Five Easy (To Use) Macros
Ted Clay, Clay Software & Statistics, Ashland, OR

Consider increasing your SAS vocabulary by five words: %DIR, %MAKEFMT, %TRANSPO, %ARRAY and
%DO_OVER. Macro definitions are in the appendix. %DIR creates a SAS data set with the list of files in a
directory. %MAKEFMT creates a format from a data set. % TRANSPO changes data from a series of
observations to one observation per by-group with arrays of variables, preserving variable attributes.

Finally, %DO_OVER, with the support of its companion %ARRAY, generates repeated program code.
%DO_OVER loops over a list of values, substituting them wherever you put a “?” in your code phrase. For
example, RENAME %DO_OVER(values=A B C, phrase= ?=?suf); generates the statement RENAME
A=Asuf B=Bsuf C=Csuf; The code phrase can consist of many statements or an external macro, and
multiple arrays can be defined and looped-over in parallel. No other macros have had a greater impact than
these two, appearing in over 40% of the author’s statistical programs.

OVERVIEW

This paper is about making use of some handy macros. Here are one-line descriptions of the macros:
%DIR creates a data set with the list of files found in a directory.

Y%MAKEFMT creates a format from a data set.

%TRANSPO restructures data to have one observation per by-group, preserving variable attributes.
%DO_OVER generates repeated program code, with the assistance of its companion macro ...
%ARRAY which stores text in an array of macro variables.

In order to spend more time on real-world examples of their use, this paper treats these macros as “black
boxes.” The complete source code is attached as an appendix. A brief paragraph near the end of the
paper explains how you would use the SASAUTOS option to make them automatically available in your
programs. Two papers explaining % TRANSPO and %DO_OVER in more depth, are mentioned in the
References section at the end.

THE %DIR MACRO

THE NEED

This little macro gets its name from the DOS command “dir” which shows you a list of files in a directory.
What you get from the “dir” command or its equivalent can vary from system to system, and so over time the
need for a system-independent version of this macro became clear. We employed some built-in SAS
functions to obtain information directly from the operating system.

THE MACRO
The first parameter is positional, and is the name of the directory you want to examine, relative to the current
directory. The %DIR macro produces a SAS data set with the default name “DIR.”. For example,

$DIR (macros)

proc print data=dir;

run;
Produces:
Short

Obs Directory FileName Name Extension
1 c:\claysoft\presentations\pnwsug2006\macros ARRAY.sas ARRAY sas
2 c:\claysoft\presentations\pnwsug2006\macros DIR.sas DIR sas
3 c:\claysoft\presentations\pnwsug2006\macros DO_OVER. SAS DO_OVER SAS
4 c:\claysoft\presentations\pnwsug2006\macros MAKEFMT . SAS MAKEFMT SAS
5 c:\claysoft\presentations\pnwsug2006\macros TRANSPO. sas TRANSPO sas

THE %MAKEFMT MACRO

THE NEED

Formats can be tremendously helpful as an efficient lookup table. The efficiency comes partly because the
format is loaded into memory, resulting in no disk access when you need to look up a value. It also comes
in the form of a simpler program, with no sorting and merging to accomplish the same thing. Unless your
data is huge, the second type of efficiency will be the most important to you. Using the %6 MAKEFMT macro,
table lookup becomes a two-line affair, one to create the format, one to use it.

You may already use the CNTLIN= option of PROC FORMAT, which allows you to create a format from
variables in a data set. There are certain shortcomings which the %MAKEFMT macro takes care of. What
is the normal result when you use the format on a value which is not contained in the format? You get the
original unformatted value. In most real-world programming situations, you want to know when this has
happened, and sometimes it can be difficult to distinguish between formatted and unformatted values. The
solution is to add an “OTHER” case to the format. This may be easy enough to do when you are writing out
a VALUE statement, but awkward when you are creating a data set for use with CNTLIN. It was always just
enough hassle that this SAS programmer never bothered with it until building it into a macro.

THE MACRO

The %MAKEFMT macro automatically adds an observation to the data set to format any “OTHER” cases to
blanks or a text string you specify. Missing values can be given their own label even if there are no missing
values in the data set. It also allows you to assign a constant text value to the label, instead of a variable
value. By handling these special situations, the macro makes the CNTLIN= feature of PROC FORMAT a
hassle-free tool. The parameters of the %MAKEFMT macro include:

FMTNAME = Name of format to be created.

DATA = Name of input data set.

VALUES= The character or numeric variable containing values to be formatted.

LABELS= A variable containing the value labels, or “<string>" in quotes. If it is a string in quotes, all values
in the data set will have the same label.

OTHER = (optional) Text label for the “other” case. The default is blank.

MISSING= (optional) Text label for missing values.

EXAMPLE:

%MAKEFMT to check validity. Suppose you have a list of valid values, and want to detect any invalid
values in your main data set. The following code would quickly select the observations with an invalid ICD9
code in the Primary Diagnosis variable:

$MAKEFMT (FORMAT=$icd9fmt, DATA=ICD9, VALUES=code, LABELS=descrip, OTHER=Invalid) ;
DATA invalids;

set main (keep=PrimaryDX PatientID)

if put (PrimaryDX, $icd9fmt.) = ‘Invalid’;
run;

THE %TRANSPO MACRO

THE NEED

You are trying to manage your data. Your data is running down the page, but you really want it to run across
the page. Your dataset is long and skinny, and you want it to be short and fat. If you only have one variable
to deal with, no problem. PROC TRANSPOSE with only one variable on the VAR statement will do the trick
nicely. But this may not be the case. When you want to transpose more than one variable, PROC
TRANSPOSE will produce a separate observation for each variable (within each by-group). Often what you
really want is to have a single observation per by-group with all the variables on it. And you would like the
new variables to be given meaningful names related to your original names. The second limitation with
PROC TRANSPOSE is that you cannot transpose a mixture of numeric and character variables. Yes, PROC
TRANSPOSE has an “answer” to this situation — it converts all the numeric variables to character — but |
have yet to meet anyone who actually wanted this to happen. Finally, PROC TRANSPOSE leaves all your
variable attributes behind. Any formats, labels and lengths which you had on your input variables get lost.
Formats and labels are made blank, and the lengths of numeric variables all become 8. This is a necessary
consequence of the way PROC TRANSPOSE “flips” a matrix of variables and observations.

THE MACRO

By trying to do less, we are able to preserve more. The % TRANSPO macro outputs all variables onto a
single observation per by-group. For example, if you have a dataset with variables A, B and C and up to 4
observations per by-group, the output will be one observation per by-group with variables A1-A4, B1-B4 and
C1-C4. The variables can be a mixture of character and numeric, and their lengths, formats and

labels carry over to the corresponding output variables. The suffixes can be determined by an ID variable.

Here are the parameters of %TRANSPO:

DATA = Name of input dataset.

OUT = Name for output dataset.

BY = By-grouping variable(s). Output data set will have one observation per unique BY-value.

VARS = Variables to be transposed. Can be any combination of character or numeric.

ID = (optional) Name of variable whose (formatted) value will determine the suffix of the new variable
names. If no ID variable is given, the suffixes of the new variables will be the numbers 1,2,3, etc.
VARSEP = (optional) Text to insert between the old variable name and the variable suffix.
LABELSEP = (optional) Text to insert between the old label and the variable suffix.

The output variable names consist of (1) the original variable name, concatenated with (2) the optional
VARSEP text string, concatenated with (3) the formatted values of the ID variable, or else “1”, “2”, “3” if no
ID variable is given. (I have found that the ID variable is needed 95% of the time.)

EXAMPLE
$TRANSPO (DATA=o0fficers, OUT=clubs,
BY=club,
ID=posit,
VARS=name dob,
VARSEP=_, /* Notice that the output variables have underscores */
LABELSEP=0f) ; /* Notice that the word “of” appears in output labels */

INPUT DATASET: OFFICERS

Club Posit Name DOB
Poker Pres Jack 04/03/1970
Poker VP Fred 09/24/1981
Poker Treas Beth 07/19/1921
Yoyo Pres Joan 02/09/1988
Yoyo VP Hal 12/25/1970

OUTPUT DATASET: CLUBS

Club Name_ Pres DOB_Pres Name_ Treas | DOB_Treas Name_ VP DOB_VP
Poker Jack 04/03/1970 | Beth 07/19/1921 | Fred 09/24/1981
Yoyo Joan 02/09/1988 Hal 12/25/1970

Notice that the Yoyo club has no Treasurer, so the Name_Treas and DOB_Treas variables are missing.

INPUT DATA SET CONTENTS OUTPUT DATA SET CONTENTS

Variable Typ Len Format Label Variable Typ Len Format Label

Club c 7 Club Club c 7 Club

Posit Cc 5 Position Name_Pres C 4 First Name of Pres

Name Cc 4 First Name DOB_Pres N 8 MMDDYY8. Date of Birth of Pres

DOB N 8 MMDDYY8. Date of Birth Name_Treas C 4 First Name of Treas
DOB_Treas N 8 MMDDYY8. Date of Birth of Treas
Name_VP Cc 4 First Name of VP
DOB_VP N 8 MMDDYY8. Date of Birth of VP

Notice that the date format of DOB carried over to all three DOB variables in the output.

THE %ARRAY AND %DO_OVER MACROS
THE NEED

Macro %DO-looping is common practice in many programs using the macro language. Unfortunately, the
usual solutions involve somewhat awkward macro syntax, with double ampersands and macro definitions
which can break up the continuity of programs. The %ARRAY and %DO_OVER macros allow you to hide
the repetitive machinery, resulting in programs that are shorter and more readable. Because these macros
are self-contained and use global macro variables, you can use them freely in “open code”. The macros use
regular characters as much as possible, freeing you from the need for macro quoting functions.

%DO_OVER BASICS

The %ARRAY and %DO_OVER macros are analogous to the ARRAY and DO OVER statements in the
SAS® data step language, which define and loop over implicitly subscripted arrays. In the data step
language, you must always have an ARRAY statement before you can use DO OVER. But the
%DO_OVER macro with a VALUES= parameter is self-sufficient. We start here.

VALUES= list of
text to loop over

Basic Example: be repeated

PHRASE-= text to

%$DO_OVER (VALUES=A B C, PHRASE=pre_7?);

generates:
pre_A pre_B pre_C

? gets replaced by
list values

Table 1: Applications of %DO_OVER with different PHRASE parameters

Application Code Example

Generates

1. Bulk renaming rename $DO_OVER(VALUES=A B C,

PHRASE=?=pre_7?) ;

rename A=pre_A B=pre_B C=pre_C;

if letter in (
$DO_OVER (VALUES=A B C,
PHRASE="2"));

2. A quoted list

if letter in (“A"” “B” “C");

3. Tracking merged data | Merge $%DO_OVER (VALUES=A B C,

PHRASE=? (in=1in?));

merge A(in=inA)
B(in=inB)
C(in=1inC) ;

4. Complete statements Proc freg;
%$DO_OVER (VALUES=A B C,

PHRASE=table ? / out=freqgs?;)

Proc freq;

table A / out=fregsh;
table B / out=fregsB;
table C / out=fregsC;

5. Multiple statements $DO_OVER (VALUES=A B,
PHRASE=
title “Printout of ?27;

proc print data = ?;)

Title “Printout of A”;
Proc print data = A;
Title “Printout of B”;
Proc print data = B;

%$LET OLD=A B Cj;
$LET NEW=%DO_OVER (VALUES=&OLD,
PHRASE=pct_?);

6. Macro language uses

Pct_A pct_B pct_C
(assigned to variable NEW)

%$DO_OVER (VALUES=A B C, PHRASE=?)
%$DO_OVER (VALUES=A B C);

7. The default phrase
(single question-mark)

A B C

A B C (the same result)

DISCUSSION

Close parentheses, and correct placement of semi-colons, make a big difference. The %DO_OVER macro
begins with an open parenthesis, and needs a close parenthesis. In parsing the PHRASE= parameter, the
macro processor continues until it finds a comma or an unbalanced close parenthesis. Items 2 and 3 above
both end with the same three characters: *));” but they have very different meanings. In ltem 2, the
%DO_OVER macro was inside a pair of parentheses, so the first final close-parenthesis marks the end of
the PHRASE parameter, and the second close-parenthesis and semicolon are outside the macro. In ltem 3,
the PHRASE contains an expression in parenthesis: “(in=in?)”. It is immediately followed by %DO_OVER’s
closing parenthesis and the semi-colon ending the MERGE statement. In ltem 4, the semi-colon is inside
the macro close parenthesis. The PHRASE contains a complete SAS statement which gets repeated. In
Item 5, two complete statements get repeated. Inside %DO_OVER is machinery to parse the VALUES=
string into discrete items of a list, store them in a internal hidden macro array, and substitute those values in
the phrase. Next we will examine macro arrays.

THE MACRO ARRAY STRUCTURE

A macro array is a list of macro variables sharing the same prefix and a numerical suffix. The suffix
numbers run from 1 up to a highest number. The value of this highest number, or the length of the array, is
stored in a macro variable with the same prefix, plus the letter “N”. The prefix is also referred to as the name
of the macro array.

Example: The macro array “DAYS” containing the first three days of the work-week.

Macro Variable Name Contents
DAYSH1 Monday
DAYS2 Tuesday
DAYS3 Wednesday
DAYSN 3

The secret to the power of this structure is in the last row By also storing the length of the array, using a
macro variable name with the same prefix and a standard, predictable suffix, you only need to give the prefix
or name of the array, in this case “DAYS.” Note that it does not use a macro variable called “DAYS” -- a
macro variable and macro array of the same name can coexist.

CREATING AND USING A MACRO ARRAY
The purpose of the %ARRAY macro is to create a macro array and load text into it from either a SAS® data
set or an explicit list of values.

Figure 1: The %ARRAY macro accepts two possible sources of data for creating a macro array:

DATA= VAR= OR VALUES:Monday Tuesday Wednesday
Obs Day
1 Monday
2 Tuesday .
3 Wednesday /"ARRAYidavs.)
Macro Var Value
DAYSH Monday
DAYS2 Tuesday
DAYS3 Wednesday
DAYSN 3

Why create a macro array? (1) You want to use a list in many places, (2) You like the “sound” of the
abbreviated syntax. (3) Itis a quick way to get variable values from a data set into the macro environment.

%ARRAY WITH VALUES=

We use the familiar VALUES= parameter, but this time to create a macro array. The macro array named
“days” is used in the %DO_OVER macro. In both %ARRAY and %DO_OVER the name of the macro array
is the first parameter, and it is a positional parameter.

VALUES= used
Name of macro array here, not with
being created %D0O_OVER

%$ARRAY (days, VALUES=Monday Tuesday Wednesday)

Set %DO_OVER(days, PHRASE=sales.?);

generates:
Set sales.Monday Name of macro array
sales.Tuesday instead of VALUES=

sales.Wednesday;

%ARRAY WITH DATA= AND VAR=

Often you need to create a macro array using data already stored in a data set. Suppose we have a data
set “week” with a variable “day” as in the above graphic. The following code shows how you would (1)
assign values from the data set into a macro array, and (2) use the macro array with %DO_OVER.

DATA=and VAR=
describe source of values

%$ARRAY (days, DATA=week, VAR=day
if today in (%DO_OVER(days, PHRASE="?"));
generates: Name of macro array
if today in being used

(“Monday” “Tuesday” *“Wednesday”);

SCOPE AND PLACEMENT CONSIDERATIONS

Macro array variables are declared global, so they are available throughout a program after they are
created. The %ARRAY macro with DATA= must be outside any DATA or PROC step. So in fact the two
statements in the preceding example could not be right next to each other. No other restrictions apply to the
placement of %ARRAY or %DO_OVER. They can be located in the tight space of a single statement in
open code. %DO_OVER can be nested.

PERSPECTIVE

The concept of macro arrays closes an important gap in the SAS® system. The %ARRAY macro strongly
links the world of data to the world of macro variable values. Once defined, you do not have to be
concerned with how many elements a macro array contains, only referring to the macro array by its name.
%DO_OVER allows you to execute SAS code plugging in the values from macro arrays. Both are designed
to avoid the necessity of the macro language ampersand, or special quoting considerations. These macros
extend the power and scope of the SAS programming language.

| took a survey of the non-trivial programs developed for a recent project, eliminating programs that were
nearly identical to other programs. | found that of 22 programs, 11 made use of %DO_OVER. It is difficult
to name another feature of the SAS® system, with the exception of PROC SORT, which has had such a
major impact on the author’s programming style.

The following table illustrates the range of additional features.

FULL FEATURES OF %ARRAY AND %DO_OVER

Table 2: Significant Additional Features.
In these examples assume that we have already created a macro array named “ABC” with values “A”, “B”
and “C”. We would do this by %ARRAY (abc, VALUES=A B C);

Feature

Code Example

Generates

1. VALUES=
a numeric list

%$ARRAY (yrs, VALUES=1983-1986) ;
%$PUT %$DO_OVER(yrs);

1983 1984 1985 1986

$DO_OVER (VALUES=time4-time7)
$DO_OVER (VALUES=4-17,
PHRASE=time?)

timed4 time5 time6 time7

timed time5 time6 time7

2. Handling imbedded
blanks

$DO_OVER (VALUES=
Alameda/San Mateo/Santa Clara,
DELIM=/,PHRASE="7?")

“Alameda”
“San Mateo”
“Santa Clara”

3. Inserting something
between values

$DO_OVER (abc,
PHRASE=if letter="7?" then ?=1;,
BETWEEEN=else)

if letter="A" then A
else if letter="B” then B
else if letter="C” then C

Il
[Y
~ =~

~

3b. The BETWEEN=
COMMA keyword

maxabc = max(of %$DO_OVER (abc,
BETWEEN=COMMA)) ;

Maxabc = max(of A,B,C);

4. Inserting the array
index using "?_i_"

Merge %DO_OVER (abc,
PHRASE=? (in=in?_1i_));

Merge A (in=inl)
B (in=1in2)
C (in=in3);

5. Selecting a subset of
data for an array

$ARRAY (males,
DATA=subjects (where=(sex='M")),
VAR=casenum)

* Puts only the male subjects’
casenums into a macro array;

6. Creating multiple macro
arrays from data

%ARRAY (Xs Ys,
DATA=temp, VAR=X Y)

* Variable X into array Xs;
* Variable Y into array Ys;

7. Looping over multiple
macro arrays

$ARRAY (abc, VALUES=A B C);

$ARRAY (def, VALUES=D E F);

Rename $%DO_OVER (abc def,
PHRASE=?abc=?def) ;

Rename A=D B=E C=F;

8. Passing array valuesto | $MACRO doit (xxx); $doit (A)

a macro <code involving &XXX> $doit (B)
$MEND; $doit (C)
$DO_OVER (abc, MACRO=doit)

9. Passing multiple array $MACRO doit (xxx,yyy); $doit (A, D)

values to a macro <code involving &XXX and &YYY> $doit (B, E)
SMEND; $doit (C,F)

$DO_OVER (abc def, MACRO=doit)

Feature 8, the MACRO= parameter, is used in “REAL WORLD APPLICATION #3” below.

REAL WORLD APPLICATION #1

THE TASK:

Several projects needed information about regions of the state of California. Too many phone conversations
began with the phrase “Where is the format for ...?” We needed a single repository of information about
regions, from which formats could be derived. We wanted a solution that would be easy to understand and
to easy to maintain.

THE SOLUTION

We created a data set with one observation per region, with all the pertinent information. (How you choose
to create and maintain that data set may vary.) Then the %MAKEFMT macro created a set of formats to
look up characteristics of each geographical entity. In this example, we use one of these formats to create
a new variable “region” in our data file. References to format libraries are removed for simplicity.

* Table with all geographic entities;
data geogs;
input GEOG 5. +1 GEOGC $5. +1 REGION $4. +1 GEOGABB $4. +1 GEODESC $40.;

label
GEOG = 'Geographic Area (N)'
GEOGC = 'Geographic Area (C)'
REGION = 'Geographic Region (C)'

GEOGABB = 'Geographic Area Abbreviation'

GEODESC = 'Geographic Area Description' ;
datalines;
0 00 00CA 0 California
0.2 00.2 00OBA 0.2 Bay Area
0.3 00.3 00SJ 0.3 San Joaquin Valley
0.4 00.4 00SE 0.4 Southeast Counties
0.7 00.7 00SA 0.7 Sacramento Area
0.8 00.8 00CC 0.8 Central Coast
0.9 00.9 OONM 0.9 North-Mountain
1 01 00.2 01AM 1 Alameda
1.1 01.1 01BK 1.1 Berkeley
2 02 00.9 02AL 2 Alpine
3 03 00.9 03AD 3 Amador
4 04 00.9 04BU 4 Butte
5 05 00.9 05Cv 5 Calaveras
6 06 00.9 06CU 6 Colusa
7 07 00.2 07CC 7 Contra Costa
8 08 00.9 08DN 8 Del Norte
9 09 00.7 09ED 9 E1 Dorado

< lines removed >

58 58 00.7 58YU 58 Yuba
99 99 99US 99 Federal
rrr
$MAKEFMT (data = geogs, values = GEOG, labels = GEODESC, fmtname = GEOG);
$MAKEFMT (data = geogs, values = GEOGC, labels = GEODESC, fmtname = $GEOG) ;
$MAKEFMT (data = geogs, values = GEOG ,labels = GEOGABB, fmtname = GEOGABB);
$MAKEFMT (data = geogs, values = GEOG ,labels = REGION, fmtname = GEOGREG) ;

* Create variable “Region” from “Geog” using the geog-to-region format;

DATA temp;

SET saved.stats;

length Region 8; * Create numeric variable Region;

Region = put (geog,geogreg.); * Look up the region using GEOGREG format;
Run;

REAL WORLD APPLICATION #2

THE TASK:

The county health officials are concerned about change over time in the rates of various health problems in
their county. We are preparing “databooks” for them displaying the last 12 years of data. The data is
currently structured with variables: County, Indicator, Year, Num and Den (numerator and denominator).
Year contains values 1993, 1994, 1995, etc. For reporting, and to apply certain statistical methods, we need
to restructure the data so that for each county and indicator we have “Num1993” “Den1993” “Num1994”,
“Den1994” etc.

THE SOLUTION

$TRANSPO (
DATA=saved.CountyLong,
BY=county indicator,
VAR=num den,
ID=year,
OUT=saved.CountyWide)

REAL WORLD APPLICATION #3

THE TASK:

More than 100 Access databases have been uploaded from various hospitals to a directory
(c:\project1\access). Each contains the same set of 6 tables with the same structure but different data. We
need to create 6 SAS® data sets concatenating the corresponding tables from all the Access databases.

THE SOLUTION
* Create macro array with list of Access databases (a.k.a MDB files);

$DIR(c:\projectllaccess) ;
$ARRAY (mdbs, DATA=dir, VAR=filename) ;

* Create macro array with list of tables found inside each one;
$ARRAY (tbls, VALUES=HospitalInfo HospitalAdmissions ICUAdmissions
InfectionEvents ProcessMeasures Outcomes)

* Define a macro to read all tables from a single Access database;
$MACRO READIT (mdbfile);
* Process each table in the list;
%$DO_OVER (tbls, phrase=
* Import the table;
PROC IMPORT dbms="access" table="?" out=? replace;
database="c:\projectl\access\&MDBFILE";
run;

* append the table to the SAS data set of the same name;
PROC APPEND base=saved.? data=?;
run;
) * close-parenthesis of DO_OVER;
$MEND;

* Execute the above macro for each Access database in the macro array “mdbs”;
$DO_OVER (mdbs, macro=READIT) ;

REAL WORLD APPLICATION #4

THE TASK:

“Put each hospital’s patient list into a separate sheet in an Excel workbook.” We have a data set called
PatientData with a variable Hospital_ID plus other variables containing patient information. We want to
make the data accessible by putting it in an Excel workbook, putting each hospital on its own sheet.

THE SOLUTION

* Obtain a data set with the list of Hospital_ ID values in the data;
PROC FREQ data=saved.PatientData;

table Hospital ID / noprint out=hospids;
Run;

* Create a macro array “HHH” containing the hospital IDs;
$ARRAY (HHH, data=hospids, var=Hospital_1ID);

* Within DO_OVER, use the “where=" option to select each hospital;
%$DO_OVER (HHH, phrase=
PROC EXPORT data=saved.PatientData (where=(Hospital ID="7?"))
file="Exported.xls”;
sheet="2";
Run;
) * close-parenthesis of DO_OVER;

Modifying the PHRASE= parameter, you can perform any process as if you were using a “BY” statement.

MAKING IT WORK FOR YOU

If you haven't already, create a directory where you keep your general-purpose macros. For example you
might use ‘C:\SASMACROS\GENERAL'. Copy these macros and any other general-purpose macros into
this directory. Make sure your programs always start with statements that include the following:

OPTIONS SASAUTOS = (‘C:\SASMACROS\GENERAL’ SASAUTOS);

This tells SAS® where to look for a macro which is not defined in your program. SAS® assumes macros are
stored in files with the same name as the macro, and with the extension “.sas”. First it will look in your
macro library, and next it will look in “SASAUTOS” which is the name of a directory where the SAS® system
stores additional macro definitions. If you use an “AUTOEXEC.SAS” file, which contains code which is
executed when SAS starts, it is a good idea to put the OPTIONS SASAUTOS statement there, rather than in
each program.

CONCLUSION

The %DIR and %MAKEFMT macros improve the utility of standard features of SAS, lowering the hassle
threshold involved in getting a list of files or making a format from data. The %TRANSPO macro
implements a “better transpose” which preserves variable attributes, a result that normally requires
extensive programming effort. Finally, %DO_OVER and %ARRAY can easily reduce the size and
complexity of many data manipulation and analysis programs.

One way to perceive your own progress as a SAS programmer, is not only the invisible knowledge inside
your head, but also a visible collection of useful tools Make your own collection of useful general-purpose
macros, and consider adding to it the macros discussed in this paper.

ACKNOWLEDGEMENTS

David Katz, David Katz Consulting, for the macro array concept and its use with an externally defined
macro. And to the many other macro programmers who have created and used macro arrays, written a
macro to read a directory, or written a macro to create a format from data.

Art Carpenter, California Occidental Consultants, for aid in coding at the 2003 WUSS Code Clinic.

10

REFERENCES
“Tight Looping With Macro Arrays” SUGI Proceeding, 2006
“A Better Transpose: % TRANSPO Macro Preserves Variable Attributes” WUSS Proceedings, 2003

ABOUT THE AUTHOR

Ted Clay, M.S. is a statistical consultant and data analyst. His clients have included pharmaceutical
companies, manufacturing companies, and grass-roots organizations, as well as research projects in
epidemiology and health policy at the University of California San Francisco.

Your comments and questions are valued and encouraged. Contact the author at:
Ted Clay

Clay Software & Statistics

168 Meade St.

Ashland, OR 97520

Work Phone: 541-482-6435

Fax: Same

Email: tclay@ashlandhome.net
SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product
names are trademarks of their respective companies.

11

Appendix

SOURCE CODE FOR %DIR

$MACRO DIR(path, out=DIR);
/* last modified 8/4/2006
72nd col —-->|
Function:
Create a data set with names of files found in a given directory

Parameters:
PATH = Name of directory (positional).
May be relative to current directory.
OouT = Name for output data set

Output dataset will have the following variables:
Directory - Name of directory.
Full path not relative to current directory.
FileName - Full File name with extension.
ShortName - First part of name, before the final dot.
Extension — Part of full file name after the final dot.

Author: Ted Clay, M.S.
Clay Software & Statistics
tclay@ashlandhome.net (541) 482-6435
"Please keep, use and pass on, with this authorship note.
—Thanks "
Send any improvements, fixes or comments to Ted Clay.

*/
%$if %$length(&PATH)=0 %then %let PATH=.;

data &OUT;
length Directory $100 FileName ShortName $60 Extension $16;
length optname $12 ;
rc = filename ("mydir","&PATH");
did = dopen ("mydir");
if did > 0 then
do;
infocnt = doptnum(did) ;
put infocnt=;
do opt=1 to infocnt;
optname = doptname (did, opt);
if left (optname)='Directory' then Directory = dinfo(did, optname);
end;
filecnt = dnum(did);
do £ =1 to filecnt;

FileName = dread(did, f);
if index(filename,'.')>0 then
doj;
lastdotcol = length(trim(filename))
— index (left (reverse(filename)),'.') +1;
ShortName = substr(filename,l,lastdotcol-1);
Extension = substr(filename, lastdotcol+l);
end;
else do;
ShortName = filename;
Extension Yy
end;
output;

12

end;

end;

else put 'ERROR: DIR macro was given an invalid path';
keep Directory FileName ShortName Extension;

label Directory = 'Complete directory path'
FileName = 'File name with extension'
Shortname = 'File name without extension'
Extension = 'Extension (after final dot)';
run;
$MEND;

SOURCE CODE FOR %MAKEFMT

$MACRO MAKEFMT (data=,values=, labels=, fmtname=, library=WORK,
other=%str(),missing=, leftvar=,rightvar=);

/* last modified 8/4/2006
72nd col —-->|
Function: Make a format from variables in a dataset

Author:
Ted Clay
Clay Software & Statistics
1-541-482-6435
tclay@ashlandhome.net

Parameters:

DATA —— Name of input dataset (required)

VALUES —- Name of variable containing the values to be formatted
(required)

LABELS —-- Name of variable containing the formatted text, or a
character string in quotes (required). If a quoted
string is given it becomes the label of all values
in the data set. If LABELS a numeric variable, these
are converted to a character string using its associated
format, if any.

LIBRARY —-- Name of library where format is to be stored.
(default=WORK)

FMTNAME —-- Name of format (required). It is as it would appear on
a VALUE statement, without a period) Max 8 characters
long counting the "$". If VALUES is a character
variable, FMTNAME must begin with a "$".

OTHER —— A label to use if value is not found. (Default is blank).

Quotes are optional.

MISSING —- A label for missing value. If supplied it overrides
any label for missing values already specified in the
data set. Quotes are optional.

Parameters maintained for backward compatibility:
LEFTVAR -- obsolete name of VALUES parameter
RIGHTVAR -- obsolete name of LABELS parameter.

*/
%$local ERRORS Lfound Vfound labelstring;
%$* Copy obsolete parameters into the current parameters;
$IF S$LENGTH (&VALUES)=0 %then %let VALUES=&LEFTVAR;

%IF SLENGTH(&LABELS)=0 %then %let LABELS=&RIGHTVAR;

* Find out what the Type of VALUES;

13

proc contents data=&DATA noprint out=conts;
run;

SLET VFOUND=NO;
3$LET LFOUND=NO;
3LET ERRORS=NO;

SLET VALUES = 3%UPCASE (&VALUES) ;
%let LABELSTRING=NO;

%$if %QUOTE (%$sysfunc (dequote (&LABELS))) NE %QUOTE (&LABELS)
then %let LABELSTRING=YES;

%IF &LABELSTRING=YES %then %let LFOUND=YES;
%3ELSE S$LET LABELS = $UPCASE (&LABELS) ;

$IF SLENGTH($STR(&OTHER))>0 %then

$LET OTHER =%sysfunc(dequote (&0THER)) ;
$IF SLENGTH ($STR(&MISSING))>0 %$then

$LET MISSING=%sysfunc(dequote (&MISSING)) ;

data _null_;
set conts;

if upcase(name) = "&VALUES" then
do;
call symput ('VFOUND', 'YES');
if type=1 then call symput ('TYPE', 'NUM');
else call symput ('TYPE', 'CHAR');
end;

%IF &LFOUND=NO %then
$do;
if upcase(name) = "&LABELS" then
doj;

call symput ('LFOUND', 'YES');
end;
$end;

run;

$IF &VFOUND=NO $%THEN
%DO;
%PUT ***,-
$PUT ERROR IN MAKEFMT: Variable &VALUES not on input dataset;
%PUT ***,-
$LET ERRORS=YES;
SEND;

%$IF &LFOUND=NO $%THEN
$DO;
%PU’I‘ ***;
%$PUT ERROR IN MAKEFMT: Variable &LABELS not on input dataset;
%PU’I‘ ***;
$LET ERRORS=YES;
$END;

%PUT type is &TYPE;
* Check that $ is first char of FORMAT if VALUES is character.;
$IF $SUBSTR(&FMTNAME,1,1)=$ AND &TYPE=NUM $%THEN

%DO;

%PU’I‘ ER R R R R R R R R R R R R R R R R EE I
’

14

%$PUT ERROR IN MAKEFMT: &VALUES is numeric but format begins with "$";
%PU’I‘ **;

3LET ERRORS=YES;

SEND;
$IF $SUBSTR(&FMINAME,1,1) NE $ AND &TYPE=CHAR $THEN
%DO;

%PUT ***,-

%$PUT ERROR IN MAKEFMT: &VALUES is char but fmt does not begin with "$";
%PUT ***,-
$LET ERRORS=YES;
$END;

$IF &ERRORS=NO $%THEN
$DO;

data xxxx;

set &DATA end=lastobs;

length FMTNAME $8;

if _n_=1 then foundmissing=0;

retain foundmissing;

FMTNAME="&FMTNAME" ;

%IF &LABELSTRING=NO %then

$do;

format &LABELS; * remove format so that next statement will work;

$end;

%* This handles situation where data already contains variable "label"
with length already set;

%$IF %$quote (&LABELS) NE LABEL S$THEN %DO;
length label $100;
label = &LABELS; * possible conversion from numeric to char here;
SEND;

if missing (&VALUES) then

do;
foundmissing=1;
$IF SLENGTH(&MISSING)>0 %then label = "&MISSING" %str(;);
end;
output;

if lastobs then

do;
%$* Set the value to missing;
$IF &TYPE=NUM %then &VALUES=.%str(;);
$ELSE &VALUES=' '%str(;);

%* If the missing value was alredy found in the data,
and there is an explicit label given for missings,
output an observation to handle the missing case;

$IF SLENGTH (&MISSING)>0 %then

%do;
if not foundmissing then
do;
label="&MISSING";
output;
end;
%end;

* Handle the "Other" cases. The special variable "HLO"
must be assigned the letter "O";
hlo='0";
label="&0OTHER";
output;
end;

15

keep &VALUES label FMTINAME hlo;
rename &VALUES = start;
run;

proc format library=&LIBRARY cntlin=xxxx;
run;
SEND;

$MEND;

SOURCE CODE FOR %TRANSPO

$MACRO TRANSPO (data=, out=, by=,vars=, id=,
varsep=,modlabel=Y, labelsep=, copyvars=) ;

/* last modified 8/4/2006
72nd col —-->|
Function: Transpose many observations into one per by-group.
It handles both character and numeric variables and preserves
the original variable attributes.

Author: Ted Clay
Clay Software and Statistics, Ashland, OR
541-482-6435
tclay@ashlandhome.net
www.ashlandinternet.com/~tedclay
Please keep, use and pass on the TRANSPO macro with this authorship
note. (Email the author with any improvements.)

Reference:
"A Better Transpose: $TRANSPO Macro Preserves Variable Attributes"
WUSS11 Proceedings, San Francisco, Nov 5-7, 2003.

Background: This is different from PROC TRANSPOSE in that
1) It preserves the original variable attributes, 2) It outputs
one observation per by-group, and 3) It does not change variables
into observations.

Parameters:
DATA = (required) Name of input dataset. Must be
sorted by the BY variable(s).
OUT = (required) Name for output dataset.
BY = (required) By-grouping variable(s). Output dataset
will have one obs per unique value.
VARS = (required) List of one or more variables to be

transposed. Can be any character or numeric variables.

The list can be any valid SAS variable list,
e.g. x1-x5, age--sex, etc.

(optional parameters:)

ID = Name of variable whose values will determine
the suffix of the new variable names. May be character
or numeric. If it has a format assigned, the formatted
values are used. If no ID variable is given, the
suffixes of the new variables will be the number 1,2,3,
etc. assigned to the observations in sequence.
If ID is specified, the input dataset should have at
most one (formatted) value of the ID variable per
By—-group.

MODLABEL = Y/N. (Deflault=Y). If Y, the new labels are the old
plus the (formatted) value of the ID variable.

16

VARSEP = Text to insert between the old variable name and
the variable suffix being added.
Text to insert between the old label and
the variable suffix being added.
Only used if MODLABEL=Y.
COPYVARS = List of vars to be copied from the last obs in
the by-group, with no name change. This is appropriate
for handling additional variables that are the same
on all observations within the by-group, but you
prefer not to list them on the BY parameter.

LABELSEP

Additional Feature:
For each variable on the VAR parameter, a global macro variable
of the same name is created containing the list of output
variables derived from it. These macro variables can be used in
array statements in a data step processing the output data set.
If the original variable XXX was transposed into variables
XXX_A XXX_B and XXX_C, the global macro variable XXX would be
assigned the value: XXX_A XXX_B XXX_C;
In a subsequent step the array statement could be written as:

array XXX_ &XXX;

Details about the ID variable:
Case 1: No ID variable specified. The macro attaches the
suffixes "1","2","3", etc. to the transposed variables.

Case 2: ID variable specified. The macro uses the values of the
variable to assign the suffix of the transposed data.
If the ID variable has a format assigned to it, the
formatted values of the ID variable are used. Invalid
characters in the formatted or unformatted ID variable
are replaced with underscores for the new variable
names, but are not replaced with underscores when
appended to the existing variable labels.

An error results if the ID variable has blank formatted values or
is not formatted and has missing values.

Restrictions:

1. The OBS= or FIRSTOBS= options may be in effect, because they

conflict with the WHERE= option used in the macro.

2. The input data set may not have data set options specified.

3. Handles 4 digits of id values (that is, up to 9999) per by-group.
Presumably long before that limit is reached, SAS will reach
its limit on the number of datasets that can be on a MERGE
statement, or will run out of memory.

4. Handles up to 4 digits (9999) variables to be transposed.

5. The number of variables on the output dataset will be
<number of ID values> times <number of variables in VARS
parameter> plus <number of BY variables> plus
<number of COPYVAR variables>. SAS will impose a limit on the
maximum number of variables on a data set, varying depending on
the SAS version.

6. Variable name literals are not supported.

User responsibilities:

1. When you concatenate the longest old variable name, plus the
VARSEP, plus the longest (formatted) ID variable value, the
result should be within the limit imposed by SAS. This is 32
characters unless the VALIDVARNAME=V6 option is in effect, in
which case it is 8 characters.

2. The VARS, ID and BY parameters each must be a valid SAS variable
list for the input dataset. If not, the first SAS error message
will give a reasonable explanation of any problem of this kind.

*/

* CHECKING PARAMETERS

3SLET PARMERR=NO;

%* Check that BY variable(s) are specified;
%$IF $STR(&BY) EQ S$THEN
$DO;
$LET PARMERR=YES;
%$PUT ERROR: The BY parameter is required but missing.;
%PUT The TRANSPO stopped before creating an output dataset.;
%END;

%* Check that VARS variable(s) are specified;
%IF %$QUOTE (&VARS) EQ S$THEN
%DO;
$LET PARMERR=YES;
$PUT ERROR: The VARS parameter is required but missing.;
%PUT The TRANSPO stopped before creating an output dataset.;
$END;

%* Note: Although we say the data and out parameters are required,

no error happens if either are left blank, so we do not check them.

It is good programming practice to include them explicitly.;

%$IF $STR(&VARSEP) NE $%THEN
%DO;
$LET BADCOL=%SYSFUNC (verify (
SUPCASE (&VARSEP) , ABCDEFGHIJKLMNOPQRSTUVWXYZ_0123456789)) ;
%IF &BADCOL S%THEN
%DO;
$LET PARMERR=YES;
%PUT The VARSEP parameter "&VARSEP" contains an invalid
character at column &BADCOL.;
%$PUT The TRANSPO stopped before creating an output dataset.;
%END;
%END;

%* If any problem was found, jump to the bottom of the macro;
%$IF &PARMERR=YES $THEN %GOTO DONE;

%* All variables used in parameters must be on the input dataset.
If not, the following step will cause a SAS error;

proc contents data=&DATA (keep=&BY &VARS &ID) noprint out=zzconts;

run;

* o
~

SECTION 1: PRELIMINARY PART OF MACRO

*

o0 oo o

o

* Get last by-variable;

$DO V=1 %TO 99;
$LET WORD = $SCAN(&BY,&V,' -');
$IF $STR(&WORD) NE $THEN %LET LASTBY=&WORD;
SELSE $LET V=100;

SEND;

o
%
o
3

CASE 1: No ID variable specified.

18

Create a view which sequentially numbers the observations within
each by-group, and treat that counter as a numeric ID variable.

* % o

o0 oo de oo

$IF %$str(&ID) = %THEN

%DO;

%* Define a view of the data with a variable going 1,2,3... within each
by-group;

data _zzseq v / view=_zzseq_ v;

set &DATA;

by &BY;

if first.&LASTBY then _zzseqg = 0;
_zzseq +1;

run;

%$* Set up macro variables to tell the final step how to operate;
$LET IDTYPE=NUM;

$LET IDFMTED=NO;

$LET READFROM=_zzseq_ Vv;

$LET IDVAR=_zzseq;

%END;

o

ELSE %DO;

CASE 2: An ID variable was specified.

o0 oo o
* o X

* Check the type of the ID variable, and store its format and
format length.;

data _null_;
set zzconts;
if upcase (name)=upcase ("&ID") then
doj;
if type=1 then call symput ('IDTYPE', "NUM');
else if type=2 then call symput ('IDTYPE', 'CHAR');

if format=' ' then call symput ('IDFMTED', 'NO');
else call symput ('IDFMTED', 'YES');
call symput ('IDFMT' ,trim(left (format)));

call symput ('IDFMTL',trim(left (formatl)));

end;
run;

$put idtype is &idtype;
$put idfmted is &idfmted;
$put idfmt is &idfmt;
$put idfmtl is &idfmtl;

%IF %$STR(&IDFMTL)=0 $THEN $LET IDFMTL=;

3LET READFROM=&DATA;
SLET IDVAR=&ID;

SEND;

19

SECTION 2: MAIN PART OF MACRO

o0 oo oe

*

1. Use Proc Freq to get the list of values of ID variable.

o0 oo o
* % X

proc freqg data=&READFROM;
table &IDVAR / noprint out=idfregs;
run;

%$LET BLANKID=NO;

* Store the ID variable values (formatted) into a series of macro vars;
data idfregs2;

set idfregs;

length compare $200 CLEAN $200;

* Calculate values to compare data with.
If ID variable is formatted, must compare with formatted values,
because many unformatted values may share the same formatted value.
No BY-group should have more than one observation with the same
formatted value of the ID variable.;

$IF &IDFMTED=YES $%THEN

compare=left (put (&idvar, &IDFMT&IDFMTL..)) %$str(;);
$ELSE %IF &IDTYPE=NUM S$THEN compare = left (put (&IDVAR,best.))%str(;);
$ELSE %IF &IDTYPE=CHAR %THEN compare = left (&IDVAR)S%str(;);

* If ID is formatted, we look for blank in the COMPARE variable. The
missing value of the ID might get formatted to a value label such

as "Miss". That would be OK. But if there is no format,

we reject if there is a missing value in the ID variable. ;
if

%$IF &IDFMTED=YES $THEN missing(compare) ;

$ELSE missing (&IDVAR) ;

then call symput ('BLANKID', 'YES');

* Calculate "cleaned up" id value valid to use in variable names.
Invalid characters are replaced with the underscore.;
clean = compare;
do i = 1 to length(trim(clean));
if verify(substr (upcase(clean),i, 1),
' ABCDEFGHIJKLMNOPQRSTUVWXYZ_0123456789"')>0
then substr(clean,i,l)="'_";
end;

* Store the "Compare" and "Cleaned" values as macro variables;
length macname $ 8;

macname="ID'| |left(put(_n_,4.));

call symput (macname,trim(left (compare)));

macname="CLN' | |left(put(_n_,4.));

"

call symput (macname,trim(left(clean)));

* Store number of (formatted) values of ID variable;
call symput ('NUMIDS',left(put(_n_,4.)));

run;

$IF %QUOTE (&BLANKID)=YES $%THEN
DO;

$PUT ERROR: ID variable &ID has a missing value or blank
formatted value.;

o

20

%$PUT ERROR: TRANSPO macro will stop executing.;
%$GOTO DONE;
SEND;

%* "Super—-quote" the raw ID values because they may contain ampersand
or percent signs. Otherwise the macro processor would attempt to
resolve these in the WHERE= clause of the final data step;

%$DO I=1 $TO &NUMIDS;

$LET ID&I=%SUPERQ(ID&TI) ;
%END;

2. Store the names and labels of the variables to be transposed
into a set of macro variables;

*

o0 oo oo oo

%* This allows VARS to be any VALID form of a SAS variable list;

proc contents data=&READFROM (keep=&VARS) noprint out=xxconts;
run;

data _null_;
set xxconts;
* Because of the next statement, the output variables will all have
labels, even if input variables did not.
The default label is the variable name. ;
if label=' ' then label=name;

* Store variable names and labels into macro arrays;
length macname $ 8;
macname="'VAR' | |left (put(_n_,4.));

call symput (macname ,trim(left(name)));
macname="'LBL'| |left (put(_n_,4.));

call symput (macname ,trim(left(label)));
call symput ('NUMVARS', left(put(_n_,4.)));
run;

%* "Super-quote" the variable labels because they may contain ampersand
or percent signs. Otherwise the macro processor would
attempt to resolve these in the final data step;
%$DO V=1 %TO &NUMVARS;
$LET LBL&V=%SUPERQ (LBL&V) ;
$END;

3. Create the output dataset by merging the input many
times with itself.

o0 oo oo oe
* % X X

o°
*

Note: For each different value of the ID variable, we merge in a copy
of the input data using a WHERE option which selects only the

records where the ID variable has that value. The form of the
WHERE option must vary depending on the characteristics of the
ID variable. The variables to be transposed are renamed using

the rename= dataset option, adding a suffix which is the same as
the value used in the WHERE option. ;

data &OUT;
merge
%$DO I=1 $TO &NUMIDS;
&READFROM (keep=&BY &IDVAR &VARS ©VARS
$LET IDVAL=%NRBQUOTE (&&ID&I) ;

3IF &IDFMTED=YES S%THEN
where=(left (put (&§IDVAR, &IDFMT&IDFMTL..)) = "&IDVAL");

21

%ELSE %IF &IDTYPE=NUM $THEN

where=(&IDVAR = &&ID&I);
$ELSE %IF &IDTYPE=CHAR $THEN
where=(left (&§IDVAR) = "S$NRQUOTE (&&ID&I)");

rename= (
%$DO V=1 %TO &NUMVARS;
&&VAR&V = &&VAR&V..&VARSEP&&CLN&I

$END;
))
$END;
; %* end of merge statement;
by &BY;

if not (first.&LASTBY and last.&LASTBY) then

do;
put 'ERROR: More than one observation has the same formatted'
/! value of the ID variable within the same by-group';
error=1;
stop;
end;

%* Put a blank at the end of LABELSEP if it is present;
$IF $STR(&LABELSEP) NE $THEN %LET LABELSEP=%STR(&LABELSEP);

%IF &MODLABEL=Y $THEN
%DO I=1 %TO &NUMIDS;
%DO V=1 $TO &NUMVARS;

label &&VAR&V..&Varsep&&CLN&I = "&&LBL&V &LABELSEP&&ID&I"™;
SEND;
SEND;
drop &IDVAR;
run;

4. Store transposed variable names in global macro variables
for use in subsequent program code, such as array statements.
See "Additional Feature" in header documentation.

* % ok

o0 o0 oo oo oo

*

%$LOCAL STEM;
%GLOBAL &VARS;
%DO V=1 $TO &NUMVARS;
3SLET STEM=&&VAR&V;
3SLET &STEM=;
3DO I=1 %TO &NUMIDS;
SLET &STEM = &&&STEM &&VAR&V..&Varsep&&CLN&I;
%END;
%END;

$DONE: ;

$MEND;

22

SOURCE CODE FOR %ARRAY (ALSO USES %NUMLIST)

%$MACRO ARRAY (arraypos, array=, data=, var=, values=,
delim=%STR(), debug=N, numlist=Y);

/* last modified 8/4/2006 a.k.a. MACARRAY().
72nd col ——>|
Function: Define one or more Macro Arrays
This macro creates one or more macro arrays, and stores in them
character values from a SAS dataset or view, or an explicit list
of values.

A macro array is a list of macro variables sharing the same prefix
and a numerical suffix. The suffix numbers run from 1 up to a
highest number. The value of this highest number, or the length
of the array, is stored in an additional macro variable with the
same prefix, plus the letter “N”. The prefix is also referred to
as the name of the macro array. For example, "AAl1l", "AA2", "AA3",
etc., plus "AAN". All such variables are declared GLOBAL.

Authors: Ted Clay, M.S. tclay@ashlandhome.net (541) 482-6435
David Katz, M.S. www.davidkatzconsulting.com
"Please keep, use and pass on the ARRAY and DO_OVER macros with
this authorship note. -Thanks "

Full documentation with examples appears in SUGI Proceedings, 2006,
"Tight Looping With Macro Arrays" by Ted Clay
Please send improvements, fixes or comments to Ted Clay.

Parameters:
ARRAYPOS and
ARRAY are equivalent parameters. One or the other, but not both,
is required. ARRAYPOS is the only position parameter.
= Identifier(s) for the macro array(s) to be defined.

DATA = Dataset containing values to load into the array(s). Can be
a view, and dataset options such as WHERE= are OK.
VAR = Variable(s) containing values to put in list. If multiple

array names are specified in ARRAYPOS or ARRAY then the
same number of variables must be listed.

VALUES = An explicit list of character strings to put in the list
or lists. If present, VALUES are used rather than DATA
and VAR. VALUES can be a numbered list, eg 1-10, a0l-A20,
a feature which can be turned of with NUMLIST=N.

The VALUES can be used with one or more array names
specified in the ARRAYPOS or ARRAY parameters. If more
than one array name is given, the values are assigned to
each array in turn. For example, if arrays AA and BB
are being assigned values, the values are assigned to
AA1l, BB1, AA2, BB2, AA3, BB3, etc. Therefore the number
of values must be a multiple of the number of arrays.

DELIM = Character used to separate values in VALUES parameter.
Blank is default.

DEBUG = N/Y. Default=N. If Y, debugging statements are activated.
NUMLIST = Y/N. Default=Y. If Y, VALUES may be a number list.

REQUIRED OTHER MACRO: Requires NUMLIST if using numbered lists are used
in the VALUES parameter.

How the program works.

23

When the VALUES parameter is used, it is parsed into individual
words using the scan function. With the DATA parameter, each
observation of data to be loaded into one or more macro

arrays, _n_ determines the numeric suffix. Each one is declared
GLOBAL using "call execute" which is acted upon by the SAS macro
processor immediately. (Without this "global" setting, "Call symput"
would by default put the new macro variables in the local symbol
table, which would not be accessible outside this macro.) Because
"call execute" only is handling macro statements, the following
statement will normally appear on the SAS log: "NOTE: CALL EXECUTE
routine executed successfully, but no SAS statements were generated."

History
7/14/05 handle char variable value containing single quote
1/19/06 VALUES can be a a numbered list with dash, e.g. AA1-AA20
4/1/06 simplified process of making variables global.
4/12/06 allow VALUES= when creating more than one macro array.

*/

%$LOCAL prefixes PREFIXN manum _VAR_N iter i J val VAR WHICH MINLENG
PREFIX1 PREFIX2 PREFIX3 PREFIX4 PREFIX5 PREFIX6 PREFIX7 PREFIXS8
PREFIX9 PREFIX10 PREFIX11
varl var2 var3 var4 varb5 var6 var7 var8 var9 varl0 varll ;

%* Get array names from either the keyword or positional parameter;
%$if &ARRAY= %then %let PREFIXES=&ARRAYPOS;
%else %$let PREFIXES=&ARRAY;

%* Parse the list of macro array names;
%$do MANUM = 1 %to 999;

%let prefix&MANUM=%scan (&prefixes, &MAnum, ' ');
%if &&prefix&MANUM ne S$Sthen
%DO;

%let PREFIXN=&MAnum;
%global &&prefix&MANUM. .N;
%* initialize length to zero;
$let &&prefix&MANUM. .N=0;
$END;
%else %goto outl;
$end;
Soutl:
%$if &DEBUG=Y $%then %$put PREFIXN is &PREFIXN;
%* Parse the VAR parameter;
%$let _VAR_N=0;
%do MANUM = 1 %to 999;
$let _var_&MANUM=%scan (&VAR, &MAnum, ' ') ;
$if %$str(&&_var_&MANUM) ne %then %$let _VAR_N=&MAnum;
%else %$goto out2;
%end;
Sout2:
%$IF &PREFIXN=0 $%THEN
%$PUT ERROR: No macro array nhames are given;
$ELSE %IF SLENGTH($STR(&DATA)) >0 and &_VAR_N=0 $%THEN
%$PUT ERROR: DATA parameter is used but VAR parameter is blank;
$ELSE %IF SLENGTH($STR(&DATA)) >0 and & _VAR_N ne &PREFIXN $THEN
%PUT ERROR: The number of variables in the VAR parameter is not
equal to the number of arrays;
$ELSE %DO;

CASE 1: VALUES parameter is used

o0 oo o
* X

24

%$IF SLENGTH($STR(&VALUES)) >0 $THEN
%DO;
%$IF &NUMLIST=Y %then
%DO;
%* Check for numbered list of form xxx-xxx and expand it using
the NUMLIST macro.;
%IF ($INDEX(%quote (&VALUES),-) GT O
($length (%$SCAN (%quote (&VALUES), 1,

) and
1,-))>
(%$length ($SCAN ($quote (&VALUES) , 2,-))>
3,-))=
S

) and
) and
0)

0
0

(%$length ($SCAN (%quote (&VALUES), 3,
$THEN $LET VALUES=%NUMLIST (&VALUES) ;

%END;

$LET MINLENG=99999;
$DO J=1 %$TO &PREFIXN;
%$DO ITER=1 $TO 9999;
SLET WHICH=%EVAL ((&ITER-1) *&PREFIXN +&J) ;
$LET VAL=%SCAN (%STR(&VALUES), &WHICH, $STR(&DELIM)) ;
$IF %QUOTE (&VAL) NE S%THEN
%DO;
%$GLOBAL &&&&PREFIX&J..&ITER;
SLET &&&&PREFIX&J..&ITER=&VAL;
$LET &&&&PREFIX&J..N=&ITER;
$END;
$ELSE %goto out3;
$END;
%out3: $IF &&&&&&PREFIX&J..N LT &MINLENG
$THEN $LET MINLENG=&&&&&&PREFIX&T. .N;
$END;

$if &PREFIXN >1 $%THEN
%$DO J=1 %TO &PREFIXN;
3IF &&&&&&PREFIX&J..N NE &MINLENG %THEN
$PUT ERROR: Number of values must be a multiple of the number of arrays;
SEND;

%END;
%ELSE %DO;

* CASE 2: DATA and VAR parameters used

oo oo oo

$* Get values from one or more variables in a dataset or view;
data _null_;
set &DATA end = lastobs;
%$DO J=1 %to &PREFIXN;
call execute('3GLOBAL '||"&&PREFIX&J.."||left(put(_n_,5.)));
call symput (compress ("&&prefix&J" | |left (put(_n_,5.))),
trim(left (&&_VAR_&J)));
if lastobs then
call symput (compress ("&&prefix&J" | |"N"), trim(left(put(_n_,5.))));
$END;
run ;

%$* Write message to the log;

%$IF &DEBUG=Y %then

%$DO J=1 %to &PREFIXN;

%PUT &&&&PREFIX&J..N is &&&&&&PREFIX&J..N;
SEND;

SEND;

SEND;

SMEND;

25

SOURCE CODE FOR %DO_OVER (ALSO USES %NUMLIST)

%$MACRO DO_OVER (arraypos, array=,
values=, delim=%STR(),
phrase=?, escape=?, between=,
macro=, keyword=);

/* Last modified: 8/4/2006
72nd col —-->|
Function: Loop over one or more arrays of macro variables
substituting values into a phrase or macro.

Authors: Ted Clay, M.S.
Clay Software & Statistics
tclay@ashlandhome.net (541) 482-6435
David Katz, M.S. www.davidkatzconsulting.com
"Please keep, use and pass on the ARRAY and DO_OVER macros with
this authorship note. -Thanks "
Send any improvements, fixes or comments to Ted Clay.

Full documentation with examples appears in
"Tight Looping with Macro Arrays".SUGI Proceedings 2006,

The keyword parameter was added after the SUGI article was written.

REQUIRED OTHER MACROS:

NUMLIST -- if using numbered lists in VALUES parameter.
ARRAY —— 1f using macro arrays.
Parameters:

ARRAYPOS and
ARRAY are equivalent parameters. One or the other, but not both,
is required. ARRAYPOS is the only position parameter.
= Identifier(s) for the macro array(s) to iterate over.
Up to 9 array names are allowed. If multiple macro arrays
are given, they must have the same length, that is,
contain the same number of macro variables.

VALUES = An explicit list of character strings to put in an
internal macro array, VALUES may be a numbered lists of
the form 3-15, 03-15, xx3-xx15, etc.

DELIM = Character used to separate values in VALUES parameter.
Blank is default.

PHRASE = SAS code into which to substitute the values of the
macro variable array, replacing the ESCAPE

character with each value in turn. The default

value of PHRASE is a single <?> which is equivalent to

simply the values of the macro variable array.

The PHRASE parameter may contain semicolons and extend to

multiple lines.

NOTE: The text "?_I_", where ? is the ESCAPE character,
will be replaced with the value of the index variable
values, e.g. 1, 2, 3, etc.

Note: Any portion of the PHRASE parameter enclosed in

single quotes will not be scanned for the ESCAPE.
So, use double quotes within the PHRASE parameter.

If more than one array name is given in the ARRAY= or
ARRAYPOS parameter, in the PHRASE parameter the ESCAPE
character must be immediately followed by the name of one
of the macro arrays, using the same case.

26

ESCAPE = A single character to be replaced by macro array values.
Default is "2".

BETWEEN = code to generate between iterations of the main
phrase or macro. The most frequent need for this is to
place a comma between elements of an array, so the special
argument COMMA is provided for programming convenience.
BETWEEN=COMMA is equivalent to BETWEEN=%STR(,) .

MACRO = Name of an externally-defined macro to execute on each
value of the array. It overrides the PHRASE parameter.
The parameters of this macro may be a combination of
positional or keyword parameters, but keyword parameters
on the external macro require the use of the KEYWORD=
parameter in DO_OVER. Normally, the macro would have
only positional parameters and these would be defined in
in the same order and meaning as the macro arrays specified
in the ARRAY or ARRAYPOS parameter.
For example, to execute the macro DOIT with one positional
parameter, separately define

$MACRO DOIT (STRING1) ;
<statements>
$MEND;

and give the parameter MACRO=DOIT. The values of AAAL,
AAA2, etc. would be substituted for STRING.
MACRO=DOIT is equivalent to PHRASE=%NRQUOTE ($DOIT(?)) .
Note: Within an externally defined macro, the value of the
macro index variable would be coded as "&I". This is
comparable to "?_I_" within the PHRASE parameter.

KEYWORD = Name (s) of keyword parameters used in the definition of
the macro refered to in the MACRO= parameter. Optional.
This parameter controls how DO_OVER passes macro array
values to specific keyword parameters on the macro.

This allows DO_OVER to execute a legacy or standard macro.
The number of keywords listed in the KEYWORD= parameter
must be less than or equal to the number of macro arrays
listed in the ARRAYPOS or ARRAY parameter. Macro array
names are matched with keywords proceeding from right

to left. If there are fewer keywords than macro array
names, the remaining array names are passed as positional
parameters to the external macro. See Example 6.

Rules:

Exactly one of ARRAYPOS or ARRAY or VALUES is required.

PHRASE or MACRO is required. MACRO overrides PHRASE.

ESCAPE is used when PHRASE is used, but is ignored with MACRO.

If ARRAY or ARRAYPOS have multiple array names, these must exist
and have the same length. If used with externally defined
MACRO, the macro must have positional parameters that
correspond l-for-1 with the array names. Alternatively, one
can specify keywords which tell DO_OVER the names of keyword
parameters of the external macro.

Examples:
Assume macro array AAA has been created with
%$ARRAY (AAA, VALUES=x y z)
(1) %DO_OVER(AAA) generates: x vy z;
(2) %DO_OVER (AAA,phrase="?",between=comma) generates: y
(3) %DO_OVER (AAA,phrase=if L="?" then ?=1;,between=else) generates:
if L="x" then x=1;

ALl
’ ’

else if L="y" then y=1;
else if L="z" then z=1;

History

(6)

%$DO_OVER (AAA, macro=DOIT) generates:
$DOIT (%)
$DOIT (y)
$DOIT (z)
which assumes %DOIT has a single positional parameter.
It is equivalent to:
$DO_OVER (AAA, PHRASE=%NRSTR ($DOIT (?)))

%$DO_OVER (AAA, phrase=?pct=?/tot*100; format ?pct 4.1;)
generates:
xpct=x/tot*100; format xpct 4.1;
ypct=y/tot*100; format ypct 4.1;
zpct=z/tot*100; format zpct 4.1;
%$DO_OVER (aa bb cc,MACRO=doit, KEYWORD=borders columns)
is equivalent to %DO_OVER(aa, bb, cc,
PHRASE=%NRSTR (%doit (?aa, borders=?bb, columns=2?cc)))
Either example would generate the following internal do-loop:
$DO I=1 $to &AAN;
$doit (&&aa&l, borders=&&bb&I, columns=&&ccé&I)
SEND;
Because we are giving three macro array names, the macro DOIT
must have three parameters. Since there are only two keyword
parameters listed, the third parameter is assumed to be
positional. Positional parameters always preceed keyword
parameters in SAS macro definitions, so the first parameter
a positional parameter, which is given the values of first
macro array "aa". The second is keyword parameter "borders="
which is fed the values of the second array "bb". The third
is a keyword parameter "columns=" which is fed the values of
the third array "cc

7/15/05 changed $%$str (&VAL) to $quote (&VAL).
4/1/06 added KEYWORD parameter
4/9/06 declared "_Intrnl" array variables local to remove problems

with nesting with VALUES=.

8/4/06 made lines 72 characters or less to be mainframe compatible

*/

%LOCAL

_IntrnlN

_Intrnll _Intrnl2 _Intrnl3 _Intrnld4 _Intrnlb5
_Intrnle _Intrnl7 _Intrnl8 _Intrnl9 _IntrnllO
_Intrnlll _Intrnll2 _Intrnll3 _Intrnll4 _Intrnll5
_Intrnll6é _Intrnll7 _Intrnll8 _Intrnll9 _Intrnl20
_Intrnl2l1 _Intrnl22 _Intrnl23 _Intrnl24 _Intrnl25
_Intrnl26 _Intrnl27 _Intrnl28 _Intrnl29 _Intrnl30
_Intrnl31 _Intrnl32 _Intrnl33 _Intrnl34 _Intrnl35
_Intrnl36 _Intrnl37 _Intrnl38 _Intrnl39 _Intrnl40
_Intrnl4l _Intrnl42 _Intrnl43 _Intrnl44d _Intrnléd5
_Intrnld6 _Intrnld7 _Intrnld8 _Intrnld49 _Intrnl50
_Intrnl51 _Intrnl52 _Intrnl53 _Intrnl54 _Intrnl55
_Intrnl56 _Intrnl57 _Intrnl58 _Intrnl59 _Intrnl60
_Intrnl6el _Intrnl62 _Intrnl6e3 _Intrnl6d4 _Intrnl65
_Intrnl66 _Intrnl67 _Intrnl6e8 _Intrnl69 _Intrnl70
_Intrnl71 _Intrnl72 _Intrnl73 _Intrnl74 _Intrnl75
_Intrnl76 _Intrnl77 _Intrnl78 _Intrnl79 _Intrnl80
_Intrnl81 _Intrnl82 _Intrnl83 _Intrnl84 _Intrnl85
_Intrnl86 _Intrnl87 _Intrnl88 _Intrnl89 _Intrnl90
_Intrnl91 _Intrnl92 _Intrnl93 _Intrnl94 _Intrnl95
_Intrnl96 _Intrnl97 _Intrnl98 _Intrnl99 _Intrnll00
_KEYWRDN _KEYWRD1 _KEYWRD2 _KEYWRD3 _KEYWRD4 _KEYWRD5
_KEYWRD6 _KEYWRD7 _KEYWRD8 _KEYWRDY9

_KWRDI

28

ARRAYNOTFOUND CRC CURRPREFIX DELIMI DID FRC I ITER J KWRDINDEX MANUM
PREFIXES PREFIXN PREFIX1 PREFIX2 PREFIX3 PREFIX4 PREFIX5

PREFIX6 PREFIX7 PREFIX8 PREFIX9
SOMETHINGTODO TP VAL VALUESGIVEN

’

%$let somethingtodo=Y;

%$* Get macro array name(s) from either keyword or positional parameter;

$if %$str (&arraypos) ne S%then
%else %if %str(&array) ne %then

%else %if %quote(&values) ne %then
%else %let Somethingtodo=N;

%$if &somethingtodo=Y %then
$do;

%* Parse the macro array names;
%$let PREFIXN=0;

%do MAnum = 1 %$to 999;

%$let prefix&MANUM=%scan (&prefixes,

%$let prefixes=&arraypos;
%$let prefixes=&array;
%$let prefixes=_Intrnl;

&MAnum, ' ');

%$if &&prefix&MAnum ne $then %$let PREFIXN=&MAnum;

%else %goto outl;
$end;
Soutl:

%* Parse the keywords;

%$let _KEYWRDN=0;

$do _KWRDI = 1 %to 999;

%$let _KEYWRD&_KWRDI=%scan (&KEYWORD
$if &&_ KEYWRD&_KWRDI ne %then %$let
%$else %$goto out2;

%end;

Sout2:

%* Load the VALUES into macro array
%$if %$length(%str (&VALUES)) >0 %then
$else %let VALUESGIVEN=0;
%$1f &VALUESGIVEN=1 $THEN
$do;
%* Check for numbered list
using NUMLIST macro.;

, & _KWRDI,"' ");
_KEYWRDN=&_KWRDI;

1 (only one is permitted);
%let VALUESGIVEN=1;

of form xxx-xxx and expand it

%IF (%$INDEX(%STR(&VALUES),-) GT 0) and

($SCAN ($str (&VALUES), 2
($SCAN ($str (&VALUES), 3

,—) NE) and
;=) EQ)

$THEN $LET VALUES=%NUMLIST (&VALUES) ;

%$do iter=1 $TO 9999;

$let val=%scan(%str (&VALUES), &iter, $str (&DELIM)) ;

%$1if %quote (&VAL) ne %then
$do;
%$let &PREFIX1&ITER=&VAL;
%$let &PREFIX1.N=&ITER;
$end;
%else %goto out3;
$end;
Sout3:
%end;

%let ArrayNotFound=0;
%$do j=1 %to &PREFIXN;
$*put prefix &j is &&prefixé&j;

SLET did=%sysfunc (open (sashelp.vmacro

(where=(name eq

no

Supcase (&&PREFIX&J. . N)"))));

29

SLET frc=%sysfunc(fetchobs(&did, 1)) ;
SLET crc=%sysfunc(close(&did));
%$IF &FRC ne 0 %then
$do;
$PUT Macro Array with Prefix &&PREFIX&J does not exist;
%let ArrayNotFound=1l;
%end;
%end;

%$if &ArrayNotFound=0 %then %do;
%$if %quote (%upcase (&BETWEEN))=COMMA %then %let BETWEEN=%str(,);

%$if %$length(%str (&MACRO)) ne 0 %$then
$do;
%let TP = %nrstr (%$&MACRO) (;
%do J=1 %to &PREFIXN;
%$let currprefix=&&prefix&d;
$IF &J>1 %then %$let TP=&TPS%str(,);
%* Write out macro keywords followed by equals.
If fewer keywords than macro arrays, assume parameter
is positional and do not write keyword=;
%$let kwrdindex=%eval (& _KEYWRDN-&PREFIXN+&J) ;
$IF &KWRDINDEX>0 %then %$let TP=&TP&&_ KEYWRD&KWRDINDEX=;
SLET TP=&TP%nrstr (&&)&currprefix®nrstr (&I);
$END;
%$let TP=&TP); %* close parenthesis on external macro call;
$end;

%else
%do;
%let TP=&PHRASE;
%let TP = %gsysfunc(tranwrd (&TP, &ESCAPE._I_, %nrstr(&I.)));
%$let TP = %gsysfunc(tranwrd(&TP, &ESCAPE._i_, %nrstr(&I.)));

%do J=1 %to &PREFIXN;
%let currprefix=&&prefix&d;
SLET TP = %gsysfunc(tranwrd(&TP, &ESCAPE&currprefix,

snrstr (&&) &currprefix%nrstr(&I..)));
%$if &PREFIXN=1 %then %let TP = %gsysfunc(tranwrd(&TP, &ESCAPE,
snrstr (&&) &currprefix%nrstr(&I..)));
$end;
$end;

%* resolve TP (the translated phrase) and perform the looping;
%do I=1 %to &&&prefixl.n;

%$1if &I>1 and %length(%str (&between))>0 %$then &BETWEEN;
%Sunquote (&TP)

%end;

%end;
%end;

$MEND;

30

SOURCE CODE FOR %NUMLIST (USED BY %ARRAY AND %DO_OVER)

$MACRO NUMLIST (listwithdash) ;
/*
72nd col ——>|
Function: Generate the elements of a numbered list.

For example, AAl-AA3 generates AAl AA2 AA3
No prefix is necessary —-- 1-3 generates 1 2 3.

Author: Ted Clay, M.S.
Clay Software & Statistics
tclay@ashlandhome.net (541) 482-6435
"Please keep, use and share this macro with this authorship note."

Parameter:
ListWithDash —-- text string containing a dash.

The text before the dash, and the text after the dash,
usually begin with a the same character string, called the
stem. (The stem could be blank or null, as is the case of
number-dash-number.) After the common stem must be two
numbers. The first number must be less than the second
number. Leading zeroes on the numbers are preserved.

How it works: The listwithdash is parsed into _before and _after.
_before and _after are compared equal up to the length of the
"stem". What is after the "stem" is assigned to _From and _to,
which must convert to numerics. Finally, the macro generates
stem followed by all the numbers from _from through _to

Examples:
$numlist (3-6) generates 3 4 5 6.
Snumlist (1993-2004) generates 1993 1994 1995 1996 1997 1998 1999
2000 2001 2002 2003 2004.
$numlist (var8-varl2) generates var8 var9 varlO varll varl2.
$numlist (var08-varl2) generates var08 var09 varlO varll varl2.

*/

%$local _before _after _lengthl _length2 minlength samepos _pos
_from _to 1i;

%$let _before = %scan(%quote(&listwithdash),1,-);
%$let _after = %scan(%quote(&listwithdash),2,-);

%let _lengthl = %length(%$quote (&_before));

%$let _length2 = %$length(%quote(&_after));

%let minlength=&_lengthl;

%$if & _length2 < &minlength %then %let minlength=&_length2;

$*put before is & _before;
$*put after is &_after;
$*put minlength is &minlength;
%* Stemlength should be just before the first number or the first
unequal character;
%let stemlength=0;
%$let foundit=0;
%do _pos = 1 %$to &minlength;
$LET CHARl=%upcase (%$substr (%quote (&_before), & _pos,1));
SLET CHAR2=%upcase ($substr ($quote (&_after), &_pos,1));
%$1if %$index (1234567890, %SQUOTE (&CHAR1)) GE 1 S%then %let ISANUMBER=Y;
$else %let isanumber=N;

%$if &foundit=0 and
(&isanumber=Y OR %quote (&CHAR1) NE %QUOTE (&CHAR2))
%then %do;
%let stemlength=%EVAL(&_pos-1);

$*put after assignment stemlength is &stemlength;
$let foundit=1;
%$end;

%end;

%$if &stemlength=0 %then %let stem=;
%else %$let stem = %$substr(&_before, 1, &stemlength);

%$let _from=%substr (&_before, $eval (&stemlength+l));
%$let _to =%substr(&_after, %eval(&stemlength+l));

$IF S$verify (&_FROM,1234567890)>0 or
Sverify (&_TO ,1234567890)>0 %then
$PUT ERROR in NUMLIST macro: Alphabetic prefixes are different;

$else %$if &_from <= &_to %then
$do _III_=&_ from %to &_to;

SLET _XXX_=&_ iii_;

%$do _JJJ_=%length(&_iii_) %to %eval(%length(&_from)-1);

$let _XXX_ =0&_XXX_;

$end;
$TRIM (&stemé&_XXX_)
$end;
%else %PUT ERROR in NUMLIST macro: From "&_ from" not <= To "&_to";

$MEND;

32

