
PhUSE 2017

1

Paper CT06

SAS DATA Step Debugger in SAS® Enterprise Guide®

Andy Bayliss, SAS Institute, Marlow, UK

Joe Flynn, SAS Institute, Cary, USA

ABSTRACT

Have you ever run SAS® code with a DATA step and the results are not what you expected? Tracking
down the problem can be a time-consuming task. To assist you in this common scenario, SAS®
Enterprise Guide® 7.13 added a DATA step debugger tool. The simple and interactive DATA step
debugger allows you to visually walk through the execution of your DATA step program. You can control
the DATA step execution, view the variables, and set breakpoints to quickly identify data and logic errors.
Come see the full capabilities of the new SAS Enterprise Guide DATA step debugger. You'll be squashing
bugs in no time!

INTRODUCTION

The DATA step is a core feature of the SAS programming language. It is the primary method to create
SAS data sets and process data. The DATA step can read input data, combine multiple data sources,
loop to perform calculations, and use if-then-else logic for analysis. In many ways, it is a programming
language unto itself. Similar to programming in any language, your DATA step will often not work as
intended the first time you write it. SAS provides errors in the log, but many errors are more complex and
require a debugger. Or, you might not even get an error. Your program could be syntactically correct,
but not do what you expect. SAS Enterprise Guide added an interactive debugger to find and fix your
DATA step problems. The DATA step debugger allows you to interactively explore your DATA step and
quickly identify data and logic errors. It provides complete control of your DATA steps execution, making it
easy to walk through your program line by line, or target a specific block of code. It even allows you to
suspend execution of your program when a variable value changes. Variables are an important part of
debugging, which is why the DATA step debugger provides a window to monitor all your variables and
their values during program execution. When a variable changes, the debugger highlights this value to
draw your attention to it. These are just a few of the many features provided by the DATA step debugger.

DEBUGGING BASICS

Before diving into the DATA step debugger a few basic debugging concepts need to be covered. When
debugging of a DATA step begins, execution is suspended at the very first executable line of the DATA
step. The program is now in a waiting state and will not proceed until it receives a command to do so.
There are three ways to control the execution of your program: the STEP, JUMP, and GO commands.

The STEP command executes the highlighted source line in the debugger then suspends execution. This
is great for walking through the execution of your program. Using this control mechanism is great for
understanding the flow of your program. You can easily walk through nested logic and loops making even
the most complicated program easier to understand.

The JUMP command moves program execution to a specific line. None of the intermediary statements
are executed. This allows you to jump your programs execution into a loop or logic block where it would
not normally execute. It can also be used to jump back to the top of your program so you can walk a
specific portion again.

Finally, The GO command continues program execution until execution is suspended or the DATA step

PhUSE 2017

2

completes. Suspending execution of a program is done by using the BREAK and WATCH commands.

The BREAK command can be used to set breakpoints throughout your program. Breakpoints allow a
source line number to be specified where the execution of your DATA step should suspend. Execution is
suspended when the source line is about to be executed. More advanced uses of the breakpoint
command are covered later in the paper.

The WATCH command behaves similarly to the BREAK command. Instead of specifying a line of code,
a variable is specified. The debugger watches that variable for changes to its value. When a change
occurs, the program is suspended and the old and new values are printed to the debug console.

DISCOVERING THE DATA STEP DEBUGGER

ENABLING THE DATA STEP DEBUGGER

To use the DATA step debugger, you first have to enable it. Open a SAS program view. There is a button
featuring a bug icon which toggles the enabled state of the DATA step debugger.

Figure 1. Enhanced Editor Options Dialog

Alternatively, the feature can be enabled from the ‘Enhanced Editor Options’ dialog by pressing Program -
> Editor Options from the main Enterprise Guide menu. In this dialog check the ‘Enable DATA Step
debugger’ option in the ‘General Options’ group box.

Figure 2. Enabling the DATA step debugger from the program toolbar

After enabling the feature, a green bug icon appears next to the beginning of each valid DATA step in the
program. A green line also extends to the bottom of the DATA step to clearly mark the region available for
debugging. At this point you notice only DATA steps are marked available for debugging. This tool cannot
be used to debug SAS Procedures or Macro code.

Figure 3. DATA step debugger indicator

PhUSE 2017

3

Launch the debugger by pressing the F5 key when the editor cursor is anywhere inside this DATA step
region. Alternatively, you can click the green bug or any part of its ”bug trail” to launch the debugging
window.

DEBUGGER WINDOW TOUR

The DATA Step debugger window can be broken down into four main sections: Toolbar, Debug Source
Window, Watch window and Debug Console.

Figure 4. DATA step debugger window

Toolbar

The toolbar consists of a number of frequently used commands:

• The icon executes the GO command. If debugging is complete, this button restarts the debugger.

• The icon terminates your debugging session.

• The icon executes the STEP command.

• The icon sets a breakpoint on the selected line of the editor.

• The icon clears all current breakpoints set in the debug session.

Debugger Source Window

The debug source window provides a number of features to visually assist you when debugging. A yellow
indicator is drawn on the current line number and the code is highlighted yellow to provide a quick and
easy way to identify where the program execution has been suspended. One thing to note is that not all
lines of your SAS program are executable. Therefore, your debugger may not suspend execution on
every line of code. Format statements, informat statements, array definitions, and comments are some
examples of non-executable source lines.

Any breakpoints that are set in the debugging session are displayed as red circles in the left margin. The
code on a line where a breakpoint is set is highlighted with a red background.

PhUSE 2017

4

Figure 5. Breakpoint set in editor

Watch Window

The watch window provides a quick and easy way to see which variables are defined, watch their values,
monitor them for any changes made, and even change values while debugging.

Viewing Variables

The watch window contains a searchable list of information found in the program data vector (PDV). As
you continue program execution, these values are updated automatically. If the value of the variable has
changed since the last time execution was suspended, the variable value is colored red. This provides a
convenient indication of values of interest.

Figure 6. Watch window

Automatic variables such as _N_ and _ERROR_ are included in the watch window. If you are using by
group processing, then the FIRST. and LAST. are included as well.

Modifying Values

The watch window also lets you directly manipulate the value of a variable. With the value selected, press
F2 (or double click the value) and an edit field is displayed. This allows you to manipulate values in real
time.

PhUSE 2017

5

Figure 7. Modifying variable value

Watching Values

A watch checkbox is also placed next to each variable. If the checkbox is selected, the debugger
‘watches’ that variable for any changes. If the value of any variables being watched changes, execution is
suspended. The old and new values are reported in the Debug Console.

Debug Console

The debug console provides a command line interface to debugging. It accepts most of the same
commands handled by the Base SAS DATA step debugger and can be used to access more advanced
debugging functionality. The debug console also provides a running log for your debug session. As you
interact with the user interface, commands are submitted on your behalf. These commands are displayed
in the debug console along with their output. Any errors or warnings encountered during your debug
session are displayed in the debug console. Below is an example of the information displayed by the
Debug Console when a watch value has changed:

Figure 8. Debug Console displaying watch value changed

When pressing the icon a list of the available debug commands is provided as shown in Figure 9.
The basic syntax for each command is also provided for a quick reference. See the DATA Step
Debugger Commands documentation for a detailed explanation of each command.

Note: The ENTER, HELP, SWAP, and TRACE commands do not work in the DATA Step Debugger in
Enterprise Guide. Those commands are specific to the DATA Step Debugger in Base SAS.

http://support.sas.com/documentation/cdl/en/lebaseutilref/64791/HTML/default/viewer.htm#n1ulcr5494fc5on1gg1cdzufez76.htm
http://support.sas.com/documentation/cdl/en/lebaseutilref/64791/HTML/default/viewer.htm#n1ulcr5494fc5on1gg1cdzufez76.htm

PhUSE 2017

6

Figure 9. Command syntax help

DATA STEP DEBUGGER IN ACTION

Now that you have been introduced to the DATA step debugger in SAS Enterprise Guide, let’s walk
through some examples.

The data being used in these examples was recorded while playing rounds of disc golf. If you are
unfamiliar with disc golf, just imagine traditional golf but using a Frisbee. In the first example, the data is
imported into SAS and subset only to rounds played at the course on SAS campus. Next, a course record
will be calculated. Finally, the mental toughness of each player will be evaluated. Each example will run
into a simple problem which can be tracked down using the DATA step debugger.

EXAMPLE 1: IMPORTING DATA

The data for this example is exported from a phone application into a fixed-width text document. The raw
data contains columns for date-time, name, course, and a score for each hole played in the round:

Figure 10. Fixed width disc golf data

I have written some initial code to read in and subset the data. Again, we only want to look at rounds
played at the course located on SAS campus. An initial revision of the program can be found below:

data disc_golf;

 format datetime datetime18.;

 infile 'c:\sgf\disc_golf.txt';

 input datetime datetime18. player $26. course $CHAR15. hole1-hole9;

 if course not eq 'SAS' then delete;

run;

PhUSE 2017

7

The code runs successfully and there are no warnings or errors in the log. However, we know there is a
problem because no observations were written to the output data set. We’ll use the DATA step debugger
to investigate the problem further.

To launch the debugger, press the bug icon in the program editor:

Figure 11. Debug indicator next to program

Once the DATA step debugger window is displayed, execution of the program is suspended on the first
line. Now, you can STEP through the program using either the F10 key or the button on the toolbar. Each
time you STEP, the highlighted code is executed. Shown in Figure 12, we step over the input statement,
which is located on line 4. The variables have been populated automatically in the watch window.

Figure 12. Execution suspended after input statement executes

The IF statement on line 5 compares the value of the course variable to ‘SAS’ and deletes the
observation if they are not equal. Continue to step through the program until the fourth iteration of the
DATA step. This is the first observation where course is SAS.

Figure 13. Course variable with leading space

The watch window shows the value of each variable and the value of ‘course’ has a leading space. The
watch window uses a monospace font which makes detecting leading spaces much easier. This leading
space can be observed for all values, and therefore the location of the course variable in the input
statement must be incorrect. To fix this problem, modify the input statement to include one extra space for
the ‘player’ variable, so that the ‘course’ variable will start at the proper location.

input datetime datetime18. player $27. course $CHAR15. hole1-hole9;

Running this modified program will show observations written to the dataset. Problem solved.

EXAMPLE 2: CALCULATING THE COURSE RECORD

Now that the data is being correctly read in and subset, it is time to calculate a course record. First you
need to calculate a score for the entire round. Since the SAS course is only nine holes, this can be done
by adding up the scores for holes 1 through 9. Next, the lowest round score and player name needs to be
retained and compared during each subsequent iteration of the DATA step. The code in this example is
integrated with the DATA step found in Example 1. I’ve added comments to the code specifying which
goal each section of the code is accomplishing. Here is my first attempt:

PhUSE 2017

8

data disc_golf (drop=i);

 format datetime datetime18.;

 infile 'c:\sgf\disc_golf.txt';

 input datetime datetime18. player $27. course $CHAR15. hole1-hole9;

 if course not eq "SAS" then delete;

 /* Goal 1: Compute Round Score */

 array holes {*} hole1-hole9;

 round_score = 0;

 do i = 1 to dim(holes);

 round_score = round_score + holes[i];

 end;

 /* Goal 2: Keep track of lowest round */

 /* Initialize the low */

 if _n_ eq 1 then do;

 course_record = round_score;

 record_holder = player;

 end;

 /* Goal 2: Keep track of lowest round */

 /* Update All Time Low */

 if (course_record > round_score) then do;

 course_record = round_score;

 record_holder = player;

 end;

 /* Goal 2: Keep track of lowest round */

retain course_record record_holder;

run;

After executing the program something appears to be wrong. Both the course_record and record_holder
variables are missing in the resulting dataset. Again, no warnings or errors are listed in the SAS Log.
Below is a screenshot of the output data:

Figure 14. Resulting data after initial program execution

Launch the debugger to investigate why the course_record and record_holder variables are never set.
You can use the WATCH command to track any changes made to the course_record variable. Setting a
watch on course_record suspends program execution whenever the variable is modified. To set a watch
on the course_record variable, locate it in the watch window, and check the Watch checkbox.

PhUSE 2017

9

Figure 15. WATCH set on course_record variable

Press F5 to continue execution until the value of course_record changes. Surprisingly, the debugger
never suspends execution. The data step runs to completion. The debugger displays a message stating
‘Debugging is now complete’.

Figure 16. DATA step debugger execution complete

Again, this is an unexpected behavior. It is unclear why the course_record variable is missing. Press the
F5 key to restart debuggging. Instead of using the WATCH command, begin manually stepping through
the program using the F10 key or the step button on the toolbar. Stepping through I can see the input
statement correctly populates all the variables. When hitting line 6 of the program source however, the
value of course is not “SAS”, so the delete statement is executed.

Figure 17. DELETE statement executing

After stepping over the delete statement, program execution moves back up to line 3, and the next
iteration of the DATA step begins.

Source line 14 is where _N_ is checked and initializes course_record. This is only done on the first
iteration of the DATA step. Set a breakpoint on line 14 by clicking the line number in the editor. A red
circle appears in the left margin, and the source on that line is highlighted red.

Now that the breakpoint is set, press F5 to continue execution. Execution is stopped on source line 14 as
we expect.

PhUSE 2017

10

Figure 18. Bug in the program is located

Using the watch window, you notice that the first time the statement executes, _N_ is already set to 4.
The delete statement is preventing the course_record score from being initialized. Since our variables are
never initialized, each row is comparing its value to a missing number, and the course record is never set.

At this point, I’d like to see if initializing course_record and record_holder will fix the issue. The JUMP
command can be used to force the program to move execution inside the IF block. This command can be
accessed from the editor context menu or directly from the debug console by entering: jump 15.

Figure 19. Jumping execution to specified source line

Line 15 is now highlighted. This allows the course_record and record_holder fields to be initialized.
Stepping through the rest of the program, you can observe that the values are properly retained and
updated. Now that the logic error in the program has been identified, the code can be fixed up to properly
initialize these variables. This can be done by either replacing the _N_ check with one for a missing
value, or by moving the delete command to the bottom of the program. Moving the delete to the bottom of
the program does however incur the cost of calculating round scores for observations which will
eventually be deleted.

EXAMPLE 3: MENTAL TOUGHNESS

The final analysis to be performed on the data will be to gauge “mental toughness". We will use how well
a player scores after a good or bad hole as an indicator of mental toughness. Players’ mental toughness
will be determined by calculating their mean score on holes after scoring under par (which is known as a ‘
birdy’ and is good) or over par (which is known as a ‘bogie’ and is bad). If the player performs worse on
holes after a bad score on a hole, we will treat it as a sign of mental weakness. The player allows their
mental state to be impacted by poor play. If the player performs consistently on holes following good and
bad holes, we will treat it as a sign of mental strength. The player retains their composure, regardless of
prior results.

To compute the average score after a birdie or bogie, we first sort the data by player and make use of by-
group processing. A total count must be kept of the number of birdies and bogies, as well as a total score
for each category. When the last observation of the player by-group is hit, an average is calculated using
the count and total score from each category. A mental score is then given by subtracting birdie average

PhUSE 2017

11

from the bogie average. If this score is greater than zero, we indicate that the player is mentally weak.
The initial code to calculate mental toughness can be found below:

data mental_toughness(keep=player avg_score_after_birdie

avg_score_after_bogie mentally_weak);

 set work.disc_golf;

 by player;

 array holes {*} hole1-hole9;

 /* Initialize variables */

 if first.player then do;

 birdie_count = 0;

 bogie_count = 0;

 total_score_after_birdie = 0;

 total_score_after_bogie = 0;

 end;

 /* Loop through holes 1 - 8. */

 /* Hole 9 cannot factor into this calculation */

 /* because there is no hole after it */

 do i = 1 to dim(holes)-1;

 if holes[i] < 3 then do;

 birdie_count = birdie_count + 1;

 total_score_after_birdie = total_score_after_birdie

 + holes[i];

 end;

 if holes[i] > 3 then do;

 bogie_count = bogie_count + 1;

 total_score_after_bogie = total_score_after_bogie

 + holes[i+1];

 end;

 end;

 /* Calculate mental toughness score for player */

 if last.player then do;

 avg_score_after_birdie = total_score_after_birdie / birdie_count;

 avg_score_after_bogie = total_score_after_bogie / bogie_count;

 ms = score_after_bogie - score_after_birdie;

 if (ms) > 0 then mentally_weak = "Y";

 else mentally_weak = "N";

 output;

 end;

 /* retain totals for player */

 retain birdie_count bogie_count total_score_after_birdie

 total_score_after_bogie;

run;

Execute the program and examine the output dataset.

Figure 20. Initial mental toughness results

Although there are no errors or warnings in the log, the average score after birdie appears to be incorrect.
According to the data, most players average a birdie after scoring under par. Some players even average

PhUSE 2017

12

less than two. It is difficult to imagine someone throwing a hole in one regularly. There must be something
incorrect in the code, so again we go back to the debugger to investigate.

Rather than stepping through the entire program, the area of most interest is when calculating scores
after holes where the score was less than three. We will now use a more advanced breakpoint feature.
Breakpoints allow a condition to be attached, so the program will only suspend execution when the
source line is hit AND the condition is met. Since we know the problematic area of our program deals with
the calculation for holes following a score under three, we can specifically target these points in the
program execution. Locating the DO loop which iterates through the score for each hole looking for
bogies and birdies, we can set a conditional break point. Issue the command in Figure 21 to the debug
console.

Figure 21. Conditional breakpoint set

The syntax is fairly straight forward. Break at source line 14 when holes[i] is less than 3. This breakpoint
appears in the editor after it is issued in the debug console. Press the F5 key to continue execution and
the program runs until source line 14 is hit and the condition is met.

When the program suspends, there are a few values of interest. First, you can examine some variables at
this point in the program. You can examine holes[i] to ensure that the current hole is in fact a birdie,
holes[i+1] to see the score of the next hole, and the total_score_after_birdie. Since we’re working with an
array, you’ll have to locate the value of i, then look at the corresponding hole variable associated with it in
the watch window. Alternatively, the “examine” command can help make this process a bit easier since it
displays one or more variable values. Submit the following command in the debug console:

examine holes[i] holes[i+1] total_score_after_birdie

Figure 22Error! Reference source not found. shows a screenshot of the current state of the program
and the resulting output of the examine command. Notice that each variable you examine is returned on
its own line in the debug console.

PhUSE 2017

13

Figure 22. Examine command and watch windows

Examining the variables, you can see on hole four a score of two was recorded. The next hole, which is
hole five, recorded a score of three. The value of total_score_after_birdie is currently zero. This means
the expected value of total_score_after_birdie should be three after the calculation. Use F10 or the button
on the toolbar to step through the do loop until the value of total_score_after_birdie is calculated.

Figure 23. Watch window after incorrect calculation

After stepping over the calculation the value is two rather than three. This points to an incorrect
calculation. Taking a closer look at the source code to calculate total_score_after_birdie:

total_player_score_after_birdie = total_player_score_after_birdie + holes[i];

The mistake in the code is using the score of the current hole in the calculation instead of the next hole.
As a result, only the holes with scores less than 3 are ever added to the total. This explains the extremely
low scores. Modify the source code to use holes[i+1] instead. After the program is executed again, the
results look much more reasonable.

Figure 24. Final results

PhUSE 2017

14

CONCLUSION

Whether you are trying to locate a bug or understand existing legacy code, the DATA step debugger is a
great feature for digging into your DATA step code. Hopefully you now have a better understanding of
the capabilities of the DATA step debugger and will be able to put it to good use.

RECOMMENDED READING

• Base SAS® Utilities: Reference

• SAS Institute Inc. 2013. “DATA Step Debugger” chapters in Base SAS(R) 9.4 Utilities: Reference.
Available at
http://support.sas.com/documentation/cdl/en/lebaseutilref/64791/PDF/default/lebaseutilref.pdf.

• Hemedinger, Chris. “Using the DATA step debugger in SAS Enterprise Guide” in “The SAS
Dummy: A SAS blog for the rest of us.” Available at
http://blogs.sas.com/content/sasdummy/2016/11/30/data-step-debugger-sas-eg/. Accessed on
February 3, 2017.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Joe Flynn
SAS Institute Inc.
joe.flynn@sas.com
http://www.sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

http://support.sas.com/documentation/cdl/en/lebaseutilref/64791/PDF/default/lebaseutilref.pdf
http://blogs.sas.com/content/sasdummy/2016/11/30/data-step-debugger-sas-eg/
http://www.sas.com/

