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ABSTRACT 
Searching is one of the most, if not the most, important and frequently performed 
data processing operations. The SAS® System supports this assertion with a 
roster of built-in searching techniques, such as merges, joins, formats, indexes, 
and specific operators and functions.  
 
In the light of such diversity, it is all the more surprising that until recently, no 
built-in SAS methods based on fastest searching schemes – memory-resident 
hash-based algorithms - had been available. This gap was partially covered by 
SAS users crazy enough to hand-code their own hash-based algorithms in the 
SAS Language.            
 
However, Version 9 changes everything. Not only has it made direct addressing 
available in the form of a built-in hash table (associative array) which can be 
searched much faster than any other SAS lookup structure; it has also introduced 
the first dynamic, memory-resident Data step structure.        
 
In this paper, we will try to get a taste of this new exciting SAS tool and envision 
cool things it will allow us to do. We will also see that it does not make hand-
coded hashing methods instantly obsolete and compare the I (hand-coded) and II 
(built-in) SAS hashing generations from the standpoints of functionality, 
programming and computer efficiency. 

INTRODUCTION 
Table lookup or searching is, practically speaking, the most common data 
processing operation. In this respect, the closest that comes to mind is sorting, 
but then almost always the ultimate goal of sorting is to organize a search. SAS 
addresses this situation like in no other software package by providing the 
programmer with an incredibly rich collection of built-in searching techniques. 
 
Purposely limiting ourselves, for the time being, by Version 8, we might, for 
example, think of: 
 

• Conditional (IF-THEN-ELSE) logic and the case (SELECT) structure 
• Search operators, such as IN, LIKE, etc.  
• The MERGE statement 
• SQL with all its bells and whistles 
• Formats and informats 
• SAS indexes 
• String-searching functions and regular expressions 
• Internal in-memory trees implicitly used by class-type procedures     

 
These instruments embrace a variety of searching situations and employ a 
number of various lookup algorithms. Some of them are designed to operate in 
memory, others - on disk. However, all of them (except for the SQXJHSH 
available through SQL), have a number of properties in common: 
 

1. They are based on comparing a search key to one or more keys in the 
table.  

2. In this respect, they (and hence their efficiency) only differ in the 
number of key comparisons needed to discover whether a search key 
is among the lookup keys or not. 

3. If the number of lookup keys increases N times, the number of 
comparisons necessary to locate or reject a search key increases, in 
the best case scenario, log2(N) times. 

 
A principally different searching strategy is employed by the SQXJHSH method. 
With SQXJHSH, the number of key comparisons per act of searching - and thus 
the speed of the latter – either no longer depends on the number of lookup keys 
or grows with N much slower than log2(N). Looking a whit forward, such behavior 
is typical for direct-addressing, as opposed to key-comparison, lookup methods. 
In Version 8 and before, SQXJHSH has been the only SAS-supplied direct-
addressing search method, and since it is an SQL-only, no such method has 
been available in the Data step.  
 
This shortcoming is in part compensated by the SAS Language with enough tools 
to help programmers implement their own searching methods, if need be, for 
instance: 
 

• SAS arrays 
• Direct SAS file access via the POINT= option 
• SASFILE statement allowing to pre-buffer an entire data set in memory 

 
These tools and/or structures, together with the rest of the language, are 
sufficient for implementing just about any searching algorithm. Of course, 
techniques based on these tools are not ready-to-go routines, and they have to be 
custom-coded. But by the same token, they are more flexible and thus often result 
in routines searching much faster and using fewer resources.   

HASHING SEMANTICS 
In the title of the paper, the term “hashing” was used collectively to denote the 
whole group of memory-resident searching methods not primarily based on 
comparison between keys, but on direct addressing. Although strictly speaking, 
hashing per se is just one of direct-addressing techniques, using it as a collective 
term has become common. Hopefully, it will be clear from the context in which 
sense the term is used. Mostly, it will be used in its strict meaning.    
 
In fact, someone has even had enough time and inspiration to implement a 
number of direct-addressing searching techniques in the Data step and show that 
they work well enough in order to be useful! This set of hand-coded direct-
addressing routines, together with a rather painful delving into their guts, was 
presented at SUGI 26 and 27 [1, 2]. For the lack of a better description, let us call 
them, and anything that can be derived from them, Generation I.  
 
Generation I has a number of drawbacks – which we will go on to discuss later – 
inevitable for almost any more or less complex, performance oriented routine 
coded in a very high-level language, such as the SAS data step. But by the same 
token, it has a number of advantages, primarily: The code is available, and so it 
can be tweaked, changed to accommodate different specifications, retuned, etc.  
       
However, the most important consequence of Generation I activity was that it 
might have impact on the advent of Generation II that arrived shortly after the 
game has been joined by SAS. And lo and behold, in Version 9, we have a 
present in the form of an object called associative array, or - yes, you guessed 
right! - hash. This object can be used as a canned box to search data via a direct-
addressing algorithm implemented internally. It is a real breakthrough in more 
ways than one. 

HOW TO READ THIS PAPER 
This paper covers a lot of ground and it would be extremely helpful to read the 
referenced papers beforehand, especially [1], [2] and [4].  A dictionary wouldn’t 
hurt either ;-) 

DIRECT-ADDRESSING: PROPAEDEUTICS 
To make the discussion more concrete, consider a common task of matching two 
data files by a common key. Suppose that an unsorted SAS data file SMALL 
contains N_SMALL records with a numeric integer variable KEY and a satellite 
variable S_SAT. Another unsorted file called LARGE, with N_LARGE records 
also has the variable KEY and a satellite L_SAT. Assume that 1) LARGE is not 
sorted and, for whatever reason, cannot be sorted and 2) there is enough 
memory to hold the entire SMALL, or at least KEY and a numeric pointer to its 
records.    
 
Given these conditions: What is the most efficient way to subset LARGE based 
on the values of KEY in SMALL to produce a file MATCH?  
 
SAS offers a number of ready-to-go tools based on in-memory table lookup. Just 
to mention a couple:  
 

1. Compile unduplicated keys from SMALL into a format using CNTLIN= 
option, and search it for each KEY read from LARGE. 

2. Load the keys from SMALL into a sorted array and use a hand-coded 
binary or interpolation search to look for each key from LARGE.       

 
Why look for something else? The efficiency and speed of such methods are 
principally limited, because they are comparison-based. It is known that for an 
arbitrarily distributed lookup keys, no comparison-based method can do better 
than the binary search. The latter, to either find search key among N lookup keys 
or reject it, must make no less than the average of log2(N)+1 comparisons. For 
N=1,000,000 it costs 20 comparisons plus computations and logic. Sometimes it 
is expressed by saying that the binary search runs in O(log(N)) time. 
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Removing key comparisons as the primary basis of searching could thus be 
highly beneficial. But is it possible to search for a key without comparing it with 
the keys in a lookup table at least once? A rather paradoxical answer to this 
question is “yes”. It is given by a radically different searching philosophy called 
direct addressing. And direct addressing finds its pure expression in key-indexed 
search.  
 

KEY-INDEXING 
The idea is simple. Assume that all keys are 1-digit numbers from 0 to 9, and 
SMALL has only 9 records: 
 
OBS   | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 
------+---+---+---+---+---+---+---+---+--- 
KEY   | 2 | 3 | 5 | 2 | 7 | 9 | 5 | 7 | 3   
------+---+---+---+---+---+---+---+---+--- 
S_SAT | 1 | 2 | 3 | 0 | 4 | 5 | 6 | 9 | 7  

 
Let us create a temporary array HKEY with one node (location, address) 
allocated for each possible key value. By default, SAS will initialize all the 
buckets to missing values. HKEY can be thought of as the following table in 
memory:   
 
--------------------------------------------- 
H    | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 
-----+---+---+---+---+---+---+---+---+------- 
HKEY | . | . | . | . | . | . | . | . | . | .  
--------------------------------------------- 

 
Now, for each key from SMALL, let us look at the array location H, whose index is 
equal to the value of the KEY, i.e. at HKEY(KEY). Since there is a separate 
bucket for each possible key value, we are always guaranteed to find the address 
H=KEY. If HKEY(KEY) is missing, let us move the satellite S_SAT to H=KEY. 
Repeating the procedure for the rest of the keys yields    
 
---------------------------------------------- 
 H    | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 
------+---+---+---+---+---+---+---+---+------- 
 HKEY | . | . | 1 | 2 | . | 3 | . | 4 | . | 5  
---------------------------------------------- 

 
It is a key-indexed table, and it comprises two types of entries: empty and 
occupied. Note that duplicate keys are deleted automatically as the table is 
loaded. If SMALL has no satellites or they are of no interest, an occupied entry 
can be marked by moving 1 into the node.     
 
Given a search KEY, how do we look it up? All we have to do is to examine the 
node whose index is equal to KEY. If the corresponding location is missing, the 
key is not in the table. If it is occupied, the search has been successful, and the 
node contains either 1 or the related satellite. For example, if KEY=1, the search 
fails since the address 1 is empty. If KEY=7, we have to look at the node 07. It is 
occupied; therefore, the key is found, and the node returns the satellite value 
HKEY(7)=4. 
 
The utter simplicity of key-indexing translates into an equally simple DATA step 
implementation. Suppose, for example, that our keys are integers ranging from –
4E6 to +4E6. The range thus naturally defines the bounds of the array HKEY 
representing the key-indexed table.  
 
data match ; 
   array hkey (-4000000 : 4000000) _temporary_ ; 
   do until ( eof1 ) ; 
      set small end = eof1 ; 
      if missing (hkey(key)) then hkey(key) = s_sat ; 
   end ; 
   do until ( eof2 ) ; 
      set large end = eof2 ; 
      s_sat = hkey(key) ; 
      if s_sat > . then output ; 
   end ; 
   stop ; 
run ; 

 
The first Do-until loop loads the key-indexed table from SMALL; in the second, the 
table is searched for each key coming from LARGE, and matches are output.  
 
Thus, irrespective of a hit or miss, the key-indexed search works via a single 
array reference, without comparing the search key to any lookup keys. Of course, 
no lookup method can be simpler and/or run faster. (For example, see the 

performance comparison in [1] showing in part that key-indexing outperforms 
presorted MERGE by a factor of 5:1.)   
 
But the most fundamental property of the key-indexed search principally 
distinguishing it from any comparison-based search is that both “inserting” a key 
and searching for a key is independent of the number of lookup keys. Another 
manner of expressing this fact is to say that both insertions and searches in the 
key-indexed scheme occur in constant time, or as O(1).  
 
The question arises: If key-indexing is the fastest insertion/searching algorithm, 
why can we not use it at all times and forget about everything else? The answer 
is: Because it is based on the assumption that the lookup keys are either integers 
falling in a limited range or can be inexpensively converted to such integers. Our 
test keys take on only as many as 8,000,001 distinct values, so sufficient array 
space can be allocated using about 64 MB of memory. Having 80 MB of memory, 
one can get away with 7-digit keys. However, to deal with 9-digit SSN, an array 
with 1 billion elements would be needed, which is hardly practical even with the 
modern cheap memories. A 16-digit credit card number as a key would make 
straight key-indexing a nightmare. 
 
However, the method is so promising that it is worth expanding. To do so, we 
ought to find a way to keep its memory usage at bay. Both the speed of key-
indexing and its limitations rest upon the following facts: 
 

• The table is directly addressed by keys themselves.     
• The entire set of possible key values is addressable.  
• No comparisons between the search key and lookup keys are made. 

 
Thus, the applicability of the pure direct addressing can be, in principle, widened 
in two ways: 
 

1. Keep the key range fully addressable, but address bits instead of 
bytes.   

2. Drop the restrictions that (a) no two keys shall reside in one node, and 
(b) no comparisons between the search key and lookup keys are 
made.    

 
The first approach results in a technique called bitmapping. The second path 
leads to a more versatile hybrid searching method known as hashing.  

BITMAPPING 
If the satellite information in SMALL is of no interest, the key-indexed table only 
serves to indicate whether a memory node, whose index corresponds to the key 
value, is empty or occupied. Occupied nodes can be populated with 1, and the 
empty ones - initialized to 0. So, if a node whose number is the value of KEY 
contains 1, KEY is in the table; otherwise, it is absent. But in order to tell 0 from 1 
we need a single bit. Yet our key-indexing scheme uses the full memory length of 
a numeric array item, i.e. whole 8 bytes to store a Boolean value. If we could 
make efficient use of bits in such a setting, the memory usage could be 
potentially reduced 64 times!    
 
Ways of doing this and executable code are discussed in detail in [1].   
Just like a key-indexed table, a bitmap is a purely direct-addressed table, and 
hence runs as O(1) in both insertion and searching modes. Bitmapping shines in 
the niche that can be defined as “no-matter-how-many-short-keys”. Bitmap is a 
champion when we only need to rapidly find out if the record with a given key 
should be selected, and if memory resources are sufficient for indexing the entire 
key range into the bits of a temporary numeric array. 

HASHING: GENERATION I 
Compared to key-indexing, bitmapping merely expands the workable universe of 
keys about 53+ times. Hashing methods approach the problem quite differently: 
They eliminate the requirement of a separate slot for each possible key and allow 
some amount of comparisons between the search key and lookup keys in the 
table at the final stage of searching.  
 
A simple example is perhaps a good way of making the idea clear. Assume that 
SMALL contains just ten 3-digit keys and related satellites (deliberately chosen 
below as a straight enumeration): 
 
data small ;                                                      
  input key s_sat ;                                              
cards ;                                                          
185  00                                                           
971  01                                                           
400  02                                                           
260  03                                                           
922  04                                                           
970  05                                                          
543  06                                                           
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532  07                                                                                                                                 
050  08                                                                                                                                 
067  09                                                                                                                                 
 ;                                                                                                                                      
run ;            

 
To use key-indexing on such a key, we would allocate a [0:999] table and map 
each key to the node whose number is the key value. However, out of 1000 table 
nodes, only 10 will be occupied. The rest will idle playing the role of placeholders. 
That is, 99 per cent of the array memory will be simply wasted! The crucial 
question is thus: Can we get away with a table only somewhat larger than the 
number of lookup keys, and keep the benefits of direct addressing? 
 
To answer it, let us pick some number HSIZE greater than the number of keys 
N_SMALL in SMALL, for instance, 17, and allocate an array sized as HKEY(0:17). 
Let us agree to call the array a hash table, HSIZE - hash table size, and the ratio 
N_SMALL/HSIZE - load factor. Thus, the load factor shows the number of lookup 
keys relative to the total number of nodes in the hash table, i.e. the sparsity of the 
table. In our example, the load factor is 0.588, or the table is about 41 percent 
sparse.  
 
Now envisage some rapidly-computing function H(KEY) taking KEY as an 
argument and returning an address H into HKEY, unique to each key supplied, 
thus mapping any lookup key to its own node: 
 
KEY → H(KEY) → Unique Address in [1:HSIZE]  

 
That would be a perfect hash function.  If it existed, we would only have to plug it 
into the key-indexing code. Although such functions are possible, they are quite 
difficult to discover, and once one is found, it can only be used for the same set of 
keys: Adding just an extra key will ruin everything. 
 
A less rigid method can be obtained if we let H(KEY) map two or more distinct 
keys to the same location in HKEY: 
 
KEY → H(KEY) → Some Address in [1:HSIZE]  

 
If more than one key is sent to the same address, a collision occurs, and we must 
do something to tell the keys hashing to the same address apart. In other words, 
we have to employ a collision resolution policy to distinguish between keys 
hashing to the same location in the process of insertion and searching.  
 
Thus, we arrive at the core concept behind hashing. If the hash function H(KEY) 
maps only a few keys per hash bucket H spreading the lookup keys evenly among 
the buckets, we can do the following: 
 

1. Use H(KEY) to hash KEY to some address H. 
2. If the content of H is empty, KEY is not in the table, since no key has 

ever hashed to H. 
3. If the address is occupied, search among the few keys that have 

hashed to the bucket H.       
 
Within each address, the search can be organized in a number of ways. With a 
large number of buckets and only a few keys per bucket, straight sequential 
search is the simplest and fastest. In the framework of Generation I hand-coded 
hashing, it is practically the only reasonable way to go, although it could 
conceivably be binary search or something else. Most importantly, once the only 
bucket H where KEY can reside has been found, the keys in this bucket are 
searched via a comparison-based algorithm.  
      
Thus, hashing is a typical hybrid algorithm: It combines direct addressing with a 
method based on comparisons between keys in its final key-seeking stage. The 
average number of keys mapping to any hash node equals N_SMALL/HSIZE, i.e. 
the load factor. If the hash table is not full and the keys are spread uniformly, the 
average number of key comparisons required to find or reject a key is less than 1. 
Also, searching for a key should be the faster, the sparser the table is. So, to 
make a good practical use of a hash table, we ought to: 
 

1. Choose a proper hash function H(KEY). 
2. Find an efficient way of resolving collisions.  

 
A good hash function apparently must:  
  

1. Be rapidly computable. 
2. Distribute lookup keys uniformly over the table. 
3. Map them in the [0:HSIZE-1] range.  

 
Among a number of techniques conforming to these requirements, the simplest is 
the division method: 
 

H = MOD (KEY, HSIZE) ; 

 
The number theory tells us that if HSIZE is a prime number far from a power of 2, 
MOD tends to spread the keys uniformly. Let us see how this would work for our 
sample set of 10 keys. If we choose the “target” load factor as 0.625 and divide it 
into the number of keys, we obtain 16. The first prime number greater or equal to 
16 is 17, so let us select HSIZE=17. (The actual load factor is now 10/17 = 
0.588.) So, we could allocate the table as 
 
ARRAY HKEY (0:17) _TEMPORARY_ ; 

 
To get a hash address, KEY is divided by HSIZE=17, and the remainder H is 
computed. H points to the H-th slot in the table where KEY must be inserted. 
Repeating this operation for all test keys yields the following:  
 
H 
--------------- 
00    .   .   . 
01  970   .   . 
02  971   .   . 
03    .   .   . 
04  922   .   . 
05  260 532   . 
06    .   .   . 
07    .   .   . 
08    .   .   . 
09  400   .   . 
10    .   .   . 
11    .   .   . 
12    .   .   . 
13    .   .   . 
14    .   .   . 
15  185   .   . 
16  543 050 067 
17    .   .   . 
---------------  

 
The keys 970, 971, 922, 400, and 185 all map to their slots in HKEY one-to-one. 
The keys 260 and 532 produce a single collision at the address 05, and the keys 
543, 050, and 067 result in a double collision in the node 16. If this table is to be 
stored in memory and searched, the collisions at the locations 05 and 16 have to 
be resolved.  
 
No matter how good a hash function is, some keys are very likely to hash to the 
same addresses, so we will have to resolve collisions. This is another point at 
which hashing radically deviates from pure direct addressing, where keys are not 
stored in the table itself. With hashing, the keys themselves reside in the table, 
because they may need to be compared to a search key. Collision resolution 
policies differ in the ways the colliding keys are stored, linked as being mapped to 
the same hash address, and traversed.  

COLLISION RESOLUTION: SEPARATE CHAINING 
One way of resolving collisions suggests itself naturally once we cast a rapid 
glance at the distribution of our 10 keys among the addresses of the hash table 
already shown in the previous section. Keys mapped to each occupied address 
form visible “chains”. If an address is uncontested, the chain consists of a single 
key or no keys at all if it is empty. Making use of such chains to resolve collisions 
is thus called separate chaining. There are two ways the chains of keys can be 
utilized in terms of the SAS DATA step. 
 
First, the keys comprising the chains could be stored outside the table by placing 
them in the occurrences of a two-dimensional array. However, this may well 
cause very poor memory utilization. Suppose we have 100,000 keys in SMALL 
and map all but one of them so that no address contains more than, 2 to 4 keys, 
and a single unlucky address at which a whole 10 keys collide. In this case, we 
will be forced to create a 2-dimensional array sized as [0:HSIZE , 0:9] to resolve 
the collisions. Even with the load factor 1, it would need 10 times the memory the 
keys themselves would use.  
 
In Generation I, efficient separate chaining cannot by organized head-on because 
arrays are allocated at compile time. In other words, we cannot create a dynamic 
structure attached to each hash bucket H (such as a link list or tree) that would 
grow each time we need to add a key by the amount of memory needed to 
accommodate the key and its satellite(s). One reason we mention something not 
possible to do is that it is exactly what Generation II makes possible to achieve. 
Therefore, we will return to the separate chaining later in the Generation II 
section. 
   
Meanwhile in Generation I, the problem is solved along the lines of the Russian 
proverb “Gol na vydumki khitra” (“They who lack resources get ingenious”). By 
changing the way of memory allocation from sequential to linked, we can arrive at 
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an extremely elegant collision resolution policy called coalesced list chaining, 
which is both very fast and reasonably memory-efficient. The technique is 
described at length in [1, 2]; an interested reader is more than welcome to 
explore its intricacies.      
 
In this paper, we will discuss the simplest collision resolution policy called open 
addressing with linear probing. Its painstaking description can be found in [1, 2]. 
Below, we will take a look at it, sufficient to see how Generation I may approach 
the collision resolution problem in principle.   

COLLISION RESOLUTION: LINEAR PROBING 
The main idea behind open addressing is as follows. Lookup keys are stored in 
the hash table itself. Suppose we have KEY to be loaded. First, hash it: 
 
H = MOD(KEY, HSIZE) ; 

 
If H points to an empty slot, place KEY there, else we have a collision. In this 
case, compare KEY with the key already in H. If the keys are equal, the current 
key is a duplicate, so we can either discard it or consider it just another key, 
depending on specifications. If duplicate keys are to be eliminated, get the next 
key; otherwise find a different slot for KEY. Step up the table one or more times 
one node at a time by adding 1 to H. The maximum address to which KEY can 
hash is HSIZE-1. So, if H=HSIZE, we are out of range [0:HSIZE-1]. To get back 
there, set H=0 and continue this wrap-around cycle until having found an empty 
node and insert the colliding key there. In this fashion, the table is “probed” 
linearly using a fixed probe decrement C=1; hence the name.     
 
Since we have HSIZE+1 nodes in the table, but can only address HSIZE nodes 
from 0 to HSIZE-1, at least 1 location in the table will always be empty, thus 
preventing the wrap-around process from iterating infinitely. Inserting our ten 
sample keys into the table in this manner results in the following: 
 
H     HKEY[H]    HSAT[H] 
------------------------ 
00        050         88 
01        970         55 
02        971         11 
03        067         99 
04        922         44 
05        260         33 
06        532         77 
07          .          . 
08          .          . 
09        400         22 
10          .          . 
11          .          . 
12          .          . 
13          .          . 
14          .          . 
15        185         00 
16        543         66 
17          .          . 
-------------------------------- 

  
The keys 185, 971, 400, 260, 922, 970, and 543 all hash without collisions to the 
locations 15, 02, 09, 05, 04, 01, and 16 respectively. They get inserted into the 
table together with their satellites without contention. However, the next key, 532, 
hashes to H=05 already occupied by 260. Incrementing H by 1 results in H+1=06. 
Since the node 06 is empty, we place the key 532 and its satellite at H=6. The 
next key, 050, hashes to H=16, but it is already taken up by 543. Incrementing H 
by 1 results in 17, which is beyond the hashing range [0:16]. So, we go back to 
the beginning of the table by setting H=00. Since this node is empty, we place 
050 at H=00. The last key, 067, also claims the spotlight at H=16. Just like with 
050, we go up by one address, have to wrap to H=00, which now is occupied by 
050. Stepping up the table, we find an empty node at H=03, which is where 
KEY=067 and its satellite 99 get inserted.  
 
Now the above of loading the table suggests the way of searching it. If a search 
KEY hashes to an empty node, it is not in the table, period. If the node is not 
empty, it may or may not be in the table, so we step up the table until bumping 
into an empty slot. What we do before such a slot is encountered depends on 
whether the duplicate keys and satellites from SMALL are to be extracted or not. If 
they are, go all the way to the missing slot picking up all lookup keys equal to the 
search key (and their satellites) along the way. If not, stop at the very first 
instance when a matching key is found. If we have reached the end of the cluster 
without encountering a matching key, it is not in the table.    
   
From these simple examples, it should be clear how linear probing can reduce 
the number of probes a comparison-based search requires. In the worst case 
scenario for the table above, linear probing examines 5 keys until it either finds or 
rejects a search key. However, the number of comparisons per average hit/miss 
search will be close to 1. Moreover, it will remain the same if we have 1 million 

lookup keys and about 1.7 million nodes, i.e. as long as the load factor remains 
the same. Therefore, although hashing does allow some key comparisons in the 
final stage of the searching, lookups and insertions occur in O(1) time. (Compare 
with the binary search with 4 comparisons for N=10, and 20 comparisons for 
N=1,000,000.) 
 
The simplicity of the linear probing leads to simple code: 
 
%let nodupes =  1 ; *0 if dupes to be pulled ;                    
                                                                  
data match (keep = key s_sat l_sat) ;                             
   retain nodupes &nodupes.. ;                                    
  array hkey (0 : &hsize) _temporary_ ;                          
  array hsat (0 : &hsize) _temporary_ ;                          
  do until ( eof1 ) ;                                            
     set small end = eof1 ;                                      
     do h = mod (key, &hsize) by +1 ;                            
        if h = &hsize then h = 0 ;                               
        if hkey(h) = key and nodupes then leave ;                
        if hkey(h) = . then do ;                                 
            hkey(h) = key ;                                      
           hsat(h) = s_sat ;                                     
            leave ;                                              
        end ;                                                    
      end ;                                                       
  end ;                                                          
   do until ( eof2 ) ;                                            
     set large end = eof2 ;                                      
      do h = mod (key, &hsize) by +1 
           until ( hkey(h) = . ) ;                               
        if h = &hsize then h = 0 ;                               
        if hkey(h) = key then do ;                               
           s_sat = hsat(h) ;                                     
           output ;                                              
            if nodupes then leave ;                              
        end ;                                                    
      end ;                                                       
  end ;                                                          
   stop ;                                                         
run ;                  
 
If the NODUP parameter is set to false, all the satellites corresponding to 
duplicate keys in SMALL are extracted, else only the first one in order is picked. 
 
The main advantage of this scheme is its profound simplicity. And if the table is 
sparse enough, it performs very well. As a rule of thumb, the linear probing will do 
the hashing job just right with load factors 0.5 or less, i.e. if the table is more than 
half sparse. As it gets fuller, performance deteriorates because of the primary 
clustering. Trying to find a place for a colliding key, we fill out the very first empty 
location we come across. Thus, the groups of adjacent occupied addresses tend 
to aggregate, forming clusters of keys, which in turn can bridge together forming 
bigger clusters. For an example, look at the addresses [00:06] in our sample 
table above. So, if the table is rather full, we may eventually have to travel 
practically over the entire table before finding an empty location, thus 
degenerating hashing into a sequential search.  
 
The problem can be alleviated by stepping through the table more than one node 
at a time, i.e. making the probe increment greater than 1. Aided by a couple of 
tricks from the number theory, it leads to a method called open addressing with 
double hashing that eliminates primary clustering, so the same speed can be 
achieved in a fuller table, which results in better memory utilization. For a detailed 
discussion of the double hashing and its SAS implementation, see [1].   

NON-INTEGER KEYS 
Test results [1] show that hashing performs admirably by any account regardless 
of the collision resolution policy. However, above examples implied that the keys 
were numeric and natural. How do we hash them if they are not? 
 
Let us note first that because in its final stage, hashing is comparison based, it 
renders the nature of the keys non-critical. Both hashes and traversals are used 
merely to minimize the number of comparisons necessary to carry out a search, 
yet the final hit-or-miss decision (if the hash address is not empty) is made by 
comparing some lookup keys in the table to the search key. 
 
Therefore, we only have to figure out how to devise the hash function if the key is 
not a non-negative integer. It must basically satisfy simple rules:  
 

• Hashing should involve as much of the key information as possible. 
• It must produce an integer in [0:HSIZE-1] range. 
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Let us consider a number of distinct practical situations. If the lookup keys are 
fractional signed SAS numbers, we can simply rescale the key by multiplying by a 
suitable integer constant and/or adding a constant, then applying the MOD 
function as usual. If the lookup keys are digit strings (character variables whose 
values consist of digits only) is a simple matter of applying a standard numeric 
informat. For example, for a 16-digit string, MOD(INPUT(KEY,16.),HSIZE) will 
work just fine. Short digit strings (1 to 8 bytes long) can be hashed faster as a 
character variable in general (see below).           

ARBITRARY CHARACTER KEYS 
Numerous techniques have been developed to hash arbitrary character keys [2, 3, 
4]. Almost all of them are based on breaking a character key apart and then 
involving the individual bytes into a sort of computation resulting in an integer in 
the range [0:HSIZE-1]. However, in SAS sub-stringing and concatenation are 
rather slow. Instead, we can let call for an integer binary informat to do the job: 
 
H =  MOD (INPUT(KEY,PIBw.), HSIZE) ;  
 
In a single shot, this obviates sub-stringing and converts KEY in to a (large) 
number that can be divided by HSIZE. The method has its limitations (see [1] for 
details). However, it works admirably for character keys more or less 
discriminated by their W first characters. If the leading W bytes tend to be blank, 
the LEFT function helps mitigate the situation.       
 
Let us see, for example, how our linear probing would look if, say, we had KEY as 
a 9-byte character variable. First, the hash array HKEY must now be defined with 
the appropriate data type as $9, while the satellite array stays intact: 
 
   array hkey (0 : &hsize) $9 _temporary_ ;                                                                                                 
   array hsat (0 : &hsize)    _temporary_ ;                                                                                                 
 
Secondly, testing for an empty node will be testing for a blank. With these 
amendments, the code for inserting a key into the table transforms into 
 
      do h = mod (input(key,pib6.),&hsize) by +1 ;                                                                                                   
         if h = &hsize then h = 0 ;                                                                                                      
         if hkey(h) = key and nodupes then leave ;                                                                                       
         if hkey(h) = ‘’ then do ;                                                                                                        
            hkey(h) = key ;                                                                                                              
            hsat(h) = s_sat ;                                                                                                            
            leave ;                                                                                                                      
         end ;                                                                                                                           
      end ;                                                                                                                              
 
And the code for searching for a key similarly becomes 
 
      do h = mod (input(key,pib6.),&hsize) by +1 
            until ( hkey(h) = ‘’) ;                                                                             
         if h = &hsize then h = 0 ;                                                                                                      
         if hkey(h) = key then do ;                                                                                                      
            s_sat = hsat(h) ;                                                                                                            
            output ;                                                                                                                     
            if nodupes then leave ;                                                                                                      
         end ;                                                                                                                           
      end ;                                                                                                                              
 
The properties of the algorithm guarantee that both the insertion and search run 
in O(1), i.e. constant, time, as long as the load factor stays near 0.5. In other 
words, if it takes T time units to find/reject a search key for N=10 and HSIZE=17, 
it will take T time units to do it for N=100000 and HSIZE about 170000. The same 
is true for all direct-addressing methods. Additionally, if the hash function is good, 
and the table is sparse, both insertions and searches appear practically instant. 
This has a very important consequence, as it effectively gives the hash table an 
alternative meaning of an associative array indexed by a key of arbitrary type.     

COMPOSITE KEYS 
Quite often, a key is composite, i.e. it may consist of an arbitrary mixture of 
numeric and/or character variables. A natural inclination is to concatenate the 
components and hash the result. Principally, there is nothing wrong about it; 
however, there are two pitfalls. First, concatenation is slow. Secondly, the key 
components may concatenate into an integer lying beyond SAS integer precision. 
Usually, the programmer is left alone with the imagination and knowledge of the 
data. Principally, hashing a combination of random bytes selected from all the 
keys is a reasonable way to go. As the number of the components of a composite 
key grows, all Generation I hashing schemes quickly become more complicated. 
Aside from devising a decent hash function, we have to create a separate parallel 
array for all component keys and compare all the keys to their array counterparts 
in relevant conditionals. That is not to say that it cannot be done or should not be 
done if need be. However, we will see that in Generation II, the business of 
hashing data identified by composite keys becomes just a breeze. 

HASHING: GENERATION II 
SAS Version 9 has introduced many new features into the Data step language. 
Most of them, expanding existing functionality and/or improving its performance, 
are rather incremental. However, one novel feature stands out as a breakthrough: 
Associative arrays of hashes. 
 

GENERATION II PROPAEDEUTICS 
Perhaps the best way to get a fast taste of this mighty addition to the Data step 
family is to see how it can help solve our sample matching problem. Let us 
assume, for an extra kick, that KEY is a character variable of length 9:  
 
data match ( drop = rc ) ;                                        
  length key $9 s_sat 8 ;                                        
                                                                 
   declare AssociativeArray hh () ;    
                                                                 
   rc = hh.DefineKey  ( 'key'   ) ;                               
  rc = hh.DefineData ( 's_sat' ) ;                               
   rc = hh.DefineDone () ;                                        
                                                                 
  do until ( eof1 ) ;                                            
     set small end = eof1 ;                                      
     rc = hh.add () ;                                            
  end ;                                                          
  do until ( eof2 ) ;                                            
     set large end = eof2 ;                                      
     rc = hh.find () ;                                           
      if rc = 0 then output ;                                    
  end ;                                                          
   stop ;                                                         
run ;                             
 
After all the trials and tribulations of coding hashing algorithms by hand, this 
simplicity looks rather stupefying. But how does this code go about its business?  
 

•  LENGTH statement gives SAS the attributes of the key and data 
elements before the methods defining them could be called.        

•  DECLARE AssociativeArray statement declares and instantiates the 
associative array (hash table) HH.     

•  DefineKey method describes the variable(s) to serve as a key into the 
table. 

•  DefineData method is called if there is a non-key satellite information, 
in this case, S_SAT, to be loaded in the table. 

•  DefineDone method is called to complete the initialization of the hash 
object.  

•  ADD method grabs a KEY and S_SAT from SMALL and loads both in 
the table. Note that for any duplicate KEY coming from SMALL, ADD() 
will return a non-zero code and discard the key, so only the first 
instance the satellite corresponding to a non-unique key will be used. 

•  FIND method searches the hash table HH for each KEY coming from 
LARGE. If it is found, the return code is set to zero, and host S_SAT 
field is updated with its value extracted from the hash table. 

 
If you think it is prorsus admirabile, then the following step does the same with 
even less coding: 
 
data match ;                                                      
   set small point = _n_ ; *get key/data attributes ;  
  *set small (obs = 1) ;   *this will work, too! ; 
  *set small (obs = 0) ;   *but this will not! ; 
 *if 0 then set small ;   *and neither will this! ;              
                                                                 
  dcl hash hh (dataset: 'work.small', hashexp: 10) ;             
                                                                 
  hh.DefineKey  ( 'key'   ) ;                                    
  hh.DefineData ( 's_sat' ) ;                                    
  hh.DefineDone () ;                                             
                                                                 
   do until ( eof2 ) ;                                           
     set large end = eof2 ;                                      
      if hh.find () = 0 then output ;                             
  end ;                                                          
   stop ;                                                        
run ;                 

 
Here are notable differences: 
 

SUGI 28 Advanced Tutorials



 

- 6 - 

• Instead of the LENGTH statement, we can give the Define methods 
key and data attributes by reading a record from SMALL. Somewhat 
surprisingly, is not sufficient just to read a descriptor; there must be a 
record read at run-time.   

• DCL can be used as a shorthand for DECLARE.  
• Keyword HASH can be used as an alias instead of 

ASSOCIATIVEARRAY. To the delight of those of us typo-impaired, it 
means: When people speak, SAS listens!         

• Instead of loading keys and satellites from SMALL one datum at a time, 
we can instruct the hash table constructor to load the table directly 
from the SAS data file SMALL by specifying the file in the hash 
declaration.   

• The HASHEXP named parameter tells the table constructor to allocate 
2**10=1024 hash buckets.           

• Assigning return codes to a variable when the methods are called is 
not mandatory. Omitting the assignments shortens notation. 

PARAMETER TYPE MATCHING 
The LENGTH statement in the first version of the step or the attribute-extracting 
SET in the second one provide for what is called parameter type matching. When 
a method, such as FIND, is called, it presumes that a variable into which it can 
return a value matches the type and length FIND expects it to be.  
 
It falls squarely upon the shoulders of the programmer to make sure parameter 
types do match. The LENGTH or SET statements above achieve the goal by 
giving the table constructor the names of existing Data step variables for the key 
(KEY, length $9) and satellite data (S_SAT, length 8). 
 
Doing so simultaneously creates Data step host variable S_SAT, into which the 
FIND method (and others, as we will see later in the iterator section) 
automatically copies a value retrieved from the table in the case of a successful 
search.                

HANDLING DUPLICATE KEYS 
When a hash table is loaded from a data set, SAS acts as if the ADD method 
were used, that is, all duplicate key entries but the very first get ignored. Now, 
what if in the file SMALL, duplicated keys corresponded to different satellite 
values, and we needed to pull the last instance of the satellite? 
 
In Generation I, duplicate-key entries can be controlled programmatically by 
twisting the guts of the hash code. To achieve the desired effect in Generation II, 
we should call the REPLACE method instead of the ADD method. But to do so, 
we have to revert back to the loading of the table in a loop one key entry at a time: 
 
   do until ( eof1 ) ;                                                                                                                  
      set small end = eof1 ;                                                                                                            
      hh.replace () ;                                                                                                                   
   end ;                                                                                                                                

 
Note that at this point, Generation II hashing does not provide a mechanism of 
storing and/or handling duplicate keys with different satellites in one and the 
same hash table. This difficulty can be principally circumvented, if need be, by 
discriminating the primary key by creating a secondary key from the satellite, thus 
making the entire composite key unique. All the more, it is further aided by the 
ease with which Generation II hash tables can store and manipulate composite 
keys. 

COMPOSITE KEYS AND MULTIPLE SATELLITES 
In Generation I, creating a composite hash key can be a breeze or a pain, 
depending on the type, range, and length of the component keys [1]. But in any 
case, the programmer needs to know the data beforehand and often demonstrate 
a good deal of ingenuity.  
 
Generation II makes it all easy. The only thing we need to do in order to create a 
composite key is define the types and lengths of the key components and instruct 
the constructor to use them in the specified subordinate sequence. For example, 
if we needed to create a hash table HH keyed by variables defined as 
 
length k1 8 k2 $3 k3 8 ; 

 
and in addition, had multiple satellites to store, such as  
 
length a $2 b 8 c $4 ; 

 
we could simply code: 
 
   dcl hash hh () ;                                                                                                                     
                                                                                                                                        
   hh.DefineKey  ('k1', 'k2', 'k3') ;                                                                                                   
   hh.DefineData ('a', 'b', 'c') ;                                                                                        
   hh.DefineDone () ;                                         

 
and the internal hashing scheme will take due care about whatever is necessary 
to come up with a hash bucket number where the entire composite key should fall 
together with its satellites.  
 
Multiple keys and satellite data can be loaded into a hash table one element at a 
time by using the ADD or REPLACE methods. For example, for the table defined 
above, we can value the keys and satellites first and then call the ADD or 
REPLACE method: 
 
  k1 =    1  ; k2 = 'abc' ; k3 =     3  ;                        
  a  =  'a1' ; b  =    2  ; c  = 'wxyz' ;                        
  rc = hh.replace () ;                                           
                                                                 
  k1 =    2  ; k2 = 'def' ; k3 =     4  ;                        
   a  =  'a2' ; b  =    5  ; c  = 'klmn' ;                        
  rc = hh.replace () ;                                           

 
Alternatively, these two table entries can be coded as  
 
hh.replace (key: 1, key: 'abc', key: 3,  
           data: 'a1', data: 2, data: 'wxyz') ;                  
 
hh.replace (key: 2, key: 'def', key: 4, 
            data: 'a2', data: 5, data: 'klmn') ;          

 
Note that more that one hash table entry cannot be loaded in the table at compile-
time at once, as it can be done in the case of arrays. All entries are loaded one 
entry at a time at execution time. 
 
Perhaps it is a good idea to avoid hard-coding data values in a Data step, and 
instead always load them in a loop either from a file or, if need be, from arrays. 
Doing so reduces the propensity of the program to degenerate into what Master 
Ian Whitlock calls “wall paper”, and separates code from data.    

HASH PARAMETERS AS EXPRESSIONS 
The two steps above may have already given a hash-hungry reader enough to 
start munching mind-boggling programming opportunities opened by the 
availability of the SAS-prepared hash food without the necessity to cook it. To add 
a little more spice to it, let us rewrite the step yet another time: 
 
data match ;                                                      
   set small (obs = 1) ;   
   retain dsn ‘small’ x 10 kn ‘key’ dn ‘s_sat’ ;  
 
  dcl hash hh (dataset: dsn, hashexp: x) ;                       
                                                                 
  hh.DefineKey  ( kn ) ;                                         
  hh.DefineData ( dn ) ;                                         
  hh.DefineDone (    ) ;                                         
                                                                 
  do until ( eof2 ) ;                                            
      set large end = eof2 ;                                     
     if hh.find () = 0 then output ;                             
   end ;                                                          
  stop ;                                                         
run ;                 

       
As we see, the parameters passed to the constructor (such as DATASET and 
HASHEXP) and methods need not be necessarily hard-coded literals. They can 
be passed as valued Data step variables, or even as appropriate type 
expressions. For example, it is possible to code (if need be):  
 
retain args ‘small key s_sat’ n_keys 1e6;  
 
dcl hash hh ( dataset: substr(args,1,5) 
              hashexp: log2(n_keys) 
           ) ;                                                   
hh.DefineKey  ( scan(s, 2) ) ;                                    
hh.DefineData ( scan(s,-1) ) ;                                    
hh.DefineDone (    ) ;                                            

HASH ITERATOR 
During both hash table load and lookup the sole question we need to answer is 
whether the particular search key is in the table or not. The FIND method gives 
the answer without any need for us to know what other keys may or may not be 
stored in the table. However, in a variety of situations we do need to know the 
keys and data already stored in the table at the moment. How do we do that?   
 
In Generation I it is simple since we had full access to the guts of the table: 
Merrily run through all table nodes sequentially and extract the keys and satellites 
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corresponding to all occupied nodes. For example, for the linearly probed table, 
all it takes is this: 
 
do h = 0 to &hsize - 1 ; 
   if missing ( hkey (h) ) then continue ; 
   key = hkey (h) ; 
   s_sat = hsat (h) ; 
   < ... further processing ... >  
end ; 

            
In Generation II one answer could be to maintain an auxiliary array and store a 
key there every time it is loaded in the hash table. Then run through the keys in 
the array serially, using the FIND method to dump the table one key at a time.  
 
Actually, it might make sense if the goal is to retrieve the data from the table in 
which the they have been entered. However, often times it is much more 
beneficial to be able to dump the table in a sorted key order. For this purpose, 
SAS provides the hash iterator object.  
 
Let us consider a simple program that should make it all clear: 
 
data sample ;                                                                                                                           
   input k sat ;                                                                                                                        
cards ;                                                                                                                                 
185  01                                                                                                                                 
971  02                                                                                                                                 
400  03                                                                                                                                 
260  04                                                                                                                                 
922  05                                                                                                                                 
970  06                                                                                                                                 
543  07                                                                                                                                 
532  08                                                                                                                                 
050  09                                                                                                                                 
067  10                                                                                                                                 
 ;                                                                                                                                      
run ;                                                                                                                                   
                                                                                                                                        
data _null_ ;                                                                                                                           
   set sample point = _n_ ;                                                                                                             
                                                                                                                                        
   dcl hash  hh ( dataset: 'sample', 
                      hashexp: 8       , 
                      ordered: 1        ) ;                                                                      
   dcl hiter hi ( 'hh' ) ;                                                                                                           
                                                                                                                                        
   hh.DefineKey  ( 'k'         ) ;                                                                                                      
   hh.DefineData ( 'sat' , 'k' ) ;                                                                                                      
   hh.DefineDone () ;                                                                                                                   
                                                                                                                                        
   do rc = hi.first () by 0 while ( rc = 0 ) ;                                                                                          
      put k = z3. +1 sat = z2. ;                                                                                                        
      rc = hi.next () ;                                                                                                                 
   end ;                                                                                                                                
                                                                                                                                        
   do rc = hi.last () by 0 while ( rc = 0 ) ;                                                                                           
      put k = z3. +1 sat = z2. ;                                                                                                        
      rc = hi.prev () ;                                                                                                                 
   end ;                                                                                                                                
   stop ;                                                                                                                               
run ;                                                 

 
We see that now the hash table is instantiated with the non-zero option 
ORDERED. Without such arrangement, the subsequent iterator object 
declaration 
 
dcl hiter hi ( 'hh' ) ;                                                                                                           

      
would fail. Note that the hash object symbol name must be passed to the iterator 
as a character string, either hard-coded as above or as a character expression 
resolving to the symbol name of a declared hash object, in this case, “HH”. After 
the iterator HI has been successfully instantiated, it can be used to fetch entries 
from the hash table in a sorted order by key. 
 
To retrieve hash table entries in an ascending order, we must first point to the 
entry with the smallest key. This is done by the method FIRST: 
 
rc = hi.first () ; 

 
where HI is the name we have assigned to the iterator. A successful call to FIRST 
fetches the smallest key into the host variable K and the corresponding satellite - 

into the host variable SAT. Once this is done, each call to the NEXT method will 
fetch the hash entry with the next key in ascending order. When no keys are left, 
the NEXT method returns RC > 0, and the loop terminates. Thus, the first loop 
will print in the log: 
 
k=050  sat=09 
k=067  sat=10 
k=185  sat=01 
k=260  sat=04 
k=400  sat=03 
k=532  sat=08 
k=543  sat=07 
k=922  sat=05 
k=970  sat=06 
k=971  sat=02 

 
Inversely, the second loop retrieves table entries in descending order by starting 
off with the call to the LAST method fetching the entry with the largest key. Each 
subsequent call to the method PREV extracts an entry with the next smaller key 
until there are no more keys to fetch, at which point PREV returns RC > 0, and 
the loop terminates. Therefore, the loop prints: 
 
k=971  sat=02 
k=970  sat=06 
k=922  sat=05 
k=543  sat=07 
k=532  sat=08 
k=400  sat=03 
k=260  sat=04 
k=185  sat=01 
k=067  sat=10 
k=050  sat=09                       

 
An alert reader might be curious why the key variable had to be also supplied to 
the DefineData method? After all, each time the DO-loop iterates, the iterator 
points to a new key and fetches a new key entry. The problem is that the host key 
variable K is updated only once, as a result of the FIRST or LAST method call. 
Calls to PREV and NEXT methods do not update the host key variable. However, 
a satellite hash variable does! So, if in the step above, it had not been passed to 
the DefineData method as an additional argument, only the key values 050 and 
971 would have been printed. 
 
At this point, it is not clear whether it is a design feature or something that will be 
addressed when Generation II hashing will emerge from the experimental stage 
and go real production. Either way, it can always be circumvented by the trick 
shown above.     

ITERATOR PROGRAMMING EXAMPLE: ARRAY SORTING 
The ability of a hash iterator to rapidly retrieve hash table entries in order is an 
extremely powerful feature which will surely find a lot of use in Data step 
programming.  
 
The first iterator programming application that springs to mind immediately is 
using its key ordering capabilities to sort another object. The easiest and most 
apparent prey is a SAS array. Note, though, that since a Generation II hash table 
cannot hold duplicate keys, the arrays sorted below using the first array A as a 
key and the second array B - as its satellite - will be effectively unduplicated. That 
is, after each sorting loop, the array A will be sorted from lbound(A) to 
lboound(A)+n_unique (in this case, n_unique=86507):        
 
data _null_ ;                                                     
   array a (-100000 : 100000) _temporary_ ;                       
   array b (-100000 : 100000) _temporary_ ;                      
  do j = lbound (a) to hbound (a) ;                              
      a (j) = ceil ( ranuni (1) * 1e5 ) ;                        
     b (j) = j ;                                                 
   end ;                                                          
  length ka 8 sb 8 ;                                             
   declare hash  hh (hashexp: 0, ordered: 1 ) ;                   
  declare hiter hi ( 'hh' ) ;                                    
  hh.DefineKey     ( 'ka'        ) ;                             
  hh.DefineData    ( 'ka' , 'sb' ) ;                             
  hh.DefineDone    () ;                                          
  do j = lbound(a) to hbound(a) ;                                
     ka = a (j) ;                                                
     if hh.check () = 0 then continue ;                          
     sb = b (j) ;                                                
      n_unique ++ 1 ;                                            
     hh.add () ;                                                 
   end ;                                                          
* sort ascending ;                                               
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   rc = hi.first () ;                                                                                                                   
   do j = lbound (a) by 1 while ( rc = 0 ) ;                                                                                            
      a (j) = ka ;                                                                                                                      
      b (j) = sb ;                                                                                                                      
      rc = hi.next () ;                                                                                                                 
   end ;                                                                                                                                
 * sort descending ;                                                                                                                    
   rc = hi.last() ;                                                                                                                     
   do j = lbound(a) by 1 while ( rc = 0 ) ;                                                                                             
      a (j) = ka ;                                                                                                                      
      b (j) = sb ;                                                                                                                      
      rc = hi.prev() ;                                                                                                                  
   end ;                                                                                                                                
   stop ;                                                                                                                               
run ;   

 
Note that HASHEXP=0 was chosen. Since it means 2**0=1, i.e. a single bucket, 
we have created a stand-alone AVL(Adelson-Volsky & Landis)  binary tree in a 
Data step, let it grow dynamically as it was being populated with keys and 
satellites, and then traversed it to eject the data in a predetermined key order.  
 
Just to give an idea about this hash table performance in some absolute figures, 
this entire step runs in about 1.15 seconds on a desktop 933 MHz computer 
under XP Pro. The time is pretty deceiving, since 85 percent of it is spent 
inserting the data in the tree. The process of sorting 200,001 entries itself takes 
only scant 0.078 seconds either direction. Increasing HASHEXP to 16 reduces 
the table insertion time by about 0.3 seconds, while the time of dumping the table 
in order remains the same.                                                  

DATA STEP COMPONENT INTERFACE 
Now that we have a taste of the Generation II hashing, let us consider it from a 
little bit more general viewpoint. 
 
In Version 9, the hash table (associative array) introduces the first component 
object accessible via a rather novel thingy called DATA Step Component 
Interface (DSCI). A component object is an abstract data entity consisting of two 
distinct characteristics: Attributes and methods.  Attributes are data that the 
object can contain, and methods are operations the object can perform on its 
data. 
 
From the programming standpoint, an object is a black box with known 
properties, much like a SAS procedure. However, a SAS procedure, such as 
SORT or FORMAT, cannot be called from a Data step at run-time, while an 
object accessible through DSCI - can. A Data step programmer who wants an 
object to perform some operation on its data, does not have to program it 
procedurally, but only to call an appropriate method.        

THE HASH OBJECT 
In our case, the object is a hash table. Generally speaking, as an abstract data 
entity, a hash table is an object providing for the insertion and retrieval of its 
keyed data entries in O(1), i.e. constant, time. Properly built Generation I direct-
addressed tables satisfy this definition in the strict sense. We will see that the 
Generation II hash object satisfies it in the practical sense. The attributes of the 
hash table object are keyed entries comprising its key(s) and maybe also 
satellites.   
 
Before any hash table object methods can be called (operations on the hash data 
performed), the object must be declared. In other words, the hash table must be 
instantiated with the DECLARE (DCL) statement, as we have seen above.           
 
The hash table methods are the functions it can perform, namely:  
 

• DefineKey. Define a set of hash keys. 
• DefineData. Define a set of hash table satellites. This method call can 

be omitted without harmful consequences if there is no need for non-
key data in the table. Although a dummy call can still be issued, it is 
not required.    

• DefineDone. Tell SAS the definitions are done. If the DATASET 
argument is passed to the table’s definition, load the table from the 
data set.  

• Add. Insert the key and satellites if the key is not yet in the table (ignore 
duplicate keys). 

• Replace. If the key is not in the table, insert the key and its satellites. 
Otherwise overwrite the satellites in the table with new ones.  

• Find. Search for the key. If it is found, extract the satellite(s) from the 
table and update the host Data step variables. 

• Check. Search for the key. If it is found, just return RC=0, and do 
nothing more.    

DATA STEP OBJECT DOT SYNTAX 

As we have seen, in order to call a method, we only have to specify its name 
preceded by the name of the object followed by a period, such as:  
 
hh.DefineKey () 
hh.Find () 
hh.Replace () 
hh.First () 

 
and so on. This manner of telling SAS Data step what to do is thus naturally 
called the Data Step Object Dot Syntax. Summarily, it provides a linguistic 
access to a component object’s methods and attributes.  
 
So far, there are but a couple of component objects accessible from a Data step 
through DSCI. However, as their number grows, we had better get used to the 
object dot syntax real soon, particularly those dinosaurs among us who have not 
exactly learned this kind of tongue in the kindergarten...    

GENERATION II: A PEEK UNDER THE HOOD 
We have just seen the tip of the Generation II hash iceberg from the outside. An 
inquiring mind would like to know: What is inside? Not that we really need the 
gory details of the underlying code, but it is instructive to know on which 
principles the design of the internal SAS table is based in general. A good driver 
is always curious what is under the hood.  
 
Well, in general, hashing is hashing is hashing - which means that it is always a 
two-staged process: 1) Hashing a key to its bucket 2) resolving collisions within 
each bucket. Discussing collision resolution schemes, we had to reject the 
simple straight separate chaining because of the inability to dynamically allocate 
memory one entry at a time, while reserving it in advance could result in 
unreasonable waste of memory. 
 
Since Generation II is coded in the underlying software, this restriction no longer 
exists, and so separate chaining is perhaps the most logical way to go. Its 
concrete implementation, however, has somewhat deviated from the classic 
scheme of connecting keys within each node into a link list. Instead, each new 
key hashing to a bucket is inserted into its binary tree. If there were, for simplicity, 
only 4 buckets, the scheme might roughly look like this: 
 
     0         1         2         3 
+---------+---------+---------+---------+ 
|    |    |    |    |    |    |    |    | 
|   / \   |   / \   |   / \   |   / \   | 
|  /\ /\  |  /\ /\  |  /\ /\  |  /\ /\  |                 

 
The shrub-like objects inside the buckets are AVL (Adelson-Volsky & Landis) 
trees. AVL trees are binary trees populated by such a mechanism that on the 
average guarantees their O(log(N)) search behavior regardless of the distribution 
of the key values.  
 
The number of hash buckets is controlled by the HASHEXP parameter we have 
used above. The number of buckets allocated by the hash table constructor is 
2**HASHEXP. So, if HASHEXP=8, HZISE=256 buckets will be allocated, or if 
HASHEXP=16, HSIZE=65536. As of the moment, it is the maximum. Any 
HASHSIZE specified over 16 is truncated to 16.  
 
Let us assume HASHEXP=16 and try to see how, given a KEY, this structure 
facilitates hashing. First, a mysterious internal hash function maps the key, 
whether is it simple or composite, to some bucket. The tree in the bucket is 
searched for KEY. If it is not there, the key and its satellite data are inserted in the 
tree. If KEY is there, it is either discarded when ADD is called, or its satellite data 
are updated when REPLACE is called.     
 
Like in Generation I, how fast all this occurs depends on the speed of search. 
Suppose that we have N=2**20, i.e. about 1 million keys. With HSIZE=2**16, 
there will be on the average 2**4 = 16 keys hashing to one bucket. Since N > 
HSIZE, the table is overloaded, i.e. its load factor is greater than 1. However, 
binary searching the 16 keys in the AVL tree requires only about 5 keys 
comparisons. If we had 10 million keys, it would require about 7 comparisons, 
which practically makes almost no difference.   
 
Thus the Generation II hash table behaves as O(log(N/HSIZE)). While it is not 
exactly O(1), it can be considered such for all practical intents and purposes,as 
long as N/HSIZE is not way over 100. Thus, by choosing HASHEXP judiciously, it 
is thus possible to tweak the hash table performance to some degree and 
depending on the purpose.   
 
For example, if the table is used primarily for high-performance matching, it may 
be a good idea to specify the maximum HASHEXP=16, even if some buckets end 
up unused. From our preliminary testing, we have not been able to notice any 
memory usage penalty exacted by going to the max, all the more that as of this 
writing, the Data step does not seem to report memory used by an object called 
through the DSCI. At least, experiments with intentionally large hash tables show 
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that the memory usage reported in the log is definitely much smaller than the 
hash table must have occupied, although it was evident from performance that 
the table is completely memory-resident, and the software otherwise has no 
problem handling it. However, with several thousand keys at hand there is little 
reason to go over HASHEXP=10, anyway. Also, if the sole purpose of using the 
table is to eject the data in a key order using a hash iterator, even a single bucket 
at HASHEXP=0 can do just fine, as we saw earlier with the array sorting example. 
On the other hand, if there is no need for iterator processing, it is better to leave 
the table completely iterator-free by not specifying a non-zero ORDERED option. 
Maintaining an iterator over a hash table obviously requires certain overhead.    

HASH TABLE AS A DYNAMIC DATA STEP STRUCTURE 
Generation II hash tables represent the first ever dynamic Data step structure, i.e. 
one capable of acquiring memory and growing at run-time. There are a number of 
common situations in data processing when the information needed to size a 
data structure becomes available only at execution time. SAS programmers 
usually solve such problems either by pre-processing data, i.e. passing through 
the data more than once, or allocating memory resources for the worst case 
scenario. As more programmers become familiar with the possibilities this 
dynamic structure offers, they will be able to avoid resorting to many old kludges.  
 
What we cannot do dynamically (at least, for now) is to make a hash table shrink 
by deleting its nodes. However, it is hardly necessary. Firstly, if a keyed entry has 
been inserted in the table, there must be a use for it for as long as the table 
exists. Secondly, if the table is no longer needed, it can be simply wiped out by 
the DELETE method: 
 
rc = hh.Delete () ; 

 
This will eliminate the table from memory for good, but not its iterator! As a 
separate object related to a hash table, it has to be deleted separately: 
 
rc = hi.Delete () ;   

 
If at some point of a Data step program there is a need to start building the same 
table from scratch again, remember that the compiler must see only a single 
definition of the same table by the same token as it must see only a single 
declaration of the same array (and if the rule is broken, it will issue the same 
error message, e.g.: “Variable hh already defined”). Also, like in the case of 
arrays, the full declaration (table and its iterator) must precede any table/iterator 
references. In other words, this will NOT compile because of the repetitive 
declaration: 
 
20   data _null_ ; 
21      length k 8 sat $11 ; 
22 
23      dcl hash  hh  ( hashexp: 8, ordered: 1 ) ; 
24      dcl hiter hi  ( 'hh'  ) ; 
25      hh.DefineKey  ( 'k'   ) ; 
26      hh.DefineData ( 'sat' ) ; 
27      hh.DefineDone () ; 
28 
29      hh.Delete () ; 
30 
31      dcl hash  hh  (hashexp: 8, ordered: 1 ) ; 
                      - 
                      567 
ERROR 567-185: Variable hh already defined. 
 
32      dcl hiter  hi  ( 'hh'  ) ; 
                       - 
                       567 
ERROR 567-185: Variable hi already defined. 

 
And this will not compile because at the time of the DELETE method call, 
the compiler has not seen HH yet: 
 
39   data _null_ ; 
40      length k 8 sat $11 ; 
41      link declare ; 
42      rc = hh.Delete() ; 
             --------- 
             557 
             68 
ERROR 557-185: Variable hh is not an object. 
ERROR 68-185: The function HH.DELETE is unknown, or cannot be 
accessed. 
 
43      link declare ; 
44      stop ; 
45      declare: 

46         dcl hash  hh  ( hashexp: 8, ordered: 1 ) ; 
47         dcl hiter hi  ( 'hh'  ) ; 
48         hh.DefineKey  ( 'k'   ) ; 
49         hh.DefineData ( 'sat' ) ; 
50         hh.DefineDone () ; 
51      return ; 
52      stop ; 
53   run ; 

 
However, if we do not dupe the compiler and reference the object after it 
has seen it, it will work as designed: 
 
199  data _null_ ; 
200     retain k 1 sat 'sat' ; 
201     if 0 then do ; 
202        declare: 
203        dcl hash  hh  ( hashexp: 8, ordered: 1 ) ; 
204        dcl hiter hi  ( 'hh'  ) ; 
205        hh.DefineKey  ( 'k'   ) ; 
206        hh.DefineData ( 'sat' ) ; 
207        hh.DefineDone () ; 
208        return ; 
209     end ; 
210     link declare ; 
211        rc =  hi.First  () ; 
212        put k= sat= ; 
213        rc = hh.Delete () ; 
214        rc = hi.Delete () ; 
215     link declare ; 
216        rc = hh.Delete () ; 
217        rc = hi.Delete () ; 
218     stop ; 
219  run ; 
 
k=1 sat=sat 

 
Of course, the most natural and trouble-free way to declare a table, process it, 
free, and declare the same table from scratch again is to place the entire process 
in a loop. This way, the declaration is easily placed ahead of references, and the 
compiler sees the declaration just once. In a moment, we will see an example of 
doing exactly that. 

DYNAMIC DATA STEP DATA DICTIONARIES 
The fact that hashing supports searching (and thus retrieval and update) in 
constant time makes it ideal for using a hash table as a dynamic Data step data 
dictionary. Suppose that during DATA step processing, we need to memorize 
certain key elements and their attributes on the fly, and at different points in the 
program, answer the following: 
 

1. Has the current key already been used before? 
2. If it is new, how to insert it in the table, along with its attribute, in such a 

way that the question 1 could be answered as fast as possible in the 
future? 

3. Given a key, how to rapidly update its satellite? 
4. If the key is no longer needed, how to delete it? 

 
Generation I programming examples showing how key-indexing can be used for 
this kind of task are given in [1]. Here we will take an opportunity to show what 
Generation II can do to help an unsuspecting programmer. Imagine that we have 
input data of the following arrangement: 
 
data sample ;                                                     
  input id transid amt ;                                         
   cards ;                                                       
1  11   40                                                        
1  11   26                                                        
1  12   97                                                        
1  13    5                                                        
1  13    7                                                        
1  14   22                                                        
1  14   37                                                        
1  14    1                                                        
1  15   43                                                       
1  15   81                                                        
3  11   86                                                        
3  11   85                                                        
3  11    7                                                       
3  12   30                                                        
3  12   60                                                        
3  12   59                                                        
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3  12   28                                                                                                                              
3  13   98                                                                                                                              
3  13   73                                                                                                                              
3  13   23                                                                                                                              
3  14   42                                                                                                                              
3  14   56                                                                                                                              
;                                                                                                                                       
run ;                   

 
The file is grouped by ID and TRANSID. We need to summarize AMT within each 
TRANSID giving SUM, and for each ID, output 3 transaction IDs with largest 
SUM. Simple! In other words, for the sample data set, we need to produce the 
following output: 
 
id    transid    sum 
-------------------- 
 1       15      124 
 1       12       97 
 1       11       66 
 3       13      194 
 3       11      178 
 3       12      177 

 
Usually, this is a 2-step process, either in the foreground or behind the scenes 
(SQL). Since a Generation II hash table can eject keyed data in a specified order, 
it can be used to solve the problem in a single step: 
 
data id3max (keep = id transid sum) ;                                                                                                   
   length transid sum 8 ;                                                                                                               
   dcl hash  ss  (hashexp: 3, ordered: 1) ;                                                                                             
   dcl hiter si  ( 'ss' ) ;                                                                                                             
   ss.defineKey  ( 'sum'            ) ;                                                                                                 
   ss.defineData ( 'sum', 'transid' ) ;                                                                                                 
   ss.defineDone () ;                                        
   do until ( last.id ) ;                                                                                                               
      do sum = 0 by 0 until ( last.transid) ;                                                                                           
         set sample ;                                                                                                                   
         by id transid ;                                                                                                                
         sum ++ amt ;                                                                                                                   
      end ;                                                                                                                             
      rc = ss.replace () ;                                                                                                              
   end ;                                                                                                                                
   rc = si.last () ;                                                                                                                    
   do cnt = 1 to 3 while ( rc = 0 ) ;                                                                                                   
      output ;                                                                                                                          
      rc = si.prev () ;                                                                                                                 
   end ;      
run ;                                      

   
The inner Do-Until loop iterates over each BY-group with the same TRANSID 
value and summarizes AMT. The outer Do-Until loop cycles over each BY-group 
with the same ID value and for each repeating ID, stores TRANSID in the hash 
table SS keyed by SUM. Because the REPLACE method is used, in the case of a 
tie, the last TRANSID with the same sum value takes over. At the end of each ID 
BY-group, the iterator SI fetches TRANSID and SUM in the order descending by 
SUM, and top three retrieved entries are written to the output file. Control is then 
passed to the top of the implied Data step loop where it encounters the table 
definition. It causes the old table and iterator to be dropped, and new ones - 
defined. If the file has not run out of records, the outer Do-Until loop begins to 
process the next ID, and so on. 

CONCLUSION: GENERATION I + GENERATION II 
It has been proven through testing and practical real-life application that direct-
addressing methods can be a great efficiency tool if used wisely. Before the 
advent of Version 9, the only way of implementing these methods in a SAS Data 
step was coding them by hand. This is what we term Generation I in this paper. 
While it is a lot of fun and produces great results, it is primarily efficient from the 
standpoint of the machine time. The main principles of Generation I are 
programming ingenuity, algorithmic knowledge, and “thou shalt know thy data”, 
“thy data” being chiefly the properties of the hash keys involved in the process.  
 
Generation II provides an access to algorithms of the same type and hence with 
the same high-performance potential via an object. While being aware of its guts 
does not hurt, it is not necessary for a programmer to know the details, for great 
results - on par or better than those of Generation I - can be achieved just by 
following syntax rules and learning which methods cause the black box called a 
hash table to produce coveted results. Thus, along with improving computer 
efficiency, Generation II also makes great strides in programming efficiency. 
  

If this is the case, does it mean that Generation II makes Generation I and custom 
hash coding obsolete?  
 
Not necessarily. Surely it will prompt some folks, who have never touched 
hashing because it has not been a canned function, to start using it now. 
However, those very folks are likely to discover that a sizeable direct-addressing 
territory is better covered by the traditional Generation I hand coding. Below is a 
short Generation I vs. Generation II comparison list intended to outline the areas 
where one or the other dominate and/or coexist: 
 

• Simple numeric key falling in a limited range. SAS date and time 
values are good examples. This is the area where Generation I key-
indexed search completely dominates the competition both in 
computer and programming efficiency.     

• Simple numeric key with the range up to 9 digits; no satellites needed. 
Bitmapping is king.  

• Simple numeric key or short (up to 8-10 bytes) character key. Both 
generations do well. If ultimate speed is the issue, hand-coding still 
does better, but not by much. Generation II may have the advantage of 
coding simplicity. 

• Composite keys. This is mainly Generation II territory. Generation I is 
better if the keys can be rapidly combined in a short integer. If the 
composite key is of the mixed type, Generation II is king.  

• Retrieving data by key from a hash table in order. Generation I can 
provide such functionality only through array sorting. Generation II 
provides a hash iterator object specifically for this purpose, and once 
the data are in the table, it works very fast.                           

• Storing and handling duplicate key entries in a hash table. Generation I 
is more flexible here. Generation II only lets you control which duplicate 
takes over, but its table must be keyed uniquely. 

• Dynamic Data step dictionaries. Generation II is the ideal tool here. Its 
table grows at run-time as new entries are added, so it is unnecessary 
to allocate giant memories beforehand “just in case”.  

 
Finally, it should be noted that at this moment of the Version 9 history, the hash 
object and its methods are an experimental feature. To the extent of our testing, 
they do work as documented. From the programmer’s viewpoint, some aspects 
that might need attention are: 
 

• Parameter type matching in the case where a table is loaded from a 
data set. If the data set is named in the step, the attributes of hash 
entries should be available from its descriptor. 

• Memory usage reporting. Currently the memory occupied by a hash 
table appears to not be reported in the log.  

• An iterator does not write key values directly into a host key variable 
when the NEXT and PREV methods are used. Defining the key 
variable additionally as a satellite data element works but looks 
awkward.      

 
Putting all this aside, the advent of the Generation II hash table as the first 
dynamic Data step structure is nothing short of a long-time breakthrough. 
Hashing has always been fun, but it has never been as much fun as now.         
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