J EXTENDED VERSION, 2025.07.29 I 24

Appendix A

The content of files composing the SQLinDS package.
Ê

/* This is the description file for the package. */
/* The colon (:) is a field separator and is restricted */
/* in lines of the header part. */

/* **HEADER** */
Type: Package :/*required, not null, constant value*/
Package: SQLinDS :/*required, not null*/
Title: SQL queries in Data Step :/*required, not null*/
Version: 2.2 :/*required, not null*/
Author: Mike Rhoads (RhoadsM1@Westat.com) :/*required, not null*/
Maintainer: Bartosz Jablonski (yabwon@gmail.com) :/*required, not null*/
License: MIT :/*required, not null*/
Encoding: UTF8 :/*required, not null*/

Required: "Base SAS Software" :/*optional*/

/* **DESCRIPTION** */
/* All the text below will be used in help */
DESCRIPTION START:

The SQLinDS package [ver. 2.2]

The **SQLinDS** package is an implementation of
the *macro-function-sandwich* concept introduced in the
"Use the Full Power of SAS in Your Function-Style Macros",
the article by *Mike Rhoads (Westat, Rockville)*.

Copy of the article is available at:
https://support.sas.com/resources/papers/proceedings12/004-2012.pdf

Package provides ability to *execute* SQL queries inside a data step, e.g.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~sas

data class;
set %SQL(select * from sashelp.class);

run;
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
See the help for the `%SQL()` macro to find more examples.

Content

SQLinDS package contains the following components:

1. `%SQL()` macro - the main package macro available for the User
2. `dsSQL()` function (internal)
3. `%dsSQL_inner()` macro (internal)
4. Library `DSSQL` (created as a subdirectory of the `WORK` library)

DESCRIPTION END:

SAS PACKAGES - THE WAY TO SHARE J EXTENDED VERSION, 2025.07.29 I 25

Ë
/*** HELP START ***//*

>>> library `dsSQL`: <<<

The `dsSQL` library stores temporary views
generated during the `%SQL()` macro execution.

If possible a subdirectory of the `WORK` location is created, like:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~sas
LIBNAME dsSQL BASE "%sysfunc(pathname(WORK))/dsSQLtmp";
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

if not possible, then redirects to the `WORK` location, like:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~sas
LIBNAME dsSQL BASE "%sysfunc(pathname(WORK))";
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

*//*** HELP END ***/

data _null_;
length rc0 $ 32767 rc1 rc2 8;
rc0 = DCREATE("dsSQLtmp", "%sysfunc(pathname(work))/");
rc1 = LIBNAME("dsSQL", "%sysfunc(pathname(work))/dsSQLtmp", "BASE");
rc2 = LIBREF ("dsSQL");
if rc2 NE 0 then
rc1 = LIBNAME("dsSQL", "%sysfunc(pathname(work))", "BASE");

run;

/* list the details about the library in the log */
libname dsSQL LIST;

SAS PACKAGES - THE WAY TO SHARE J EXTENDED VERSION, 2025.07.29 I 26

Ì
/*** HELP START ***//*

>>> `%dsSQL_Inner()` macro: <<<

Internal macro called by `dsSQL()` function.
The macro generates a uniquely named SQL view on the fly
which is then stored in the `dsSQL` library.

Recommended for *SAS 9.3* and higher.

*//*** HELP END ***/

/* inner macro */
%MACRO dsSQL_Inner() / secure;

%local query tempfile1 tempfile2 ps_tmp;
%let query = %superq(query_arg);
%let query = %sysfunc(dequote(&query));

%let viewname = dsSQL.dsSQLtmpview&UNIQUE_INDEX_2.;

%let tempfile1 = A%sysfunc(datetime(), hex7.);
%let tempfile2 = B%sysfunc(datetime(), hex7.);

filename &tempfile1. temp;
filename &tempfile2. temp;

%let ps_tmp = %sysfunc(getoption(ps));
options ps = MAX;
proc printto log = &tempfile1.;
run;
/* get the query shape i.e. the executed one */
proc sql feedback noexec;
&query
;

quit;
proc printto;
run;
options ps = &ps_tmp.;

%put *** executed as ***;
data _null_;
infile &tempfile1. FIRSTOBS = 2; /* <- 2 to ignore header */
file &tempfile2.;
/* create the view name */
if _N_ = 1 then

put " create view &viewname. as ";
input;
put _infile_;
putlog ">" _infile_;

run;
%put *****************;

proc sql;
%include &tempfile2.; /* the &query */
;

quit;
filename &tempfile1. clear;
filename &tempfile2. clear;

%MEND dsSQL_Inner;

SAS PACKAGES - THE WAY TO SHARE J EXTENDED VERSION, 2025.07.29 I 27

Í
/*** HELP START ***//*

>>> `dsSQL()` function: <<<

Internal function called by the `%SQL()` macro.
The function pass a query code from the `%SQL()`
macro to the `%dsSQL_Inner()` internal macro.

Recommended for *SAS 9.3* and higher.

SYNTAX:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~sas
dsSQL(unique_index_2, query)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Arguments description:

1. `unique_index_2` - *Numeric*, internal variable, a unique index for views.

2. `query` - *Character*, internal variable, contains query text.

*//*** HELP END ***/

proc fcmp
/*inlib = work.&packageName.fcmp*/
outlib = work.&packageName.fcmp.package

;
function dsSQL(unique_index_2, query $) $ 41;
length

query query_arg $ 32000 /* max query length */
viewname $ 41

;
query_arg = dequote(query);
rc = run_macro('dsSQL_Inner' /* <-- inner macro */

,unique_index_2
,query_arg
,viewname
);

if rc = 0 then return(trim(viewname));
else

do;
put 'ERROR:[function dsSQL] A problem with the dsSQL() function';
return(" ");

end;
endsub;

run;
quit;

SAS PACKAGES - THE WAY TO SHARE J EXTENDED VERSION, 2025.07.29 I 28

Î
/*** HELP START ***//*

>>> `%SQL()` macro: <<<

The **main** macro which allows to use
SQL queries in the data step.

Recommended for *SAS 9.3* and higher.

Based on the article *"Use the Full Power of SAS in Your Function-Style Macros"*
by *Mike Rhoads* (Westat, Rockville), available at:
https://support.sas.com/resources/papers/proceedings12/004-2012.pdf

SYNTAX:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~sas
%sql(<nonempty sql querry code>)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The sql query code is limited to *32000* bytes.

EXAMPLES:

EXAMPLE 1: simple SQL query
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~sas
data class_subset;

set %SQL(select name, sex, height from sashelp.class where age > 12);
run;
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

EXAMPLE 2: query with dataset options
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~sas
data renamed;

set %SQL(select * from sashelp.class where sex = "F")(rename = (age=age2));
run;
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

EXAMPLE 3: dictionaries in the data step
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~sas
data dictionary;

set %SQL(select * from dictionary.macros);
run;
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

*//*** HELP END ***/

/* Main User macro */
%MACRO SQL() / PARMBUFF SECURE;

%let SYSPBUFF = %superq(SYSPBUFF); /* macroquoting */
%let SYSPBUFF = %substr(&SYSPBUFF, 2, %LENGTH(&SYSPBUFF) - 2); /* remove brackets */
%let SYSPBUFF = %superq(SYSPBUFF); /* macroquoting */
%let SYSPBUFF = %sysfunc(quote(&SYSPBUFF)); /* quotes */
%put NOTE:*** the query ***; /* print out the query in the log */
%put NOTE-&SYSPBUFF.;
%put NOTE-*****************;

%local UNIQUE_INDEX; /* internal variable, a unique index for views */
%let UNIQUE_INDEX = &SYSINDEX;

%sysfunc(dsSQL(&UNIQUE_INDEX, &SYSPBUFF)) /* <-- call dsSQL() function,
see the WORK.SQLinDSfcmp dataset */

%MEND SQL;

SAS PACKAGES - THE WAY TO SHARE J EXTENDED VERSION, 2025.07.29 I 29

Ï
proc sort data=sashelp.class out=test1;

by age name;
run;

data class;
set %SQL(select * from sashelp.class order by age, name);

run;

proc compare base = test1 compare = class;
run;

Ð
data class_work;

set sashelp.class;
run;

data test_work;
set %sql(select * from class_work);

run;

options dlcreatedir;
libname user "%sysfunc(pathname(work))/user";
%put *%sysfunc(pathname(user))*;

data cars_user cars_user2;
set sashelp.cars;

run;

data test_user;
set %sql(select * from cars_user);

run;

data test_user2;
set %sql(select * from user.cars_user2);

run;

libname user clear;
%put *%sysfunc(pathname(user))*;

proc datasets lib = work;
run;

Ñ MIT license text (used by default, mind macrocode in the first line):

Copyright (c) %sysfunc(today(),year4.) &packageAuthor.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

SAS PACKAGES - THE WAY TO SHARE J EXTENDED VERSION, 2025.07.29 I 30

Appendix B

Here reader can find headers (with short parameters description) of macros %generatePackage(),
%installPackage(), %loadPackage(), %unloadPackage(), %helpPackage(), and others

When the framework macros are run without arguments or with HELP keyword, like: %installPackage(),
%loadPackage(HELP), %helpPackage(), %unloadPackage(HELP), or %generatePackage() the help information (for

all macros in the framework) is printed out into the SAS log. Since the %listPackages() has no arguments the

help for the macro is printed when %listPackages(HELP) is run.
•

%macro generatePackage(
filesLocation /* location of package files

e.g. /path/to/package/files/locatiion or C:\my\package\files */
/* testing options */
,testPackage=Y /* indicator if tests should be executed,

default value Y means "execute tests" */
,packages= /* location of other packages if there are

dependencies in loading */
,testResults= /* location where tests results should be stored,

if null (the default) the WORK is used */
,sasexe= /* a DIRECTORY where the SAS binary is located,

if null (the default) then the !SASROOT is used */
,sascfgFile= /* a FILE with testing session configuration parameters

if null (the default) then no config file is pointed
during the SAS invocation,
if set to DEF then the !SASROOT/sasv9.cfg is used */

,delTestWork= /* indicates if `WORK` directories generated by user tests
should be deleted, i.e. the (NO)WORKTERM option is set,
default value 1 means "delete tests work" */

,markdownDoc=0 /* indicates if a markdown file with documentation
be generated from help info blocks */

,easyArch=0 /* when creating documentation file indicates if a copy of
the zip and markdown files with the version number in the
file name be created */

)/secure minoperator
•

%macro installPackage(
packageName /* space separated list of packages names,

without the zip extension */
, sourcePath = /* location of the package, e.g. "www.some.page/",

mind the "/" at the end */
, mirror = 0 /* indicates which location for package

source should be used */
, version = /* indicates which version of a package to install */
, replace = 1 /* 1 = replace if the package already exist,

0 = otherwise */
, URLuser = /* user name for the password protected URLs */
, URLpass = /* password for the password protected URLs */
, URLoptions = /* options for the `sourcePath` URLs */
, loadAddCnt=0 /* should the additional content be loaded?

default is 0 - means No, 1 means Yes */
, instDoc=0 /* should the markdown file with documentation be installed?

default is 0 - means No, 1 means Yes */
, SFRCVN = /* name of a macro variable to store success-failure return code value */
, github = /* name of a user or an organization in GitHub */
)/secure

•

%macro verifyPackage(
packageName /* name of a package,

e.g. myPackage,
required and not null */

, path = %sysfunc(pathname(packages)) /* location of a package,
by default it looks for
location of "packages" fileref */

, hash = /* The SHA256 hash digest for
the package generated by
hashing_file() function, SAS 9.4M6 */

)/secure

SAS PACKAGES - THE WAY TO SHARE J EXTENDED VERSION, 2025.07.29 I 31

•

%macro loadPackage(
packageName /* name of a package,

e.g. myPackage,
required and not null */

, path = %sysfunc(pathname(packages)) /* location of a package,
by default it looks for
location of "packages" fileref */

, options = %str(LOWCASE_MEMNAME) /* possible options for ZIP filename */
, source2 = /*source2*/ /* option to print out details,

null by default */
, requiredVersion = . /* option to test if loaded package

is provided in required version */
, lazyData = /* a list of names of lazy datasets

to be loaded, if not null then
datasets from the list are loaded
instead of a package, asterisk
means "load all datasets" */

, zip = zip /* standard package is zip (lowcase),
e.g. %loadPackage(PiPackage)
if the zip is not available use a folder
unpack data to "pipackage.disk" folder
and use loadPackage in the form:
%loadPackage(PiPackage, zip=disk, options=) */

, cherryPick=* /* space separated list of selected elements of the package
to be loaded into the session, default value "*" means
"load all elements of the package" */

, loadAddCnt=0 /* should the additional content be loaded?
default is 0 - means No, 1 means Yes */

, suppressExec=0 /* indicates if loading of exec files
should be suppressed, 1=suppress */

, DS2force=0 /* indicates if PROC DS2 packages and threads
should be loaded if a data set exists, 0=do not load

*/
)/secure

•

%macro loadPackageS(
packagesNames /* A comma separated list of packages name,

e.g. myPackage, myPackage1, myPackage2, myPackage3
required and not null.
Package version, in brackets behind a package name,
can be provided, e.g.
%loadPackageS(myPackage1(1.7), myPackage2(4.2)) */

)/secure parmbuff
•

%macro unloadPackage(
packageName /* name of a package,

e.g. myPackage,
required and not null */

, path = %sysfunc(pathname(packages)) /* location of a package,
by default it looks for
location of "packages" fileref */

, options = %str(LOWCASE_MEMNAME) /* possible options for ZIP filename */
, source2 = /*source2*/ /* option to print out details,

null by default */
, zip = zip /* standard package is zip (lowcase),

e.g. %unloadPackage(PiPackage)
if the zip is not available use a folder
unpack data to "pipackage.disk" folder
and use unloadPackage in the form:
%unloadPackage(PiPackage, zip=disk, options=)

*/
)/secure

SAS PACKAGES - THE WAY TO SHARE J EXTENDED VERSION, 2025.07.29 I 32

•

%macro helpPackage(
packageName /* name of a package,

e.g. myPackageFile.zip,
required and not null */

, helpKeyword /* phrase to search in help,
when empty prints description
"*" means print all help
"license" prints license */

, path = %sysfunc(pathname(packages)) /* location of a package,
by default it looks for
location of "packages" fileref */

, options = %str(LOWCASE_MEMNAME) /* possible options for ZIP filename */
, source2 = /*source2*/ /* option to print out details,

null by default */
, zip = zip /* standard package is zip (lowcase),

e.g. %helpPackage(PiPackage,*)
if the zip is not available use a folder
unpack data to "pipackage.disk" folder
and use helpPackage in the form:
%helpPackage(PiPackage, *, zip=disk, options=) */

, packageContentDS = 0 /* indicates if a data set with package
content should be generated in WORK,
if set to 1 then WORK.packageName_content
dataset is created

*/
)/secure

•

%macro listPackages()/parmbuff
•

%macro previewPackage(
packageName /* name of a package,

e.g. myPackageFile.zip,
required and not null */

, helpKeyword /* phrase to search for preview,
when empty prints description
"*" means prints all */

, path = %sysfunc(pathname(packages)) /* location of a package,
by default it looks for
location of "packages" fileref */

, options = %str(LOWCASE_MEMNAME) /* possible options for ZIP filename */
, source2 = /*source2*/ /* option to print out details,

null by default */
, zip = zip /* standard package is zip (lowcase),

e.g. %previewPackage(PiPackage,*)
if the zip is not available use a folder
unpack data to "pipackage.disk" folder
and use previewPackage in the form:
%previewPackage(PiPackage, *, zip=disk, options=)

*/
)/secure

•

%macro extendPackagesFileref(
packages /* A valid fileref name,

when empty the "packages" value is used. */
)/secure

SAS PACKAGES - THE WAY TO SHARE J EXTENDED VERSION, 2025.07.29 I 33

•

%macro loadPackageAddCnt(
packageName /* name of a package,

e.g. myPackage,
required and not null */

, path = %sysfunc(pathname(packages)) /* location of a package,
by default it looks for
location of "packages" fileref */

, target = %sysfunc(pathname(WORK)) /* a path in which the directory with
additional content will be generated,
name of directory created is set to
`&packageName._AdditionalContent`
default location is SAS work */

, source2 = /*source2*/ /* option to print out details,
null by default */

, requiredVersion = . /* option to test if loaded package
is provided in required version */

)/secure
•

%macro splitCodeForPackage(
codeFile /* a code file to split */
,packagePath= /* location for results */
,debug=0 /* technical parameter */
,nobs=0 /* technical parameter */
)

	ABSTRACT
	INTRODUCTION and CONTEXT
	WHAT IS a SAS PACKAGE?
	THE USER: HOW TO and THE RULES
	User's files and folders.
	User's session.
	User's "under the hood"
	User's "in case of emergency"

	THE DEVELOPER: HOW TO and THE RULES
	Developer's files and folders.
	Developer's session.
	Developer's "under the hood"
	Developer's tests
	Developer's laziness

	GENERATING PACKAGE IN PRACTICE - a USECASE
	THE CODE
	TUTORIAL
	REFERENCES
	ACKNOWLEDGMENTS
	CONTACT INFORMATION
	—
	Appendix A
	Appendix B

