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ABSTRACT

Table look-up is the most time-consuming part of many SAS programs. Base SAS offers
a rich collection of built-in searching techniques. Merging, SQL joins, formats, SAS
indexes - all serve the purpose of locating relevant data. For custom programming, SAS
offers arrays, whose direct addressability lends itself to implementing just about any
searching algorithm. Array-based lookup is not a ready-to-go food; it has to be cooked
at home. However, it may result in dishes digested by the computer more easily, more
programmatically nutritious, and with fewer computer resources ending up in the
garbage disposer.

This paper shows how arrays can be used to organize the fastest class of in-memory
table look-up -- direct-address searching. Three such techniques --  key-indexing,
bitmapping, hashing -- are considered in a logical sequence using a real-life example of
matching two data files by a common key. The results of benchmarking presented in the
paper show that home-cooked direct addressing methods beat even the quickest ready-
to-go tools like the "large formats" by a wide margin. As such, they can be indispensable
in any massive data processing setting, where speed and efficiency considerations are
paramount.

INTRODUCTION

Table lookup being one of the most frequent data processing operations, SAS provides a
rich collection of built-in searching techniques. Merging, SQL joins, formats, indexes, to
name a few, all serve the purpose of looking up relevant data. In addition, SAS
Language incorporates arrays – the data structures ideal for implementing just about
any searching algorithm “by hand”. SAS arrays are not ready-to-go tools: Array-based
lookups have to be custom-coded and tuned. However, this approach is more flexible
and often results in programs that search faster and use fewer resources than the
“heavy artillery”.

This paper concentrates on a group of in-memory lookup methods based on direct or
almost direct addressing into a temporary SAS array. First, we shall consider key-
indexed search. Then we will try to expand its domain by viewing an array as a bitmap.
Finally, we will see how to generalize the core idea of key-indexing to arrive at a hybrid
search method called hashing.

To make the discussion less abstract, we will consider a common task of matching two
data files by a common variable. This will help us how different lookup techniques
compare to each other and to some of the ready-to-go methods such as “large formats”
and SQL.

Consider an unsorted file SMALL containing N_SMALL records with a key variable KEY
and satellite variable S_SAT. Another unsorted file, LARGE, with N_LARGE records, also
contains KEY and a satellite field L_SAT. Let us assume, for the time being, that the keys
are integers. Imagine that LARGE is so big that sorting is not an option; however, also
assume that we have enough memory to hold all keys from SMALL at once. Under these
conditions, What is the most efficient way to subset LARGE based on the values of KEY
in SMALL to produce a file MATCH? SAS offers a number of ready-to-go tools based on
in-memory table lookup. For example:

1. Compile unduplicated keys from SMALL into a format using CNTLIN= option, and
search it for each KEY read from LARGE.

2. Join the files using BUFFERSIZE large enough to prompt the SQL optimizer to use
SQXJHSH access method.

3. Load the keys from SMALL into a sorted array, then use a hand-coded binary or
interpolation search.

With plenty of methods available, why try something else? Because there are faster and
more efficient ways to do the trick!

I. KEY-INDEXING

Most of the ready-to-go and hand-coded searching methods are based on comparing a
search key to all or some keys in a memory table. It makes them principally limited since
generally, no comparison-based method can search in fewer iterations than binary
search. We could therefore try to remove the limitation by doing away with key
comparisons altogether. But is it possible to search for a key without at least one
comparison? The answer is “yes” and given by a radically different searching philosophy
called direct addressing, that finds its pure expression in key-indexed search. Its idea is
simple. Imagine that all keys are 1-digit numbers from 0 to 9, and that SMALL has just 9
records:

OBS    | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
-------+---+---+---+---+---+---+---+---+----
 KEY   | 2 | 3 | 5 | 2 | 7 | 9 | 5 | 7 | 3
-------+---+---+---+---+---+---+---+---+----
 S_SAT | 1 | 2 | 3 | 0 | 4 | 5 | 6 | 9 | 7

Let us create a temporary array HKEY with one node (location, address) allocated for
each possible key value, and initialize the contents of all buckets to a missing value.
(In SAS, such initialization will be done be default. In the case the satellites might have
legitimate missing values, the table can be primed using special missing values.) The
array HKEY can be thought of as the following table in memory:

------------------------------------------------
 H     | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
-------+---+---+---+---+---+---+---+---+--------
 HKEY  | . | . | . | . | . | . | . | . | . | .
------------------------------------------------

Now, for each key from SMALL, let us look at the array location H whose index is equal
to the value of the KEY, that is, simply at HKEY(KEY). Since we have created a separate
bucket for each possible key value, we are always guaranteed to find the address with
H=KEY. Let us check first if the node is empty, i.e. if  HKEY(KEY) is missing. If it is
empty, let us move the satellite S_SAT to H=KEY. After repeating this procedure for all
nine test keys, HKEY acquires the following shape:

------------------------------------------------
 H     | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
-------+---+---+---+---+---+---+---+---+--------
 HKEY  | . | . | 1 | 2 | . | 3 | . | 4 | . | 5
------------------------------------------------

What we have just created is termed a key-indexed table. It comprises two types of
entries: empty and occupied. Inserting the satellite only when the node is empty retains
its first instance corresponding to a repeating key value; otherwise, the last instance
would be used. Either way, duplicate keys are deleted automatically as the table is
loaded. If SMALL has no satellites or they are of no interest, the entries of the key-
indexed table could be marked as occupied by moving 1 into the node, the unduplication
effect remaining intact.

Given a search key to look for, all we have to do is examine the table location whose
index is equal to the key. If the corresponding location is empty (missing), the key is not
in the table. If it is occupied, the search has been successful, and the node contains the
satellite value related to the search key. For example, if KEY=1, the search fails since
the address 01 of the table is empty. If KEY=7, we have to look at the node 07. It is
occupied; therefore, the key is found, and the node returns the satellite value
HKEY(7)=4.

Note that searching is implicitly incorporated in the process of loading the table: To
determine if the node is empty, we in effect search the table to find out if the key has
already been marked in the table as present. If it has, it is a duplicate, and need not be
inserted, so we can merrily proceed to the next record. The nature of the process makes
it unnecessary to sort SMALL or insert the keys themselves, because effectively, the keys
are "inserted" by making their corresponding nodes occupied by satellites or, in lieu of
the satellites, by a non-missing value, e.g. 1.

The utter simplicity of key-indexing lends itself to a very simple DATA step
implementation. Suppose, for example, that we are dealing with integer keys ranging
from –4E6 to +4E6. The range thus naturally defines the bounds of the array HKEY
representing the key-indexed table:

** Key-Indexed Load and Search **;

data match;
   array hkey (-4000000:4000000) _temporary_;
   ** load key-indexed table from small;
   do until (eof1);
      set small end=eof1;
      if hkey(key) = . then hkey(key) = s_sat;
   end;
   ** for each obs in large, search table and output matches;
   do until (eof2);
      set large end=eof2;
      s_sat = hkey(key);
      if s_sat > . then output;
   end;
run;

From the nature of the algorithm, it is clear that no lookup method is simpler and/or can
run faster than key-indexing: It completes any search, hit or miss, without comparing
any keys, via a single array reference. It also possesses the fundamental property: Its
speed does not depend on the number of keys "inserted" into the table, i.e. any single
act of key-indexed search takes precisely the same time.

To see how well key-indexing performs, it was compared in load and search phases to
formatting, SQXJHSH, and other methods presented below, for N_LARGE=2E6 and a
number of N_SMALL values using SMALL and LARGE. The results shown in the Section
“TESTING” testify that - at a high memory expense -  key-indexing completely
dominates the competition. For instance, it out-performs MERGE running against (pre-
sorted!)  input as 5:1.
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Well, if key-indexed search is all that good, why not use it at all times and instead of
everything else? Unfortunately, there is a fly on the ointment. As we have seen, key-
indexing, due to its very nature, is practically applicable only when the lookup keys are
integers falling in a limited range. For our test keys taking on only as many as 8,000,001
distinct values, sufficient array space can be allocated using about 64 MB of memory.
Having 80 MB of memory, one can get away with 7-digit keys. However, to deal with 9-
digit SSN, an array with 1 billion elements would be needed, which is almost impossible
even with the modern memories, while 16-digit credit card numbers would make key-
indexing a technical utopia.

On the other hand, there is a plenitude of real-world applications where key values do
indeed fall in a limited range. In all such cases, key-indexing, with its blazing speed and
simplicity, is beyond competition. Here are some examples:

1. SAS date is simply the number of days between a given date and 01JAN1960. Any
date value, from the lowest possible in the SAS System up to year 4000 can be
accommodated by a [-138061:380217] table, and it will occupy mere 4 MB of real
storage (RAM).

2. SAS times. An array sized as [0:86400] will key-index any SAS time value.
3. ICD9/CPT4 codes. If some character is a letter, it can be converted into a number

to 1-26 range, and then the entire code can be represented as a limited-range
integer, probably not exceeding 1 million.

4. PIB2. informat maps any 1- and 2-byte character key onto the  [0:65535] range.
5. Any fractional key if limited in range when multiplied by a suitable scaling

constant.

So, key-indexing can be really useful and extremely fast in a variety of data processing
situations. And yet, it remains inherently limited to the domain of restricted-range,
integer keys. But the idea on which the method is based is so beautiful that it would be
a shame to let it go underused just because of its greed for memory. It is worth trying
to expand it. However, to do so, we must find a practical way to keep memory usage at
bay.

The question is: How?  First, let us observe that both the speed of key-indexing and its
limitations rest upon several simple facts:

• The lookup table is directly addressed by the value of a key itself.
• The entire set of possible key values is addressable. It means that a separate

node must be allocated for each possible value a search key can assume.
• No comparisons between the search key and any key in the table are made.

Based on these facts, we can devise two principal approaches that could loosen the
restriction self-imposed by key-indexed search.

1. Keep all possible key values addressed, but expand the addressable range of keys
by making much smarter use of the available memory resources. For, instance, we
can try to key-index bits instead of bytes.

2. Eliminate any restrictions imposed on the nature of lookup keys. This can be done
by dropping the requirements that (a) no two distinct keys shall reside in one
node, and (b) no comparisons between the search key and keys in the table shall
be allowed.

The first approach results in a technique called bitmapping. The second path leads to a
more versatile hybrid searching method known as hashing.

II. BITMAPPING

Suppose we have a situation where the satellite information in SMALL is of no interest
for us, and therefore we need not drag S_SAT through the memory to the output. In
such a case, the key-indexed table only serves one purpose: To indicate whether a
memory node, whose index corresponds to the key value, is empty or occupied. The
occupied nodes can be populated with 1, and the empty ones can be either left missing
or else initialized to zero. Now if a node number KEY contains 1, the key whose value is
KEY is present. Otherwise, if the node number KEY contains 0, the key is not in the
table. Hence, all a table node must be able to tell is whether it contains 0 or 1. Such
functionality can be amply served by nothing more than a single bit. Yet looking back at
our key-indexing implementation, we see that it uses full 8 bytes, the memory length of
a numeric array item, to store a binary value. This is 64 times the difference! But if we
to realize such a potential, how do we make efficient use of bits in such a setting?

If it  were possible to have a temporary array with 1 bit per item, the question would not
even arise – we would simply have the bits addressed directly via an index.
Unfortunately, the shortest memory length reserved by a temporary SAS array element
is not 1 bit but always full 64 bits regardless of the declared expression length. If, for
example, a temporary array is allocated as $1, its item's expression length is 1, but its
memory length is still full 8 bytes. Hence, to properly index the bits that compose an
array element, some additional computations are needed.

At first glance, it seems natural to try bitmapping a character array with the shortest
allowable memory length, $8, and the number of elements equal to the number of all
possible key values divided by 64. This would obviously allow cutting memory usage 64
times, just as projected above. Say, for the time being, that we are dealing with 8-digit
natural keys. In order to be able to address all of them, we will need, accordingly, 100
million (1E+8) bits. The equivalent amount of real storage, about 12 MB, is nowadays
insignificant, especially compared to what key-indexing would require (760 MB). The
entire universe of all possible keys can be thus covered by the bits of an array consisting
of 1,562,500 8-byte character items. To mark a key as present, we might proceed as
follows:

1. Declare ARRAY BITMAP (0:1562500) $8 _TEMPORARY_.
2. Compute X= INT(KEY/64). Now X points to the array item containing the bit

having to be turned on.
3. Compute R=1+MOD(KEY, 64). Now R points to the correct bit.

To turn the bit on, we would compute X and R. If BITMAP(X) is blank (none of bits is on
yet), we would set it to the binary zero “0000000000000000”X, then convert it to a 64-
byte character variable BITSTR mirroring the bit content of BITMAP(X) , set R-th byte to
1, reconstruct BITMAP(X), and reinsert it into the proper array location:

BITSTR = PUT(BITMAP(X),$BINARY64.);
SUBSTR(BITSTR,R,1) = '1';
BITMAP(X) = INPUT(BITSTR,$BINARY64.);

This way, marking the keys from SMALL as present one by one, we would eventually
“compile” the entire bitmap. Now, given a key from LARGE, how would we search for it?
First of all, we would find X and test BITMAP(X). If it is blank, then we have a miss since
obviously none of this item's bits has been turned on. Otherwise, if the entire item is not
blank, one or more of its bits are on, and we have to compute R and check the R-th bit
using either of the two expressions:

• SUBSTR(PUT(BITMAP(X),$BINARY64.),R,1) EQ '1'
• INPUTN(BITMAP(X),'BITS1.'||PUT(R,Z2.))

Both of  them evaluate to 1 if the R-th bit is 1, and to 0 if the R-th bit is 0.

This looks fairly simple and actually does work! Unfortunately, when this scheme was
implemented and tested, it returned lackluster performance. And, after some reflection,
it should be no surprise: Just to examine a bit or turn it on, we in effect have to either
memory-write full 64 bytes or use a modified informat which, unfortunately, executes
quite slowly. (Note that in version 8.1, the situation might have changed because
supposedly, 8.1 will allow to allocate character temporary arrays with $1 memory
length.)

To achieve a decent searching speed (the name of the whole game), we must find a
way to spot individual bits much more rapidly. In turn, this can only be achieved by
performing some kind of fast computation on the entire array item rather than by
breaking it apart –  which immediately suggests using a numeric array instead of the
character one. That brings about two interrelated questions:

1. If a numeric array is chosen to represent the bits of a bitmap, what sort of rapid
operation can be performed on a numeric item in order to turn its R-th bit on?

2. Given a numeric item, what kind of rapid direct calculation can we use to find out
whether R-th bit is on?

The first issue is resolved easily. If R-th bit of a numeric item is off, adding 2**(R-1) to
the entire item is equivalent to turning its R-th bit on. Moreover, we do not even have to
compute the binary power on the fly, since a series of consecutive binary powers can be
pre-computed and stored in an auxiliary array. To resolve the second issue, it is first
necessary to delve into a number of subtle caveats.

     Caveat 1. It must be never attempted to turn a bit on if it is already turned on.
Otherwise the added unity will become a carry turning one or more of the higher bits to
1, thus wreaking havoc in the entire bitmap. So, the answer to question 1 above cannot
be found without answering question 2 first. (Of course, bit checking is superfluous if
BITMAP(X) is missing, as none of the bits has been set to 1 yet.)

     Caveat 2. Before the very first bit can be turned on, a missing item must be set to 0.
However, initializing the entire array is not necessary, because at the searching stage,
the missing items can be simply skipped.

     Caveat 3. How many bits per array element can we use in such a manner? Since
they must be limited to the mantissa, it leaves us with 56 usable bits per element under
OS/390 and 53 bits under NT, so the divisor 64 in the formulae above must be changed
accordingly. Thus, by switching to a numeric array, we sacrifice about 15% memory
utilization for the sake of speed.

Now we can answer question 2 posed above, but to do so, let us first figure out how to
determine whether, say, the 4th least significant decimal digit of a numeric variable N is
not zero. Naturally, we would divide N by 1E+4 and find the remainder. If the latter is
not less than 1E+3, the digit being tested is not zero; otherwise, it is zero. By induction,
it can be  concluded that a boolean expression

MOD(N,10**R) => 10**(R-1)

indicates whether R-th decimal place is “on” or “off”. By the same token, the expression

MOD(N,2**R) => 2**(R-1)

returns 0 or 1 depending on whether R-th bit of N is turned off or on. So, in effect, the
result to which the expression above evaluates is set directly to the value of R-th bit of
N's mantissa. That gives us all we need to key a numeric-array bitmap:

Step 1. Allocate a numeric temporary array BITMAP bound from 0 to 10**[number 
of key digits]/M, where  M=56 or 53, depending on OS. Create an 
auxiliary array B and fill it with the serial powers of 2.

Step 2. Read a record with KEY from SMALL.
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Step 3. Locate the array element: X=INT(KEY/M). If BITMAP(X) is missing, then set
it to 0.

Step 4. Locate the right bit within the array element: R=MOD(KEY, M).
If BITMAP(X) is missing, go straight to Step 5. Otherwise check the bit. If it 
is already 1, then the key is a duplicate: return to Step 2.

Step 5. Turn R-th bit on: BITMAP(X) ++ B(R), and go back to Step 2.

Given a bitmap “compiled” by the procedure just detailed, searching for a key is equally
simple:

Step 1. Read a record from LARGE.
Step 2. Locate the array element: X=INT(KEY/M). If BITMAP(X) is missing, the 

search is unsuccessful, so go back to Step 1.
Step 3. Locate the bit: R = MOD(KEY, M).
Step 4. Check the bit. If it is zero, the key is not found, hence go to Step 1. 

Otherwise, write the record out and go back to Step 1.

Translating the algorithm into the SAS Language is now straightforward, but first the
possibility of negative keys should be accounted for. With key-indexing, it is natural and
easy to do by giving the lower bound of the table the lowest negative key value. In the
case of a bitmap, we have to rummage around with the keys a little bit first: Shift them
up by the absolute value of the lowest key (say, MINKEY), rescale the upper BITMAP
bound accordingly, and leave the lower bound at 0.

*** Bitmap Table Load And Search ***;

%let m      =   56; *** if OS/390, else 53;
%let minkey = -4e6;
%let maxkey = +4e6;
%let lo = %sysfunc(floor(&minkey/&m));
%let hi = %sysfunc(floor(&maxkey/&m));
%let hb = %eval(&hi - &lo);

data match (keep=key l_sat);
   array bitmap (0:&hb) _temporary_;
   array b      (0: &m) _temporary_;

   ** precompute powers of 2;
   do x=0 to &m; b(x) = 2**x; end;

   ** load the bitmap from SMALL;
   do until (eof1);
      set small end=eof1;
      x = int((key - &minkey) / &m);
      if bitmap(x) eq . then bitmap(x) = 0;
      r = key - &minkey - x*&m;
      if mod(bitmap(x),b(r+1)) < b(r) then bitmap(x) ++ b(r);
   end;

  ** search bitmap for keys from LARGE, output matches;
   do until (eof2);
      set large end=eof2;
      x = int((key - &minkey) / &m);
      if bitmap(x) eq . then continue;
      r = key - &minkey - x*&m;
      if mod(bitmap(x),b(r+1)) => b(r) then output;
   end;
   stop;
run;

The macro assignments at the top take care of the necessary shifting and rescaling.
M=53 will work under any OS; however, under a system with 56-bit mantissa, say
OS/390, it is possible to choose M=56 instead and thus improve memory utilization. The
first DO loop populates the auxiliary array B with the powers of 2. The process in the
<EOF1> DO loop can be thought of as “bitmap compilation”. Finally, the <EOF2> DO
loop performs the actual bitmap search and outputs the records from LARGE whose key
imprints are found in the bitmap. Because of the extra computations, bitmapping runs
about 50 per cent slower than key-indexing, yet it uses 53 to 56 times less memory and
is still twice as fast as MERGE after sorting!

 In the approach implemented above, the bitmap compilation loop resides in the same
step where it is searched. However, a bitmap can also be compiled in a separate step,
stored in a file, and reused thereafter. To do so, we would only have to change the
DATA statement to, for instance,

data lib.bitmap (keep=byte8);

and replace the entire <EOF2> loop with

do x=0 to &hb;
   byte8 = bitmap(x);
   output;
end;                                                         

The name of the variable BYTE8 is, of course, absolutely arbitrary. At this point, the
BYTE8 in each observation of the SAS data set LIB.BITMAP corresponds to exactly one
array item of the would-be bitmap. A bitmap saved in this manner can be then utilized
any time a file similar to LARGE needs to be subset, validated, scrubbed, etc., based on
the bit pattern stored in the bitmap, only in the beginning of the searching step, the
array BITMAP must be loaded in memory from LIB.BITMAP one item at a time. This is
accomplished by replacing the <EOF1> DO loop with

do x=0 to bitobs-1;
   set lib.bitmap nobs=bitobs;
   bitmap(x) = byte8;
end;                     

Principally, key-indexing and bitmapping are nearly twins:

• The table size is dictated solely by the overall key range and not by the number of
lookup keys.

• Neither the “driver” file nor “master” file has to be sorted.
• Duplicate lookup keys are eliminated automatically as the table is “loaded”.
• The speed of searching does not depend on the number of keys.

However, there are a few differences worth noting as well:

• Given the same memory resource, bitmapping has the addressable key range 53
to 56 times that of key-indexing.

• A bitmap cannot be used for dragging lookup satellites through memory into the
output.

• With key-indexing, locating and rejecting a key takes exactly the same time. With
bitmapping, a successful search requires, on the average, slightly more
computing, and therefore, more time.

Because of its relatively wide key range and purely direct-addressing nature, bitmapping
operates with incredible speed in a niche no other searching method can touch. As an
example, imagine SMALL file with 50 million 8-digit keys (hardly “small” but let us stick
with the name), and LARGE with mere 100 million records – figures not unusual in data
warehouses nowadays. Sorting either one for MERGE is not exactly painless operation,
especially if L_SAT tail is long, or say LARGE is actually is a view into a RDBMS table.
Storing the lookup keys in a format is practically hopeless, as memory usage by a format
usually tops 600 MB already at mere 10 million keys. Key-indexing would consume about
800 MB. A hash table (described later) would need at least 400 MB. However, a bitmap
can be safely compiled with 120 million bits of temporary array storage in the worst case
scenario (M=53). It means that it can be easily accommodated within only 15 MB of
memory! If we decide to store the bitmap on disk, it will take about 1.9 million 1-
variable observations; loading such a file into an array is a matter of several seconds.
What is more, the lookup speed and memory usage will remain exactly the same, no
matter whether we have 100, 100,000, or 100,000,000 keys to search.

Thus, the bitmapping niche can be defined as “no-matter-how-many-short-keys”. Bitmap
is a champion when we only need to rapidly find out if the record with a given key
should be selected, and if memory resources are sufficient for key-indexing  the entire
key range into memory bits.

But how can we capitalize on direct addressing if the keys have a huge, say 16-digit,
range, or are long character strings (256-radix integers), and therefore neither key-
indexing nor bitmapping can do the job?  Welcome to hashing !

III. HASHING

As noted above, compared to key-indexing, bitmapping changes nothing principally –  it
simply expands the workable universe of keys about 53+ times by using memory more
efficiently. Hashing methods approach the problem quite differently: They eliminate the
requirement of a separate slot for each possible key and allow some amount of
comparisons between the search key and keys in the table. A simple example might be
the easiest way of making the idea transparent. Let us suppose that SMALL contains just
10 3-digit keys:

185  971  400  260  922  970  543  532  050  067

To use key-indexing, we would have to allocate a table sized as [0:999] and map each
key to the node corresponding to its value. Out of 1000 table nodes, only 10 will end up
occupied, while the rest will play the role of placeholders, that is, will be simply wasted!
The crucial question is, therefore, Can we get away with a smaller table  of a reasonable
size, only somewhat larger than the number of keys at hand, and still be able to take
advantage of direct addressing?

Let us choose some number HSIZE greater than the number of keys N_SMALL in SMALL,
for instance, 17, and allocate an array sized as HKEY(0:17). Let us agree to call the
array HKEY the hash table, HSIZE - the hash table size, and the ratio N_SMALL/HSIZE -
the load factor. Thus, the load factor shows the number of lookup keys relative to the
total number of nodes in the hash table, in other words, how sparse the hash table is. In
our example, the load factor equals 0.588, that is, the hash table is about 41 percent
sparse.

Imagine some rapidly-computing function H(KEY) taking a key as an argument and
returning an address into HKEY, unique to each key supplied, so that H(KEY) would map
each key to its own location in a one-to-one manner. Were such perfect hash function
available, we would only have to plug it in the code for key-indexed search and be done.
Such functions are possible; however, they are quite difficult to discover, and once one
is found, it can only be used for the same set of keys: Adding just an extra key will ruin
everything.

A lot less rigid method can be obtained if we give up the one-to-one requirement of the
relationship between the keys and table addresses and let H(KEY) map two or more
distinct keys to the same location in HKEY. Of course, if more than one key is sent to the
same node, a phenomenon termed a collision occurs, and we must invoke some collision
resolution policy in order to tell the keys apart in the process of insertion or searching.
Thus, we arrive at the core concept behind hashing. If the hash function H(KEY) is good
enough to map only a few keys to any particular hash address H, in other words, spread
the keys evenly throughout the table, we can adopt the following strategy:
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1. Given a search KEY, use H(KEY) to hash KEY to some address H in the table.
2. If the address H is empty, the search is unsuccessful, since no key has ever

hashed to H.
3. If the address is occupied, search all the keys that have hashed to H sequentially.

Thus, hashing is a typical hybrid algorithm: It combines direct addressing with
sequential search, a method based on comparisons between keys. The average number
of keys mapping to any hash node equals N_SMALL/HSIZE, i.e. the load factor. If the
hash table is not full and the keys are spread uniformly, the average number of key
comparisons required to find or reject a key is less than 1. Also, searching for a key
should be the faster, the sparser the table is. So, to make a good practical use of a hash
table, we ought to:

1. Choose a proper hash function H(KEY).
2. Find an efficient way of resolving collisions.

Before we could formulate the requirements for a good hash function let us consider
how a bad hash function would behave. On one extreme, if a function is lightning fast
but maps all keys or their majority to the same hash address, it defies the very purpose
of distributing keys among different addresses: For then we would have to search all
these keys sequentially! Hence, for a good hash function, it is paramount that it should
map the keys evenly across all hash table nodes, without burdening some addresses
with huge clusters of keys and leaving the rest of the slots empty. On the other
extreme, if a function maps the keys extremely uniformly but takes an inordinate time to
compute, it is of no good use, either -  direct addressing itself would become a
bottleneck. Now we can formulate some rational requirements a good hash function
should satisfy:

1. Its computation should be as fast as possible.
2. It should distribute the keys uniformly to minimize collisions.
3. It must return addresses in the range from 0 to HSIZE-1.

There is a number of mapping methods conforming to these requirements [1]. We will
discuss and use the simplest technique called the division method, which utilizes the
remainder modulo:

H = MOD (KEY, HSIZE);

It certainly fits requirement 3, since for any value of KEY, this function always returns an
integer in the range from 0 to HSIZE-1. It also satisfies requirement 1, for although it
incorporates a division, its computation is still  reasonably fast. However, to satisfy
requirement 2, the value for HSIZE must be chosen rather carefully. The number theory
tells us (see, e.g., [1]) that if HSIZE is a prime number and not too close to the power of
2, the MOD function tends to spread the keys uniformly across the nodes, with the
majority of the occupied nodes receiving 1 to 3 keys. Let us see how this would work for
our sample set of 10 keys. If we choose the “target” load factor as 0.625 and divide it
into the number of keys, we obtain 16. The first prime number greater or equal to 16 is
17, so let us select HSIZE=17. (The actual load factor is now 10/17 = 0.588.) We may
want, therefore, to allocate the table as

ARRAY HKEY (0:17) _TEMPORARY_;

To obtain a hash address, KEY is divided by HSIZE=17, and the remainder H is
computed. H points to the H-th slot in the table where KEY must be inserted. Repeating
this operation for every test key, we end up with the following pattern (the numbers
atop the table indicate the corresponding array buckets, and the colliding keys are
shown in boldface):

00    .   .   .
01  970   .   .
02  971   .   .
03    .   .   .
04  922   .   .
05  260 532260 532260 532260 532   .
06    .   .   .
07    .   .   .
08    .   .   .
09  400   .   .
10    .   .   .
11    .   .   .
12    .   .   .
13    .   .   .
14    .   .   .
15  185   .   .
16  543 050 067543 050 067543 050 067543 050 067
17    .   .   .

The keys 970, 971, 922, 400, and 185 all map to their slots in HKEY one-to-one. The
keys 260 and 532 produce a single collision at the address 05, and the keys 543, 050,
and 067 result in a double collision in the node 16. If this table is to be stored in
memory and searched, the collisions at the locations 05 and 16 have to be resolved.

Before we move on, let us solve the small technical problem of finding the correct prime
HSIZE, given the file SMALL and load factor LOAD. Instead of computing it by hand or
from a table of primes, it can be calculated and stored in a macro variable LOAD
dynamically using a short (and extremely fast) SAS program:

%let load = 0.8;
data _null_;
   do p=ceil(p/&load) by 1 until (j = up + 1);
      up = ceil(sqrt(p));

      do j=2 to up until (not mod(p,j)); end;
   end;
   call symput(‘hsize’,left(put(p,best.)));
   stop;
   set small nobs=p;
run;

 
As we already know, selecting a decent hash function is just one part of the deal: No
matter how good the function is, it is practically guaranteed  that some keys will hash to
the same addresses in the table, so we have to devise a method of resolving collisions.
This is another point at which hashing radically deviates from key-indexing and
bitmapping where we needed not store the keys in the table itself. With hashing, the
keys themselves have to reside in the table, because they will have to be compared to a
search key unless the search key hashes to an empty node. Various collision resolution
policies differ in the ways by means of which colliding keys are stored, linked as
“belonging” to the same hash address, and traversed. Let us consider them one at a
time.

1. Separate Chaining

One way of resolving collisions suggests itself naturally once we cast a rapid glance at
the distribution of our 10 keys among the addresses of the hash table shown in the
previous section. Keys “attached” to each occupied address form visible “chains” -
consisting of a single key in the absence of collisions. Making use of such chains to
resolve collisions is logically called separate chaining.

There are two ways the chains of keys can be utilized in terms of the SAS DATA step.
First, the keys comprising the chains could be stored outside the table by placing them
in the occurrences of a two-dimensional array. A significant drawback of this method,
however, is poor memory utilization. If we have 100,000 keys in SMALL and a single
“bad” address colliding 10 keys, we will be forced to create a 2-dimensional array sized
as (0:10, 0:100000) to resolve the collisions. Even with the load factor 1, it requires 10
times the memory the keys would occupy by themselves. On the positive side, the 2-
dimensional chaining is quite fast, and it can work with load factors greater than 1, if
necessary. So, if good memory utilization is not a paramount consideration, the method
could be recommended. (Feel free to contact the author for the details of
implementation.) What is more, because 2-dimensional separate chaining provides a
natural way of working with long chains, it turns out to be extremely valuable when
hashing is used for external searching, i.e. searching on disk rather than in high-speed
memory. It will be mentioned once again in the section “Applications”.

Returning to the main course of the paper, memory-resident hashing, the idea of
chaining can be exploited in a much neater fashion than by using a huge, and mostly
wasted, 2-dimensional array! Once the philosophy of allocating the main storage for
colliding keys is changed from sequential to linked , we arrive at an extremely elegant
collision resolution policy, both very fast and reasonably memory-efficient.

2. Coalesced Chaining

The core idea of this method is to place the chains of colliding keys into the hash table
itself and combine the keys mapping to the same node in a linked list, with the head
residing at the colliding address. Setting the last link of each chain to null designates the
end of the chain, thus helping us tell where to stop when the list is traversed serially.
Since the linked lists are thus allowed to overlap in the hash table sharing the same
storage locations, this approach is termed coalesced list chaining, or, shorter, coalesced
chaining. To make it possible, all we need is a numeric array of link items LINK, parallel
to the “main” hash table where the keys are inserted. It is extremely important that in
order for this method to work, at least one entry in the table must be empty. Otherwise
if the table is full, there would be no empty node where a null link should point in order
to terminate the loop traversing the list. Since a table allocated as (0:HSIZE) has
HSIZE+1 entries, but the modulo-based hash function only addresses HSIZE nodes from
0 to HSIZE-1, this requirement will always be satisfied. Let us agree to always leave the
address 0 empty by hashing keys as

MOD (KEY, HSIZE) + 1.

That is, if KEY modulo HSIZE is 05, it will map to the address 06. Adding a unity to the
modulo has the additional advantage of allowing to use 0 as a null value for the end-of-
chain. As stated above, we have to allocate two parallel arrays, one for the hash table
itself and one to hold the links:

ARRAY HKEY (0:&HSIZE) _TEMPORARY_;
ARRAY LINK (0:&HSIZE) _TEMPORARY_;

Now we are ready to spell a detailed plan of loading a coalesced list hash table:

STEP 1. Set a counter variable R to the top address: R=HSIZE.
STEP 2. Hash: H=MOD(KEY,HSIZE) + 1.
STEP 3. If LINK(H)= ., the node is empty, no list is attached to it. Go to step 8 to 

insert the key.
STEP 4. Otherwise traverse the chain to find if the key is already in the table:

A. If KEY=HKEY(H) the key is duplicate. Get the next  key and return to 
step 2.
B. Else If HKEY(H) is not 0, it is not the end of the list yet. Set H= HLINK(H)
and repeat step 4.

STEP 5. Find an empty address closest to the top: Decrement R until LINK(R)= .
STEP 6. Store the key at this address: HKEY(R)=KEY.
STEP 7. Memorize where KEY actually belongs: LINK(H)=R; H=R.
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STEP 8. Insert KEY into the address H and set its link to null: HKEY(H)=KEY;       
LINK(H)=0. Now the node has been marked as occupied.

Let us see, by inserting one key at a time, what kind of linked list hash table is actually
created by this process for our 10 sample keys and HSIZE=17. Please refer to the
resultant table, Table A1, in the Appendix. The key being inserted, as well as the
colliding keys, are shown in boldface. The two bottom rows represent the final state of
the loaded table. A peek at it quickly reveals how the collisions are being handled:

All the way up to the attempt to insert KEY=532, each key finds its unique slot without
any contention. But at KEY=532, we have the first collision, because it hashes to the
address 06, already occupied by the key 260. In accordance with the algorithm, we look
at the link at address 06 and find it to be zero. Therefore, it is the end-of-chain - and the
only key in the chain so far. The first available empty address counting from the top of
the table (right to left on the diagram above) is 15. The new key 532 goes there, and
the node is marked as occupied with 00 in its link field. To tell the key 260 where its
successor in the chain, 532, resides, we store the address of 532, i.e. 15 in the link field
of node 06 that holds 260.

The keys 543, 050, and 067, all hashing to the address 17, are placed in the table in the
same manner. The first key in this chain, 543, must be stored at this address, and there
it is. The link of the address 17 is not 0, hence, it is not the end of the list. Instead,
LINK(17)=14. This is the node where the next key in the chain, 050, must reside, and it
is there, indeed. But once again, the list must continue because the address 14 contains
a non-zero link, LINK(14)=13. Finally, we find the key 067 in the node 13, and it is the
last key colliding at the hash address 17, for LINK(04)=0.

As opposed to the colliding keys, the keys hashing to their addresses uniquely, bump in
a zero link at once. For example, the key 922 hashes to the address 05, with
LINK(05)=0. Now the reason of leaving the address 00 always empty should be
transparent. We are using 0 to indicate the end of chain (null link), but actually a chain
traversal terminates when a null, i.e. missing value, link field has been encountered. A
zero in a link field will always lead to address 00, and since it is always missing, the
traversal will inevitably stop.

At this point, it should be crystal clear how this linked table organization facilitates
searching. Suppose that we need to look for KEY=051. It hashes to the address 01
where the link field LINK(01) is missing. That is, none of the keys in the table has ever
hashed to this address, hence the key is not in the table. However, searching for
KEY=047 that hashes to the address 14, we are in a different situation, because
LINK(14)=13 is not null. Hence, some other keys in the table may have also hashed to
this address, and so the entire chain must be examined for the presence of 047. Since
the key 050 in the node 14 does not match the search key, we have to look at the next
key in the chain located at the address 13 to which LINK(14) is pointing. The key 067 in
the node 13 does not match the search key 047, either, and it is the end of the list since
LINK(13)=0. This, finally, points to address 00, whose link is (always) null. Hence, 047 is
not present in the table.

As an example of a successful search, let us try to find KEY=050. It hashes to the
address 17 with the key 543, different from 050. But it is not the end of story: LINK(17)
= 14 is not null telling us that the next comparison should be made with HKEY(14) =
050. At this point, the search key is found, the list need not be traversed any further,
and the process of searching terminates successfully.

After this walk-through, it should not take a Certified SAS Programmer to schedule hash
searching:

STEP 1. Hash: H = MOD(KEY,HSIZE) + 1.
STEP 2. If LINK(H) = . then search terminates unsuccessfully.
STEP 3. Traverse the list. If KEY = HKEY(H) then search terminates successfully.
STEP 4. Else examine LINK(H). If LINK(H) = 0 then KEY is not found. Stop.
STEP 5. Next link. Set H = LINK(H) and go to step 3.

Now we can finally give a solution to the matching problem using coalesced chain
hashing. An additional array parallel to the hash table and links, HSAT, is used to pull
the satellites from the lookup file SMALL. If we do not need S_SAT it may be omitted
along with the corresponding instructions.

** Coalesced Linked List Chaining **;

data match (keep=key s_sat l_sat);
   array hkey (0:&hsize) _temporary_;
   array link (0:&hsize) _temporary_;
   array hsat (0:&hsize) _temporary_;
   ** load and link hash table using keys from SMALL;
   do until (eof1);
      set small end=eof1;
      h = mod(key,&hsize) + 1;
      found = 0;
      if link(h) > . then do;
         link traverse;
         if found then continue;
         do r=&hsize by -1 until (link(r) = .); end;
         link(h) = r;
         h       = r;
      end;
      link(h) = 0    ;
      hkey(h) = key  ;
      hsat(h) = s_sat;
   end;
   ** search table for key from LARGE, output matches;
   do until (eof2);

      set large end=eof2;
      found = 0;
      h = mod(key,&hsize) + 1;
      if link(h) > . then link traverse;
      if found then do;
         s_sat = hsat(h);
         output;
      end;
   end;
   stop;
   traverse: if key = hkey(h) then found = 1;
             else if link(h) ne 0 then do;
                h = link(h);
                go to traverse;
             end;
run;

Since the code intentionally parallels the algorithm above, you should not be surprised to
find the GO TO instruction. Those believing that “GO TO” and "structured programming"
cannot peacefully coexist, may prefer to rewrite the TRAVERSE block at the expense of
an extra comparison at the bottom of the loop as

do until (found);
   if hkey(h) = key then found = 1;
   else if link(h) = 0 then leave;
   else h = link(h);
end;

Now that the coalesced chaining routine is ready, it can be tested using the same
sample files as have been used for key-indexing. The program was tested for the load
factors 0.5 and 0.8 (50 and 20 per cent sparse table). The results shown in Table 1
generally corroborate the conjectures made earlier:

1. The sparser the table, the faster the search, but it consumes proportionally more
memory.

2. If the hash table is relatively sparse, its lookup time does not depend on the
number of keys in the table.

3. It runs somewhat slower than key-indexing, but still 2 to 3 times faster than even
SQLXJHSH and is much easier on memory than the rest of the methods tested.

4. Just like with key-indexing and bitmapping, hashing needs neither sorting nor
removing duplicates.

Judging from the test results (see the “Benchmarking” section below), chaining performs
very well, with the added benefit of not being too sensitive to the sparsity of the table
(load factor). However, it requires an extra array to hold the links. The link array is as
large as the hash table itself, so if SMALL is actually not quite small, the additional
memory burden can be significant. In a different class of collision resolution policies
collectively called open addressing, memory utilization is improved by doing away with
the links altogether. We shall discuss two such methods: Linear probing and double
hashing.

3. Open Addressing with Linear Probing

The main idea behind open addressing can be described as follows. Just like in the case
of coalesced chaining, keys are stored in the hash table itself. Suppose we have a key
KEY to be loaded in the table. First, let us hash it using the division method, but straight,
i.e. without adding a unity:

H = MOD(KEY, &HSIZE);

If H points to an empty slot, we simply store the key at this location. If the slot H is
occupied, we have a collision. Let us compare the key with the one already sitting at H.
If the keys are equal, the current key should be discarded because it is a duplicate, and
the next key obtained from the input. Otherwise we have to find a different  slot for the
current KEY. Let us step down the table one or more times one node at a time. If H
becomes less than 0, i.e. we have stepped off the bottom of the table, let us return to
its top, and continue to do so in this wrap-around cycle until having encountered either
a duplicate key - in which case we just stop and get the next key, or an empty node - in
which case we insert the colliding key into it. The method of resolving collisions just
described is called linear probing – for the table is being “probed” using a fixed probe
decrement, C=1, regardless of the key.

Since we have HSIZE+1 nodes in the table, but can only address HSIZE nodes from 0 to
HSIZE-1, at least 1 location in the table, the top one, will always remain empty, thus
preventing the loop from iterating infinitely. Let us observe how this process works step
by step while our 10 test keys are being inserted in the table sized as [00:17] (See the
dynamic table Table A2 in the Appemdix):

All the keys up to and including 543, hash uniquely to their very own nodes. However
the next key, 532, hashes to the same address 05 as the key 260, already sitting there.
According to the plan outlined above, we step down the table until an empty slot is
found. This happens at H=03, and so 532 is inserted at this address. The next key, 050,
is not too friendly, either, since it claims the same seat, H=16, that is already assigned
to 543. The nearest free slot down the table is H=14, and so that is where 050 goes.
But the next key, 067, happens to hash to the same H=16 again! Now, to find where to
place this one, we have to travel all the way to H=13, at which point the hash table is
loaded and ready to be searched.

As in the case with chaining, the process of loading the table readily suggests the way of
looking it up. As an example of an unsuccessful search, let us look for KEY=51.
MOD(51,17) yields 0, and address 00 is empty. Hence, 51 is not in the table, period.
Searching for KEY=66 is more complex, since it hashes to H=15 occupied by the key
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185. Since there is no match, we look at the next key, 050, one node down the table,
find a mismatch again, and proceed in this manner all the way to H=12, which is empty.
It means that 66 is not in the table, either, for if it had been inserted in the table, it
would have been found before an empty node is hit.

As an example of a successful search, let us look for KEY=922. It hashes to H=04, and
we have an immediate match. Another successful search for KEY=067 is a bit more
laborious, for it hashes to H=15, and we have to step down the table twice until the key
is identified in H=13.

From these simple examples, it should be clear how linear probing reduces the number
of probes sequential search would require. In the worst case scenario in the example
above, linear probing examines 5 keys until it either finds or rejects a search key; but on
the average, with the load factor 10/17, the number of comparisons will be close to 2
per search, hit or miss. Sequential search, on the other hand, would require, on the
average, 8 probes for a hit and 17 for a miss. Now it is time to translate all these verbal
speculations into SAS:

** Hashing by Open Addressing with Linear Probing **;

data match (keep=key s_sat l_sat);
   array hkey (0:&hsize) _temporary_;
   array hsat (0:&hsize) _temporary_;
   ** load table with keys from SMALL;
   do until (eof1);
      set small end=eof1;
      do h=mod(key,&hsize) by -1 until (hkey(h)=. or hkey(h)=key);
         if h < 0 then h = &hsize-1;
      end;
      hkey(h) = key  ;
      hsat(h) = s_sat;
   end;

   ** search table for each key from LARGE and output matches;
   do until (eof2);
      set large end=eof2;
      do h=mod(key,&hsize) by -1 until (hkey(h) = .);
         if h < 0 then h = &hsize-1;
         if hkey(h) = key then do;
            s_sat = hsat(h);
            output;
            leave;
         end;
      end;
   end;
   stop;
run;

The main advantage of this scheme, as it is evident from the code above, is its profound
simplicity. In fact, none of existing hashing methods is simpler or more straightforward
than the linear probing. And, if the table is sparse enough, it performs quite well, too! As
a rule of thumb, the linear probing will do the hashing job just right if about half of all
nodes in the table are left empty, i.e. with the load factor of about 0.5. However, as the
table gets fuller, its performance deteriorates the quicker, the fuller the table is. With
load factors above 0.9, the only good things we can say about the linear probing is that
it is simple and it works, albeit slowly but surely.

The reason why linear probing exhibits such a behavior in a crowded table lies in the
phenomenon called primary clustering. When looking for an unoccupied node for a
colliding key, we fill out the very first empty location we come across. Therefore the
groups of adjacent occupied addresses tend to aggregate, forming clusters of keys.
Worse still, the clusters can bridge together forming bigger clusters. (For instance,
consider what happened to the clusters 970, 971 and 922, 260 in our test table above.)
Hence, if the table is not quite sparse, we will eventually have to travel through almost
the entire table before finding an empty location to either insert a key or stop the loop in
the case of an unsuccessful search.

One apparent way to alleviate the problem of primary clustering is to try stepping
through the table using more than one node at a time. It turns out to be a very good
and sound idea. Complemented with another good and sound idea, it leads to the open
addressing method called double hashing  that eliminates primary clustering entirely.
Therefore, it would allow achieving the same speed of search with a less sparse table
resulting in a superior memory utilization.

3. Open Addressing with Double Hashing

So, as suggested above, let us try stepping down the table using some probe decrement
C > 1. However, the value of C must be chosen rather carefully. With linear probing, it is
guaranteed by virtue of C=1 that in the wraparound process of probing the table, each
node can be examined, and examined exactly once. What kind of value should C > 1
have to retain the same fundamental property? It follows from the number theory that if
the probe decrement C and the hash table size HSIZE are relatively prime, this property
holds. Now remember, we have chosen the table size prime in order to minimize the
collisions. Therefore, selecting C as any integer between 1 and HSIZE-1 inclusively will
make C and HSIZE relatively prime.

However, there is one more important consideration helping choose C even wiser.
Namely, if we could make C depend on the key in a random yet deterministic manner, it
would help spread diversify the probing sequences belonging to different keys, and
hence distribute the keys even more evenly in the table. MOD function, as we know,
possesses quite good randomizing capabilities (which is why it is used as a hash function
in the first place).  Therefore, if we compute C as

C = 1 + MOD(KEY, HSIZE-2),

it will both distribute the values of C among the keys pseudo-randomly and guarantee
that any C value obtained this way and HSIZE are relatively prime. Indeed, C can result
in nothing else but some integer between 1 and HSIZE-2, and since HSIZE is prime, C
and HSIZE will always by relatively prime. In practice, such a choice for C has been
proven to work satisfactorily in most cases.

In essence, what we are doing is hashing the key the second time to obtain the probe
decrement, which is why this method of resolving collisions is called double hashing. Of
course, the second hashing is an extra computation, but it is not too expensive, and it is
situated outside the inner loop of the routine. Therefore, we should not expect a lot if
computational overhead, all the more that eliminating primary clustering turns out to be
much more important from the standpoint of performance.

With the exception of C > 1, the basic linear probing algorithm remains intact. Like
before, if in the process of decrementing H, it is found that H < 0, that is, we have fallen
off the bottom of the table, we wrap around it;   only in this case, instead of returning
right to &HSIZE-1, we shall return to H+&HSIZE. For example, if HSIZE=17, C=5, and
we have found that H=-2, we shall wrap around the table to –2+17=15th array item. Let
us see, using the set of our experimental keys, what kind of hash table this process will
compile, starting with an empty table and inserting one key at a time. The dynamic table
A3 created by this process is shown in the Appendix.

Comparing the final state of the table with that compiled by linear probing, we clearly
see that it is much more uniform, with the clusters of keys well separated from each
other, and with no cluster containing more than 3 keys. It means that no matter what
key we are looking for, no search will require more than 3 comparisons between keys in
the worst case scenario.

While theoretically, double hashing is significantly more involved that linear probing,
amending the program for linear probing in order to accommodate double hashing boils
down to a single line of code preceding the main hash, and a subtle change in the way
to wrap around (below, all the changes to the linear probing routine are shown in upper
case):

** Open Addressing with Double Hashing **;

data match (keep=key s_sat l_sat);
   array hkey (0:&hsize) _temporary_;
   array hsat (0:&hsize) _temporary_;
   ** load table with keys from SMALL;
   do until (eof1);
      set small end=eof1;
      C = 1 + MOD(KEY,&HSIZE-2);
      do h=mod(key,&hsize) by -C until (hkey(h)=. or hkey(h)=key);
         if h < 0 then H ++ &HSIZE;
      end;
      hkey(h) = key  ;
      hsat(h) = s_sat;
   end;
   ** search table for each key from LARGE and output matches;
   do until (eof2);
      set large end=eof2;
      C = 1 + MOD(KEY,&HSIZE-2);
      do h=mod(key,&hsize) by -C until (hkey(h) = .);
         if h < 0 then H ++ &HSIZE;
         if hkey(h) = key then do;
            s_sat = hsat(h);

            output;
            leave;
         end;
      end;
   end;
   stop;
run;

Let us take a look at the performance Table 1. With a 50 per cent sparse table, double
hashing runs just a tad slower than coalesced chaining with 20 percent sparsity, but on
the positive side, it uses less memory. So, double hashing is quite fast; it even loads an
equally sparse table somewhat faster than the chaining because it does not have to
worry about the links. The fact that a searching method based on stepping through the
table before an empty node is found works so well, may seem surprising. However, this
is a direct result of the double hashing probing methodology. In fact, independent
experiments (corroborating theoretical conclusions) show that if the table is no more
than half full,  double hashing makes on the average no more than 2 comparisons per
miss, and no more than 1.3 comparisons per hit.

IV. HASHING WITH NON-NATURAL KEYS

As the test results show, hashing performs admirably by any account regardless of the
collision resolution policy being used. However, even though hashing schemes we have
discussed impose no limitations on the range of keys, they have been developed under
the assumption that the keys are integers. Now it is time to remove this restriction as
well.

The reason it is possible to do is rooted in the fact that in its final stage, hashing is
strictly comparison-based, which effectively renders the nature of keys non-critical. Both
hashes and traversals are used merely to minimize the number of comparisons
necessary to carry out a search, yet the final hit-or-miss decision - if a hash address is
not empty - is made by comparing some keys in the table to the search key. Therefore,
in order to be able to operate on keys of any type, we only have to figure out how to
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hash a key if it is not a non-negative integer. For the hash function to remain uniform
and fast, it is critical to adhere to a few simple rules:

• Hashing process should involve as many key characters as possible.
• String operations and conversions must be minimized.

Let us consider a number of distinct practical situations.

1. Fractional Signed Keys

In this case, we can simply rescale each key before hashing by multiplying it by a
suitable integer constant and adding another constant to the result if necessary. For
instance, if our keys are in the decimal form X.Y, multiplying each key by Y would
suffice. If, in addition, they can be negative, we would simply add an integer Z known to
exceed the largest absolute value a negative key can assume. So, the entire change to
the programs above needed to accommodate fractional signed keys would be using

MOD ( KEY*Y + Z, HSIZE)

in the hashing formulae instead of the straight modulo. It will not cause any noticeable
deterioration in performance, since in SAS this kind of computation is quite fast.

 2. Digital Strings

First of all, since digital strings are character variables (consisting of digits only), the
hash table itself will have to be declared as a character array of appropriate expression
length, for example:

ARRAY HKEY(0:&HSIZE) $12 _TEMPORARY_;

Hashing a digital string is a simple matter of using the INPUT function and an
appropriate numeric informat. For example, if the keys were 16-digit account numbers
stored in a character variable, we could simply choose

MOD (INPUT(KEY,16.), HSIZE)

as our hash function. Another way to hash a digital string is to apply the same methods
that are used for hashing character variables in general (see below).

3. Generic Character Keys

Numerous techniques have been developed to hash arbitrary character keys well [2, 3,
4]. Almost all of them are based on breaking a character key apart and then involving
the individual bytes into a sort of computation resulting in an integer in the range
[0:HSIZE-1]. Some of these methods, for instance, universal hashing, actually guarantee
to hash any input evenly. However, they are based on the assumption that the process
of extracting individual bytes from a string is very fast. Unfortunately, this is exactly
what is slow in SAS. We would be much better off converting a character string to an
integer in a single shot, and PIBw. informat is just the tool:

MOD (INPUT(LEFT(KEY),PIBw.).

Generally, the wider is the informat width, the better, because the wider it is, the more
key information is involved in the hashing process. However, selecting the informat too
wide may result in a large integer rendering the result produced by MOD function
incorrect. Experimentally, it has been found that under NT, the maximum allowable
width, 8, works fine. Under OS/390, it should not exceed 7, and under HP-UNIX, 6 is the
limit. The method has an extra advantage of avoiding the slow SUBSTR function, for it
automatically chops the number of characters from the beginning of KEY equal to the
informat width. Note that we use PIBw. instead of S370FPIBw.. First, it is faster.
Secondly, with hashing, the order of bytes does not matter: We only want to use as
many key bytes as possible to minimize collisions. The LEFT function may help by
squeezing leading blanks to the right. If a key is longer than the practical informat
width, the trick still works, provided that the input characters distinguish the keys well.
However, if they have a good chance of being identical, they can be selected from a
different portion of the key.

4. Composite Keys

This situation arises quite often. A natural inclination is to concatenate the components
and hash the result. Principally, there is nothing wrong about it; however, there are two
pitfalls. First, in the context of hashing, where computing a hash function fast is
paramount, concatenation is slow. Second, the components may concatenate into an
integer lying beyond SAS integer precision. Third, too large a value can cause the MOD
function to return a no-sense result, for instance, a remainder greater than the divisor.

Consider a (real-life) situation when records are uniquely identified by two numeric
variables, a 16-digit ID and 9-digit MEM, while particular ID can point to multiple
accounts. Concatenating the keys as ID || MEM and hashing the result would have the
effect of scrambling the entire MEM. All keys with the same ID would then hash to the
same address regardless of MEM and lead to multiple collisions and horrible
performance. Luckily, it can be avoided since we are not interested in the value of the
key itself, but only in its remainder modulo HSIZE. Hence, Horner's algorithm can be
used to hash the components separately and then combine the results in the final
address. The outcome is the same as if we had enough integer precision to store the
combined key accurately. For the ID and MEM, it means that the hash function can be
computed in the form:

MOD(MOD(ID,HSIZE)*1E9 + MEM, HSIZE) .

If the partial keys are longer or the range is wider, they can be split further, and
Horner's rule can be applied to the components once again. Of course, in order for  this
method to work, the parts of the key must be kept in parallel hash arrays, and loaded
and tested separately. If, for instance, ID and MEM were hashed by chaining, the HKEY
declaration would have to be replaced with

ARRAY HID  (0:&HSIZE) _TEMPORARY_;
ARRAY HMEM (0:&HSIZE) _TEMPORARY_;

The instruction
        

HKEY(H)=KEY

 would become

HID  (H) = ID    ;
HMEM (H) = MEMNO ;

Also, in the TRAVERSE subroutine, the instruction

 IF KEY=HKEY(H)

 would transform into the following:

 IF ID = HID(H) AND MEMNO = HMEM(H);

Similar modifications could be done if the open addressing methods were used.

V. BENCHMARKING

Each technique presented above operates best in its own “area of expertise” defined by
the number of lookup keys and key range. To compare them to each other and two
SAS-supplied methods, SMALL and LARGE were created with random integer keys in
[0:8E6] range where all methods could work within the system imposed memory limit of
70 MB. To include bitmapping into the comparison group, the satellite S_SAT was
omitted from SMALL. The input was prepared in such a way that hits and misses were
equally likely to occur. LARGE with fixed N_LARGE=2E6 was then matched against
SMALL with varying number of records in batch on S/390 G5 R36 Enterprise Server
running SAS Version 6.09E. For key-indexing, bitmapping, and hashing LOAD represents
the time needed to load a table from SMALL (<EOF1> loop). In the case of formatting,
LOAD is the time required to unduplicate SMALL and compile the format. For MERGE, it
is the time needed to sort the files. The value LF= is the load factor used for the run.
LOAD, SEARCH, and TOTAL are given in CPU seconds, MEMORY – in kilobytes.

Table 1. Benchmarking.  

N_Small  Method     Load  Search    Run   Memory
-----------------------------------------------
100,000  Key-Inx    0.42   12.18   12.60   65261
         Bitmap     0.36   22.64   23.00    3925
         Chain-05   0.31   21.78   22.09    5997
         Chain-08   0.34   26.28   26.62    4829
         Doubl-05   0.28   32.78   33.06    4445
         Doubl-08   0.33   47.91   48.24    3961
         Sqxjhsh    0.00   52.66   52.66    5881
         Format     6.27   51.92   58.19   10866
         Merge     19.74   46.16   65.90    3276
-----------------------------------------------
300,000  Key-Inx    0.67   12.07   12.74   65261
         Bitmap     0.99   26.17   27.16    3925
         Chain-05   0.87   21.47   22.34   12093
         Chain-08   0.95   26.03   26.98    8637
         Doubl-05   0.80   31.24   32.04    7493
         Doubl-08   0.97   47.03   48.00    5769
         Sqxjhsh    0.00   58.38   58.38   11401
         Format    18.71   55.19   73.90   26199
         Merge     20.91   46.63   67.54    3267
-----------------------------------------------
500,000  Key-Inx    0.92   12.09   13.01   65261
         Bitmap     1.59   26.56   28.15    3925
         Chain-05   1.37   21.60   22.97   18033
         Chain-08   1.53   25.30   26.83   12357
         Doubl-05   1.29   31.90   33.19   10465
         Doubl-08   1.57   42.17   43.74    7625
         Sqxjhsh    0.00   64.49   64.49   16921
         Format    29.77   67.26   97.03   57289
         Merge     21.59   47.27   68.85    3267
---------------------------------------------

The same benchmarking information might be digested better if presented in a more
visual form. On the chart below, the left half of bars represents relative run-times, and
the right half shows relative memory utilization.
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------------ N_Small = 100000 ----------------
Key-Inx |||||||   |||||||   |||||||   |||||||   ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Bitmap |||||||||||||   |||||||||||||   |||||||||||||   |||||||||||||   ||||||||||||||||
Chain-05 |||||||||||||   |||||||||||||   |||||||||||||   |||||||||||||   ||||||||||||||||||||||||||||
Chain-08 |||||||||||||||   |||||||||||||||   |||||||||||||||   |||||||||||||||   ||||||||||||||||||||||||
Doubl-05 |||||||||||||||||||   |||||||||||||||||||   |||||||||||||||||||   |||||||||||||||||||   ||||||||||||||||||||
Doubl-08 ||||||||||||||||||||||||||           ||||||||||||||||||||||||||           ||||||||||||||||||||||||||           ||||||||||||||||||||||||||           ||||||||||||||||
Sqxjhsh |||||||||||||||||||||||||||||||   |||||||||||||||||||||||||||||||   |||||||||||||||||||||||||||||||   |||||||||||||||||||||||||||||||   ||||||||||||||||||||||||||||
Format ||||||||||||||||||||||||||||||||||   ||||||||||||||||||||||||||||||||||   ||||||||||||||||||||||||||||||||||   ||||||||||||||||||||||||||||||||||   ||||||||||||||||||||||||||||||||||||||||||||||||||||
------------ N_Small = 300000 ----------------
Key-Inx |||||||   |||||||   |||||||   |||||||   ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Bitmap ||||||||||||||||   ||||||||||||||||   ||||||||||||||||   ||||||||||||||||   ||||||||||||||||
Chain-05 |||||||||||||   |||||||||||||   |||||||||||||   |||||||||||||   ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Chain-08 ||||||||||||||||   ||||||||||||||||   ||||||||||||||||   ||||||||||||||||   ||||||||||||||||||||||||||||||||||||||||
Doubl-05 |||||||||||||||||||   |||||||||||||||||||   |||||||||||||||||||   |||||||||||||||||||   ||||||||||||||||||||||||||||||||||||
Doubl-08 ||||||||||||||||||||||||||           ||||||||||||||||||||||||||           ||||||||||||||||||||||||||           ||||||||||||||||||||||||||           ||||||||||||||||||||||||||||
Sqxjhsh |||||||||||||||||||||||||||||||||||   |||||||||||||||||||||||||||||||||||   |||||||||||||||||||||||||||||||||||   |||||||||||||||||||||||||||||||||||   ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Format ||||||||||||||||||||||||||||||||||||||||||||   ||||||||||||||||||||||||||||||||||||||||||||   ||||||||||||||||||||||||||||||||||||||||||||   ||||||||||||||||||||||||||||||||||||||||||||   ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
------------ N_Small = 500000 ----------------
Key-Inx |||||||   |||||||   |||||||   |||||||   ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Bitmap ||||||||||||||     ||||||||||||||     ||||||||||||||     ||||||||||||||     ||||||||||||||||
Chain-05 |||||||||||||   |||||||||||||   |||||||||||||   |||||||||||||   ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Chain-08 ||||||||||||||||   ||||||||||||||||   ||||||||||||||||   ||||||||||||||||   ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Doubl-05 |||||||||||||||||||   |||||||||||||||||||   |||||||||||||||||||   |||||||||||||||||||   ||||||||||||||||||||||||||||||||||||||||||||||||||||
Doubl-08 ||||||||||||||||||||||||||||       ||||||||||||||||||||||||||||       ||||||||||||||||||||||||||||       ||||||||||||||||||||||||||||       ||||||||||||||||||||||||||||||||||||
Sqxjhsh ||||||||||||||||||||||||||||||||||||||   ||||||||||||||||||||||||||||||||||||||   ||||||||||||||||||||||||||||||||||||||   ||||||||||||||||||||||||||||||||||||||   ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Format ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||   ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||   ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||   ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||   ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
-------- Run Time ----------- Memory Usage ---

Note that the run times exhibited by key-indexing, bitmapping, and hashing, in
agreement with their direct-addressing nature, are virtually independent from the
number of lookup keys. For key-indexing and bitmapping, memory usage is always fixed
since the number of keys has no effect on the universe of keys they embrace. Hashing
uses memory strictly proportional to the number of keys in the table and sparsity of the
table.

VI. APPLICATIONS

1. Subsetting

Subsetting used above as a sample problem is an important but only one of many tasks
to which direct-addressing based methods can be applied successfully. However, before
discussing other applications, we have to make a few final observations about
subsetting, all the more that it has been used as our proving grounds. From the test
results, it follows that when it comes to one-time subsetting, direct-addressing methods
result in lookup speeds unmatched even by methods written in the underlying software
and specifically designed for searching. As an icing on the cake, hashing is significantly
more memory-efficient  than formatting and SQL. The latter is extremely important
when the number of keys in SMALL grows beyond a couple of million. Hash memory is
strictly proportional to the number of lookup keys and can be accurately estimated
beforehand. Contrary to that, the amount of memory used by formats or SQL seems to
grow uncontrollably after a certain threshold has been reached.

On a different note, we should exercise caution dragging satellites from SMALL through
the memory. If there is more than one satellite, one may be tempted to create a
separate parallel satellite array for each, but this is not always the right thing to do.
Remember, character temporary SAS arrays are allocated in 8-byte multiples per item
(unless you are running V8.1). If we have four 8-byte character satellites, a separate
array can be declared as $8 for each with 100 per cent memory utilization. However, if
we have four 2-byte satellites and create 4 parallel arrays $2 each, it will waste gobs of
memory, for SAS will allocate the arrays with 8 bytes per item, anyway. So, in this case,
we will be much better off memory-wise allocating one array as $8, stringing the
satellites together in the load phase, and unstringing them into separate variables just
prior to outputting a record.

2.  Dynamic DATA Step Data Dictionaries

Let us take a look at key-indexing and hashing from a different, more philosophical,
standpoint. The key-indexed and hash tables we have used to facilitate direct address
and hybrid searching can be viewed as some abstract data type (ADT) in memory, that
allows to efficiently perform certain operations on its entries. The ADT used in key-
indexing and hashing is simply called a table. The entries contain keys and maybe some
satellite information. There are two operations we have learned how to perform in the
process of solving our sample problem: Insert and search. Many kinds of ADTs other
than a hash and key-indexed table can facilitate these operations. A simple sequentially
searched array, binary searched sorted array, AVL tree are just a few ADT examples.

The difference between various ADTs lies in the time necessary to insert an entry or
search the entries given a key. For example, a plain array requires O(1), i.e. constant
time, independent from the number of entries N, to insert a new entry - we simply
append it to the right. However, searching such a structure occurs in O(N) time, i.e.
proportional to N. If the ADT is a sorted array, we need O(N) time to insert an entry
because it is necessary to shift a number of items proportional to N to free a node for
the new key keeping the table sorted. In exchange, searching an ordered array, as we
know from Part 1, occurs only in O(log(N)), or even O(loglog(N)) time. Yet another ADT,
an AVL tree, facilitates both operations in O(log(N)) time as its worst case.

From these examples, it is clear what kind of advantage key-indexing and hashing offer:
If a hash table is sparse enough, they support both insert and search operations in
constant time O(1), because, as we have seen before, it takes practically the same time
to search the table or to insert a new key, no matter how many keys the table may
contain.

As a side note, from this standpoint, the difference between key-indexing and hashing is
merely superficial. A key-indexed table is, in effect, nothing else but an infinitely sparse
hash table, and the hash function used to access it is simply constant.

The fact that hashing supports searching (and thus retrieval and update) in constant
time makes it ideal for implementing DATA step dynamic data dictionaries. Imagine that
in the course of DATA step processing, we need to memorize certain key elements and
their attributes as we go, and at different points in the program, ask and answer
questions like the following:

1. Has the current key already been used before?
2. If it is new, how to insert it in the table, along with its attribute, in such a way

that the question 1 could be answered as fast as possible in the future?
3. How to access a key element in the most speedy fashion and update its satellite

datum?
4. If the key is no longer needed, how to delete it?

If the "key element" satisfies the conditions making key-indexing applicable (for
instance, it is a SAS date), there is no better tool for the job. All the actions are
performed in O(1) time and do not get any simpler:

1. See if the node whose value equals KEY contains a missing value.
2. Fill the node with the attribute.
3. Overwrite the attribute already in the node.
4. Move a missing value to the node.

If the keys are not limited-range integers, we will have to organize a hash table using
either of the collision resolution policies given in the text. In both programs, the body of
the first DO UNTIL(EOF) loop constitutes nothing else but a ready-to-go combined hash
search-and-insertion. That answers questions 1 and 2, or 1 and 3. The second DO
UNTIL(EOF) loop is a pure hash search, and answers question 1 itself.

A practical application of these principles immediately coming to mind is obtaining
frequency counts in the case of a huge number of distinct levels of a categorical
variable, when FREQ or SUMMARY either run out of memory or take too long to run. To
compute frequencies without sorting, we must be able to maintain a table in memory
allowing to immediately locate the value coming with the next record and add a unity to
its count.

The following question was asked in SAS-L: "I have an unsorted SAS data set with
almost 100 million records. It has a numeric variable FLDR_ID that can be any integer
number from -500,000 to +500,000. How to create a file with frequencies, cumulative
frequencies, percents and cumulative percents for all values of FLDR_ID having only 50
MB of RAM?"  The problem with the “standard” approaches (FREQ or SUMMARY) is that
there are too many discrete values of the categorical variable, and both procedures, if
applied “head-on”, either run out of memory or seem to run endlessly. From the
standpoint of direct addressing, the key FLDR_ID is a restricted-range integer, and
therefore for the purpose of the data dictionary, key-indexing should be here right at
home. This was realized by Ian Whitlock and the author:

data freq (keep=fldr_id freq cfreq pcnt cpcnt);
   array f (-500001:500000) _temporary_;
   do until(end);
      set ids end=end nobs=nobs;
      if fldr_id = . then fldr_id = lbound(f);
      f(fldr_id) ++ 1;
   end;
   ptot = 1/nobs * 100;
   do i=lbound(f) to hbound(f);
      if f(i) = . then continue;
      freq =  f(i);
      cfreq ++ freq;
      pcnt  = freq * ptot;
      cpcnt ++ pcnt;
      if i > lbound(f) then fldr_id = i;
      else fldr_id = .;
      output;
   end;
run;                               

The program uses 12 MB of memory and runs an order of magnitude faster than either
FREQ or SUMMARY (provided that they do not run out of memory in the process).

3. Stable Sortless Unduplication

While discussing hashing, we saw that as an attempt is made to load the next key into a
hash table, the search-and-insert subroutine first determines whether the key has
already been inserted, and if it has, goes to the next record. As this occurs very fast, the
search-and-insert subroutine can be successfully used to remove duplicates from a file
without sorting.

Speaking of the latter, for a SAS programmer, “duplicate removal” almost instantly rings
“PROC SORT NODUPKEY” or “SELECT DISTINCT”, depending on the prior exposure and
taste preferences. It is an interesting phenomenon. We have, in effect, accustomed to
using the side effects of two very time-consuming procedures just to kick out records
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with repeating keys. Of course, in the situation when a file has to be both sorted and
unduplicated, PROC SORT is just the tool for the job. However, if sorting is not needed,
a lot of extra work is done for no reason. What is more, consider a situation when not
only we need to delete the duplicates from a file, but also retain the original order of its
records, in other words, unduplicate the file in a stable manner. Should we decide to
sort with NODUPKEY, we would be looking at at least 3 steps:

1. Add a sequence variable, say SEQ, to the file.
2. Sort the file with NODUPKEY EQUALS options by the key.
3. Re-sort the file by SEQ, and drop SEQ from the output.

Not only it does not look efficient, it does not make a whole lot of sense. Imagine that
we have to remove duplicate cards from a deck; would we sort the deck first? Probably
not! We would most likely take the cards off the deck one by one and memorize which
cards have been taken out so far. If a card is “new”, it goes face up to the output deck;
if it is “old”, it goes to the waste basket. At the end, the output will contain no duplicates
and have the same relative order as input. All along in this process, we are using our
human memory to keep track of the “keys” having been already used. Getting back to
real files, a direct-address-based dictionary table can play the same role, providing both
the quickest way to memorize “used”  keys and establish whether the current key has
already been used. Of course, the table must have a sufficient memory capacity, so we
have to exercise a good judgement choosing between key-indexing, bitmapping, or
hashing.

As an example, let us consider unduplicating a file similar to SMALL (how “small”,
depends on the range of keys and number of records) having 1,000,000 records, say.
Assume that KEY has 16 digits, so neither key-indexing nor bitmapping can be used.
However, a 50% sparse open-addressed hash table can be deployed at the expense of
about 30 MB of memory. (It is not a small change, but with “usual” PC memories
steadily creeping towards 1 GB, such memory usage can be considered tolerable.)
Moreover, with 50% of nodes guaranteed to be empty, we can use linear probing, the
simplest collision resolution method, with great deal of confidence. The plan (paralleling
the playing card analogy above) is plain:

Step 1. Read a record from SMALL.
Step 2. Search for the key associated with the record in the hash table.
Step 3. If the key is found, it is a duplicate. Go to step 1.
Step 4. Otherwise insert the key in the table, output the record and go to step 1.

In the language of the SAS DATA step, it does not get any simpler, either:

** Sortless Stable Unduplication with Linear Probing;

data nodup (keep=key l_sat);
   array hkey (0:2000003) _temporary_;
   set large;
   do h=mod(key,2000003) by -1 until (hkey(h) = .);
      if h < 0 then h = 2000003;
      if hkey(h) = key then delete;
   end;
   hkey(h) = key;
run;               

That is all it takes. Of course, the number 2000003 is not just arbitrary – it is the first
prime number greater than 2000000, the “target” hash table size. But what about
performance? On the same real computer the rest of the tests for this paper has been
done, this step finishes the task in 3.1 CPU seconds. This compares quite favorably with
PROC SORT EQUALS NODUPKEY (4.3 CPU seconds, and of course more for two extra
steps if the stable output is required), and SQL with DISTINCT (11.2 CPU seconds).

4. Other Applications

It is impossible to embrace all conceivable applications of direct addressing methodology
in one paper, so let us superficially mention just two more directions.

The author has participated in a “fuzzy matching” project, where the records from multi-
million files with insufficient and redundant key information had to be linked using
probabilistic matching. The linkage was essentially done in two stages. The first stage,
using multiple composite redundant keys, identified probable matches, which were then
scored pair-wise in the second stage. In both stages, key-indexing and hashing
techniques were used to boost performance. They successfully supplanted “large”
formats and SAS indexes, and as a result, the matching process was able to finish in
about 1/5 of the original run-time on the same UNIX server where the original programs
were run.

In this paper, only memory-resident direct-addressing methods have been considered.
But what if we have so many distinct keys that none of the methods above will work just
because of sheer memory limitations? Is it possible to apply the direct-addressing
techniques, working so well in the high-speed memory, to some form of disk searching?
The answer to this question is “yes”.  In fact, using a hybrid disk/memory hashing
methodology, a plain SAS data set can be organized in such a way that the speed of
accessing it randomly will exceed that of SAS index several times. Moreover, because of
the intrinsic properties of hashing, the performance of such a lookup table does not
depend on the distribution of the search keys. However, it is a topic for another paper.

CONCLUSION

Key-indexing is an in-memory lookup technique based strictly on direct addressing into
an array with no comparisons between keys made. Its area of applicability is limited to
integer keys falling in a limited range defined by available memory resources. However,
when applicable, key-indexed search exhibits unmatched performance, and is the most
straightforward way of implementing an ADT where all operations, such as search,
insert, retrieve, update, delete, and enumerate are done in constant, O(1), time.

Bitmapping does not deviate a bit from the key-indexing philosophy, but uses available
memory resources smarter by indexing keys directly into the bits, rather than 8-byte
elements, of a numeric array. This way, bitmapping can address a much larger universe
of integer keys than pure key-indexing. Both techniques have the advantage of working
very fast with unlimited number of keys falling into their workable range. For instance,
for keys restricted to 8 digits, up to 100 million integer keys can be in effect “stored”
and subsequently extremely rapidly searched in a bitmap occupying only about 12 MB of
real storage (RAM).

Hashing helps direct addressing work on keys of any type and range by bringing serial
search and collision resolution policies into the equation. A bit slower that pure direct
addressing, hashing searches times faster than SAS formats and SQL, and uses
significantly less memory. Massive data processing applications like a data warehouse or
production list management system are examples of the fields where the unmatched
speed and efficiency of direct-addressing methods can be utilized. Compared to
“traditional” techniques, they can successfully supplant formats and SQL in eliminating
costly table joins, and tremendously accelerate the processes of data extraction,
scrubbing, and validation, based on a large predetermined set of keys. The larger the
data, the bigger advantage direct addressing can offer. Finally, direct-addressing
searching methods are just additional, free programming tools, and can be used by any
SAS programmer interested in efficiency and performance.

Key-indexing, bitmapping, and hashing are cool. They allow operating in the niches
where “standard” approaches may run out of memory or take a frustrating time to run.
The author encourages other SAS users to use these tools, modify them, tweak them,
improve the code, and discover new areas of application. Karsten M. Self wrote once
after having tried hashing in a real-world application: "Hash rocks, Dude!" Needless to
say, the author eagerly agrees.

SAS is a registered trademark or trademark of SAS Institute, Inc. in the USA and other
countries.  indicates USA registration.
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APPENDIX

Table A1.Inserting the sample keys into a hash table with collision resolution  
using coalesced linked list chaining.

----------------------------------------------------------------------------
 H --> 00  01  02  03  04  05  06  07  08  09  10  11  12  13  14  15  16  17
----------------------------------------------------------------------------
HKEY   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 185   .     .     .     .  KEY=185
LINK   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .     .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .     .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .     .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  00   .   .   .   .
----------------------------------------------------------------------------
HKEY   .   .   .    .   .   .    .   .   .    .   .   . 971   .   .   .   .   .   .   .   .   .   .   .   .    .   .   .   .   .   .   .   .   .   .   .   .    .   .   .   .   .   .   .   .   .   .   .   .    .   .   .   .   .   .   .   .   .   .   .   . 185   .    .    .    .  KEY=971
LINK   .   .   .     .   .   .     .   .   .     .   .   .  00   .   .   .   .   .   .   .   .   .   .   .   .     .   .   .   .   .   .   .   .   .   .   .   .     .   .   .   .   .   .   .   .   .   .   .   .     .   .   .   .   .   .   .   .   .   .   .   .  00   .  .  .  .
----------------------------------------------------------------------------
HKEY   .   .   .    .   .   .    .   .   .    .   .   . 971   .   .   .   .   .   .    .   .   .   .   .   .    .   .   .   .   .   .    .   .   .   .   .   . 400   .   .   .   .   .    .   .   .   .   .    .   .   .   .   .    .   .   .   .   . 185   .     .     .     .  KEY=400
LINK   .   .   .     .   .   .     .   .   .     .   .   .  00   .   .   .   .   .   .     .   .   .   .   .   .     .   .   .   .   .   .     .   .   .   .   .   .  00   .   .   .   .   .     .   .   .   .   .     .   .   .   .   .     .   .   .   .   .  00   .  .  .  .
----------------------------------------------------------------------------
HKEY   .   .   .    .   .   .    .   .   .    .   .   . 971   .   .    .   .    .   .    .   . 260   .   .   .    .   .   .    .   .   .    .   .   . 400   .   .   .   .   .    .   .   .   .   .    .   .   .   .   .    .   .   .   .   . 185   .     .     .     .  KEY=260
LINK   .   .   .     .   .   .     .   .   .     .   .   .  00   .   .    .   .    .   .    .   .  00   .   .   .     .   .   .     .   .   .     .   .   .  00   .   .   .   .   .    .   .   .   .   .    .   .   .   .   .    .   .   .   .   .  00   .  .  .  .
----------------------------------------------------------------------------
HKEY   .   .   .    .   .   .    .   .   .    .   .   . 971   .    .    .    . 922    260   .   .   .    .   .   .    .   .   .    .   .   . 400   .   .   .   .   .    .   .   .   .   .    .   .   .   .   .    .   .   .   .   . 185   .     .     .     .  KEY=922
LINK   .   .   .    .   .   .    .   .   .    .   .   .  00   .    .    .    .  00        00   .   .   .    .   .   .    .   .   .    .   .   .  00   .   .   .   .   .    .   .   .   .   .    .   .   .   .   .    .   .   .   .   .  00   .  .  .  .
----------------------------------------------------------------------------
HKEY   .   .   .   .   .   .   .   . 970    971   .   .   .   . 922 260   .   .   .    .   .   .    .   .   .    .   .   . 400   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 185   .    .    .    .  KEY=970
LINK   .   .     .   .     .   .     .   .  00        00   .    .    .    .  00  00   .   .   .   .   .   .   .   .   .   .   .   .  00   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  00   .  .  .  .
----------------------------------------------------------------------------
HKEY   .   .   .   .   .   .   .   . 970 971   .   .   .   . 922 260   .   .   .   .   .   .   .   .   .   .   .   . 400   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 185 543        KEY=543
LINK   .   .     .   .     .   .     .   .  00  00   .   .   .   .  00  00   .   .   .   .   .   .   .   .   .   .   .   .  00   .   .   .   .   .    .   .   .   .   .    .   .   .   .   .    .   .   .   .   .  00     00
----------------------------------------------------------------------------
HKEY   .   .    .   .    .   .    .   . 970 971   .   .   .   . 922 260   .   .   .    .   .   .    .   .   .    .   .   . 400   .   .   .   .    .   .   .   .    .   .   .   .    .   .   .   . 532    185 543  KEY=532
LINK   .   .   .   .   .   .   .   .  00  00   .    .    .    .  00  15   .   .   .    .   .   .    .   .   .    .   .   .  00   .   .   .   .    .   .   .   .    .   .   .   .    .   .   .   .  00     00  00  Collision @ 06
----------------------------------------------------------------------------
HKEY   .   .   .   .   .   .   .   . 970 971   .   .   .   . 922 260   .   .   .   .   .   .   .   .   .   .   .   . 400   .   .   .   .   .   .   .   .   .   .   .   . 050    532 185 543  KEY=050
LINK   .   .    .   .    .   .    .   .  00  00   .    .    .    .  00  15   .   .   .   .   .   .   .   .   .   .   .   .  00   .   .   .     .   .   .     .   .   .     .   .   .  00        00  00  14  Collision @ 17
----------------------------------------------------------------------------
HKEY   .   .   .   .   .   .   .   . 970 971   .   .   .   . 922 260   .   .   .    .   .   .    .   .   .    .   .   . 400   .   .    .   .    .   .    .   . 067 050 532 185 543  KEY=067
LINK   .   .    .   .    .   .    .   .  00  00   .  .  .  .  00  15   .   .   .    .   .   .    .   .   .    .   .   .  00   .   .    .   .    .   .    .   .  00  13  00  00  14  Collision @ 17
----------------------------------------------------------------------------

Table A2. Inserting the sample keys into a hash table with collision resolution  
 by open addressing with linear probing.

-------------------------------------------------------------------------------
H --�   00  01  02  03  04  05  06  07  08  09  10  11  12  13  14  15  16  17
-------------------------------------------------------------------------------
KEY=185   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 185   .   .
    971   .   . 971   .   .   .   .   .   .   .   .   .   .   .   . 185   .   .
    400   .   . 971   .   .   .   .   .   . 400   .   .   .   .   . 185   .   .
    260   .   . 971   .   . 260   .   .   . 400   .   .   .   .   . 185   .   .
    922   .   . 971   . 922 260   .   .   . 400   .   .   .   .   . 185   .   .
    970   . 970 971   . 922 260   .   .   . 400   .   .   .   .   . 185   .   .
    543   . 970 971   . 922 260   .   .   . 400   .   .   .   .   . 185 543      .
    532   . 970 971 532 922 260   .   .   . 400   .   .   .   .   . 185 543   .  Collision @ 05
    050   . 970 971 532 922 260   .   .   . 400   .   .   .   . 050 185 543   .  Collision @ 16
    067   . 970 971 532 922 260   .   .   . 400   .   .   . 067 050 185 543   .  Collision @ 16
-------------------------------------------------------------------------------

Table A3.Inserting the sample keys into a hash table with collision resolution  
by open addressing with double-hashing.

-------------------------------------------------------------------------------
H --�   00  01  02  03  04  05  06  07  08  09  10  11  12  13  14  15  16  17
-------------------------------------------------------------------------------
KEY=185   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 185   .   .
    971   .   . 971   .   .   .   .   .   .   .   .   .   .   .   . 185   .   .
    400   .   . 971   .   .   .   .   .   . 400   .   .   .   .   . 185   .   .
    260   .   . 971   .   . 260   .   .   . 400   .   .   .   .   . 185   .   .
    922   .   . 971   . 922 260   .   .   . 400   .   .   .   .   . 185   .   .
    970   . 970 971   . 922 260   .   .   . 400   .   .   .   .   . 185   .   .
    543   . 970 971   . 922 260   .   .   . 400   .   .   .   .   . 185 543   .
    532   . 970 971   . 922 260   .   .   . 400   .   .   .   . 532 185 543   .  Collision @ 05; C=8
    050   . 970 971   . 922 260   .   .   . 400 050   .   .   . 532 185 543   .  Collision @ 16; C=6
    067   . 970 971   . 922 260   .   . 067 400 050   .   .   . 532 185 543   .  Collision @ 16; C=8
-------------------------------------------------------------------------------
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