NESUG 17 Posters

RECURSIVE SUBROUTINE MACROS

Chang Y. Chung

Princeton University

ABSTRACT

I present a set of macros to make it easier to write recursive, subroutine-like programming constructs within a
data step. Several problems posted on SAS-L are solved demonstrating the use of these macros.

INTRODUCTION

There are several ways to solve a difficult programming problem. Sometimes a problem must be divided into
smaller, manageable pieces and sometimes a recursive approach must be taken. Since SAS® data step does not
allow user-written subroutines or functions, this language does not fully support either method.

Instead, | i nk and r et ur n statements must be used. These statements help users code a common block of
statements once and “call” them from different places. Data step also permits a recursive | i nk which makes it
possible to | i nk to itself from within a | i nk block, but recursive links are limited to only ten-level deep.
Parameterizing a | i nk block is also quite awkward, further limiting the usefulness of | i nk and ret urn
statements.

To combat this problem some clever users have developed and used subroutine-like programming constructs
using got o statements and temporary arrays. With this approach, it is possible to have “parameterized” blocks of
statements that could be recursively called more than ten times. It is almost like having recursive subroutines
inside a data step.

Written mostly to solve specific problems, this approach has not been well-documented out of particular contexts.
By encapsulating the approach in a set of macros, this paper aims to document and facilitate application.

In the next section, the technique is explained in plain data step code. Then, a set of macros, called %sub macros,
are presented. It is followed by several examples using the macros to solve some problems, many of which have
their origins in the postings on the on-line discussion group, SAS-L.

GOTO wiTH TEMPORARY ARRAY

There are two innovative ideas that gave rise to the approach. One is the re-discovery of the versatility of got o
statement. Suppose that we are to recursively calculate the factorial of a positive integer. If it is less than 11, it is
possible to code it with | i nk and r et ur n as below (on the left). The compatible got o approach is on the right.

Notice that we get an error message when we attempt to calculate 11! using the | i nk and r et ur n. This is
because we are | i nking deeper than 10-levels. The data step on the right column shows that we can get around
the limitation by using got o’s instead. The | i nk and r et urn are smarter than got o and | abel . When we

l'i nk from multiple places in the code -- Ret ur n knows which | i nk to go back to; got o does not. In fact, the
got o approach above would not have worked, if the statement were not the last statement in the f act block.
Fortunately, we can work around this problem in a straight-forward manner.

data _null_; data _null_;
/* ITHI n ******************************/ /* I'THI n ******************************/
f =1, f =1
level = 11; | evel = 11;
link fact; goto fact;
put "11!=" f; returnPoint:;

1 of 22

NESUG 17 Posters

st op;

/* SUbrOUtlne ************************/

fact:;
if level > 1 then do;
f =level * f;
level = level - 1;
link fact;
end;
return;
run;
/* on | og

ERROR. Mdre than 10 LINK statenents have

been executed [...] Check your LINK/ RETURN
| ogic.

f=39916800 | evel=1 _ERROR =1 _N =1

*/

put "11!=" f;
st op;

/* SUbrOUtIne ************************/

fact:;

if level > 1 then do;
f =level * f;
|l evel = level - 1;
goto fact;

end;

goto returnPoint;

run;
/* on | og
11! =39916800
*/

The second innovation is using (temporary) arrays in order to emulate the first-in-last-out (FILO) call stacks,
which store the current values of “local” variables before the body of the “subroutine” is executed. It then
restores those values when the call to the subroutine returns. Emulating push and pop operations is nothing more
than keeping track of the cell index of the cell on the “top of the stack.” Below (on the left) is the implementation
of the factorial algorithm with got o’s and temporary arrays. In order to show that the recursive call indeed
returns, I added a put statement after the recursive call.

Each “call” of a subroutine now becomes a three step exercise. The first is setting the varable, r p, which tells
which return point the control should come back to. The second is a got o statement sending the control to the

Ill

“subroutine.” The third is setting up the “cal

specific return point. At the conclusion of an execution of the

subroutine, a sel ect - end block chooses an appropriate got o statement. This is the whole picture of how got o
statements are used to mimic what | i nk and r et ur n do.

data _null _;

/* InltlalIZatIOI’l ********************/
/* for a "local" variable |evel */

array | evel _stack[1:12] _tenporary_;
top_of _I evel _stack = O;

/* for return points */

array rp_stack[1l:12] _tenporary_;

top_of _rp_stack = O;

/* mai n ******************************/

f =1;

level = 11;

/* calling a subroutine */
rp =1

goto fact;

returnPointl:;

/* report when all done */
put "11!=" f;

st op;

/* subroutine ***xxkkkkkxkkkkkxxkhkkkx/

fact:
/* push current values into stacks */
top_of _rp_stack + 1;
rp_stack[top_of _rp_stack]
top_of I evel _stack + 1;
| evel _stack[top_of _| evel _stack]
| evel ;

= rp;

/* the content of subroutine */

if level > 1 then do;
f =level * f;
level = level - 1;

data _null _;

J* initialization *****xxxkkkkxxkkkkkxx |

%ub_init(fact, level)

/* n-al n ******************************/
f =1,
%sub_cal | (fact, 11)
put "11!=" f;
st op;

/* SUbrOUtlne ************************/

%sub_do(fact)

if level > 1 then do;
f =level * f;
|l evel = level - 1;
%ub_call (fact, level)
put |evel =

end;

%ub_end(fact)

run;
/* on | og
|l evel =1

2 0of 22

NESUG 17 Posters

rp = 2; | evel =2
goto fact; L
returnPoi nt 2:; | evel =10
put level=; /* this is new */ 11! =39916800
end; */

/* pop current values from stacks */
rp = rp_stack[top_of _rp_stack];
top_of _rp_stack + (-1)
level =

| evel _stack[top_of | evel _stack];
top_of _l evel _stack + (-1)

/* goto back to appropriate return
poi nt */

sel ect(rp)

when(1) goto returnPoint1;

when(2) goto returnPoint2

end

run;
/* on | og

| evel =1

| evel =2

| evel =10

11! =39916800
*/

On the right is the corresponding data step written with the %sub macros. There are four

macros: %sub_i nit, %sub_cal | , %sub_do, and %sub_end. The first macro parameter is always the name of
the subroutine, in this case “fact.” The generated codes are very similar to what are shown on the

left: %sub_i nit sets up stacks; %sub_cal | does the three step exercise of “calling” subroutines as mentioned
above; %sub_do pushes values onto the stacks; and %sub_end pops the top of the stacks.

Note that there are no “local” variables, but rather we have call-stack managed variables. These variables may be
assigned new values while the subroutine is executed; they get the old values back when a call returns.

The actual macro implementation has some additional complications like handling expressions passed as
subroutine parameters (they have to be evaluated right after pushing), and prefixing variable names so that they
are unlikely to collide with existing names.

%SuB MACROS

The macro source is appended at the end of this paper. It consists of eighteen macros. In addition to four %sub
macros proper, there are six general utility macros; four that deal with what I call NameTypelLen(gth) notation;
three for implementing LIFO stacks; and one macro to demonstrate the %sub macro usage.

The utility macros are not an absolute necessity (it is possible to write macros without them), but they help make
macro codes easier to read.

% i f macro is named after a worksheet function of a popular spreadsheet application program and works in the
same way. That is, it returns the t r ue part when the condition is evaluated t r ue and the f al se part when
fal se.

% or Each macro is a %o loop with bells and whistles. Depending on the uni t, the macro makes it possible to
adjust starting, ending, and increment (by) values. It also makes it possible to run the loop for each item in a
delimited list given in the macro parameter (i n). The body of the %do loop is given by i nvoke, where you are
guaranteed to have a macro variable, &uni t . , available. For example, if you call % or Each with i t em then you
will have a macro variable called i t emavailable for you during each i nvoke:

%racr o put Me(what) ;

3of 22

NESUG 17 Posters

Y%put ***&what . ***;
%rend put Me;
% or Each(item in=a b c, invoke=%rstr(%utM(& tem)))
/* on |og

* Kk gk K

* Kk koK ok

C

*/

The NameTypeLen(gth) (NTL) notation is used to efficiently express variable name, type, and length. In NTL
notation, f oo means a numeric type (named f oo) whose length is 8. On the other hand, bar $1, indicates a
character type, bar, with a length of 1. The NTL macros make it easy to deal with the NTL notation. For
example:

Uput ***omt| _type(bar $1)***;
/* on | og

$

*/

The stack macros rely on NTL. The %t ack_i ni t sets up a temporary array of given name, type, and length. It
also creates a retained variable for pointing the top of the stack. The default value of max is 1000, which results

in an array with 1001 cells, indexed from 0 to 1000. The zero cell is initialized to missing, indicating that the top

of the stack is empty. The %t ack_pop pops the top. It is written such a way that it can be used like a function
in the right side of the equal sign in an assignment statement.

The following sets up a stack and and pushes three letters on it. It then pops the top three times while put ting
the values on log. The name of the temporary array is: bar _st ack. The pointer variable is called

bar st ack_t op. Notice that the first macro parameter of the %t ack i ni t is an NTL, while it is name only
for %st ack_push and %t ack_pop.

data _null _;
¥t ack_init(bar$1)
do bar = "A", "B", "C';
%t ack_push(bar, bar)
end;
bar = Y%stack_pop(bar);
do while (not mssing(bar));

put bar=;
bar = %stack_pop(bar); /* semi-colon required */
end;
run;
/* on |og
bar=C
bar =B
bar =A

WARNI NG stack bar is enpty already.
*/

Given plenty of helpers, the %sub macros alone are relatively short. %sub_i ni t has two positional parameters
that are required. The first is the name of the subroutine, the other is a delimited (by default — with a space) list
of ar gs or a list of variables to be call-stacked, written in NTL notation. In practice, the list will include both the
subroutine parameters and the “local” variables. From the macro implementation point of view, they are the same
— both are the call-stack managed variables. The heap parameter gives the size of the temporary arrays (minus
one); that is, the maximum possible depth of recursive calls.

Once the stacks are set up, the macro also creates global macro variables in order to keep track of the argument
names and return points. It also creates the return point data step variable to be used at the end of the
subroutine. Note that all the names are prefixed by the subroutine name. This creates a sort of “name space” so
that similar names do not collide across different subroutines. %sub_i ni t is to be issued before any other %sub
macros.

The %sub_cal | “calls” the subroutine. In addition, it stores the given subroutine call parameters (val ues) in a
series of global macro variables. The items in val ues will end up being assigned to the variables that are

4 of 22

NESUG 17 Posters

mentioned in ar gs and created by %sub_i ni t. Thus, the val ue’s should match in order with the ar g’s in
terms of type and length. A val ue can be an expression.

%ub_cal | can be used in many places including within the subroutine itself (recursive calls). It cannot,
however, appear in the code before %sub_i ni t . It also cannot be placed after %sub_end. Usually, this is not a
problem, but if you have multiple subroutines that call each other, then the place of the %sub_cal | in the code
matters. A useful hack in such instances is shown in one of the examples below.

%sub_do marks the beginning of the subroutine of the given narne. The first thing it does is to write out a label
with the same nane. Then, it pushes the current value of each call-stack managed variables. After that, it passes
control to the end of the subroutine, where the subroutine call parameters (val ues) are evaluated and assigned.
The control then comes back to the body of the subroutine.

%sub_end marks the end of the subroutine body. It does pop the stacks, but it also writes out two sel ect - end
blocks. One is to select the return points. The other is the parameter evaluation block that %sub_do passes the
control to and pro.

That is it for the explanation of %sub macros. In the following several sections, I present some examples of
using %sub macros. The source code for the examples can be found in the appendix, in the macro
called, %sub_test.

GOD JUL oR MERRY CHRISTMAS

This example (test case number 2) is from Wahlgren (2003)’s question about generating a certain permutation
involving six different letters. If the permutations are generated in a certain order, the 194™ permutation forms
“GODJUL,"” which is *"Merry Christmas!” in Swedish (once we put a space between the letters D and J). McLerran
(2003) posted an elegant recursive macro solution (the URL of the archived posting is given in the reference).

%-- test2 translated frommacro pernute -
% -- by Dale MLerran (sas-|l 2003-12-15) -
data _null _;

/* i nltl al i Zatl on **/

%ub_init(permute, c$6 chars$6 word$6 len i)

/* W&l n **/

counter = 0;

%ub_cal | (permute, "" "DGEILOU" "" 6 1)
put counter=;

st op;

* 1 IR SRR S EEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEE S
/* subroutine /

Y%sub_do(per nut e)

if mssing(chars) then len = 0;
el se len = length(chars);

if len > 0 then do;
i =1;
do while (i <=1len); /* you cannot call a sub within a */
/* do i=## to ## since to-expression cannot be altered.*/
%sub_cal | (permute, %str(

substr(chars,i, 1) # /* c */
trim(conpress(chars, c)) # /* chars */
trim(trim(word) || c) # [/* word */
| en # [/* len */
i #/* i */
), dl nF#)

=i+ 1

end;

end; el se do;
counter ++ 1;
if counter = 194 then put "The 194th word is " word,;

=

5of 22

NESUG 17 Posters

end;
%sub_end(per nut e)

run;
/* on |og

The 194th word is GODJUL

count er =720

NOTE: DATA statenent used (Total process tine):

real time 0. 09 seconds
user cpu tine 0. 06 seconds
systemcpu tine 0. 03 seconds
Menory 275k

*/

I translated the macro solution to %sub macro implementation. The code demonstrates how and what to include
in the ar gs for %sub_i nit and val ues for %sub_cal | . The %sub_i ni t shows that the first three arguments
are of character type with the same length of six. Both the “local” variables | en and i are also to be call-stack
managed, since their values should be restored when the recursive call returns. The second %sub_cal |
demonstrates that you can specify expressions instead of variables.

It has been well-known that we can implement recursive algorithms in macro. The main drawbacks, however,
have been the slow execution (or macro compilation) speed and the limited size of the macro buffer. The %sub
macro implementation, in contrast, should run faster since it is a data step. Note that it should not be affected by
the size of the macro buffer (except in an extreme case).

As a side note, the do whi | e loop inside the subroutine cannot be replaced with an ordinary do loop (i.e., do i
= 1 to | en;). If we do, then the | en is evaluated only once before looping. This is due to the optimization that
the data step compiler does.

Two STEP FORWARD AND ONE STEP BACK

The next example (test case number 3) is trivial, except that it shows how to use two subroutines together.
Notice that %sub_cal | cannot appear after the corresponding %sub_end. This example also reminds us that
there are no real “local” variables. That is the reason why we cannot have the call-stack managed variables that
have the same name, even though they will be “local”ized in different subroutines. Otherwise, using two or more
subroutines is straightforward.

%-- test3 a silly one, involving tw sub-routines -

data _null _;

/* Inltlallzatlon **/

Y%sub_i ni t (addTwo, a)
%ub_init(subtractOne, b) /* you cannot use a again */

/* nain **/
x = 0;
do while (x <= 10);
put x=;
%sub_cal | (addTwo, x)
%sub_cal | (subtract One, Xx);
end;
st op;

/* SUbrOUtIneS ***/

%ub_do(addTwo)
%ub_cal | (subtract One, %str(x+3))
Y%sub_end(addTwo)

%ub_do(subtract One)
X =b - 1;
/* you cannot call addTwo here, since
%ub_end(addTwo) woul d not know
anyt hing about the call. See test 7 in the

6 of 22

NESUG 17 Posters

bel ow for an wor karound when two sub-routines
call each other

*/
Y%sub_end(subtract One)

run;
/* on |og

X X X X X X X X X X X
POO~NOUAWNEFO

B | | 1 1 1 L R VR T

“IT WwOULD BE EIFFICULT TO DO THIS WITH IF-THEN”

In response to Flom’s (2002) SAS-L posting saying that got o and | i nk are redundant givenii f -t hen,
Hamilton(2002) and Crawford(2002) pointed out that | i nk is the only way to set the next observation from more
than one point in the code.

Using %sub macros is obviously another way (as shown in the test case 4). In the same thread, Whitlock(2002)
emphasized that | i nk facilitated better organization of large and complex data step. This virtue applies to %sub
macros as well.

% -- testd. "it would be difficult to do this with I F-THEN' --*
% -- fromJack Hamilton (sas-I 2002-07-24) .-
/* create a test dataset */
dat a one;

doi =1to 10;

out put ;

end;
run;
data two;
/* InltlallZatIOﬂ **/

%ub_init(getlt)

/* nain **/

if not end then do;

%ub_call (getlt)
put "just got one obs. " i=;
end;

put / "...doing sonething else..." /;

if not end then do;

Y%sub_cal | (getlt)
put "got another obs. " i=;
end;

if end then stop; else return;

/* subroutine **/
%sub_do(getlt)
set one end=end;
%ub_end(getlt)

run;
/* on |og

7 of 22

NESUG 17 Posters

just got one obs. i=1
...doing sonething else...

got another obs. =2
just got one obs. i=

...doing sonething el se...

got another obs. =4
just got one obs. i=

...doing sonething el se...

got another obs. =6
just got one obs. i=

...doing sonething el se...

got another obs. =8
just got one obs. i=

...doing sonething else...

got another obs. =10
*
/

PSEUDO-RECURSIVE SAS MACRO

Benjamin Jr.(1999)’s article in Observations is the oldest reference I found about doing the recursive subroutines
in a data step. In fact, the article was mentioned multiple times in SAS-L, whenever the needs arose to defeat the
false claim that it is impossible to do recursion in a data step. The article does, however, stop a bit short of
crystallizing the general programming technique separated from the specific problem.

Once translated into % ub macro implementation (test case number 5), the code clearly shows that at the heart
of his solution lies the recursion which can be easily understood. The code also demonstrates that the %sub
macros are not limited to the dat a _nul | _ steps.

% -- test5. Benjanmin Jr°s Cbservations 18 article -
% -- "pseudo-recursive sas macro" -
% -- http://ww. sas. conm service/library/periodical s/ obs/ -
% - - obsww18/ i ndex. ht m .-
%-- alittle bit nodified so that input is a dataset, also -

*

% -- uses different variable nanes. -

/* create master and varlist datasets and define a utility nacro */
data master (i ndex=(var));
array cards[13] $30 (
"AA 6 BB CC DD EE FF GG'
"BB 2 GG HH'
"CC 3 EE FF HH'
"DD 3 FF GG HH'

"EE O
"FF 1 MV
"GG 0"
"HH 1 11"
"1 3"
"JJ 1 KK"
"KK 1 LL"
"LL 1 MV
"M 0"
)
do _n_ = I bound(cards) to hbound(cards);
var = scan(cards[_n_], 1);
count = input(scan(cards[_n_], 2), best.);
array d[1:6] $2 d1-d6;
doi =3to 8;

d[i-2] = scan(cards[_n_], i);

8 of 22

NESUG 17 Posters

end;
out put ;
keep var count d1-d6;
end;
run;

data varlist; /* this is the input dataset */
do v = "BB", "EE', "FF";
out put ;
end;
run;

%racro c2i(cc);index("ABCDEFGH JKLM', substr(&cc., 1, 1)) %rend;

data dep_list;

* 1 1 1 1 1 LRSS RS S EEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEES
/* initialization /

%ub_init(depend, var$2 count d1$6 d2$6 d3$6 d4$6 d5$6 d6$6 i);
%sub_init(witeMdul es);

AR TR A R R R R R R R R EEEELEEEEEEEEEEEEEEEEEEEEEEEEEEY

array nodul es[1:13] $2 _tenporary_;
array d[1:6] $2 d1-d6;

set varlist end=end,
Y%sub_cal | (depend, v 0 "" "" v onnormonnoQ)
if end then do;
put "Requires: " @
%ub_cal | (writeMdul es);
end;
return;

/* subroutines ***/
%sub_do(depend)
nmodul es[%2i (v)] = v;
Y%sub_cal | (writeMdul es)
set master key=var/unique; /* aka get_nstr */
i =1,
do while (i <= count);
nmodul es[%2i (d[i])]=d[i];
%ub_cal | (depend, d[i] count dl1 d2 d3 d4 d5 d6 i)
i+ 1;
end,
%sub_end(depend)

%sub_do(writeMdul es)

doi =1to 13;
if not mssing(nodules[i]) then put nodules[i] $3. @
end;
put;
Y%sub_end(w it eModul es)

run;
/* on |og
BB
BB GG
BB GG HH
BB GG HH |1
BB GG HH Il JJ
BB GG HH Il JJ KK
BB GG HH Il JJ KK LL
BB GG HH Il JJ KK LL MM
BB EE GG HH Il JJ KK LL MM
BB EE FF GG HH Il JJ KK LL MM
BB EE FF GG HH Il JJ KK LL MM
Requires: BB EE FF GG HH Il JJ KK LL MM
*/

On a side note, the data step, nast er, is a bit more complicated then necessary. This is due to the fact that you
cannot imbed data lines within a macro and I was trying to put all the examples together in a macro, %sub_test.

9 of 22

NESUG 17 Posters

“EFFICIENT, WELL STRUCTURED, CLEAR SAS CODE. CLASSIC.”

DeVenezia(2003) solved a geographical adjacency problem originally posted by Stratton(2003). He used plain
data step code that utilized exactly the same technique discussed here. DeVenizia’s code was so well written,
Dorfman(2003) commented on it. In part, he wrote, “Efficient, well structured, clear SAS code. Classic.”

In the % ub macro implementation (test case number 7), I define a subroutine (claimColumn) within another
(claimRow), since all the %sub_cal | 's should come before the corresponding %sub_end. In a case like this, it is
necessary to hide the subroutine definition between i f 0 t hen do; and end; so that the subroutine is not
executed without a proper call.

% -- test7. Geographical Adjacency problem -
9% -- Robert Stratton”s problem (sas-|I 2003-08-05) .-
% -- Richard DeVenezi a®s sol ution (sas-1 2003-08-05) .-
% -- NOTE: Dorfman fully endorses Richard*s original solution: .-
o - - "Efficient, well structured, clear SAS code. C assic. --*;
o - - very aesthetic, too. (Dorfman. sas-l 2003-08-05)" --*

/* Stratton”s data */
data groups;
cards ="1 A1B1C2D3A3F4H41 43 4K,

keep set id;
doi =1to 10;
set = input(scan(cards, 2*(i-1) + 1),1.);
id = scan(cards, 2*i);
out put ;
end;
run;
proc print data=groups(obs=10);
run;
/* on |st
Obs set id
1 1 A
2 1 B
3 1 C
4 2 D
5 3 A
6 3 F
7 4 H
8 4 |
9 4 J
10 4 K

*
-~

/* the solution translated with %sub_ nmacros */
proc sql;
reset noprint;
sel ect count (distinct set) into :nSet from groups;

quit;

data _null _;

/* InltlallZatIOﬂ **/
%sub_init(putS)
Ysub_init(claimRow , ri rj)

Y%sub_init(clai nColum, ci cj)

AR R A R A R R R R EEEEEE LR EEEEEEEEEEEEEEEEEEY

array S[&nSet.,26] _tenporary_;

do while (not eog);

set groups end=eog;
S[set, rank(id)-64] = -1; /* for ascii box only -- cyc */
end;

put "before: ";

%ub_cal | (putS)

ss = 0;

doi =1to &Set.;
doj =1to 26;

10 of 22

NESUG 17 Posters

if S[i,j] = -1 then do;

ss + 1;
%sub_cal | (clainRow, i 0)
end;
end;
end;
put "after: ";

Y%sub_cal | (putS)

st op;

/* SUbI’OUtI nes ***/

Y%sub_do(cl ai mRow)
rji =1,
do until (rj > 26);
if S[ri,rj] = -1 then do;
s[ri,rj] = ss;
%sub_cal | (cl ai mCol utm, 0 rj);
end,
rji +1
end;

if 0 then do; /*
a hack by Dorfrman. it is required since
%sub_end(cl ai mMRow) has to cone after
the last call to it, which happens to be
the inside of the clainColum */
%sub_do(cl ai mCol umm)
ci = 1;
do until (ci > &nSet.);
if Sci,cj] = -1 then do;
S[ci,cj] = ss;
Y%sub_cal | (cl ai mRow, ci cj)
end;
ci + 1;
end,
Y%sub_end(cl ai mCol um)
end;
Y%sub_end(cl ai mRow)

Y%sub_do(putS)
put +5 @ /* colum header -- cyc */
do jj = 1to 26;
letter = byte(64 + jj); /* for ascii box only -- cyc */
put letter $2. +1 @

end;
put; /* end colum header */
doii =1to &nSet.;

put ii 2. '. ' @

dojj =1 to 26
put S[ii,jjl 2 +1@

end;
put;
end;

put;

%sub_end(put S)
run;
/* on | og
bef ore:

A B CDEFGHI JKLMNUOPO QQRSTWUV WXY Z
1. -1 -1 -1
2. -1
3. -1 -1 .

4, -1-1-1-1
after:

A B CDEFGHI JKLMNOPI QOQRSTUVWXY Z
1. 1 1 1 .

2. 2
3. 1 1 .
4, 3 3 3 3
*/

11 of 22

NESUG 17 Posters

I provide a few more examples in the macro %sub_test (See Appendix).

SUMMARY

“Divide and conquer” remains a simple but effective way of solving complex problems. SAS data step as a
language does not explicitly support user written subroutines or functions, making it difficult to organize
complicated and lengthy code. Li nk and r et ur n permit recursive calls, but with very limited depth.

In this paper, I have explained the clever programming technique of using got o’s and temporary arrays as
subroutine calls and stacks to circumvent these limitations. I have also encapsulated the technique in a set of
macros called ¥%sub macros, so that it is more easily accessible.

True to the purpose, the %sub macros themselves are written in such a way that the whole solution consists of
smaller and re-usable utility macros.

This paper also demonstrated the usage of the %sub macros by implementing solutions to interesting problems,
including those posted on SAS-L.

REFERENCES

Benjamin Jr., William E. (1999). “A Pseudo-Recursive SAS Macro.” Observations — The Technical Journal for SAS
Software Users No. obswww18. Archived at
http://support.sas.com/documentation/periodicals/obs/obswww18/index.html.

Crawford, Peter (2002) “"Re: GOTO and LINK vs IF THEN DO.” A SAS-L posting on Jul. 24, 2002. Archived at
http://listserv.uga.edu/cgi-bin/wa?A2=ind0207D&L =sas-I&D=0&H=0&0=T&T=1&m=106219&P=26935.

DeVenezia, Richard A. (2003). “Re: List manipulation.” A SAS-L posting on Aug 5, 2003. Archived at
http://listserv.uga.edu/cgi-bin/wa?A2=ind0308A&L =sas-IRD=0&H=0&0=T&T=1&m=106219&P=28208.
Also available at his web site (with a javascript animation showing the recursive algorithm
http://www.devenezia.com/downloads/sas/samples/index.html) at
http://www.devenezia.com/downloads/sas/samples/superset.sas.

Dorfman, Paul (2003). "Re: List manipulation.” A SAS-L posting on Aug. 5, 2003. Archived at
http://listserv.uga.edu/cgi-bin/wa?A2=ind0308A&L =sas-IRD=0&H=0&0=T&T=1&m=106219&P=29016.

Flom, Peter L. (2002)."GOTO and LINK vs IF THEN DO."” A SAS-L posting on Jul. 24, 2002. Archived at
http://listserv.uga.edu/cgi-bin/wa?A2=ind0207D&L =sas-I&D=0&H=0&0=T&T=1&m=106219&P=24665.

Hamilton, Jack (2002). “Re: GOTO and LINK vs IF THEN DO.” A SAS-L postin on Jul. 24, 2002. Archived at
http://listserv.uga.edu/cgi-bin/wa?A2=ind0207D&L =sas-I&D=0&H=0&0=T&T=1&m=106219&P=27680.

McLerran, Dale (2003). “Re: Permutation problem.” A SAS-L posting on Dec. 15, 2003. Archived at
http://listserv.uga.edu/cgi-bin/wa?A2=ind0312C&L =sas-I&P=R1885&D=0&H=00=T&T=1.

Stratton, Robert (2003). “List manipulation.” A SAS-L posting on Aug. 5, 2003. Archived at
http://listserv.uga.edu/cgi-bin/wa?A2=ind0308A&L =sas-I&D=0&H=0&0=T&T=1&m=106219&P=28208.

Wahlgren, Lars (2003). “Permutation problem.” A SAS-L posting on Dec. 14, 2003. Archived at
http://listserv.uga.edu/cgi-bin/wa?A2=ind0312B&L =sas-I&P=R26216&D=0&H=0&0=T&T=1.

Whitlock, Ian (2002). “"Re: GOTO and LINK vs IF THEN DO" A SAS-L posting on Jul. 24, 2002. Archived at
http://listserv.uga.edu/cgi-bin/wa?A2=ind0207D&L=sas-I&D=0&H=0&0=T&T=1&mM=106219&P=28195.

NECESSARY REMARK

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are
registered trademarks or trademarks of their respective companies.

12 of 22

NESUG 17 Posters

ACKNOWLEDGEMENTS

I would like to thank all the SAS-L discussion group participants, from whose company I benefit greatly.

AUTHOR CONTACT INFORMATION

Chang Y. Chung

Senior Statistical Programmer / Data Archivist
Office of Population Research

Princeton University

#216 Wallce Hall

Princeton, NJ 08540

(609) 258 - 2360

cchung@princeton.edu

13 of 22

NESUG 17 Posters

%SuB MACROS SOURCE CODE

U -- SUD. SAS - ---- - oo
O - - -
% -- macros sinplify doing (recursive) subroutines in a data step --
oF - - -
% -- version 0.17 by chang y. chung on 2004-07-29
o5 - - -
% -- These macros are continuously inproved. They are offered with--
% -- no guarantees what so ever. Use at your own risk. Comrents -
% -- are wel cone. The latest version will be available for
% -- downl oad at changchung. com

'
'
¥k ok ok Rk 3k ok Ok F

%-- utilities --*;
%racro iif(cond, true, false);
% f %wunquot e(&cond.) % hen %o; %unquot e(& r ue.) ¥%end;
%l se %lo; Yunquot e(&f al se.) %end;
%rend;
%racro i ncrease(nvar, by=1);
%et &war. = %val (&&&var. + (&by.));
%rend,;
%racr o decrease(nvar, by=1);
% ncrease(&mar., by=-&by.)
%rend;
%racro gl obal Let (nvar, val ue);
%l obal &nvar. ;
% et &nmvar.=&val ue. ;
%rend;
%racr o uni queNane(l engt h=8, seed=0);
% ; _Ysysfunc(ceil (1le%eval (& ength.-1)*%ysfunc(ranuni (&seed.))))
%rend;

% -- NaneTypelLen --*
% -- a nuneric var should be name only: -
% -- a char var should be followed by a dollar sign and | ength .-
%racro ntl _name(nanmeTypelLen);
% ; %scan(&aneTypelLen., 1, 9)
%rend;
%racro ntl_type(nanmeTypeLen, character=$, numeric=%tr());
%;%if(%rstr(% ndex(&nanmeTypelLen., $)), &character., &nuneric.)
%rend;
%racro ntl _| en(nameTypelLen, numeric=%str());
% ;% if(%rstr(%tl_type(&aneTypeLen., character=$)=%)
%rstr(%can(&aneTypelLen., 2, 3$))
, &nuneric.)
%rend;
%racro ntl _m ssing(nanmeTypeLen);
%;%if(%rstr(%tl_type(&anmeTypelLen., character=3$)=3%),%tr(" "),.)
%rend;

% -- stack --*;
%racro stack_init(nameTypeLen, max=1000);
% ocal nane dollar |en;

% et nane =0t | _name(&anmeTypelen.);
% et dollar =%tl_type(&nanmeTypelLen.);
%et len =%mt| _| en (&naneTypelen.);
array &nane._stack [0: &max.] &dollar.& en. _tenporary_;
&nane. _stack[0] = %tl _m ssing(&naneTypeLen.);
retain &iane._stack_top O;
%rend;
%racro stack_push(name, item;
do;

&nane. _stack_top + 1;
if &nanme._stack_top > hbound(&nane._stack) then do;
put "ERROR stack &nane. over-flow ";
st op;
end;
&nane. _st ack[&ane. _stack_top] =& tem;
end;

14 of 22

NESUG 17 Posters

%rend,;
%racr o stack_pop(nane);
% ; &nane. _st ack[&hane. _stack_top];
do;
&nane. _stack_top + (-1);
if &ane._stack_top < 0 then do;
&nane. _stack_top = 0;
put "WARNING stack &nane. is enpty already.";

end;
end /* semicolon intentionally left out */
%rend;
% -- forEach (limted version) by chang y chung on 2004-01-03 -
% -- inspired by Peter Crawford”s, %rloopsX (sas-I 2002-11-20) -

%racro forEach(unit, in=, dln%str(,), froms, to=, by=1,
i nvoke=%rstr(%ut ***&&&unit.***;));

% ocal &unit. units idx start finish before after inf;

% et inf = 32767;

% et before = 0;

%et after = 0;

%et units = itemn nunber;

%et unit % owcase(&unit.);

%ranch: /* Richard DeVenezi a®s "Dynam c Branching" */

% f % ndex(|&units.|, |&nit.|) % hen %goto &unit.;
%l se %lo;
Y%ut ERROR "&unit." is not supported,;
%got o out;
%end,
% tem

%f & n.= % hen %lo;

%ut WARNING enpty list in INs; %goto out;
%end;
% et start ;
% et finish & nf . ;
% et before 9r str(

%et &nit. = %can(&n., &dx., &Im);

"&&unit.." ="" [/* true when %can returns nothing */

1:

)
%got o | oop;

Y%mumnber :
%f & rom= or & o0.= % hen %lo;
%ut ERROR needs a nunber in both FROM and TO=; %goto out;

%end;

%et start = & rom;
%et finish = &o.;
% et before = 9rstr(

%et &nit. = & dx.;

0 /* always fal se */
)
%got o | oop;

% oop:
%o i dx = %unquote(&start.) % o %unquote(&finish.);
% f Ywnquote(&before.) % hen %goto out;
% ; Yunquot e(& nvoke.)
% f Ymnquote(&after.) % hen %goto out;
%et idx = %val (& dx. - 1 + (&y.));
%end;

Y%out :
%rend forEach;

% -- subroutine macros by chang y chung on 2004-01-03 -
%racro sub_init(name, args, heap=1000, dl n%tr());
%yl obal Let (&ane. _args_dlm &dlm)
% or Each(item in=&args., dlnr&l m, invoke=%rstr(
U%stack_init(&uane._& tem, nmax=&heap.)
length %tl_name(& tem)
ot _type(& tem)%tl _Ien(& tem, nuneric=8);

15 of 22

NESUG 17 Posters

%tl _name(& tem) = 9mtl_mssing(& tem);

))
%l obal Let (&nane. _args,
% or Each(item in=&args., dlnr&l m, invoke=%rstr(
% ; 9t _name(& tem) &l m
)))
Y%t ack_init(&nane. _rp, nax=&heap.)
%yl obal Let (&nane. _rp, 0)
retain &ane._rp O;
%rend;
%racro sub_cal |l (name, values, dlm%tr());
% ncr ease(&ane. _rp)
%yl obal Let (&nane. _cal | &&&nane. _rp. _val ues, %rbquot e(&al ues.))
%yl obal Let (&nane. _cal | &&&nane. _rp. _values_dlm &dlm)
do;
&nanme. _rp = &&&nane. _rp.;
goto &nane.;
&nane. _r p&&&nane. _rp. :;
end;
%rend;
%racr o sub_do(nane);
&nane. :
%t ack_push(&nane. _rp , &nane. _rp)
% or Each(item in=&8&nane. _args, dl nF&&nane._args_dl m, invoke=%rstr(
Y%t ack_push(&nane. _& tem, & tem)
))

goto &nane. _val ues;
&nane. _do:;
%rend;
%racro sub_end(nane);
&nane. _rp = %tack_pop(&nane. _rp);
% or Each(item in=&8&&nane. _args., invoke=%rstr(
& tem = Ystack_pop(&nnane._&item);
))

sel ect (&nane. _rp);
% or Each(nunber, fromrl, to=&&&name. _rp., invoke=%rstr (
when (&nunber.) goto &nane. _rp&nunber. ;
))
end;
&nane. _val ues: ;
sel ect (&nane._rp);
% or Each(nunmber, fronmrl, to=&&&name._rp., invoke=%rstr(
when (&nunber.)
do;
% or Each(item in=&&&nane. _cal | &unber. _val ues. ,
dl nr&&&nane. _cal | &wunber. _val ues_dl m, invoke=%rstr(
Y%scan(&&&nane. _args., & dx., &&&nane._args_dim) = & tem
))

end;
))
end;
goto &nane. _do;
%rend;

%racro sub_test(what);

% et what =%upcase(&what.);
% f &nihat.= % hen % et what=;

%-- testl -- calc factorial by multiplication BN
% f &nhat.=_ALL_ or % ndex(&what.,1) % hen %lo;
data _null _;
Y%sub_init(foo, mlevel)
f =1;
%ub_cal | (foo, 12 1)
put "12!=" f;
st op;
%sub_do(f o00)
put level =
if mpl then do;
f = nmf;
m+ (-1);

Y%sub_cal | (foo, mlevel +1)

16 of 22

NESUG 17 Posters

end;
%sub_end(f o0)
run;
/* on |og
12! =479001600
*/
%end;

%-- test2 translated frommacro pernute .-
% -- by Dale MLerran (sas-|l 2003-12-15) -
% f &ihat.=_ALL_ or % ndex(&what.,?2) % hen %lo;
data _null _;

%sub_init(permute, c$6 chars$6 word$6 len i)

counter = 0;

%sub_cal | (permute, "" "DGEILOU' "" 6 1)
put counter=;
st op;

%sub_do(per nmut e)
if mssing(chars) then len = O;

el se len = length(chars);
if len > 0 then do;
i =1;
do while (i <=1len); /* you cannot call a sub within a */

/* do i=## to ## since to-expression cannot be altered. */
%ub_cal | (permute, %str(
substr(chars,i, 1) # /* c */
trim(conpress(chars, c)) # /* chars */
trim(trim(word) || c) # [* word */
| en # [/* len */
i # /* i */
), dl nF#)
=i+ 1
end,
end; el se do;
counter ++ 1;
if counter = 194 then put "The 194th word is " word;

end;
%sub_end(per nut e)
run;
%end;
%-- test3 a silly one, involving two sub-routines -
% f &nhat.=_ALL_ or % ndex(&what.,3) % hen %lo;
data _null _;
Y%sub_i ni t (addTwo, a)
%ub_init(subtractOne, b) /* you cannot use a again */
x = 0;
do while (x <= 10);
put x=;

%sub_cal | (addTwo, x)
%sub_cal | (subtract One, Xx);
end;

st op;

%sub_do(addTwo)
%ub_cal | (subtract One, ¥%str(x+3))
% ub_end(addTwo)
%sub_do(subtract One)
X =b - 1 /* you cannot call addTwo here, since
%sub_end(addTwo) woul d not know
anyt hing about the call. See test 7 in the
bel ow for an workaround when two sub-routines
call each other

*/
%sub_end(subtract One)
run;
%end;
%-- test4. "it would be difficult to do this with | F- THEN' -
% -- Jack Hamilton (sas-lI 2002-07-24) -

% f &nwhat.=_ALL_ or % ndex(&what.,2) % hen %lo;
17 of 22

NESUG 17 Posters

data one;

doi =1 to 10; output; end;
run;
data two;

Y%sub_init(getlt)

if not end then do;

Y%sub_cal | (getlt)

put "just got one obs. " i=;
end,

put / "...doing sonething else..." /;

if not end then do;

%ub_call (getlt)

put "got another obs. " i=;
end;

if end then stop; else return;
%sub_do(getlt)

set one end=end;
%ub_end(getlt)

run;

%end;

% -- test5. Benjanmin Jr°s Cbservations 18 article -

% -- "pseudo-recursive sas macro" -

% -- http://ww.sas. conm service/library/ periodical s/ obs/ -

% - - obsww18/ i ndex. ht m .-

%-- alittle bit nodified so that input is a dataset, also -
*

% -- uses different variable nanes. -
% f &what.=_ALL_ or % ndex(&what.,5) % hen %lo;
data master (i ndex=(var));
array cards[13] $30 (
"AA 6 BB CC DD EE FF GG'

"BB 2 GG HH'
"CC 3 EE FF HH'
"DD 3 FF GG HH'
"EE 0"
"FF 1 M/
" GG 0"
"HH 1 11"
"1 3"
"JJ 1 KK'
"KK 1 LL"
"LL 1 MV
"M O

)

do _n_ = I bound(cards) to hbound(cards);
var = scan(cards[_n_], 1);
count = input(scan(cards[_n_], 2), best.);
array d[1:6] $2 di1-de6;
doi =3to 8;

d[i-2] = scan(cards[_n_], i);

end,
out put ;
keep var count d1-d6;

end;

run;

data varlist; /* this is the input dataset */
do v = "BB", "EE', "FF"; output; end,
run;
%racro c2i(cc);index("ABCDEFGH JKLM', substr(&cc., 1, 1)) %rend;
data dep_list;

T T S *]
%ub_init(depend, var$2 count d1$6 d2$6 d3%$6 d4$6 d5$6 d6$6 i);
Y%sub_init(writeMdul es);

array nodul es[1:13] $2 _tenporary_;
array d[1:6] $2 d1- d6;

18 of 22

NESUG 17 Posters

a1 T R e R E LT T */
set varlist end=end;
%ub_cal | (depend, v 0 "™ " v onnovonnoQ)

if end then do;
put "Requires: " @
%sub_cal | (writeMdul es);
end;
return;

/* subs --------- */
%sub_do(depend)
modul es[%2i (v)] = v;
Y%sub_cal | (writeMdul es)
set master key=var/unique; /* aka get_nstr */
i =1;
do while (i <= count);
nodul es[%2i (d[i])]=d[i];
%ub_cal | (depend, d[i] count dl d2 d3 d4 d5 d6 i)
i+ 1;
end;
%sub_end(depend)

Y%sub_do(wr it eMddul es)
doi =1to 13;
if not mssing(nodules[i]) then put nodules[i] $3. @
end,
put;
Y%sub_end(w it eMbdul es)
run;

/* we are | ooking for an output:
Requires: BB EE FF GG HH Il JJ KK LL MM

*/

%end,

% -- test6. Euclid Algorithmto cal cul ated GCD -
% -- translated from Paul Dorfman® macro gcd (sas-1 1999-12-20) --*;

% f &what.=_ALL_ or % ndex(&what.,6) % hen %lo;
data _null _;
Y%sub_init(getCGcd, gcd ref)
X 2**15;
y 2**12;
z 2**10;
put x= y= z=;
%sub_cal | (get Gcd, x vy)
ged_xy =r;

put "GCD(x,y)=" gcd_xy;
%ub_cal | (get Gcd, gcd_xy z)

gcd_xyz =r;
put "GCD(x,y, z)=" gcd_xyz;
st op;

%sub_do(get Gcd)
do while (ref > 0);
res nmod(gcd, ref);
gcd ref;
r ef res;
end,
r = gcd;
Y%sub_end(get Gcd)
run;
/* on |og
x=32768 y=4096 z=1024
GCD(x, y) =4096
GCO(X, Y, z) =1024
*/

%end;

%-- test7. Geographical Adjacency problem .-
% -- Robert Stratton”s problem (sas-I 2003-08-05) -
% -- Richard DeVenezi a®s solution (sas-1 2003-08-05) -- %

19 of 22

NESUG 17 Posters

% -- NOTE: Dorfrman fully endorses Richard”s original solution: .-
% - - "Efficient, well structured, clear SAS code. O assic. .-
o - - very aesthetic, too. (Dorfman. sas-1 2003-08-05)" EE

% f &what.=_ALL_ or % ndex(&what.,7) % hen %lo;
/* Stratton”s data */
dat a groups;
cards ="1 A1B1C2D3A3F4H41 47 4K";

keep set id;
doi =1 to 10;
set = input(scan(cards, 2*(i-1) + 1),1.);
id = scan(cards, 2*i);
out put ;
end;
run;
proc print data=groups(obs=10);
run;

/* the solution translated with %ub_ macros */
proc sql;

reset noprint;

sel ect count (distinct set) into :nSet from groups;
quit;

data _null _;

L I 1 B e e e T T */
Y%sub_init(puts)

Y%sub_init(clainRow , ri rj)

Y%sub_init(clai nColum, ci cj)

Ja 11 U I e */
array S[&nSet.,26] _tenporary_;

do while (not eog);

set groups end=eog;

S[set, rank(id)-64] = -1; /* for ascii box only -- cyc */
end;

put "before: ";
Y%sub_cal | (putS)
ss = 0;
doi =1to &Set.;
doj =1to 26;
if Si,j] = -1 then do;
ss + 1;
Y%sub_cal | (cl ai mRow, i 0)
end;
end;
end;
put "after: ";
%ub_cal | (putS)

st op;

[TV ¢ R i e */
Y%sub_do(cl ai mRow)
rj =1,
do until (rj > 26);
if S[ri,rj] = -1 then do;
s[ri,rj] = ss;
%sub_cal | (cl ai mCol um, 0 rj);
end;
rj + 1,
end;
if O then do; /* a hack by Dorfman. it is required since
%sub_end(cl ai mMRow) has to cone after
the last call to it, which happens to be
the inside of the clainColum
*/
Y%sub_do(cl ai mCol um)
ci = 1;
do until (ci > &nSet.);
if S[ci,cj] = -1 then do;
S[ci,cj] = ss;

20 of 22

NESUG 17 Posters

Y%sub_cal | (cl ai mRow, ci cj)
end;
ci + 1;
end;
Y%sub_end(cl ai mCol um)
end;
Y%sub_end(cl ai mRow)

Y%sub_do(put S)
put +5 @ /* colum header -- cyc */
do jj =1to 26;
letter = byte(64 + jj); /* for ascii box only -- cyc */
put letter $2. +1 @

end;
put; /* end col um header */
doii =1to &Set.;

put ii 2. '. "' @

do jj = 1to 26;
put S[ii,jjl] 2. +1 @

end,
put ;

end;

put;
%sub_end(put S)
run;
/* on | og
bef ore:

A B C D E F G I J K L MN
. -1-1-1
2. . . . -1 . .
3. -1 -1 e
4. -1-1-1-1
after:

A B CDE F G I J K L MN
1. 1 1 1 . .o
2. 2
3. 1 1 e
4. 3 3 3 3
*/
%end,
% -- test8. "Sunm ng conbinations of n objects taken mby m -
o - - where for each conbinati on we consi der the product of -
% - - el enent s" .-
% - - -
% -- Translated fromlan Witlock®s macro %8 (sas-1 1998-07-09), --*;
% -- where |lan says: ==
% - - --*
% -- "Now Fabrizio actually wanted the call R
w-- " B
%w-- " Y%put %(2, 60) R
%-- " R
%-- "Wien | tried this nmy systemran out of resources. R
%-- "So yes you can make recursive macro calls, but one R
% -- "should renenber that even a rather innocent |ooking R
% -- "recursion can demand an awful |ot of resources from R
%-- "the system e
%w-- [SRS
%-- "l once was al nost thrown out of a COBOL training program' --*;
%-- "on nmy first programmng job when | innocently asked if " --%*;
%-- "COBOL could make recursive calls to perform TR
% - - -
% - - [a sem col on ending %ut statenent in the origial posting --*;
o - - is not shown in the above quote] .-
% f &ihat.=_ALL_ or % ndex(&what.,8) % hen %lo;
data _null _;

Y%sub_init(b, mn tenp) /* mand n are paraneters tenp is |ocal */

X = .;
Y%sub_cal |l (b, 2 40 .)
put "B(2,40)=" x;

X = .
Y%sub_cal | (b, 2 60 .)

21 of 22

NESUG 17 Posters

put "B(2, 60)
st op;

I
x

Y%sub_do(b)
if m=0 and n >= 0 then x =
elseif m>n then x = 0;
el se do;
%sub_call (b, m n-1.)
temp = x;
%ub_call (b, m1ln-1.)
tenp = tenp + n * x;
X = tenp;
end;
*put “returning b(" m"," n") is " x;
%ub_end(b)
run;
/* on |og
B(2, 40) =325130
B(2, 60) =1637545
NOTE: DATA st atenent used:
real tinme 0. 22 seconds
cpu time 0. 21 seconds

*/

%end;

%rend sub_test;

options nprint nosynbol gen;

% sub_test(_ALL_); /* uncoment this line to run the tests */

L R =11 s B e R *,

22 of 22

