Paper 15 - 2014
Table Lookup Techniques: From the Basics to the Innovative

Arthur L. Carpenter, California Occidental Consultants

ABSTRACT

One of the more commonly needed operations within SAS® programming is to determine the value of one variable based on
the value of another. A series of techniques and tools have evolved over the years to make the matching of these values
go faster, smoother, and easier. A majority of these techniques require operations such as sorting, searching, and
comparing. As it turns out, these types of techniques are some of the more computationally intensive, and consequently
an understanding of the operations involved and a careful selection of the specific technique can often save the user a
substantial amount of computing resources.

Many of the more advanced techniques can require substantially fewer resources. It is incumbent on the user to have a

broad understanding of the issues involved and a more detailed understanding of the solutions available. Even if you do

not currently have a BIG data problem, you should at the very least have a basic knowledge of the kinds of techniques that
are available for your use.

KEYWORDS
Indexing, Key-indexing, Lookup techniques, Match, Merge, Select, KEY=, hash objects

INTRODUCTION

Along with the proliferation of very large data sets have come increasing powerful computers and data base management
capabilities. Even with the increase in computing power, the need for a more thorough understanding of efficient lookup
techniques has not diminished. Since publishing an earlier paper/presentation on table lookup techniques (Carpenter,
2000), the need to understand the more efficient and advanced techniques has not diminished. This paper is an update of
the earlier one, with a concentration on the more advanced techniques. Readers that do not have a strong working
understanding of the basic techniques should first read the earlier paper.

Techniques given only cursory attention in this paper, and more attention in the previous paper, include the following:
e |F-THEN
e |F-THEN-ELSE
e SELECT statement
e MERGE
e 5SQLjoins

The bulk of the discussions in this paper will concentrate on the use of the following techniques:
e user defined formats with the PUT and INPUT functions
e merging with two SET statements
e using the KEY= option
e use of ARRAYS
e Key-Indexing
e the use of hash objects

Anyone who performs table lookups should have at least a general understanding of these techniques. Even if you do not
learn them now, know that they exist so that you can learn and use them later. All users will be confronted with lookup
situations and they need to be able to compare, and contrast techniques so that they can select the technique that is
appropriate for their particular situation.

A table lookup is performed when you use the value of one (or more) variables (e.g. a patient identification code) to
determine the value of another variable or variables (e.g. patient name). Often this second piece of information must be

1

http://www2.sas.com/proceedings/sugi26/p158-26.pdf
http://www2.sas.com/proceedings/sugi26/p158-26.pdf

‘looked up’ in some other secondary table or location. The process of finding the appropriate piece of information is
generally fast, however as the number of items and/or observations increases, the efficiency of the process becomes
increasingly important. Fortunately there are a number of techniques for performing these table lookups.

The simplest form of a table lookup makes use of the IF-THEN statement. Although easy to code, this is one of the slowest
table lookup methods. Substantial improvement can be gained merely by the inclusion of the ELSE statement. The
SELECT statement has a similar efficiency to the IF-THEN/ELSE, however there are efficiency differences here as well.

The use of FORMATS allows us to step away from the logical processing of assignment statements, and allows us to take
advantage of the search techniques that are an inherent part of the use of FORMATS. For many users, especially those
with smaller data sets and lookup tables (generally less than 30,000 items), the efficiency gains realized here may be
sufficient for most if not all tasks.

Merges and joins are also used to match data values. The MERGE statement (when used with the BY statement - as it
usually is) requires sorted data sets, while the SQL step does not. There are advantages to both processes. Depending
on what you need to determine, it is usually also possible to build a merge process yourself through the use of arrays and
without using the SQL join or the MERGE statement. Substantial performance improvements are possible by using these
large temporary arrays as they can eliminate the need to sort the data.

Users with very large data sets are often limited by constraints that are put upon them by memory or processor speed.
Often, for instance, it is not possible/practical to sort a very large data set. Unsorted data sets cannot be merged by using
BY statements. Joins of very large data sets using SQL may be possible by using the BUFFERSIZE option, but this still may
not be a useful solution. Fortunately there are a number of techniques for handling these situations as well.

THE DATA

The data used throughout this paper are small data sets taken from a clinical trial. The first CLINDAT.PATIENT has patient
identifying information. Because this is a blinded study, the data must be stored separately until we are ready to un-blind
the study. This data has one row per patient and PATID is a unique row identifier (primary key). The second data set
(CLINDAT.TRIAL) has the study information, and it has a different primary key (PATID and DT_DIAG). The two data sets do
not have the same number of observations.

e CLINDAT.PATIENT A list of patient names, their SSN value, and a unique patient identifier (PATID).
e CLINDAT.TRIAL Study information for a small clinical trial. PATID is the only patient identifier.

We cannot assume that any data set has been sorted and for most of the examples we will want to look up the patient
name given the patient identifier (PATID). To give you an idea of their contents, small portion of each data set is shown
below.

3 VIEWTABLE: Cindat Tria

Iname | fname | ssn | name | patid | sex| dob |IEICE!| edu |s'_.'1'np| dt_diag |diag| patid |
1 Moon Rachel 375363500 Moon, Rachel 51 1 M TBJANID |1 12 3
2 Cranston Fhonda 287463500 Cranston, Rhonda 18 2 M 25JANIZ 1 12 6
3 Karson Shawn 257854321 | Karson, Shawn 36 3 M 26JAN3T |1 10/ 10 21
4 Carlile Patsy 578854321 | Carlile, Patsy 11 4 M 29JANIT 1 10/10 7
5 Holmes Donald 315674321 Holmes, Donald 0 5 M 2AMAYIT 1 12 15
6 Molan Temie 2598456241 Nolan, Temie B4 G M ZIMAYIE 1 12 . 7
7 Hermit Oliver 471094671 Hemmit, Qliver 29 7 M 26FEB1S 2 16 05) 2 20
2 Candle Sid 468729812 Candle, Sid 10 F:] M 150OCTAD 13 48
9 Panda Meny A8 7RAG27 Panda Mere R o s arssriaa 4 4o 0 "

BASIC TECHNIQUES

The basic techniques described in the following section of this paper are fairly straightforward to master and are sufficient
for small to medium size problems. They are not discussed in great detail here as they have been thoroughly covered in
some of the other referenced papers such as Carpenter (2001). For the most part these techniques do not scale well, and
as the size of the data sets or the number of items to look up increases so can the time to perform the look up. If you are
using one of these techniques and experience substantial slowdowns due to increase processing requirements, you may
wish to look into some of the more advanced techniques discussed later.

LOGICAL PROCESSING

Logical processing, which is accomplished through the use of IF-THEN/ELSE or SELECT statements is not particularly practical
when the number of values to look up exceeds one’s tolerance for typing repeated code. My tolerance is about three
lines of repeated code (hence the size of the example shown here).

data logical; In terms of the efficiency of the look up process, this is

set clindat.trial;
length lname $10 fname $6;
if patid = 1 then do;
lname="'Adams'; fname='Mary'; end;
else if patid = 2 then do;
Iname="Adamson'; fname='Joan'; end;
else if patid = 3 then do;

lname="Alexander'; fname='Mark'; end;

else * others not shown;
run;

about your worst choice, the only worse one is to use
the IF-THEN statements without the ELSEs. Of course
efficiency is relative, if there really are only three or
four items to look up and your data sets are small, it is
quite possible that little or no performance gain can be
achieved with the techniques described later in the
paper.

Effectively we are ‘hard coding’ the values to be
recovered by making them a part of the code.

Regardless of its relative efficiency this is just not
practical for large numbers of items to be looked up.

In terms of computer efficiency and
processing time, the use of the SELECT
statement is roughly equivalent to the
use of IF-THEN/ELSE statements. Like
the IF-THEN/ELSE statements this form
of look up is just not practical for more
than just a few items.

data select;
set clindat.trial;
length lname $10 fname $6;
select (patid);
when (1) do; lname='Adams'; fname='Mary'; end;
when (2) do; lname='Adamson'; fname='Joan'; end;
when (3) do; lname='Alexander'; fname='Mark'; end;

otherwise do; lname=' '; fname=' '; end;) o
end: Relative to the efficiency of the
B
run; computer, each of these types of

searches is sequential; they are applied
in order. When the list is long the average number of comparisons goes up quickly, even when you carefully order the list.
A number of other search techniques are available that do not require sequential searches. Binary searches operate by
iteratively splitting a list in half until the target is found, and on average these searches tend to be faster than sequential
searches. SAS formats use binary search techniques.

MERGES AND JOINS

Perhaps the most common way of getting the information contained in one table into another is to perform either a merge
or ajoin. Both techniques can be useful, and of course, each has both pros and cons. The MERGE statement is used to

identify two or more data sets. For the purpose of this discussion, one of these data sets will contain the information that
is to be looked up. The BY statement is used to make sure that the observations are correctly aligned. The BY statement

proc sort data=clindat.patient
out=patient;
by patid;
run;

proc sort data=clindat.trial
out=trial;
by patid;
run;

data merged;
merge patient(keep=patid lname fname ssn)
trial;
by patid;
run;

Sorting can be 10 intensive and as a result time consuming.

should include sufficient variables to form a unique key
in all but at most one of the data sets. For our example
the PATIENTS data PATID is a primary key (each PATID is
unique), however in the TRIAL data some patients have
return visits and thus there are duplicate PATID values.

Because the BY statement is used, the incoming data
must be sorted. When the data are not already sorted,
the extra step of sorting can be time consuming or even
on occasion impossible for very large data sets or data
sets on tape. In this example PROC SORT is used to
reorder the data into temporary (WORK) data sets.
These are then merged together using the MERGE
statement. By using a DATA step merge, additional
variables can be added. Here the SSN has been
included along with the first and last names.

The sorting can be avoided through the use of any of a variety

of types of SQL joins. SQL joins load both of the incoming tables into memory and the merging process is called a join.

In this example the requirement has been added that the PATID be in both data tables before the match is made.
Although the use a SQL join can avoid the use of sorts, it can also cause memory and resource problems as the size of the

proc sql noprint;
create table joined as

on p.patid=t.patid;
quit;

select p.patid,p.lname,p.fname,t.dob,t.diag, t.symp
from clindat.patient as p left join clindat.trial as t

data tables increase. A side
advantage of the LEFT JOIN and the
ON clause, which is shown here, is
that the resultant data set is
sorted; without resorting to a PROC
SORT.

The MERGE or SQL join will do the trick for most instances, however it is possible to substantially speed up the lookup
process by using one or more of the advanced techniques shown below.

TECHNIQUES BEYOND THE BASICS

You may find that having mastered the basic techniques shown above is sufficient for your processing needs — and that is
great. If however you find that your data sets and look up problems are large enough to cause your program run times to
increase to an unreasonable point, then it may well be time to look into some of these more advanced techniques. Some
are code intensive, but for the most part for most of them the hardest part is knowing that they exist.

USING FORMATS

Of all of the advanced techniques discussed below, the use of the user defined formats to perform the look up is probably
the most practical for the largest range of problems. For most situations where the look up table has fewer than
somewhere around 40,000 items this technique will provide all the muscle that you will need.

This technique uses a user defined format to make the look up assignment. Format look ups are fast because the internal
search is based on a binary tree approach. This means that you can return one item out of over a hundred items with 7 or
fewer queries (27 = 128), where on average IF-THEN/ELSE processing would require 50 queries.

The process of creating a format is both fast and straight forward. Formats can be built and added to a library (permanent
or temporary) through the use of PROC FORMAT. Two formats (PATLNAME. and PATFNAME.) are created in this PROC
FORMAT. Each contains an association between the patient number (PATID) and

proc format; their first and last names.
value patlname

1 ="Adams'

2 ="'Adamson'

3 ='Alexander';
value patfname

Of course typing in a few values is not a ‘big deal’, however as the number of entries
increases the process tends to become tedious and error prone. Even for the
example data sets used in this paper, entering the 80 or so patients in the study is just
not practical.

1 ="Mary'

2 ="Joan’ .

3 ="Mark'; Fortt_mately it .'S data control(keep=fmtname start label);

run; possible to build set clindat.patient(keep=patid lname fname
formats directly rename=(patid=start));

from a SAS data set. The CNTLIN= option on the PROC * format for last name;
FORMAT statement identifies a data set that contains fmtname="'patlname’;
specific variables. These variables store the label=1name;
information needed to build the format, and as a output control;
minimum must include the name of the format
(FMTNAME), the incoming value (START), and the value * Format for first name;
which the incoming value will be translated into fmtname="patfname’;
(LABEL). The data step shown here builds the data set label=fname;
CONTROL, which is based on the look up data output control;
(CLINDAT.PATIENT). This data set is then used by run;
PROC FORMAT to build the formats. One advantage of | Proc sort data=control;
this technique is that the control data set does not need by fmtname;
to be sorted within a format, however if the data run;
contains more than one format definition, as it does proc format cntlin=control;
here, it must at least be grouped by the format name. run;

Once the format has been defined, the PUT function can be
used to assign a value to the variable using the format. The
lname=put(patid,patlname.); PUT function always returns a character string; when a numeric
fname=put (patid,patfname.); value is required, the INPUT function can be used with an

run; INFORMAT.

data fmtname;
set clindat.trial(keep=patid sex);

Using these formats in a DATA step to look up the first and last names will be substantially faster than the IF-THEN/ELSE or
SELECT processing steps shown above. The performance improvement becomes even more dramatic as the number of
items in the lookup list increases. Notice that there is only one executable statement for each look up, and the look up
itself will use a format, and hence will employ a binary search.

REPLACING MERGE WITH TWO SET STATEMENTS

As was shown earlier the typical match merge requires two sorted data sets and results in a list of variables that is the union
of the variable lists of the two data sets. Because this technique requires that both
data sets be sorted, it may not be practical for very large data sets. Also there is a
nontrivial amount of overhead used behind the scenes by the MERGE statement to
coordinate the observations to make sure that they are aligned correctly. In this
particular example this merge will fail unless both the data sets are sorted by PATID.

data twomerge;
merge clindat.patient
clindat.trial;
by patid;
run;

A DATA step with two SET statements can also be used to perform a merge like operation. Because of the overhead
associated with the MERGE statement, the double SET statement merge can often be faster than the MERGE statement.
However it becomes the programmer’s responsibility to take over the functionality of the merge process through coding
and logic statements.

Although a DATA step with two SET statements can be used to perform a merge operation, a simple data step with just two
SET statements is not sufficient to successfully complete the operation. In this
simplistic two SET statement DATA step, the list of variables will be the same as in the
previous step with the MERGE statement, but this is about the only similarity.
Effectively this would mostly perform a one-to-one merge, however when the last
observation from the shorter data set is read, the DATA step will terminate.

data twoset;
set clindat.patient;
set clindat.trial;
run;

The following DATA step also uses two SET statements to perform a merge. Although no BY statement is used, this
technique expects both of the incoming data sets to

proc sort data=clindat.patient out=patient; be sorted. In this DATA step an observation is first
by patid; read from the TRIAL data set to establish the patient
run; ID (PATID) that is to be looked up (notice that a
pr‘o; S;;E) 3ata=clindat.tr‘ia1 out=trial; rename option is used). The lookup list is then read
y 1d;

sequentially until the codes are equal and the
observation is written out. Although not shown
here, logic can be included to handle observations that
are in one data set and not the other. One restriction
of the code, as it is shown here, is that any duplicate
patient codes would have to be in the TRIAL data set.
This code expects the lookup data (PATIENT) to have
unique values of PATID.

run;

data doubleset(drop=code);
set trial(keep=patid symp dt_diag
rename=(patid=code));
* The following expression is true only
* when the current CODE is a duplicate.;
if code=patid then output;
do while(code>patid);

* lookup the study information using Although the sorting restrictions are the same as when

* the code from the primary data set; you use the MERGE statement, the advantage of the

set patient(keep=patid lname fname); double SET can be a substantial reduction in

if code=patid then output; processing time. This improved performance does
end; however come at a cost. The code and logic is more
run; complicated and more prone to error.

USING INDEXES
Indexes are a way to logically sort your data without physically sorting it. While not strictly a lookup technique, if you find
that you are sorting and then resorting data to accomplish your various merges, you may find that indexes will be helpful.

Indexes must be created, stored, and maintained. They are most usually created through either PROC DATASETS (shown
here) or through PROCSQL. The index stores the order of
the data had it been physically sorted. Once an index
exists, SAS will be able to access it, and you will be able to
use the data set with the appropriate BY statement, even
though the data have never been physically sorted. Indexes
are named and one variable (simple) indexes have the same
name as the variable forming the index. In this example
CLINDAT.PATIENT has a single simple index on PATID. An index formed by two or more variables is known as a composite
index. Although the composite index is named, the name itself is not really used. Here a composite index named
KEYNAME is created for the CLINDAT.TRIAL data set.

proc datasets library=clindat nolist;
modify patient;
index create patid / unique;
modify trial;
index create keyname=(patid dt_diag);
quit;

Obviously there are some of the same limitations to indexes that you encounter when sorting large data sets. Resources
are required to create the index, and these can be similar to the SORT itself. The indexes are stored in a separate file, and
the size of this file can be substantial, especially as the number of indexes, observations, and variables used to form the
indexes increases. Indexes can substantially speed up processes, however they can also SLOW things down (Virgle, 1998).
Be sure to read and experiment carefully before investing a lot of effort in the use of indexes. The topic of indexes can be
complex enough that an entire book has been written on the subject (Raithel, 2006).

data indxmrg;
merge clindat.patient
clindat.trial;
by patid;
run;

utilized.

USING THE KEY= OPTION
It is often not practical to create an index for both data sets.
look up operation using the index on the other data set.
(CLINDAT.TRIAL) is unindexed.

Although neither of the two data sets that we have been working with have been

sorted, they have now been indexed and we can now perform a merge using the BY
statement through the use of their indexes.
stored as a part of the data set’s meta data, the index is detected and utilized when
the data set is used with a BY statement.
were sorted and the programmer has to do nothing in order for the indexes to be

Because the index information is

The merge takes place as if the data sets

If one of the data sets is unindexed you can still perform a
In this example we will assume that the master data set
As you examine this DATA step you will notice that this is essentially a two SET statement

merge. However an index is used instead of logic to coordinate the reads of the observations.

The KEY= option on the SET statement option identifies an index that is to be used for reading that data set.

data keymerge(keep=patid sex lname fname symp diag);
set clindat.trial; *Master data;
set clindat.patient key=patid/unique;
if _iorc_ ne @ then do;
* clear variables from the indexed data set;

lname=" "';
fname=" "';
end;

run;

KEY= option, a return code indicating the success or failure of the read is stored in the temporary variable _IORC_.
Because the variables that we are retrieving (LNAME and

variable will be equal to 0 when the index value is found.

In this
example the data set CLINDAT.PATIENT has an
index for PATID. As each observation is read
from the master data set (CLINDAT.TRIAL), a
value of PATID is loaded into the PDV. This
value is then used in the second SET
statement to read an observation with a
matching PATID from CLINDAT.PATIENT.

This retrieval is fast because of the PATID
index.

When an indexed read is performed using the
This

FNAME) are retained variables, they must be set to missing when a particular value of PATID does not exist in the indexed

data set (_IORC_ will not be 0).

USING ARRAYS FOR KEY-INDEXING

Sometimes when the use of indexes or sorting is not an option, or when you just want to speed up a search, the use of

arrays can be just what you need.
values (Dorfman, 2000a, 2000b). However arrays are not always an option.
and the index to the array must be numeric.

Under the current versions of SAS you can build arrays that can contain millions of

An array can contain a single value in each cell

If these are not limitations for your particular problem, there are no faster

look up techniques than those that utilize key-indexing techniques to access arrays.

When we use the term key-indexing we are not referring to a data set index as was described in the previous section, but

rather the term refers to the way that the array is accessed.
in the look up process. This variable is used as the array index.

In key-indexing the array is accessed by a variable that is used
By utilizing arrays in this manner, we can go directly to

the value of interest rather than searching for it through a list one item at a time.

A simple example of key-indexing can be demonstrated through the problem of selecting unique values from a data set.

In terms of our data sets, we would like to make sure that the patient
codes in the data set CLINDAT.PATIENT are unique — that the data set has
at most one observation for each value of PATID. One solution for this
type of problem would be to use PROC SORT with the NODUPKEY option as
is done here. However an alternative to sorting is to use an array and key-
indexing techniques.

proc sort data=clindat.patient
out=patient
nodupkey;
by patid;
run;

To avoid sorting, we somehow have to “remember” for any given PATID whether or not it has already been found. The
way to do this is to use an array. There are a couple of ways to use an array to ‘remember’ the values of the PATID

data Brute;

array check {10000} _temporary_;

retain foundcnt 0;

set clindat.patient;

* Check if already found;

if whichn(patid,of check{*})=0 then do;
* First time this PATID;
foundcnt+1;
check{foundcnt} = patid;
output brute;

end;

run;

data unique;

array check {10000} $1 _temporary_;

set clindat.patient;

* check if this patient has been

* found before;

if check{patid}=' ' then do;
* First occurance for this patient;
output unique;
* mark this patient as found;
check{patid}="x";

end;

run;

variable that have been encountered. The first is a brute
force approach that does not use key-indexing. Here we
store each new PATID value in the next available array
element. The first PATID found is stored in CHECK{1} and
the next PATID that is different from the first is stored in
CHECK{2}. When we want to see if a given PATID has
already been found we must check all the elements of the
array, which we can do using the WHICHN function. The
primary limitation of this approach is in the way that we
search across the array. As the size of the array
increases, and the array has to be as large as the number
of distinct PATID values, the search slows down. This
limitation is avoided by the key-indexing technique shown
next.

The beauty of the key-indexing technique is that the
search is very quick because regardless of the size of the
array, only one item has to be checked. We accomplish
this by using the PATID code itself as the index to the
array. As an observation is read from the incoming data
set, the numeric PATID code is used as the index for the
array CHECK. If the array value is missing, this is the first
occurrence of this PATID. The array element is then
marked as found (the value is set to ‘x’). Notice that this
particular array will allow a range of PATID values from 1
to 10,000. Larger ranges, into the 10s of millions, are
easily accommodated.

This process of looking up a value is exactly what we do when we merge two data sets. In this DATA step the list of

array lastn {100000} $106 _temporary_;
array firstn {100000} $6 _temporary_;
do until(done);

* read and store the patient data;

end=done;
* Save Patient data to arrays;
lastn{patid} = lname;
firstn{patid} = fname;
end;
do until(tdone);

end=tdone;

lname = lastn{patid};
fname = firstn{patid};
output keyindex;

end;

stop;

run;

data keyindex(keep=patid lname fname symp diag);
* Use arrays to hold the retained (patient) values;

set clindat.patient(keep=patid lname fname)

set clindat.trial(keep=patid symp diag)

* retrive patient data for this patid;

patient identification codes are read into an
array. The order that the values are read
in does not matter as each value is loaded
using the PATID as an index. Since in this
example we are looking up two values
(LNAME and FNAME) two arrays have been
created. In both arrays the PATID will be
used as the array subscript (index).

The second DO UNTIL then reads the data
set of interest. Again the order that this
data set is read makes no difference. In

this loop the values of LNAME and FNAME
are recovered from the arrays, again using
the PATID as the array index, and assigned
to the appropriate variables.

Each observation from the two incoming
data sets is read exactly once. Neither
data set need to be sorted. The two
arrays together take up only about 1.6

million bytes of memory, and this is fairly small for modern machines.

This technique is known as Key-indexing because the index of the array is the value of the variable that we want to use as
the look up value. Unfortunately this technique will not work in all situations. As the number of array elements
increases the amount of memory used also increases (Paul Dorfman, 2000a, discusses memory limitations). Certainly
most modern machines should accommodate arrays with the number of elements in the millions. For situations where
this technique requires unreasonable amounts of memory, other techniques such as bitmapping and hashing are available.
Again Paul Dorfman is the acknowledged expert in this area and his cited papers should be consulted for more details.

Other limitations of this technique as well as solutions to these limitations are discussed in the section on hash objects
below.

USING HASH OBIJECTS

Limitations of KEY-INDEXING, and the use of arrays in general, include the necessity to use a numeric value as the array
index, the inconvenience of multidimensional arrays, the inability to mix types of variables stored in a single array, fixed
dimensionality of the array, and the inability to store more than one item in a given array position. While techniques have
been developed to work around these limitations, the hash object directly addresses and negates each of these issues.

You can think of the hash object as a super array. The values stored in a hash table can be loaded with data in one of
several ways. One or more index variables can be specified and these can be either numeric or character. Essentially the
size of a hash table is dynamically allocated, so you do not need to know either the number of elements to be stored or the
number of bytes needed to store an item ahead of time. Hash tables are defined and used in a DATA step, and a given
DATA step can have as many hash objects defined as necessary. Since these tables are stored in memory it is possible to
fill the available memory allocated to SAS, but like with arrays, enough memory is generally available to hold very large
amounts of information.

Within the DATA step, the hash object must first be defined (declared) before it can be used. Rather than address the
object directly like we do with arrays, a series of predefined tools have been written for us to use. Known as methods and
constructors, these tools are used, among other things, to load data into and to retrieve values out of the hash table.

Since the declaration process utilizes variables on the PDV, we have to make sure that these variables exist prior to the
declaration process. In this example the variables that are to be used in the hash object are manually added to the PDV
using the LENGTH statement. The hash object itself is then defined once (_N_=1) and named (HMERGE) using the
DECLARE statement. The attributes of the

data hashmer‘g(.e(keep=patid lname fname symp diag); object are then defined using the
length patid 8 1name $10 fname $6; DEFINEKEY (the look up variable),
if _n_=1 then do; DEFINEDATA (the values stored in the array

declare hash hmerge(dataset: 'clindat.patient’,

and to be retrieved), and DEFINEDONE
hashexp: 6);

(closes the DECLARE block) methods. The

rcl hmerge.def}neKey(?atld ?’ , , DATASET: constructor loads the selected
rc2 = hmerge.defineData('lname', 'fname'); . . .

. variables of the incoming table
rc3 = hmerge.defineDone();

(CLINDAT.PATIENT) into the hash object

end;
HMERGE.

set clindat.trial end=done;

rc4 = hmerge.find(); .))
if rc4 = 0 then output hashmerge; For each observation and its associated
run; PATID value in the data set CLINDAT.TRIAL,

the FIND method uses the value of PATID
and retrieves (looks up) the corresponding values LNAME and FNAME in the hash table and loads these values into the PDV.
The values stored in the PDV can then be written out to the new data set HASHMERGE using the DATA statement.

The previous example works fine, but it is not as efficient as it could be. And because the variables LNAME and FNAME
are never directly read into the PDV, the LENGTH statement causes UNINITIALIZED variable notes in the LOG. In this
version of this same DATA step we overcome

data hashmerge(keep=patid lname fname symp diag); both of these limitations. The LENGTH
if @ then set clindat.patient(keep=1lname fname); statement is replaced with a compilation only
declare hash hmerge(dataset: 'clindat.patient’, SET statement (during execution IF 0 is false).
hashexp: 6); This loads the variables LNAME and FNAME
rcl = hmerge.defineKey('patid'); onto the PDV. Technically we do not need to
rc2 = hmerge.defineData('lname’, 'fname'); add PATID to the PDV, since during

rc3 = hmerge.defineDone(); compilation it will be added from the SET

do until(done); statement that names CLINDAT.TRIAL as an
set clindat.trial end=done; incoming data set

rc4 = hmerge.find();

if rc4 = @ then output hashmerge; The incoming SET statement for

end; CLINDAT.TRIAL is now inside of a DO UNTIL

stop; L -

run: loop. This improves the efficiency of the
J

read, and it also means that we no longer
need to conditionally execute the DECLARE block. The STOP statement is used to terminate the DATA step. Whenever you
use a DO loop to surround a SET statement it is a good idea to also use a STOP statement to close the DATA step.

SUMMARY

There are a number of techniques that can be applied whenever you need to “look up” a value in another table. Each of
these techniques has both pros and cons and as SAS programmers we must strive to understand the differences between
them. As our data tables become larger or as our retrievals (look ups) become more complex, it becomes increasingly
more important that we understand and utilize those techniques that are most offer the best efficiencies. Since none of
these techniques is appropriate for all situations, it is incumbent that we have a good grasp of each of these methods so
that we can choose the appropriate one. Some of the commonly applied techniques, such as IF-THEN/ELSE, MERGEs and
JOINS have alternate methods that can be used to improve performance and may even be required under some conditions.

REFERENCES

Many of the examples in this paper are adapted from Carpenters Guide to Innovative SAS’ Gsas

Techniques. https://support.sas.com/pubscat/bookdetails.jsp?pc=62454 Carparisra GIAE
Innovative

Other references include: SAS Techniques

Aker, Sandra Lynn, 2000, “Using KEY=to Perform Table Look-up”, published in the conference
proceedings for: SAS Users Group International, SUGI, April, 2000.

Carpenter, Arthur L., 1999, “Getting More For Less: A Few SAS® Programming Efficiency
Issues”, published in the conference proceedings for: Northeast SAS Users Group, NESUG,
October, 1999; Pacific Northwest SAS Users Group, PNWSUG, June, 2000; Western Users of
SAS Software Inc., WUSS, September, 2000.

Carpenter, Arthur L., 2001, “Table Lookups: From IF-THEN to Key-Indexing,” presented at the Ninth Western Users of SAS
Software Conference (September, 2001) and the Twenty-Sixth Annual SAS Users Group International Conference, SUGI,
(April, 2001), and the Pacific Northwest SAS Users Group Conference (November, 2005). The paper was published in the
proceedings for each of these conferences. http://www?2.sas.com/proceedings/sugi26/p158-26.pdf

Carpenter, Art, 2012, Carpenter’s Guide to Innovative SAS Techniques, Cary, NC: SAS Institute Inc.

Dorfman, Paul, 1999, “Alternative Approach to Sorting Arrays and Strings: Tuned Data Step Implementations of Quicksort
and Distribution Counting”, published in the conference proceedings for: SAS Users Group International, SUGI, April, 1999.

10

https://support.sas.com/pubscat/bookdetails.jsp?pc=62454
http://www2.sas.com/proceedings/sugi26/p158-26.pdf

Dorfman, Paul, 2000a, “Private Detectives In a Data Warehouse: Key-Indexing, Bitmapping, And Hashing”, published in the
conference proceedings for: SAS Users Group International, SUGI, April, 2000.

Dorfman, Paul, 2000b, “Table Lookup via Direct Addressing: Key-Indexing, Bitmapping, Hashing”, published in the
conference proceedings for: Pacific Northwest SAS Users Group, PNWSUG, June, 2000.

Raithel, Michael, 2006, The Complete Guide to SAS Indexes, Cary, NC: SAS Institute Inc

Virgle, Robert, 1998, Efficiency: Improving the Performance of Your SAS® Applications, Cary, NC: SAS Institute Inc., 256pp.

ACKNOWLEDGMENTS

Paul Dorfman, Mike Raithel, and Bob Virgle are internationally acknowledged experts in the fields of SAS programming
efficiencies and large data set techniques. Through conversations and their written work, each has provided me with
valuable insights into the techniques used here, and it has been a pleasure to continue to learn from them.

ABOUT THE AUTHOR

Art Carpenter’s publications list includes two chapters in Reporting from the Field, five books, and numerous papers and
posters presented at SAS Global Forum, SUGI, PharmaSUG, WUSS, and other regional conferences. Art has been using SAS
since 1977 and has served in various leadership positions in local, regional, national, and international user groups.

Art is an Advanced SAS Certified Professional, and through California Occidental Consultants he teaches SAS courses and
provides contract SAS programming support nationwide.

AUTHOR CONTACT
Arthur L. Carpenter

California Occidental Consultants Certified Clinical
10606 Ketch Circle ()Sas Trials Programmer

Using SAS™9
Anchorage, AK 99515

Certified Advanced
(907) 86567 Sa: ; Programmer for SAS'9

art@caloxy.com
www.caloxy.com

View my paper presentations page at:
http://www.sascommunity.org/wiki/Presentations:ArtCarpenter Papers and Presentations

TRADEMARK INFORMATION

SAS and all other SAS Institute Inc. product or service names are registered trademarks or
trademarks of SAS Institute Inc. in the USA and other countries.

® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

11

http://www.sascommunity.org/wiki/Presentations:ArtCarpenter_Papers_and_Presentations

